
2 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 1, FEBRUARY 2022

Letters

AutoFac: The Perpetual Robot Machine

Geoff Nitschke , Member, IEEE, and David Howard, Member, IEEE

Abstract—Robotics currently lacks fully autonomous capabili-
ties, especially where task knowledge is incomplete and optimal
robotic solutions cannot be pre-engineered. The intersection of evo-
lutionary robotics, artificial life, and embodied artificial intelligence
presents a promising paradigm for generating multitask problem-
solvers suitable for adapting over extended periods in unexplored,
remote, and hazardous environments. To address the automation of
evolving robotic systems, we propose fully autonomous embodied
artificial-life factories and laboratories, situated in various envi-
ronments as multitask problem solvers. Such integrated factories
and laboratories would be adaptive solution designers, producing
fit-for-purpose physical robots with accelerated artificial evolution
that experiment to continually discover new tasks. Such tasks would
be stepping-stones toward accomplishing given mission objectives
over extended periods (days to decades). Rather than being purely
speculative, prerequisite technologies to realize such factories have
been experimentally demonstrated. Currently, vast scientific and
enterprise opportunities await in applications such as asteroid
mining, terraforming, space, and deep-sea exploration, though
no suitable solution exists. The proposed embodied artificial-life
factories and laboratories, termed AutoFac, use robot production
equipment run by artificial evolution controllers to collect and
synthesize environmental information (from robotic sensory sys-
tems). Such information is merged with current needs and mission
objectives to create new robot embodiment and task definitions that
are environmentally adapted and balance task-oriented behavior
with exploration. AutoFac is, thus, generalist (deployable in many
environments) but continually produces specialist solutions within
such environments—a perpetual robot machine.

Impact Statement—With recent advancements in robotics ma-
terial science, evolutionary machine learning, and rapid proto-
typing technologies, such as 3-D and 4-D printing, the notion of
self-adapting, self-replicating, and self-sustaining robot colonies is
closer to reality. Automatically produced robot colonies would be
akin to their biological counterparts—body–brain designs adapted
to specific environments. Such automation would be directed by
high-level user-assigned tasks augmenting traditional notions of

Manuscript received December 6, 2020; revised June 9, 2021, August 4, 2021,
and August 10, 2021; accepted August 11, 2021. Date of publication August
16, 2021; date of current version January 20, 2022. This work was supported
in part by the Commonwealth Scientific and Industrial Research Organisation
Distinguished Visiting Researcher competitive funding program and in part by
South African National Research Foundation Human and Social Dynamics in
Development under Grant 118557. (Corresponding author: Geoff Nitschke.)

Geoff Nitschke is with the Department of Computer Science, University of
Cape Town, Cape Town 7700, South Africa (e-mail: gnitschke@cs.uct.ac.za).

David Howard is with the Commonwealth Scientific and Industrial Research
Organisation, Queensland Centre for Advanced Technologies, Pullenvale, QLD
4069, Australia (e-mail: David.Howard@csiro.au).

This article has supplementary downloadable material available at https://doi.
org/10.1109/TAI.2021.3104789, provided by the authors.

Digital Object Identifier 10.1109/TAI.2021.3104789

survival in nature, to provide a focus for perpetual adaptation (evo-
lution). Central to such robot-colony automation is the notion of a
smart factory, continually balancing resources, recycling materials,
and designing robots specifically suited to their environments. This
will enable continuous operation without human intervention in
remote, hazardous, and inhospitable environments such as other
planetary bodies and the deep sea.

Index Terms—Automatic generation control, autonomous
systems, collective behavior, evolutionary computation,
manufacturing automation, robotic assembly.

I. INTRODUCTION

THERE is an increasing need to deploy robotic systems
in unexplored, inaccessible, dynamic, remote, and haz-

ardous environments,1 where manual access (for example, for
maintenance) is impractical [2], and a lack of environmental
information means that optimal robotic form and function are
impossible to pre-engineer. Despite amenability to automation,
current robotic solutions cannot perform satisfactorily in such
scenarios, whether mining asteroids, preinstalling off-world
infrastructure for human habitation, or conducting extended
scientific studies in the ocean depths. Successful deployments
imply autonomy and self-support, frequently seen in nature, but
missing from fabricated solutions. Such solutions would enable
the realization of untold benefits and applications.

In solving these problems, we may consider two common
approaches. The first approach is to produce a single swiss-
army-knife robot, that is complex, with an array of different
sensors, operating behaviors and the ability to morph itself
into different configurations according to its role. Such a robot
would require an intensive engineering effort, be expensive,
and lack redundancy [3]. Second, one can conceive a swarm of
biomimetic robots, with distributed control and designed from
robust soft materials [4], yet still unable to replenish or recycle
themselves into new and improved generations.

We focus on the third option, an autonomous self-adapting
robot factory and laboratory, capable of continually producing
populations of effective and efficient task-adapted robots that
continually explore, experiment with, and refine solutions to
immediate mission needs. We, thus, propose AutoFac, a hybrid
of artificial embodied evolution [5], swarm robotics [6], and

1“Space and ocean probably represent the most challenging environment for
robotics. Both regimes push the limit of sensing, control, and manipulation of
robotic systems with extremely harsh conditions.” [1]
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advanced manufacturing [7], [8] systems. AutoFac is a fully
automated robot designer and fabricator and evolving collec-
tive behavior controller, which permits continued adaptation of
robot body–brain designs, potentially over years, accounting
for shifting objectives and environmental variations. AutoFac
strategically allocates limited resources to persist in its environ-
ment, while also achieving given goals. We describe AutoFac’s
main properties and its timely inception given recent rapidly
emerging technologies that can be combined as autonomous
self-sustaining robotic systems.

Perpetually adaptive and self-replicating robots, situated in
new environments, are envisaged as embodied multitask prob-
lem solvers. One pertinent example is automated exploration [9]
and terraforming [10] of other planetary bodies. These are
complex problems comprising a multitude of tasks that must be
completed in order for exploration and terraforming missions
to be successful. For example, given the complex engineering
problem of low-cost autonomous colonization of the Moon [11],
[12], robots deployed would be required to solve a diverse range
of interdependent tasks, including mechanical parts manufacture
for machinery that enables mining and chemical processing (of
in situ resources), before such a colonization mission could be
considered successful.

II. AUTOFAC VISION

We envisage AutoFac as a situated and embodied problem
solver that automatically creates, on demand, self-adapting
and self-sustaining robotic artificial-life communities. Such
robotic colonies are to be deployable to any environment and
adapt themselves to solve specific tasks and missions. Auto-
Fac would ideally be deployed to remote, uninhabitable, or
hostile environments to fulfill general mission objectives, for
which we currently do not have solutions, specifically where
embodied systems must solve tasks over extended time frames
using adaptable, robust collective behavior, robot body–brain
specializations as prerequisites to given mission (problem-
solving) success. Prospective deployments include environmen-
tal cleanup [14], disaster management [15], asteroid mining [16],
and space exploration [17].

We position AutoFac as middle-ground on an evolution-
ary robotic design spectrum (center-left, Fig. 1). This spec-
trum middle-ground encapsulates situated and embodied, self-
sustaining, artificial-life systems that continually adapt to their
environment while addressing a high-level objective, for ex-
ample, survival in artificial-life systems and, in the case of
AutoFac, user-defined mission objectives such as geological
resource discovery, terraforming, and mining. At the spectrum’s
far-left (see Fig. 1), we classify robot evolutionary design under
open-ended evolution, where the artificial evolution is not driven
by fitness functions, but rather just robot survival and propaga-
tion [13]. At the far-right of the spectrum, robot evolution is
directed by fitness functions so as robots adapt to solve specific
tasks in specific environments. In embodied systems, robot
morphology is fixed and controllers (behaviors) are evolved (for
example, using neuroevolution [18]), over the course of robot
lifetime, or otherwise adapted for given simulated tasks and

Fig. 1. Evolutionary robotic design spectrum, ranging from open-ended evo-
lution with no explicit fitness function (far-left) to fitness-function-driven be-
havioral evolution in fixed morphology robotic systems (far-right). AutoFac
is conceptually at spectrum’s middle-ground (highlighted in red), since, as an
embodied artificial-life factory, it adapts to given high-level objectives and,
thus, generates robotic organisms that adapt to their environment via pro-
gressive (evolutionary) exploration of the space of robot behavior-morphology
designs. Note that this is closer to open-ended evolutionary systems [13], since
AutoFac-produced robot populations must continually evolve to survive in their
environment (via adapting their bodies, brains, and thus behaviors).

subsequently transferred to physical robots [19]. The spectrum
center-right classifies embodied evolutionary robotics research,
where behavioral adaptation to morphological change occurs
within a robot’s lifetime. Such research assumes a mutable
physical robot substrate, from which various robotic designs
can be self-assembled. For example, the proposed smarticle
system [20] could form the basis for robotic self-assembly and
emergent control of task-capable ensemble machines [21].

Our vision for AutoFac is harmonious integration of an au-
tonomous situated and embodied artificial-life (robot) factory
and laboratory. As an autonomous robotic factory, AutoFac runs
on demand robot body–brain design and manufacturing. As an
autonomous laboratory [22], AutoFac formulates and executes
to experiments using physical robots [23] to enable scientific
discovery and exploration as stepping-stones [24], [25] toward
accomplishing given objectives. AutoFac would be best suited to
environments, where we currently do not have optimal working
solutions to many societal challenges, for example, in deep-sea
or extraterrestrial [1] environments, where specific objectives
must be completed, but how to do so is unknown and first
requires some process of environment exploration and scientific
discovery [2].

III. AUTOFAC: PROPOSED FUNCTIONALITY

AutoFac’s proposed functionality is autonomous laboratory
and self-sustaining robot factory (see Fig. 2). AutoFac is pro-
posed to be a multitask problem solver, so when situated in a
given environment and assigned a complex problem (compris-
ing multiple tasks), it automatically designs suitable problem-
specific experiments, executable by automatically designed and
produced robots, deployed in the environment. Via testing and
evaluating such experiments, the robots enable environment
exploration and scientific discovery and contribute potential
solutions toward solving complex user-defined problems. We en-
visage future scenarios, where AutoFac will automate design and
production of robot populations that operate in extreme environ-
ments (usually inhabited by only extremophile organisms [26]),
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Fig. 2. AutoFac is an embodied artificial-life factory leveraging benefits of
collective behavior and morphological computation to enable embodied evolu-
tion of consistently improving populations of simple and yet effective robots.
AutoFac is an autonomous factory and laboratory that designs robotic solutions
for tasks in various environments. For any given task environment (1 . . .N ),
AutoFac artificially evolves, over generations of physically produced robots,
body–brain couplings that adapt to the robots’ environment and solve specific
tasks that contribute toward solving a complex user-assigned mission.

for user-defined missions such as planetary terraforming [27],
asteroid mining [28], deep-sea exploration [29], and autonomous
farming [30].

AutoFac’s process of environment observation, experiment
and robot design, physical robot production for environment
monitoring, and experiment evaluation continues ad infinitum.
Though, as given problems are solved, new problems could
be assigned, meaning that AutoFac can operate in perpetuity
to produce robots adapted to exploration, scientific discovery,
and problem solving. This proposed functionality is enabled
by recent technological and scientific advances in evolution-
ary robotics, rapid-prototyping, and material science under the
themes of collective behavior, morphological computation, and
embodied evolution research (Fig. 2: base; Section IV: AutoFac
technological basis). AutoFac’s key functionality is adaptive
persistence, to balance survival (robot adaptation) and explo-
ration (data-gathering and scientific discovery for selecting tasks
to solve toward user-defined objectives).

AutoFac would be deployed in novel, unexplored, remote
or otherwise hazardous environment with an initial resource

base of materials for robot manufacture. Initial environment
sensory observation would enable artificial evolution simulation
(enriched by sensor data) to evolve and manufacture initial
physical robot designs, deployed into the environment to explore
and discover task objectives contributing to solving an overall
user-defined mission objective. Embodied evolution would be
used to recombine, reuse, and recycle current robots to perpet-
uate future generations of improved body–brain designs that
continually satisfy changing task objectives.

As an autonomous factory, AutoFac designs and constructs
robotic explorers deployed into any environment, whereas as
an autonomous laboratory, AutoFac discovers various tasks
(as stepping-stones [24], [25] to a given objective) that robot
behavior evolves to accomplish. Data gathered by populations
of robotic explorers: 1) update the simulator, allowing progres-
sively better robot–environment couplings, which, in turn, im-
proves task performance; and 2) increase situational awareness,
revealing pertinent resources (for example, to be gathered and
returned to AutoFac’s base and factory).

We envisage the main controller cycles of AutoFac as robot
lifetime and data collection, where the efficacy of robotic de-
signs (operating concurrently in overlapping lifetimes as in
biological communities) is iteratively improved via new sen-
sor data obtained from exploration and resources in dynamic
environments (see Fig. 2: top). AutoFac will operate on a time
scale of many years, meaning that seasonal weather patterns
and environmental change will play a critical role in robotic
adaptation produced via embodied evolution. This entails Auto-
Fac producing robot generations (running for given lifetimes)
via processing, recycling, and reusing materials [31], where
such robots comprise improved body–brain designs that solve
increasingly complex tasks. Concurrently, AutoFac gathers and
processes sensory information from physical and behavioral
challenges encountered as robots explore the environment. Such
data collection is indispensable for evaluating task performance,
identifying stepping-stones [24], [25], shaping fitness functions,
and enabling exploration [32].

In summary, AutoFac serves first as an autonomous factory,
automating the design and production of successive generations
of robot populations, especially suited to accomplishing tasks
that contribute to an overall mission objective. Second, AutoFac
is as robot scientist [33] or autonomous laboratory [34] that
automatically derives hypotheses to explain observations, de-
vises experiments to test these hypotheses, and physically runs
experiments and experimental situated and embodied platform
enabling robots to interact with their environment over extended
periods.

Continuing cycles of such experimentation for scientific dis-
covery suitably complement the cycle of evolutionary robot
design and production, in that each robot population (generation)
effectively constitutes the experimental conduct tools [23]. Such
experimentation is critical for AutoFac to meaningfully process
sensory environment data gathered from the robot population
and, thus, deduce what the next task should be and how to best
accomplish the task, where each task constitutes a stepping-stone
toward overall task (mission) accomplishment.
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IV. AUTOFAC METHODOLOGY: TECHNOLOGICAL BASIS

Conventional robots execute predefined tasks using especially
programmable procedures in controlled and structured environ-
ments. Next-generation robots will operate in unconstrained
dynamic environments under the general direction of human
operators. One step further, robots produced by AutoFac must
work in remote hazardous environments as fully exploratory and
adaptive autonomous systems that potentially operate as robot
colonies adapted for long periods of scientific discovery or com-
mercial enterprise. In such scenarios, manufactured robots must
correctly perceive the external world and adapt their behavior
accordingly. Here, we overview recent technologies pertinent to
the core methodology of AutoFac.

A. Embodied Evolution

Core to AutoFac’s methodology is the evolutionary search for
robotic (body–brain) designs, manufactured for given physical
environments, evaluated as problem solvers in these environ-
ments, and then reused or recycled into the next generation of
increasingly adapted robots. Fig. 2 (top) presents an embodied
evolution example, where AutoFac has manufactured robots
(walking and flying) after n generations of body–brain evolution.
Embodied evolution necessitates a robot body–brain evolution-
ary algorithm, fabricator and recycler (autonomous factory), and
a sensory data-gathering system for fitness function discovery
(autonomous laboratory). Robots would return to AutoFac ad
hoc as tasks are completed and to have material components
recycled and recombined for manufacturing next-generation
robots.

In Fig. 2, the generational cycles of evolving walker and
flying robots are assumed asynchronous given varying ter-
rain types and, thus, correspondingly suitable robot evolution.
The AutoFac methodology borrows from embodied evolution-
ary robotics [35], but mimics ad hoc reproduction by organ-
isms in nature and, thus, best relates to open-ended evolution
artificial-life systems [13], where the need to survive in environ-
ments with limited resources drives adaptation. In the case of
AutoFac, task discovery and specific robot body–brain designs as
evolved problem-solving products act as stepping-stones toward
accomplishing user-defined directives. Recent advances in 3-D
robot-printing as part of embodied evolution [36], [37] and
4-D printing [8] (origami robotics [38]), using multimaterial
(soft robotics) and directed-assembly approaches (guided self-
organization (GSO) [39]), have demonstrated potential to ad-
dress this design-fabricate-test and recycle embodied evolution
challenge. Such advances offer a new robotic design paradigm
going beyond traditional mechatronics using gears and motors
to enable the automatic design of currently unforeseen robot
forms and functionalities. However, significant advances are
required to deliver robust traversal strategies and hybridization.
That is, selective use of technologies would help to deliver usable
solutions by mitigating drawbacks of each respective technology
in isolation. For example, the relative fragility of origami designs
may preclude uses involving direct environmental contact, but
may be directly applied to the creation of components with no
load bearing requirements).

We propose AutoFac’s robot design paradigm as the rapid
prototyping and manufacturing of mechatronic and soft robotic
hybrids using evolvable artificial active matter [40], [41]. That
is, using flexible artificial skins [42], [43] and self-healing soft
materials [44], [45] means that soft robots can perform tasks
in uncertain dynamic environments without extensive control
systems. Given 3-D and 4-D printing advances, new material
types such as shape memory materials and shape memory poly-
mer actuators [46] are proposed for rapid-prototyping fabrica-
tion schemes to create material systems (robots) with multiple
functions, such as actuation and self-healing [45]. This will
necessitate integrating biological materials and biodegradable
substrates [7] with 3-D soft robotics and 4-D origami robot
printing (capable of self-assembling into preprogrammed shapes
at scales from micrometers [47] to centimeters [48]). Also, the
use of smart multiresponsive materials [7] will be crucial for the
successful development of future robotic actuators in origami
robots printed with forms and functions specific to their task
and environment. For example, integrating materials such as
magnetic, light-responsive, micro- and nanostructures to form
4-D-printed composite components will present new opportu-
nities in smart robotic actuators [8]. Consider that, in a pop-
ulation of AutoFac-produced robotic explorers, environmental
changes could be stimuli for body–brain adaptation, since smart
materials would allow robots to self-fold in response to external
stimuli such as changes in light, temperature, and humidity [38].
Such an approach would meet the challenge of automated robot
body–brain design for any given task and environment as part
of AutoFac’s embodied evolution (see Fig. 2: base).

B. Collective Behavior

Collective behavior [49] is the next critical methodological
basis from which to draw technological components for the
proposed AutoFac systems (see Fig. 2: base). Collective behav-
ior is decentralized with no centralized information processing
center. In nature, collective problem-solving behavior is often
observed in social insects [49], [50]. One key notion of AutoFac
is its embodied evolution process designs and produces robot
populations eliciting problem-solving collective behaviors.
AutoFac’s autonomous robot factory and laboratory compo-
nents (see Section II) in concert with robot populations con-
stitute a collective behavior system, akin to ant colonies or
bee hives [49], [50]. Thus, as in such biological collective
behavior systems, collective problem-solving behaviors emerge
from individual interactions, where the physical manifestation
of AutoFac’s embodied evolution (robot populations) is most
pertinent to collective [51] and swarm robotic [6] systems. Aut-
oFac would initially produce a random-sized robot population,
though as in biological systems, population size necessarily fluc-
tuates according to varying task and environment constraints and
requirements.

Collective problem-solving behaviors emerge from lifetime2

interactions, with benefits such as redundancy, concurrency

2Determined by task-solving time, duration of materials, components and
power source, unexpected damage, or return to factory for recycling.
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Fig. 3. Artist’s rendition of an AutoFac system deployed on another planetary surface and given user-specified mission goals to gather scientific data. AutoFac
automatically designs and produces robots suited to the task. As various challenging task and environmental conditions are encountered, such as canyons and
mountains, data pertinent to robot controller-morphology design and problem solving is streamed back as initial robots return to AutoFac. Composite robotic
component materials are then recycled and recombined for design and manufacture of new robots. Such new designs continue exploration of the environment
gathering data that AutoFac concurrently processes for continued embodied robotic controller-morphology evolution.

[6], [51], and specialized form (morphology) and function
(behavior) [52]. Fig. 3 illustrates an example collective robotic
behavior produced for exploratory missions on other planets.
Specialized robot form and function, concurrency and redun-
dancy, is evolved for specific tasks and environments. For
example, multiple robots (with crawling versus flying forms)
are engaged in data gathering over rugged versus flat terrains,
while dissimilar robots engage in complementary tasks such as
geological analysis (robot working, Fig. 3).

Various embodied collective and swarm robotic systems
have been demonstrated as autonomous and adaptive col-
lective behavior systems [53]–[55], for example, automated
decentralized collective construction3 by cooperating robots,
built on-the-fly given site-specific environmental conditions and
constraints [54], [57]–[59]. Pertinently, we envisage AutoFac-
designed and AutoFac-produced robot populations as capable of
exhibiting a broad range of collective behaviors. Potential collec-
tive construction manifestations include construction of novel,
customized, and dynamic functional structures (equipment) that
contribute to task discovery, fitness function shaping [32], and
thus overall mission accomplishment, for example, constructed
equipment such as multimodal sensors for on-site environmen-
tal data collection, actuators for local material excavation, or

3In decentralized collective construction, structure design is an emergent
property as observed in wasp and termite mound construction [56].

chargeable batteries using specialized actuators such as deploy-
able roll-out photovoltaics [58].

Though in AutoFac, or any artificial (robotic) collective be-
havior system, collective behavior efficacy strongly depends
on the behavior-morphology design of individual robots and
their interactions [60]. While conceptual and methodologi-
cal groundwork, such as self-organization [54], [55] and self-
assembly [53], for designing collective behavior has already
been demonstrated, the embodied evolutionary design [60] of
specialized robot forms and functions will enable a vast range
of collective behaviors and problem types to be solved by
AutoFac-produced collective and swarm robotic systems. Such
broad collective problem-solving behavior will be further en-
abled by 4-D printing [38], and related work in GSO [61] and
morphogenetic engineering [62], for increased adaptation and
malleability of functional robotic structures. Such approaches,
in concert with embodied evolution, will enable the design and
production of robotic swarms with highly adaptable forms and
functions that readily change in response to task and environ-
ment changes. Individual robot adaptations, thus, determined
the problem-solving effectiveness of robot populations.

For example, morphogenetic engineering has been applied
for self-organization of organic and adaptable shapes in swarm-
robotic systems, making them robust to damage [63]. In Aut-
oFac, morphogenetic emergence of highly functional robotic
forms could potentially solve a myriad of collective behavior
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tasks in unpredictable and unexplored environments. This in-
cludes self-organizing swarms into complex machines (for ex-
ample, satellites) to act as environmental monitoring, mapping,
communication, or other devices [64].

GSO [65], [66] research has indicated potential for adaptive,
self-organizing, artificial collective behavior systems extract-
ing local interaction mechanisms from robot sensory data, en-
abling emergent and adaptive individual and collective behavior.
GSO [61] is the manipulation of complex-system nodes and
interactions so as new system-wide behaviors emerge, guiding
the system toward desired states. This implies that computational
GSO methods adapt node behavior and interactions in artificial
collective behavior systems (for example, AutoFac-designed
and AutoFac-produced robot populations) such that the sys-
tem self-regulates, and appropriate global behaviors emerge
in response to external (for example, user-defined goals) and
internal system changes (for example, unexpected damage). We
hypothesize that hybridizing computational GSO with various
evolutionary and behavioral [67], [68] adaptation approaches,
including developmental body–brain encoding [19], [69], will
enable emergent collective problem-solving behaviors for many
tasks [70].

C. Morphological Computation

A key AutoFac technological component (see Fig. 2: base)
is morphological computation [71], [72]. Practical limitations
of embodied evolution [35]–[37], [73], constrained by limited
sensor, actuator, and material resources for manufacturing, ne-
cessitate robotic body–brain design emphasizing minimalism
and efficiency. That is, where suitable use of materials and
components means that robot morphology can elicit desirable
behavior that belies the apparent simplicity of the design. Mor-
phological computation enables task-specific body–brain design
simplicity, though open-ended robotic embodied evolution that
fully leverages the benefits of morphological computation to pro-
duce especially task-suited robots with efficient and minimalist
designs remains a frontier topic [74].

In embodied evolution and physical robot manufacture, new
material types, including those recycled and recombined into
new materials and components, will play an integral role in Aut-
oFac leveraging morphological computation during robot body–
brain design. Recent developments of multimaterial 3-D printing
technologies have accelerated new material use in robotics [75],
allowing digital fabrication of heterogeneous structures with
tailored mechanical, electrical, and optical properties. Ideally,
this will facilitate the printing of morphological structures,
where significant computation is off-loaded to, or distributed
throughout, robot material composition.

D. Artificial Intelligence (AI) Methodologies and Techniques

We now describe the core AI algorithms, architectures, and
emerging technologies to realize key capabilities of AutoFac.

Adaptability and resilience can be engendered through the
development of contemporary learning approaches, in particular
those that adapt behavior over long time frames, including

reinforcement learning [76] in individual and group-based con-
texts [77]. Software-based damage adaptation is required as sen-
sor and actuator damage from unexpected task and environment
challenges will be common—approaches include maintaining a
diverse library of tuned behaviors and use of on-board physics
simulation paired with data-driven adaptation to real-world con-
ditions [68], [78]–[81].

Self-directed learning is required for exploration and exploita-
tion of unknown environments. Self-supervision [82] allows
AutoFac to derive its own reward signals from the environ-
ment, and techniques including artificial curiosity [83] permit
goal-oriented behaviors in the absence of strong reward signals.
Semisupervision reduces the requirement for labeled data and
has been previously applied in a robotics context [84]. To im-
prove robot utility (important considering the limited array of
modules that will be initially available), multitask learning [85]
is key to flexible and adaptable robot populations that can effec-
tively role-switch. Simulation [86] is required for fast, cheap,
parallel implementation of these learning algorithms. Crossing
the reality gap [87] allows these algorithms to be deployed in
reality. Curriculum learning [88] allows gap crossing as well as
the incremental learning of locomotion strategies over increas-
ingly complex terrains [89]. Extracted stepping-stone features
can be automatically mapped into new fitness functions [24].

Collective adaptive behavior is a machine learning ensem-
ble [90] for distributed decision making and problem solv-
ing. Recent DARPA4 challenges focusing on robotic teams
demonstrate several key technologies, for example, multirobot
task allocation, dynamic mission planning, and joint situational
awareness through a shared global understanding of the environ-
ment [91] and required tasks using heterogeneous robots [92].
Fleet learning [93] can provide distributed knowledge transfer
and model updates across the team. An end goal is AutoFac as
a distributed robotic embodiment of autonomous experimenta-
tion [22]. This nascent field (in robotics) is based on model build-
ing from collected real-world data points and subsequent use of
models to predict high-value future experiments. Experiments
may be focused on accomplishing mission goals, exploration of
AutoFac’s local environment, and of the possibilities afforded
by its modular robot morphologies to solve tasks.

Autonomous robot design provides the physical manifestation
of AutoFac’s problem-solving capability. Straightforwardly,
modular robotics [94] provides early solutions for planning, con-
trol, and synchronization, and techniques, including graph gram-
mars [95], can assemble the modules into high-performance
robots. Further design freedom is achievable via automatically
defined modules (for example, limbs) [96] that can be easily 3-D
printed and subsequently automatically assembled into finished
artifacts [97] with specific consideration of the manufactura-
bility of the robots [98]. Simulation can be tuned to reality
by injection of real-world data such that “the complexity of
virtual robot designs does not outpace the model limitations
or available fabrication technologies” [99]. Individual robots
may also adapt morphologically online through reconfigurable

4Defense Advanced Research Projects Agency.
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hardware, increasing the diversity and flexibility of modular
building blocks [100].

E. Hardware

Ongoing developments in hardware play an important role
in the realization of AutoFac, particularly in multifunctional
materials that couple sensing, actuation, computation, and com-
munication [101], and printable batteries [102], circuits, and sen-
sors [103] to realize a flexible array of customizable embodiment
options. It is anticipated that artificial active materials used in
robot production will carry out basic computation and adaption
without referring to in silico (machine learning) training pro-
cedures, via incorporating signal inputs, signal processing, and
memory storage into microscopic materials [39]. Heightened
levels of material computation are more amenable to controller
coupling in an embodied cognition framework [75]. Reuse is
inherent in modular robotics setups; however, in other cases,
recycling [104] may be required to keep material stocks high.
Implementing learning algorithms in hardware offers significant
opportunity for high-speed low-power control for long-term
deployments [105], particularly for neural approaches that can
also realize short- and long-term plasticity and, hence, flexible
learning [106], [107].

V. WHY AUTOFAC AND WHY NOW?

Fully automated self-sustaining embodied robot evolution
factories and laboratories, deployable to any environment, elicit
many benefits. A compelling motivation is that for user objec-
tives, scientific discovery (problem-solving what to do), then
design and production of robotic solutions (problem-solving
how to do it) for any given environment, is fully automated.
Fully automated robot design and continued robot body–brain
adaptation, potentially over years using in situ resources, would
be an indispensable design and problem-solving tool for future
robotic missions, presenting a unified research pathway that,
if successful, would solve a number of current robotics grand
challenges [108]. For example, Fig. 3 presents the decommis-
sioning (recycling of materials and components) of previous
generation robots into next generation robots with new forms
and functions, suitable for solving newly discovered tasks. Here,
a previous generation exploratory rover has been decommis-
sioned and recycled into a next-generation robot specialized to
geological analysis (robot working in Fig. 3). Biomimetically in-
spired robots [109], [110], artificially evolved and autonomously
manufactured [7], [8] in their given environments, are proposed
as future solutions over pre-engineered robotic systems [111],
given grand challenging objectives. That is, objectives such as
environmental cleanup [14], disaster management [15], space
exploration [17], search and rescue [112], and asteroid min-
ing [16] have high societal value, and many are current grand
challenges in robotics [108].

If we are going to solve the greatest challenges facing hu-
manity in this century, then we will need automated, perpet-
ually adapting, embodied systems that operate in changing
environments, deriving novel solutions to arduous problems
(that human designers could not otherwise design). Automating

this problem solving will be via virtue of automated embodied
systems (AutoFacs) evolving embodied machines with novel
forms (bodies) and coupled functions (controllers). Grand chal-
lenges that these automated self-designing embodied problem
solvers would be pitched at include optimal low-cost automated
farming in adverse environments and food production to satisfy
ever-increasing global demand, swiftly deployable automated
disaster management for increasing climate related catastrophes,
and automated scientific exploration and discovery of alternate
energy resources to reduce global reliance on environmentally
damaging fossil fuels.
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