The Body, Brain and Environment: What Shapes What?

A.E. Eiben!, G.S. Nitschke
a.e.eiben@vu.nl, gnitschke@cs.uct.za
'Department of Computer Science, Vrije Universiteit
Amsterdam, the Netherlands
Department of Computer Science, University of Cape Town
Cape Town, South Africa

Abstract

This chapter takes inspiration from the seminal book titled “How the body shapes the way
we think”, which we paraphrase into “How the body shapes the brain”. The key idea is to invert
the implication and consider how the brain shapes the body. The essence of our approach is
to consider this in an evolutionary context, leveraging the fact that in evolving robot systems
the bodies are shapeable. To this end we review two previously published studies and discuss
them from a new perspective. We find solid evidence that system changes that affect the robot
controllers (specifically, optimizing the brains during lifetime) can have paramount impact on the
evolved morphologies. Encouraged by these insights we conclude the chapter by elaborating on
promising directions and grand challenges for future research.

1 Introduction

Since the Cambrian explosion [Marshall, 2006], nature has produced a plethora of morpholog-
ically and behaviorally diverse organisms that have evolved to survive in even the most ex-
treme environments on Earth [Rothschild and Mancinelli, 2001]. In contrast to current robotic
systems that can operate only in specially structured environments [Carlson and Murphy, 2005,
Bongard et al., 2006, Ermolov, 2020], natural organisms have evolved to survive in a diverse range
of unstructured environmental niches, at least in part, due to embodied cognition [Barrett, 2011].
We argue that such embodied cognition (embodied intelligence) emerges from close coupling be-
tween an agent’s body and brain and the environment. Thus if we are to solve the perennial
problem in embodied autonomous systems [Rahwan et al., 2019] (and more generally Artificial
Intelligence) of finding general problem-solvers that effectively function across and adapt to novel
environments [Koos et al., 2013, Cully et al., 2015], then the evolutionary design of artificial and
embodied agents (robots) must account for complexities in the evolutionary and developmental
relationship between body, brain and environment [Eiben et al., 2021].

There is significant evidence supporting such body, brain, environment interactions in nature
[Pfeifer and Bongard, 2007], and in various experimental artificial life [Sims, 1994] and embodied
(robotic) [Lipson and Pollack, 2000] systems. Since this seminal work there has recently been an



increasing volume of evolutionary robotics research investigating the impact of various morphology-
controller evolutionary search [Pugh et al., 2021, Kriegman et al., 2020, Howison et al., 2021] on
robot morphology-controller evolution [Weel et al., 2014, Cheney et al., 2018, Furman et al., 2019,
Shah et al., 2021, Zardini et al., 2021, Nordmoen et al., 2021] across varying task and environ-
ment complexity [Auerbach and Bongard, 2014, Hallauer and Nitschke, 2020, Miras et al., 2020b,
Spanellis et al., 2021]. One commonality of all such work, is clear demonstration that agent (robot)
body (morphology) and brain (controller) determines attainable limits of learning and develop-
ment, which is ultimately directed by environment complexity.

Most such evolutionary robotics work has focused on the rather intractable problem of jointly
evolving both robot morphology and controller (in either simulated or physical systems), thus
placing significant limitations on usable task environment complexity, given the enormity of the
behavior-morphology search space. However, in this perspective we emphasize the importance of
morphological materials available for body-brain evolution [Pfeifer et al., 2007, Pfeifer et al., 2012,
Shah et al., 2020, Blackiston et al., 2021]. This is critical since materials available in the environ-
ment determine a robot’s morphology, which constraints possible controller configurations which in
turn determines possible problem-solving behaviors during robot-environment interaction. As in
nature, the molecular and material building blocks present in any given environment significantly
impact the evolution of organisms in these environments and thus direct body-brain development
which then determines an organism’s problem-solving behavior. This notion was most recently
codified as the multi-level evolution process for automated robot design [Howard et al., 2019].

In embodied evolutionary robotics, the impact of body-brain building-blocks, and their material
properties, on the evolution of body-brain (morphology-controller) configurations has been demon-
strated across numerous studies. For example, Corucci et al. [Corucci et al., 2018], explore the
impact of various material properties on the evolution of soft-robotic morphologies and behaviors
for terrestrial and aquatic locomotion. In a study on evolving body-brain modularity, Bernatskiy
and Bongard [Bernatskiy and Bongard, 2018], use embodied agents to demonstrate the influence
of various evolved morphologies have on the concurrent evolution of plastic modular controllers.
Kriegman et al. [Kriegman et al., 2018], present an in silico test-bed for evolving developmen-
tal embodied systems, demonstrating what they term differential canalization, in soft-body robot
morphology (body) and controllers (brain) that concurrently adapt while robots interact with
their environment. This phenomenon showed body-brain traits eliciting robustness in the envi-
ronment become canalized in a developmental and evolutionary process akin to the Baldwin effect
[Baldwin, 1896]. Similarly, Gupta et al. [Gupta et al., 2021] demonstrated the impact of lifetime
learning on evolving beneficial robot morphologies (kinematic trees of interacting 3D rigid parts).
Specifically, task environment complexity coupled with lifetime-learning and morphological evo-
lution boosts the adaptation of task-accomplishing body-brain couplings. Also, a morphological
Baldwin effect was observed where behavior-morphology couplings that learn faster during robot
lifetimes are selected for and propagated over successive generations.

The following sections summarize two prevalent case-studies to demonstrate our perspective
on the intertwined, close coupling between environment, body-brain material building-blocks, and
controllers. We refer to such systems as: Body And Brain Evolutionary Learning (BABEL) sys-
tems. The first case study explores the impact of morphological material properties on evolving
morphologies and thus behavioral adaptation in an artificial life system (section 2). The second
case study investigates the impact of evolving modular robot morphologies and co-adapted neural
controllers distributed throughout the modules in an embodied system operating in physical envi-
ronments (section 3).



2 The Effects of Evolutionary and Lifetime Learning on
Minds and Bodies

The first paper investigated the impact of evolutionary versus lifetime learning on agent minds
(controllers) and bodies (morphologies) in an artificial society [Buresch et al., 2005]. Agents and
plants (resources) populated the AEGIS artificial world [Buresch, 2004], where at each lifetime
iteration agents could select to move, mate (with an agent of opposite sex), eat (a plant) or attack
(another agent). Agent controllers were represented by three mental properties (attack, food, and
social), determining propensity for executing a given action at each iteration of its lifetime. Sim-
ilarly, agent morphology was represented by three physical properties (gender, muscle and skin),
determining agent physical prowess and thus likely success at physical conflict. For each agent,
these controller and morphological properties were coded as separate genes and represented as a
single genotype evolved during an artificial evolution process.

Experiments compared evolutionary versus lifetime learning for controller adaptation, where
for both experiment sets, agent morphology (skin and muscle attributes) was co-evolved. How-
ever, as control experiments, the controller with the highest overall task performance (denoted by
average success of all actions executed during agent lifetime) was selected from the evolutionary
and lifetime learning experiments. These best controllers were then executed in experiments where
the controller was no longer adapted but where agent morphology was evolved.

Overall, the comparison of evolutionary versus lifetime learning for controller adaptation indi-
cated each approach significantly influenced the co-evolution of morphologies. Specifically, agents
using lifetime learning (figure 2) versus evolution (figure 1) adapted to occupy different regions
of the morphological definition space (skin versus muscle attribute values), for a given environment.

Thus, the controller adaptation method influenced morphological evolution (over generational
time), where agents using evolutionary controller adaptation evolved morphologies with physical
attributes consistently confined to the lower-right quadrant of the skin-muscle density maps (figure
1). In this sense, such morphologies are considered stable across evolutionary time. Whereas, for
the same environment, agents using lifetime learning for controller adaptation, evolved morpholo-
gies across all quadrants of the skin-muscle density maps (figure 2). Thus, comparatively, these
are considered unstable across evolutionary time.

These results thus indicate the possibility that controller evolution enables the co-evolution
of stable morphologies over successive generations, whereas lifetime learning to adapt controllers
encourages the co-evolution of relatively unstable morphologies across generations.
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Figure 1: Left: Evolved agent morphologies given controller and morphology evolution. Right:
Evolved morphologies given best controller (highest performer from evolving controller runs) and
evolving morphology. Morphology muscle-skin density maps were computed for final generation pop-
ulations (up to 10000 agents), averaged over 10 runs.
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Figure 2: Left: Evolved agent morphologies given controller lifetime learning and morphology evo-
lution. Right: Evolved morphologies given best controller (highest performer from lifetime learning
controller runs) and evolving morphology. Morphology muscle-skin density maps were computed for
final generation populations (up to 10000 agents), averaged over 10 runs.



3 Evolving Controllers versus Learning Controllers for Mor-
phologically Evolvable Robots

The second paper studied the evolution of modular robots in simulation [Miras et al., 2020a]. The
simulator, called Revolve [Hupkes et al., 2018], models robots that can reproduce and create off-
spring that inherit the parents’ morphologies and controllers by crossover and mutation. The
paper compares two approaches to evolving robots for fast locomotion. The robot morphologies
are evolved the same way in both approaches, but for creating good controllers one method uses
evolution only, while the other applies evolution and learning together. In the first one the con-
troller of a robot child is inherited, that is, produced by applying crossover and mutation to the
controllers of its parents. In the second one the controller of the child is also inherited, but addi-
tionally, it is improved after ‘birth’ by a applying a learning method to it.

The morphological design space is based on the RoboGen system [Auerbach et al., 2014], where
a robot is composed from three different types of modules, one core component (head) that holds
the controller board, the battery, and the camera (if present) and can attach to other modules by
using its four lateral slots; a number of structural bricks (body modules) that have attachment slots
on all four lateral sides; and a number of active hinges (joints) with servo motors that have two
attachment slots on the opposite lateral sides. The joints can be positioned in two different ways,
moving either vertically or horizontally. An important feature of the system is the bidirectional
bridge between simulations and reality: all robots that can be built can also be simulated and
all robots that can be simulated can be built in the real world. Figure 3 exhibits the physical as
well as the digital ‘incarnation’ of three robots after [van Diggelen et al., 2021]. These robots are
controlled by Central Pattern Generators (CPGs) [Ijspeert, 2008] arranged in a hybrid artificial
neural network, called a Recurrent CPG Perceptron. For every joint in the morphology, there
exists a corresponding oscillator in the network. The oscillators are not interconnected, and every
oscillator may or may not possess a direct recurrent connection. The main goal of the paper is
to investigate the effects of lifetime learning in evolving populations of such robots. As explained
above, in the the baseline method the controller of the offspring is produced by applying crossover
and mutation to the controllers of the parents. In other system controllers are not only inheritable
(hence, evolvable), but also learnable. Here, the ‘newborn’ robot only uses its inherited brain to
initialize a learning process and its actual behavior, and fitness, is determined by the learned brain.

The evolutionary process is using overlapping generations with population size p = 100. In
each generation A = 50 offspring are produced by selecting 50 pairs of parents through binary
tournaments (with replacement) and creating one child per pair by crossover and mutation. From
the resulting set of u parents plus A offspring, 100 individuals are selected for the next generation,
also using binary tournaments. Evolution is terminated after 30 generations, thus all together 1.550
robots are generated and tested per run. The task for the robots is to acquire a good gait, thus
the fitness function measures the speed (cm/s) of the robots: the displacement (distance between
starting point and end point) divided by the duration of the test period (30 seconds). The resulting
robot morphologies are compared quantitatively based on several morphological descriptors. Here
we reproduce the outcomes regarding the evolution of Size and the Number of Limbs in Figure 4.
These plots show that a change in the method to handle controllers can lead to changes in the
evolved morphologies. For Size the difference is clear and significant, for the Number of Limbs
the differences are prominent in the beginning, but diminish later as evolution settles on ‘snake-
shaped’ robots. Recently it was shown that the dominance of ‘snakes’ is a consequence of a hidden
bias of the representation; the L-systems have a strong tendency to converge to chain-shaped body
plans, while other representations do not [Miras, 2021].



Figure 3: Examples of robots in reality and as rendered in the Revolve simulator, the Gecko (left),
the Salamander (middle) and the Snake (right).
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Figure 4: The evolution of morphological properties Size and Number of Limbs. The curves show the
mean of the population for evolution only (green) and evolution plus learning (blue).

Another very interesting result is shown in Figure 5. It exhibits the average learning A per
generation, that is, the speed after learning minus the speed before learning. Putting it differently,
the learning A measures the performance difference between the inherited and the learned brains
per generation. In Figure 5 we can clearly see that the learning A is growing across the generations.
To be honest, this came as a surprise, because we have expected that as the bodies are becoming
optimized for the task, there is less and less to gain by learning. However, the data suggests another
effect: bodies are not only evolved for the task but also for their learning potential. As noted in
the paper “These observations suggest that the life-time learning led the evolutionary search to
more quickly exploit the high performing morphological properties.” To our best knowledge, these
results are the first to demonstrate the evolution of morphological intelligence or the morphological
Baldwin effect as phrased recently by Gupta et al. [Gupta et al., 2021].
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Figure 5: Average learning A per generation, that is, the speed after learning minus the speed before
learning (quartiles over all runs).

4 Discussion

A plethora evolutionary robotics work [Lipson and Pollack, 2000, Bongard, 2011, Eiben et al., 2012,
Brodbeck et al., 2015, Jelisavcic and et al., 2017, Spanellis et al., 2021] has demonstrated the im-
pact of the environment and materials [Howard et al., 2019] available for robot morphology-controller
(body-brain) evolution, as a key limitation of body-brain design and thus determinant of possible
problem-solving behaviours [Pfeifer et al., 2007]. Specifically, the body-brain building-blocks, the
material and controller constructs used by artificial evolution to synthesize body-brain couplings
play an essential role in determining what path body-brain evolution can take in a given envi-
ronment. This paper’s first case study (section 2), examined robot body-brain evolution using
simple parameterized morphological features (skin and muscle) linked to a probabilistic controller
[Buresch et al., 2005] as the body-brain building-blocks, in a 2D artificial-life world. In this case,
varying the body-brain adaptation significantly impacted the body-brain couplings evolved (figure
1: controller-morphology evolution versus figure 2: controller-morphology evolution and lifetime
learning). Whereas, the second case study (section 3), examined robot body-brain evolution us-
ing sensor, actuator and joint modules defined in the RoboGen system [Auerbach et al., 2014],
where individual modules are embedded with their own controllers, thus enabling formation of
functional robot control when modules are assembled (figure 3). In this case, adding infant learn-
ing of controllers right after ‘birth’ significantly impacted evolved body-brain couplings and the
task-accomplishing efficacy of evolved robot designs.

Although these case studies differ in several aspects and terminology, they investigate simi-
lar systems and follow a similar experimental protocol. In such Body And Brain Evolution with
Learning (BABEL) systems, the body-brain building-blocks specific to each experimental protocol
determines the limits of evolvable body-brain designs and thus what research questions such ex-
periments can pose and subsequently answer. For example, in our first case study, experiments
using simulated morphological materials (skin and muscle) coupled with simple probabilistic con-
trollers, embodied as agents in artificial life simulation, were suitable and sufficient for addressing
the impact of varying adaptive mechanism on evolving agent bodies and brains. However, for our
second case study, use of the high-fidelity Revolve simulator and a broader array of body-brain



building-blocks (various actuators, sensors and joints), was similarly suitable and sufficient for
demonstrating the impact of an additional lifetime learning phase on evolving robot bodies and
behaviours. Furthermore, these studies are also related by their surprising findings: system changes
that adapt robot brains proved to affect the bodies. Specifically, that optimizing controllers dur-
ing lifetime, have demonstrated significant impact on evolved morphologies. Reformulated, these
studies demonstrated that while specific experimental setups support the hypothesis that the body
shapes the brain [Pfeifer and Bongard, 2007], other experimental setups support the counter-wise
hypothesis that the brain shapes the body.

Related work [Sims, 1994, 7, Weel et al., 2014, Pugh et al., 2021],

[Cheney et al., 2018, Furman et al., 2019, Kriegman et al., 2020, Hallauer and Nitschke, 2020],
[Miras et al., 2020b, Howison et al., 2021, Spanellis et al., 2021, Zardini et al., 2021}, has demon-
strated the closely inter-twined dependency of body-brain evolution, depends upon the body-brain
building-blocks (materials and coupled control mechanisms) available to such BABEL systems,
which is in turn impacted by environmental and evolutionary conditions under which the body
shapes the brain, while the brain shaping the body. For example, consider the generic system archi-
tecture for robot evolution conceptualized by the Triangle of Life methodology [Eiben et al., 2013].
In the Triangle of Life, a robot’s lifetime consists of three phases: Morphogenesis, Infancy, and Op-
erational. Morphogenesis is the process of creating a robot phenotype from its genotype. Infancy
is when the newborn robot is learning to optimize its performance on a number of morphology
dependent tasks and motor-actions such as locomotion, obstacle avoidance and terrain negotiation.
The Operational phase is when the robot tries to survive in its environment, performs its tasks,
and reproduces, thus starting a new robot lifetime cycle. An essential part of the Triangle of Life
is lifetime learning, as the robot body does not change, but the embodied brain does. Specifically,
learning is search through the space of all possible controllers that can be coupled with a given
body and realize maximal control (effective task accomplishing behavior) [Eiben, 2021].

Lifetime learning is posited to be an essential factor in the inter-dependent evolutionary rela-
tionship between the body shaping the brain and the brain shaping the body [Eiben and Hart, 2020].
Consider that in stochastic based evolution of bodies and brains, there is no definite convergence
upon inherited (reproduced) bodies and brains that are perfectly suited to each other achieving
optimal task performance. That is, even though the parent robots may have suitably-coupled
bodies and brains (otherwise they would not have been fit enough to be selected) randomized
recombination and mutation can still result in a mismatch in the offspring. For example, an off-
spring’s body may inherit actuators for which the inherited brain cannot suitably control. To
mitigate this, newborn robots must quickly optimize inherited brains in order to adequately con-
trol the inherited body and thus survive in the environment. Also, in the search space of all
possible brains, the inherited brain is just one possibility, meaning that the evolutionary search
operator (reproduction), only considers one sample in the brain space. Thus, if lifetime learning
can optimize brain architecture (robot behavior), then an ideal candidate brain can be found for
any given inherited body.

This impact of lifetime learning on shaping the body (the brain shaping the body) is evident
from our first case study (section 2), where significantly different agent morphologies evolved given
lifetime learning and evolving morphology (figure 2) versus no lifetime learning and morphological
evolution (figure 1) under the same environmental conditions. Our second case study provides
experimental evidence for the same effect by the differences in evolved bodies when treating the
brains differently (allowing infant learning right after ‘birth’). Meanwhile, it also supports the
inverse effect, body shaping the brain. Specifically, the notion of the learning delta introduced in



that paper can be perceived as a quantifiable definition of morphological intelligence. This is in
essence an attribute of the body that can indeed determine the types of behaviors (locomotion)
elicited and the brains to generate them.

Returning to the pertinence of body-brain building-blocks in BABEL systems and implications
for formulating worthwhile future research agendas, we can highlight multiple salient points. First,
we need a suitable body-brain methodology to guide the setup and execution of fruitful evolution-
ary robotics experiments that take full advantage of the body shaping brain development and the
brain shaping body development. The Triangle of Life framework [Eiben et al., 2013, Eiben, 2021]
presents one such viable possibility. Second, given such a guiding methodology we have an excel-
lent research instrument to better formulate experiments suitably elucidating the impact of specific
body-brain building-blocks on the shaping of the body by the brain versus the brain by the body.

In summary, for future research into such issues we advocate using shapeable BABEL systems
that are characterized by three principal features. First, there is an environment populated by
organisms that have a dual makeup: bodies interacting with the environment and other organ-
isms, where a brain is coupled as a controller of each body. Second, such organisms evolve as
they can reproduce, generating new organisms with inherited features, and they undergo selection
for reproduction and survival. Third, these organisms learn on either a phylogenetic (evolution-
ary) or an ontogenetic (individual lifetime learning) scale, or both, meaning that varying versions
of brains are generated and tested in their given (evolving) body. Consider that this minimal-
ist list of features implies further properties. The first feature implies that organism behavior
is determined by the combination of their body and their brain. The second feature tacitly
assumes that selection is based on the organisms’ behaviour. This implies that evolutionary se-
lection pressure is exerted on both the bodies and the brains. In other words, bodies and brains
evolve simultaneously!. This is very different from the majority of evolutionary robotics litera-
ture [Trianni, 2014, Doncieux et al., 2015, Silva and et al., 2016], where only brains are evolved in
fixed bodies. As discussed, this body-brain inter-dependency holds for both artificial life (section
2), evolutionary robotics (section 3) as well as biological systems [Pfeifer and Bongard, 2007], and
determines what questions researchers can pose and have the system feasibly demonstrate.

To conclude, let us state a fundamental formula (1) behind embodied intelligence:

BODY + BRAIN + ENVIRONMENT — BEHAVIOUR (1)

This formula states that, for any given environment, comprised of materials (body-brain building-
blocks necessary for body-brain evolution) and defined by environmental features (such as the
terrain and physical laws), the quality of behaviour, and hence organism fitness in an embodied
artificial evolutionary system [Eiben et al., 2012, Eiben and Smith, 2015], is determined by both
the body and the brain. Such shapeable evolutionary body-brain systems allow for some intriguing
questions. Not only “How the body shapes the brain?” or “How the brain shapes the body?”, but
also “How the body and the the brain shape each other?” or more precisely “How the body and
the the brain are shaped by evolution (and learning)?”. Taking the environment and materials
available for body-brain evolution into account can inspire further questions, for example “Given
an environment and a target behavior, what is more important, the body or the brain?” and,
whichever is more important, “What materials, evolution and learning mechanisms are necessary
to develop such bodies and brains?”. Listing all possible questions is beyond this article’s scope and
purpose, which is to provide a new perspective for future artificial life and evolutionary robotics

!Several papers (including some of our older ones) incorrectly call this co-evolution of body and brain. However,
co-evolution requires two species, which is not the case for the body-brain evolutionary systems referred to in this article.



research investigating shapeable evolutionary body-brain systems. First, to address the open ques-
tions of embodied intelligence, we must account for the complexities of body-brain interactions
and inter-dependencies, in any BABEL system. Second, to address this first point, we must for-
mulate research questions answerable by our experimental setup — that is, the environment, its
constituent material properties (body-brain building-blocks), and underlying adaptive (evolution
and learning) mechanisms.

Taking inspiration from nature, biology offers us countless examples of evolved body-brain cou-
plings well suited to their environment, where body-brain evolution has made optimal use of mate-
rials in the environment. In such cases nature has produced organisms perfectly suited for survival
in specific environmental niches [Coyne and Orr, 2004]. We thus hypothesize that future counter-
part artificial embodied systems (extending current BABEL systems), will necessarily be derived
with evolution and learning methodologies that fully account for the phylogenetic and ontogenetic
complexities of body-brain interactions. A pertinent example are proposed artificial evolution and
learning systems that will automate the production of problem-solving embodied (robotic) systems
specially suited to solve given tasks in given environments [Nitschke and Howard, 2022].
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