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Abstract This article evaluates Collective Neuro-Evolution (CONE), a coopera-

tive co-evolutionary method for solving collective behavior tasks and increasing

task performance via facilitating behavioral specialization in agent teams. Spe-

cialization is used as a problem solving mechanism, and its emergence is guided and

regulated by CONE. CONE is comparatively evaluated with related methods in a

simulated evolutionary robotics pursuit-evasion task. This task required multiple

pursuer robots to cooperatively capture evader robots. Results indicate that CONE is

appropriate for evolving specialized behaviors. The interaction of specialized

behaviors produces behavioral heterogeneity in teams and collective prey capture

behaviors that yield significantly higher performances compared to related methods.

Keywords Behavioral specialization � Neuro-evolution � Pursuit-evasion �
Simulation � Multi-robot systems

1 Introduction

In nature numerous examples of collective behavior systems are observable.

Collective behavior systems are defined as those that are composed of many

individuals, where cooperative task accomplishment is required in order for

individuals and the group to survive. Many artificial collective behavior systems
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have used design principles which draw their inspiration from examples of

specialization in nature. Examples include complex ecological communities such as

social insect colonies [12, 13, 17, 78, 94, 103], biological neural networks [3],

multi-cellular organisms [40], economies of a nation and companies [1, 73, 90]. In

endeavors to replicate the success of biological collective behavior systems, such as

in the engineering of robotic swarms [93], it is highly desirable to reproduce the

underlying mechanisms of biological collective (cooperative) behavior [11]. One

such mechanism is behavioral specialization [75], referring to agent behaviors that

are beneficial for solving specific types of tasks [5, 57, 72, 98, 102].

Consider the biological collective behaviors of certain ant species, where workers

specialize to varying tasks, adapting their behavior to varying situations and

adopting complementary roles [91]. Such emergent specialization has been used as

a biologically inspired design principle in real world multi-agent optimization and

control tasks. For example, agent-based resource allocation models regulate the

frequency of specialized behavior activation in response to dynamically arising

tasks [13, 17, 33]. A specific example is the application of response threshold

models of division of labor to solve dynamic task-scheduling problems [11, 12].

This article presents a cooperative co-evolution method, Collective Neuro-
Evolution (CONE). CONE evolves agent behavioral specialization most appropriate

for solving collective behavior tasks. Cooperative co-evolution [105] has been

demonstrated as versatile and applicable to a broad range of complex, continuous,

and noisy tasks [18, 48]. Using multiple species (genotype populations) is a natural

representation for many collective behavior tasks [9, 14, 76]. Also, behavioral

specialization is often effectuated by evolved species in response to task and

environment constraints [54, 88].

This article establishes the effectiveness of CONE via demonstrating its

capability for effectuating beneficial forms of behavioral specialization in an

Evolutionary Robotics (ER) [82] pursuit-evasion [7] task. Previous research has

demonstrated that the pursuit-evasion task benefits from behavioral specialization

[9, 74, 109].

In the theme of pursuit-evasion research that uses specialization as a problem

solving mechanism, Haynes and Sen et al. [42, 43, 44, 45] compared Genetic
Programming (GP) [50] approaches for evolving cooperative prey capture in agent

teams. Evolved prey capture behaviors relied upon emergent behavioral special-

ization, rather than domain specific knowledge. In related GP research, Luke and

Spector [57] applied various GP methods to evolve collective prey capture

behaviors in homogeneous versus heterogeneous agent teams (that is, teams

comprised of behaviorally specialized agents). Heterogeneity and homogeneity was

determined by different GP breeding strategies within one population of GP trees.

Results indicated that heterogenous breeding evolved specialized behaviors that out-

performed homogenous breed teams. In research that combined Neuro-Evolution
(NE) [108] and cooperative co-evolution, Yong and Miikkulainen [109] evolved

specialized behaviors in cooperative prey capture strategies in agent teams.

Specialized roles complemented each other to form cooperative prey capture

behaviors.
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In work that used physical robots in pursuit-evasion, Blumenthal and Parker et al.

[8, 9, 10] combined Punctuated Anytime Learning [84] and co-evolution to exploit

differences in predator robot morphologies. This co-evolution resulted in the

derivation of behavioral specialization as robots interacted to solve a collective prey

capture task. In other pursuit-evasion work that used robot teams, Potter and

Meeden [88] applied cooperative co-evolution to evolve controllers in behaviorally

homogeneous versus heterogeneous teams. Experiments found that as task diffi-

culty increased, heterogeneity and specialization became essential for task

accomplishment.

These different approaches to solving the pursuit-evasion task in simulated

(agent) and physical (embodied) systems, demonstrate that given appropriate task

and environment constraints, specialization emerges as a problem solving mech-

anism. This notion is the defining motivation of this article’s research.

The efficacy of CONE has thus far been demonstrated in a multi-rover collective

behavior task [76] and a multi-robot collective construction task [77]. CONE

combines NE and cooperative co-evolution [87] to adapt Artificial Neural Networks
(ANN) controllers [41], operating in collective behavior tasks [75]. NE is the

adaptation of ANNs using artificial evolution [108]. NE has been advocated as an

appropriate means of controller adaptation in continuous and partially observable

task environments [31].

One advantage of NE is that details about how a task is to be solved does not

need to be specified a priori by the system designer. Rather, a simulator is used to

derive, evaluate and adapt controller behaviors for a given task [65]. NE has been

successfully applied to solve a disparate range of collective behavior tasks including

multi-agent computer games [96], RoboCup [104], and cooperative transport [80],

and collective construction [77] in robot teams.

Cooperative co-evolution methods work via decomposing a given task into

composite sub-tasks that are cooperatively solved by a set of artificial species [105].

Cooperative co-evolution methods use cooperation between multiple genotype

populations (species) and competition between genotypes (individuals) in a species

to derive solutions. The use of multiple genotype populations provides a natural

representation for many collective behavior tasks. Furthermore, such multi-

population representations aid in facilitating behavioral specialization in multi-

agent models [75].

The advantages of cooperative co-evolution include versatility and applicability

to a broad range of complex, continuous, and noisy tasks. For example, cooperative

co-evolution (combined with NE) has been applied to solve collective behavior

tasks such as multi-agent game playing [14], collective prey-capture [9, 88] by robot

teams, and multi-rover search [76].

In such cases, the combination of cooperative co-evolution and NE was an

appropriate means of adapting the collective behaviors of ANN controllers, as well

as facilitating specialization in controller behavior. An overview of all cooperative

co-evolution methods that have been applied to solve collective behavior tasks is

beyond the scope of this article. However, Wiegand [105] includes a relatively

recent review of cooperative co-evolution.
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This research evaluates CONE in comparison with two related cooperative

co-evolution methods, Multi-Agent Enforced Sub-Populations (MESP) [109], and

the Cooperative Co-Evolutionary Algorithm (CCGA) [86] in the context of ER

experiments. CCGA and MESP were selected since both are appropriate for

facilitating specialized ANN controller behaviors in simulated multi-robot [88], and

multi-agent [14] collective behavior tasks.

This article contributes self-regulating genotypic and behavioral metrics that

effectuate behavioral specialization in simulated robot teams, where such special-

ization increases team fitness. The research goal was to demonstrate the efficacy of

CONE for evolutionary controller design of collective behaviors, via effectuating

behavioral specialization. The research hypothesis was that CONE’s genotype

and behavioral specialization metrics adaptively regulate recombination and

facilitate behavioral specialization resulting in CONE evolved teams yielding a

higher average fitness, compared to CCGA and MESP.

Genotypic and behavioral metrics have been used in previous ER experiments to

encourage genotype and behavioral diversity [53, 54, 67–70]. Such studies indicated

that genotype, and especially behavioral, based metrics resulted in substantial

improvements in solution convergence rates in a wide range of ER tasks. Also, there

is empirical evidence that genotypic and behavior based metrics allow a wider range

of ER tasks to be solved [24]. Diversity mechanisms such as fitness sharing [35, 92],

crowding [58, 59], multi-objective evolutionary algorithms [15, 22, 24, 69, 70, 99],

or novelty search [51] have been used to encourage genotype and behavioral

diversity and increase task performance in various task domains, including ER [71].

In this research, behavioral specialization in teams is encouraged via genotypic

and behavioral distance metrics that regulate inter-population genotype recombi-

nation, based upon agent (controller) behavioral and genotype similarities. This

directs the emergence and propagation of beneficial agent specializations, resulting

in the evolution of effective collective prey capture behaviors.

This article’s goal is to demonstrate CONE’s capability to facilitate behavioral

specialization in collective behavior tasks that require and benefit from specializa-

tion. Pursuit-evasion (this article’s case study) is one such task. This article’s case

study was an ER task that simulated robot teams (predators) that had to immobilize

(capture) one or two other robots (prey) in a bounded environment. This pursuit-

evasion task required different predators in a team to assume complementary

behaviorally specializations in order for the team to achieve an optimal or near

optimal task performance [74]. A thorough analysis of the pursuit-evasion task was

conducted to support this.

Pursuit-evasion results, and a subsequent analysis indicates that CONE’s

computational and algorithmic complexity, coupled with the pursuit-evasion task

(a task environment that encourages behavioral specialization) results in the

evolution of team behaviors that could not be evolved by related control-

ler adaptation methods. That is, a thorough analysis of CONE elucidates the

contribution and impact of many of CONE’s algorithmic mechanisms to the task

performance of CONE evolved teams. The algorithmic mechanisms examined are

those that distinguished CONE from related cooperative co-evolution controller

adaptation methods. Such mechanisms included the genotype and specialization
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difference metrics to regulate inter-population recombination, and an elite controller

evaluation procedure. The aim of this analysis is to demonstrate CONE as a general

algorithm for facilitating behavioral specialization in agent teams. Importantly,

CONE’s advantages are not limited to the pursuit-evasion task, but have been

demonstrated in other tasks that benefit from the collective problem solving of

behaviorally specialized agents [76, 77].

It is supposed that the efficacy of CONE is not limited to simulated ER tasks such

as pursuit-evasion, multi-rover surveillance and collective gathering and construc-

tion. It is anticipated that CONE is applicable to a diverse range of multi-agent

(collective behavior) tasks, where different agents in the system are required to

adopt complementary specialized functions in order to form effective collective

behavior solutions. For example, it is envisioned that non-linear process control in

reactors [21, 20], and electrical power grids [34] is within the purview of CONE’s

problem solving capabilities.

2 Methods: collective neuro-evolution (CONE)

CONE is a controller design method [36, 87] that uses cooperative co-evolution to

adapt behaviors in a team of ANNs (agent controllers). Given n genotype

populations (species), n controllers are evolved. Controllers are evaluated according

to how well they solve a collective behavior task (requiring agents to cooperate).

Each controller is a recurrent feed-forward ANN with one hidden layer fully

connected to input and output layers. CONE evolves the input–output connection

weights of hidden layer neurons, and within each species combines the fittest

neurons into complete ANN controllers.

CONE extends Multi-Agent Enforced Sub-Populations (MESP) [109], with two

novel contributions. First, CONE solves collective behavior tasks via purpose-

fully evolving behavioral specialization in agents. When these specialized agent

behaviors interact, the team is able to increase task performance and solve collective

behavior tasks that could not otherwise be solved. Second, CONE employs Genotype
and Specialization Difference Metrics (GDM and SDM, respectively) to regulate inter-

population genotype recombination. Based upon genotype similarities and the success

of evolving behavioral specializations, the GDM and SDM direct the evolution of

specialized agent behaviors and composite collective behaviors. The GDM and SDM

differ from related genotype [107] and behaviorial [4] metrics, in that the GDM and

SDM effectuate behavioral specialization in the collective behaviors of agent teams.

From a technical standpoint, the GDM and SDM design motivation was to

dynamically ascertain a degree of recombination between genotype populations that

is appropriate for evolving specialized behaviors (and collective behaviors) most

suited to the given task. From a biological standpoint, the GDM and SDM design

was inspired by the genotypic cluster definition [60] and simulates the gradualism

and fuzziness of the speciation process [63]. That is, the GDM and SDM work under

the assumption that isolation barriers between populations delimiting species

boundaries, undergo evolution. This means that isolation barriers and speciation are

constantly changing [19, 38, 61].

Genet Program Evolvable Mach (2012) 13:493–536 497

123



The use of the GDM and SDM as mechanisms to regulate inter-population

recombination is also supported by research on partially heterogeneous populations.

A partially heterogeneous population is comprised of groups that are, on average,

more genetically similar (but not identical) to individuals of their own group,

comparative to the rest of the population [101]. In this article, such groups are

defined as species. The impact of partial genetic heterogeneity on the evolution of

group behaviors, especially with respect to the evolution of multiple, complemen-

tary specialized behaviors has received little investigation in evolutionary multi-

agent research. However, Luke and Hohn [56] and Luke [55] suggest that partial

genetic heterogeneity in an evolving agent group can lead to specialized behaviors.

This is supported by studies in biology [39, 52]. Also, Perez et al. [85], and Waibel

et al. [101] indicated that team fitness increases were related to selection within

genetically related agents. As an extension of this notion, the GDM and SDM

suppose that recombining genetically and behaviorally related agents increases team

task performance, or allows the team to solve tasks that could not otherwise be

solved. The design choices for CONE’s representation and iterative process were

motivated by the following results. First, MESP and related methods have

successfully solved collective behavior tasks [14, 109]. Second, evolutionary

methods applied to genetically heterogeneous agent teams (where agents are defined

by different genotypes) often results in agents evolving specialized behaviors

[6, 56]. This is especially the case for cooperative co-evolutionary methods [32, 76].

Parameter calibration experiments (Sect. 3.5) determined the most appropriate

parameter values for CONE in the pursuit-evasion task (Sect. 3).

2.1 Representation: multi-population structure

As with related NE methods [36, 86], CONE segregates the genotype space into

n populations so as to evolve n controllers. CONE mandates that ANNi (1 B i B n) is

derived from population Pi, where Pi contains ui sub-populations (that is, initial

number of sub-populations in population i). Figure 1 exemplifies the use of sub-

populations in CONE. ANN1 and ANN2 (evolved from populations 1 and 2,

respectively) has three hidden layer neurons, whilst ANN3 (evolved from population

3) has four hidden layer neurons. Thus, populations 1 and 2 consist of three sub-

populations, for evolving the three neurons in ANN1 and ANN2. Where as, population

3 uses four sub-populations for evolving the four neurons in ANN3. ANNi is derived

from Pi via selecting one genotype from each sub-population and decoding these

genotypes into hidden layer neurons (Fig. 2). ANNi consists of w input neurons, and

v output neurons, fully connected to all hidden layer neurons.

The CONE process is driven by cooperation and competition within and between

sub-populations and populations. Competition exists between genotypes in a sub-

population that compete for a place as a hidden layer neuron in the fittest controller.

Cooperation exists between sub-populations, in that fittest genotypes selected from

each sub-population must cooperate as a controller. There was also cooperation

between controllers since controllers must cooperate to solve a collective behavior

task.
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2.2 Behavioral specialization

An integral part of CONE is defining and measuring controller specialization. A

controller’s behavioral specialization (S) is defined by the frequency with which a

controller switches between executing distinct motor outputs (actions) during its

lifetime. The S metric is an extension of that defined by Gautrais et al. [33]. The

S metric was selected since it is applicable to individual controller behaviors,
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accounts for a partitioning of a controller’s work effort among different actions, and

is simple enough to work within CONE. The S metric is also general enough to

define specialization as the case where controllers regularly switch between

different actions, spending an approximately equal portion of its lifetime on each

action, but where there is a slight preference for one action. Equation 1 specifies the

calculation of S, that is, the frequency with which a controller switches between

each of its actions in its lifetime, A is the number of times the controller switches

between different actions, and N is the total number of possible action switches. At

least two distinct agent actions are assumed.

S ¼ A

N
ð1Þ

An S value close to zero indicates a high degree of specialization. In this case, a

controller specializes to one action, and switches between this and its other actions

with a low frequency. An S value close to one indicates a low degree of special-
ization. In this case, a controller switches between some or all of its actions with a

high frequency. A perfect specialist (S = 0), is a controller that executes the same

action for the duration of its lifetime (A = 0). An example of a non-specialist

(S = 0.5) is where a controller spends half of its lifetime switching between two

actions. For example, if A = 3, N = 6, then the controller switches between each of

its actions every second iteration. Controllers are labeled as specialized if S is less

than a given Behavioral Specialization Threshold (BST). Otherwise, controllers are

labeled as non-specialized.

2.3 Adaptation of algorithmic parameters

The GDM and SDM adaptively regulated inter-population genotype recombination

as a function of controller fitness progress. Regulating inter-population is integral to

the CONE adaptive process. That is, CONE works on the premise that recombining

populations containing genetically similar genotypes and produce behaviorally

similar behaviors (with beneficial specializations) will result in the evolution of

increasingly beneficial specialized behaviors.

As part of the regulation process, two dynamic algorithmic parameters, the

Genetic Similarity Threshold (GST), and Specialization Similarity Threshold (SST)

were used by the GDM and SDM, respectively. The initial GST and SST values are

floating point values randomly initialized in the range: [0.0, 1.0]. Whenever the GST

value is adapted by the GDM, a static value (dGST) is either added to, or subtracted

from the GST value. Similarly, when the SST value is adapted by the SDM, a static

value (dSST) is either added to, or subtracted from the SST value. The following

describes the GDM and SDM.

2.3.1 Genotype difference metric (GDM)

The GDM is a heuristic that adaptively regulates inter-population recombination of

genetically similar genotypes. Two genotypes �a and �b are considered genetically
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similar if their average weight difference is less than GST [107]. The GST value,

and hence inter-population genotype recombination, is adapted as a function of

the number of previous W recombinations and a team’s average fitness progress (the

fittest n controllers). The following rules regulated the GST value and thus the

number of inter-population recombinations.

1. If recombinations between populations have increased over the previous

W generations, and fitness has stagnated or decreased, then decrement the GST

value, so as to restrict the number of recombinations.

2. If recombinations between populations have decreased or stagnated, and fitness

has stagnated or decreased over the last W generations, then increment the GST

value, to increase the number of recombinations.

Similar genotypes in different populations may encode very different function-

alities. Recombining such genotypes may produce neurons that do not work together

as a controller. The SDM addresses this problem.

2.3.2 Specialization difference metric (SDM)

The SDM adaptively regulates inter-population recombination based on behavioral

specialization similarities exhibited by controllers. The SDM ensures that only the

genotypes that make up controllers with similar behaviors are recombined. The

SDM defines the specialized behaviors of controllers ANNi and ANNj to be similar if

the following conditions are true:

1. | S(ANNi) - S(ANNj) | \ SST, where, S (Eq. 1 in Sect. 2.2) is the degree of
behavioral specialization exhibited by ANNi and ANNj.

2. If ANNi and ANNj have the same specialization label.

The specialization label is the most executed action of a specialized controller.

The SST value is adapted as a function of controller behavioral specialization

(S) similarities and a team’s average fitness progress. The following rules were used

to regulate the SST value.

1. If the S of at least one of the fittest controllers has increased over the last

V generations, and average team fitness stagnates or is decreasing over this

same period, then decrement the SST value. Thus, if the fittest controllers have

an average S that is too high for improving team fitness, then recombination

between populations is restricted.

2. If the S of at least one of the fittest controllers has decreased over the last

V generations, and average fitness stagnates or is decreasing over this same

period, then increment the SST value. Thus, if the fittest controllers have an

average S that is too low to improve team fitness, then allow for more

recombination between populations.

2.4 Collective neuro-evolution (CONE) process

This section overviews CONE’s iterative cooperative co-evolution process.
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1. Initialization. n populations are initialized. Population Pi (i 2 f1; . . .; ng)
contains ui sub-populations. Sub-population Pij contains m genotypes. Pij

contains genotypes encoding neurons assigned to position j in the hidden layer

of ANNi (ANNi is derived from Pi).

2. Evaluate all genotypes. Systematically select each genotype g in each sub-

population of each population, and evaluate g in a complete controller. This

controller (containing g) is evaluated with n-1 other controllers (n is the number

of controllers in a team). Other controllers are constructed via randomly

selecting a neuron from each sub-population of each of the other populations.

Evaluation results in a fitness being assigned to g.

3. Evaluate elite controllers. For each population, systematically construct a fittest

controller via selecting from an elite portion of genotypes in each sub-

population. Controller fitness is equated to utility. Utility is the average fitness

of the genotypes for a controller’s hidden layer. Groups of the fittest

n controllers are evaluated together in task simulations until all genotypes in

the elite portion of each population have been assigned a fitness. For each

genotype, this fitness overwrites previously calculated fitness.

4. Parent selection. If the two fittest controllers ANNi and ANNj constructed from

the elite portions of Pi and Pj have sufficiently similar behavioral specializa-
tions (Sect. 2.2) then Pi and Pj become candidates for recombination. For Pi and

Pj to be recombined, both ANNi and ANNj must have the same specialization

label (Sect. 2.2). That is, both ANNi and ANNj must be behaviorally specialized

to the same action. Between Pi and Pj each pair of sub-populations is tested for

genetic similarity (average weight difference is less than GST). Genetically

similar sub-populations are recombined. For sub-populations that are not

genetically similar to others, recombination occurs within the sub-population.

Similarly, for populations that are not behaviorally similar to other populations,

recombination occurs within all sub-populations of the population.

5. Recombination. When sub-populations pairs are recombined, the genotype elite

portion in each sub-population is ranked by fitness. Genotypes with the same

fitness rank are recombined. For recombination within a sub-population, each

genotype in the sub-population’s elite portion is systematically selected and

recombined using one-point crossover [27], with another randomly selected

genotype from the sub-population’s elite portion.

6. Mutation. After recombination, burst mutation with a Cauchy distribution1 [37]

is applied to each gene of each genotype with a given probability.

7. Parameter adaptation. If the fitness of at least one of the n fittest controllers has

not progressed in:

(a) V generations: Adapt Genetic Similarity Threshold (GST).

(b) W generations: Adapt Specialization Similarity Threshold (SST).

8. Stop condition. Reiterate steps [2, 7] until a desired collective behavior task

performance is achieved, or the process has run for X generations.

1 Herein, referred to as burst mutation.
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3 Experimental setup

The pursuit-evasion task required a predator team to collectively capture at least

one prey in a multi-robot simulation. Predator and prey robots were simulated

Khepera mobile robots [66]. Prior to being placed in pursuit-evasion experiments,

the prey was evolved with an evasion behavior. Prey did not move deterministically,

so it was impossible for predators to consistently predict prey movement. Also, prey

capture was made more difficult via giving the prey an advantage of greater speed.

Nitschke [74] elucidated that at least two predators were required to accomplish this

task, and that predators in a team adopting complementary behavioral specializa-

tions yielded the benefit of increasing the time for which a prey was captured. The

beneficial forms of predator behavioral specialization, and collective prey capture

behaviors were not known a priori, and were thus evolved by CCGA, MESP or

CONE.

3.1 Continuous simulation environment

The environment was a 1,000 cm 9 1,000 cm continuous area, and was simulated

using an extended version of the EvoRobot Khepera simulator [79]. Each simulation

iteration, a robot (predator or prey) could orientate itself between [0, 360] degrees

with respect to its current heading. Robot orientation was calculated according to

the speed of each wheel. Assumptions made by the simulation model are described

in previous research [74, 79]. Figure 3 depicts an example of three predators and

one prey in the simulation environment.

3.2 Predator and prey robots

3.2.1 Prey: sensors and actuators

Prey used eight infrared proximity sensors ([SI-0, SI-7] in Fig. 4a) on its periphery,

and a light on its top (L-0 in Fig. 4a). This light was detectable by predator light

sensors, and thus attracted predators. When an obstacle came within range of a

prey’s proximity sensor, that sensor was activated with a value proportional to the

distance to the obstacle. Sensor values were normalized within the range: [0.0, 1.0],

via dividing the sensor value by the maximum value. Prey were also equipped with

two wheels ([MO-0, MO-1] in Fig. 4) that controlled its speed and orientation.

Motor output values (MO-0, MO-1) were normalized in the range: [-1.0, 1.0], and

controlled wheel speed and direction. Where, [MO-0, MO-1] = 0.0, denote no wheel

speed, and [MO-0, MO-1] = 1.0, denote maximum wheel.

3.2.2 Prey controller

Prey sensory inputs were mapped to motor outputs using a feed-forward Artificial
Neural Network (ANN) controller (Fig. 5). Eight sensory input and two motor

outputs were fully connected to five Hidden Layer (HL) neurons. Sensory inputs

encoded the state of the eight infrared proximity sensors. Motor outputs encoded
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wheel speed. Output values were computed via applying the sigmoid function [47],

and multiplying the output value by 1.20. This set prey speed to 20 % faster than

predator speed. Also, before prey were placed in pursuit-evasion experiments, the

prey controller was evolved with an evasion behavior. Prey controller evolution, and

Prey: Evasion behavior

was evolved in parameter

calibration experiments
prior to being placed in

pursuit-evasion experiments.

Predator team: Collective

prey-capture behavior was

evolved via the application 
of CCGA , MESP or CONE. 

Environment Boundary
1000 cm

10
00

 c
m

Fig. 3 Simulation environment example. CCGA, MESP or CONE were applied to evolve n (three in this
example) predator controllers and collective pursuit behavior

Fig. 4 Robot Sensor and Actuator Configuration. Prey (a) have only proximity sensors as well as a light.
Predators (b) have light and proximity sensors. L - 0: Light, SI - x: Sensory input x, MO - y: Motor
output y
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ascertaining an appropriate number of HL neurons, was done during parameter

calibration (section 3.5).

3.2.3 Predator sensors and actuators

Predators were equipped with eight infrared proximity sensors ([SI-0, SI-7] in

Fig. 4b), as well as eight light ([SI-8, SI-15] in Fig. 4b) sensors, on its periphery

(Fig. 4b). When an obstacle (another predator or wall) came within range of a

proximity sensor, that sensor was activated with a value proportional to the distance

to the obstacle. Likewise, when a prey came within range of a light sensor, that

sensor was activated with a value proportional to the distance to the prey. Sensor

values were normalized within the range: [0.0, 1.0]. Predators were also equipped

with two wheel motors ([MO-0, MO-1] in Fig. 4) that controlled its speed and

orientation.

3.2.4 Predator controller

A predator controller was a recurrent ANN [28], used to emulate short term

memory, which was found to be a prerequisite for collective prey capture. A HL of

sigmoidal neurons fully connects 22 sensory input neurons to six HL neurons to two

motor output neurons (Fig. 6). Input neurons encode the state of eight infrared

proximity sensors and eight light sensors ([SI-0, SI-15] in Fig. 6), as well as the HL

activation values from the previous simulation iteration ([SI-16, SI-20] / [SI-16,

SI-21] in Fig. 6). Motor outputs ([MO-0, MO-1] in Fig. 6) encode the speed of the

two wheels. The output value of each motor neuron updates the speed of the

corresponding wheel at each simulation iteration. For each pursuit-evasion

experiment (Sect. 3.6), the number of HL neurons was first evolved by parameter

calibration experiments (Sect. 3.5).

3.2.5 Defining and measuring specialized predator behaviors

Predator controllers did not produce motor outputs that directly corresponded to

distinct behaviors. Rather, varying wheel speeds and robot orientations produced

 7- IS 6- IS 5- IS 4- IS 3- IS 2- IS 1- IS 0- IS

HL-0                 HL-1                 HL-2

MO-0       MO-1

Wheel Motors

Infrared Proximity SensorsFig. 5 Prey Feed-Forward
ANN Controller. Connection
weights and the number of
hidden layer neurons were
evolved prior to being placed in
the pursuit-evasion experiments.
SI - x: Sensory input x, MO
- y: Motor output y, HL - z:
Hidden layer neuron z
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behaviors that were not easily distinguishable. Thus, it was necessary to identify

distinct emergent predator behaviors during the CCGA, MESP, and CONE

processes. Given that distinct predator behaviors were identified, the behavioral
specialization metric (Sect. 2.2) was applied (during the CCGA, MESP, and CONE

processes) to determine if emergent behaviors were specialized. However, before

executing CCGA, MESP, and CONE to evolve collective prey capture behaviors

(Sect. 3), it was first necessary to identify the emergent predator behaviors. Section

3.4 (pre-experimental phase) details experiments used to identify distinct emergent

predator behaviors.

3.3 Validating the complexity of CONE

These validation experiments elucidated the CONE process via applying it to solve

pursuit-evasion tasks, ranging from simple to complex. These tasks demonstrated

CONE’s benefits compared to CCGA, MESP, and a Conventional Neuro-Evolution
(CNE) method. Experiments indicated that CONE’s algorithmic complexity is

mandated to evolve teams to solve collective behavior tasks requiring behavioral

specialization and heterogeneity in teams.

Validation experiment 1: Required one predator to capture one prey, and

behavioral specialization is not beneficial for task accomplishment. Prey capture

was when a predator collided with a prey. Predator fitness equalled the number of

simulation iterations before prey capture occurs.

Validation experiment 2: Required two predators to capture a prey. Cooperation

was required but behavioral specialization was not beneficial or required for task

accomplishment. Prey capture was when two predators collided with a prey at the

same simulation iteration. Team fitness (both predators) equalled the number of

iterations before prey capture occurs.

s s s s

s

s s

SI -0 SI -7 SI -8 SI -15 SI -16 SI -21 

Infrared
Proximity Sensors

Infrared
Proximity Sensors

Previous Hidden
Layer State

5-LH4-LH3-LH2-LH1-LH0-LH

 MO-0                                                                 MO-1

Wheel Motors

s s

Fig. 6 Predator Recurrent ANN Controller. Connection weights were evolved by CCGA, MESP or
CONE in pursuit-evasion experiments. The number of hidden layer neurons were evolved in parameter
calibration experiments. SI - x: Sensory input x, MO - y: Motor output y, HL - z: Hidden layer
neuron z
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Validation experiment 3: Required three predators to capture a prey. Cooperation

was required and specialization was beneficial for task accomplishment. Prey

capture was when the three predators pushed against the prey such that it was

immobilized. In this task it was possible for the prey to escape the hold of the

predators by virtue of turning about and trying to move off in various directions.

Predator fitness (for each predator) equalled the total number of simulation

iterations for which a prey was held immobilized by the predators. Previous

research [74] demonstrated that at least two predators are required to accomplish

this task, where predators must use complementary behavioral specializations.

3.3.1 Validation experiments: experimental setup

The environment, predator and prey controllers, and experimental setup was the

same as the pursuit-evasion experiments (Sect. 3.6). A CONE validation experiment

was the application of CNE, CCGA, or CONE to either task 1, 2, or 3, where

predator controller connection weights were adapted by CNE, CCGA, or CONE.

For a consistent comparison, CNE used the same parameters as CCGA, MESP and

CONE (Table 3). For each validation experiment, an average fitness over 20

simulation runs was calculated.

3.3.2 CNE: conventional neuro-evolution

CNE [106] is an evolutionary process illustrated in Fig. 7. A Genetic Algorithm
(GA) [27] is applied to evolve a genotype population. Each genotype encodes an

ANN controller. A controller receives sensory inputs (observations) from its

environment and maps inputs to motor outputs (actions). A fitness is then assigned

based on the controller’s evaluation in the task (environment). CNE was selected as

Fig. 7 Conventional Neuro-Evolution (CNE). Complete ANN controllers are evolved from one genotype
population. Figure adapted from Gomez [36]
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the first comparative method since it has been successfully applied to evolve

simulated robot controllers in previous research [74].

3.3.3 CCGA: cooperative co-evolutionary algorithm

The Cooperative Co-evolving Genetic Algorithm (CCGA) [86, 87] uses a GA to

cooperatively co-evolve n individuals (genotypes) from n populations (species).

Each species is genetically isolated, so recombination only occurs within each

species. Figure 8 illustrates an example of the CCGA model, using only two

species. A set of n genotypes (one selected from each species) are evaluated based

on how well they cooperate to solve a given task. CCGA was selected as the second

comparative method since it is has been previously applied to evolve behaviorally

specialized robot controllers [88]. CCGA is also included in the pursuit-evasion

experiments (Sect. 3.6).

3.3.4 CNE / CCGA applied to validation task 1

CNE and CCGA encoded a complete controller as one genotype. A genotype was a

set of floating point values encoding all sensory inputs plus all motor output weights

connected to a controller’s hidden layer. In validation task 1, only one predator

controller (n = 1) was evolved. Thus, CNE and CCGA followed the same

algorithmic process, using one population of 600 genotypes. The CNE and CCGA

evolutionary processes consisted of the following steps.

3.3.4.1 Initialization CNE and CCGA began by initializing each gene in each

genotype to a random value in the range: [0.0, 1.0].

3.3.4.2 Genotype evaluation Each genotype in the population was systematically,

decoded into a predator controller, and evaluated in validation task 1. To ensure

rigorous controller evaluation, each controller was evaluated in 10 different epochs
(one predator lifetime). An epoch was one simulation scenario that tested different

predator and prey orientations and starting positions in the environment. An epoch

was 1,000 simulation iterations. Predator fitness was calculated as an average over

all epochs of a predator’s lifetime.

Population

EA

Species 1

Population

EA

Species 2

Task
Domain

Individual

Fitness

Individual

Fitness

Fig. 8 Cooperative Co-evolutionary Genetic Algorithm (CCGA). CCGA allows for n species to be
co-evolved. Figure adapted from Potter [85]
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3.3.4.3 Parent selection At the end of a generation, all genotypes in the

population were ranked by fitness. Each genotype in the population’s elite portion
(fittest 20 %) was systematically selected and paired with a second genotype

(randomly selected from the population’s elite portion).

3.3.4.4 Recombination and replacement Each genotype parent pairing was

recombined using one-point crossover [27]. All parent pairs produced enough child

genotypes to completely replace the current population.

3.3.4.5 Mutation Burst mutation [37] was applied to each gene of each new

genotype with a probability of 0.05.

The next generation of CNE or CCGA then began (with genotype evaluation).

After 500 generations, the fittest genotype in the population represented the predator

controller best suited to solve validation task 1.

3.3.5 CONE / MESP applied to validation task 1

CONE and MESP evolved one predator controller (n = 1). This controller con-

tained six hidden layer neurons (u = 6), evolved from six sub-populations. Each

sub-population contained 100 genotypes. CONE and MESP worked via evolving

hidden neuron (input-output connection weights) from separate sub-populations and

combining evolved neurons as a controller’s hidden layer (Sect. 2). The CONE and

MESP processes comprised the following steps.

3.3.5.1 Initialization The CONE/MESP process initialized each gene of each

genotype with a random value in the range: [0.0, 1.0].

3.3.5.2 Evaluate genotypes For CONE and MESP, each genotype g in each of the

six sub-populations was systematically selected, and g was evaluated in the context

of a complete controller tested in validation task 1. A controller is constructed from

g and five other genotypes randomly selected from the other five sub-populations.

Genotype g fitness equalled fitness assigned to the controller (containing g). To

ensure rigorous evaluation, each controller was evaluated in 10 epochs.

3.3.5.3 Evaluate elite controllers This step in the process was only used by

CONE. After all genotypes in all sub-populations were evaluated, a second round of

fitness evaluations were executed, in which elite controllers were evaluated. An

elite controller was constructed via systematically selecting the fittest genotypes

from each sub-population’s elite portion. Elite controller fitness (utility), equalled

the average fitness of genotypes comprising the controller’s hidden layer. Each elite

controller was evaluated in validation task 1, where each genotype (neuron) was

assigned the same fitness as assigned to the controller. Each new genotype fitness

evaluation overwrote the previously calculated fitness. The process of constructing

elite controllers from each sub-population’s elite portion continued until all

genotypes in each sub-population’s elite portion had been assigned a new fitness.
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3.3.5.4 Parent selection In validation task 1, only one predator was evolved, so

for CONE, there was no inter-population parent selection and recombination.

Rather, selection occurred within each sub-population’s elite portion. MESP does

not use inter-population selection and recombination, so selection always occurred

within sub-populations. Hence, for both MESP and CONE, each elite portion

genotype was systematically selected and paired with another genotype (randomly

selected from the same sub-population elite portion).

3.3.5.5 Recombination and replacement After parents had been paired within

each sub-population, parents were recombined using one-point crossover [27].

Enough child genotypes were produced to replace the current sub-population.

3.3.5.6 Mutation After CONE / MESP recombination, burst mutation [37] was

applied to each gene of each genotype with a 0.05 degree of probability.

The next generation of CONE / MESP then began (with evaluate genotypes).

After 500 generations, the fittest controller (constructed via selecting the fittest

genotype from each sub-population), was the controller best suited to solve

validation task 1.

3.3.6 CCGA applied to validation task 2 and 3

For validation tasks 2 and 3, two or three predators were evolved from two or three

populations (n = [2, 3]), respectively. Task 2 and 3, used populations containing

300 and 200 genotypes, respectively. CCGA’s cooperative co-evolution process

consisted of the following steps.

3.3.6.1 Initialization CCGA initialized each gene in each genotype to a random

value in the range: [0.0, 1.0].

3.3.6.2 Genotype evaluation Within each population, the same evaluation proce-

dure was used as for CCGA in validation task 1 (Sect. 3.3.4). However, since tasks 2

and 3 evolved two and three controllers (from two and three populations,

respectively), controllers were evaluated based on how effectively they cooperated

to solve these tasks. Consider that, for task 2, a controller (containing genotype g, to

be evaluated), where g was derived from population 1. This controller (ANN0) was

evaluated in task 2, together with a second controller derived from population 2

(ANN1). ANN1 was derived via randomly selecting a second genotype from

population 2. After the evaluation of ANN0 and ANN1 in task 2, a fitness was

assigned to g. After all genotypes in population 1 were evaluated (in the context of

ANN0), then the genotype evaluation procedure was repeated for all genotypes in

population 2. That is, each genotype (g) in population 2 was evaluated in ANN1,

where g was assigned a fitness based on how well ANN1 and ANN0 cooperated to

solve task 2. The same genotype evaluation procedure was used for task 3, the

difference being that three populations (controllers) were evaluated. To ensure

rigorous controller evaluation, each genotype g was evaluated in 10 epochs.
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3.3.6.3 Parent selection In each population, all genotypes were ranked by fitness.

Each genotype in a population’s elite portion was systematically selected and paired

with a second genotype (randomly selected from the elite portion).

3.3.6.4 Recombination and replacement For each population, each genotype

parent pairing was recombined using one-point crossover [27]. All parents produced

enough child genotypes to completely replace the given population.

3.3.6.5 Mutation In each population, burst mutation [37] was applied to each gene

of each genotype with a 0.05 degree of probability.

The next CCGA generation then began (with genotype evaluation). After 500

generations, the fittest genotype was selected from each of the n populations (where,

n = [2, 3]). These 2 or 3 genotypes (controllers) represented the predator team best

suited to solve validation tasks 2 or 3, respectively.

3.3.7 CONE and MESP applied to validation task 2 and 3

For validation tasks 2 and 3, two and three predators were evolved from two and

three populations (n = [2, 3]), respectively. Since a predator controller contained

six hidden layer neurons, each population contained six sub-populations. For task 2,

each population contained 300 genotypes, and each sub-population contained 50

genotypes. For task 3, each population contained 200 genotypes, and each sub-

population contained 33 genotypes. CONE and MESP used the following process.

3.3.7.1 Initialization Each CONE / MESP gene of each genotype was initialized

to a random value in the range: [0.0, 1.0].

3.3.7.2 Evaluate genotypes Within each CONE / MESP population, the same

genotype evaluation procedure, as used for validation task 1, was used (Sect. 3.3.5).

However, for tasks 2 and 3, two and three controllers were evolved from two or

three populations (respectively), and evaluated based on how well they cooperated

to accomplish the task. Consider that, for task 2, a controller (containing genotype g,

to be evaluated), was derived from population 1. This controller (ANN0) was

evaluated in the task together with a second controller derived from population 2

(ANN1). ANN1 was derived via randomly selecting one genotype from each of the

sub-populations in population 2. After the evaluation of ANN0 and ANN1 in task 2, a

fitness was assigned to genotype g. After all genotypes in all sub-populations of

population 1 had been evaluated (in ANN0), then the genotype evaluation procedure

was repeated for all genotypes in population 2. That is, each genotype g in each sub-

population of population 2 was evaluated in ANN1, where genotype g was assigned a

fitness based on how well ANN0 and ANN1 cooperated to solve task 2. The same

genotype evaluation procedure was used for task 3, except that three populations

(controllers) were evaluated. For rigorous controller evaluation each genotype g was

evaluated in 10 epochs.
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3.3.7.3 Evaluate elite controllers Elite controller evaluation was only used by

CONE, and the same procedure as used for validation task 1 (Sect. 3.3.5), was used

for tasks 2 and 3. However, for tasks 2 and 3, two and three elite controllers derived

from two and three populations (respectively), were cooperatively evaluated.

Consider that, for task 2, an elite controller (containing genotypes: [g0, g5]), selected

from the elite portions of the six sub-populations in population 1, were to be

evaluated. This elite controller (ANN0) was evaluated in task 2 together with a

second elite controller derived from population 2 (ANN1). ANN1 was similarly

constructed via selecting one genotype from the elite portion of each sub-population

in population 2. After the evaluation of ANN0 and ANN1 in task 2, a new fitness was

assigned to [g0, g5], over-writing the previous fitness of these elite portion

genotypes. After all genotypes in the elite portions of the sub-populations of

population 1 had been evaluated (in ANN0), then the elite controller evaluation

procedure was repeated for population 2. That is, genotypes: [g0, g5], selected from

the elite portions of the sub-populations of population 2 were evaluated in ANN1,

where [g0, g5] were assigned a fitness based on the effectiveness of the elite

controllers ANN1 and ANN0 cooperating to solve validation task 2. This evaluation

procedure was also used for task 3, except that three populations were evaluated.

3.3.7.4 Parent selection, recombination and replacement If CONE used more

than one population (as when applied to validation tasks 2 and 3), then genotype

recombination occurred within sub-populations or between populations. For MESP,

parent selection, recombination, and replacement only occurred within each

population’s sub-population, following the same procedure as used in validation

task 1 (Sect. 3.3.5).

The Specialization Difference Metric (SDM) was applied to determine if

recombination occurred between populations (Sect. 2.2). For example, in task 2

(where CONE used two populations P0 and P1), the SDM was applied as follows. If

the SDM calculated that the two fittest controllers ANN0 and ANN1 (derived from

the elite portions of the sub-populations in P0 and P1) had sufficiently similar

behavioral specializations, then the sub-populations of P0 and P1 became

candidates for recombination. The degree of behavioral similarity required for

controllers to be sufficiently similar was determined by the Specialization Similarity
Threshold (SST) parameter (Sect. 2.2). The SST was adapted in the final step of

each generation of the CONE process.

As a further condition for recombination between P0 and P1, all pairs of sub-

populations (between populations) were tested for genetic similarity by the

Genotype Difference Metric (GDM). For example, consider one sub-population

SP0 in P0 and a second sub-population SP1 in P1. If the average weight difference

between SP0 and SP1 was less than the Genotype Similarity Threshold (GST), then

SP0 and SP1 were recombined (Sect. 2.3). The recombination of SP0 and SP1

occurred as follows. A genotype was randomly selected from the elite portion of SP0

and SP1 and one-point crossover [27] applied to create two child genotypes. The

first child genotype was assigned as the first replacement genotype in SP0, and the

second child genotype was assigned as the first replacement genotype in SP1. This
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process was iteratively continued until all genotypes in both sub-populations had

been replaced by child genotypes created from the SP0 and SP1 elite portions.

The GST was adapted in the final step of each generation of the CONE process.

If the GDM calculated that SP0 and SP1 were not genetically similar, then

recombination occurred within SP0 and SP1 (Sect. 3.3.5). That is, as in the case of

CONE applied to validation task 1, each sub-population’s elite portion genotype

was systematically selected and paired with another genotype (randomly selected

from the elite portion). These elite portion genotype pairings were then recombined,

producing enough child genotypes to replace the given sub-population. Recombi-

nation also occurred within all sub-populations (of P0 and P1), if the SDM

calculated that populations P0 and P1 were not behaviorally similar. For task 3, the

same procedure was used, except that the SDM and GSM were applied between

three populations.

3.3.7.5 Mutation Burst mutation [37] was applied to each CONE / MESP gene of

each genotype with a 0.05 degree of probability.

3.3.7.6 Parameter adaptation This step was only used by the CONE process. The

GST and SST parameter values regulated genotype recombination between

populations. Thus, if the fitness of at least one of the n fittest controllers had not

progressed in 10 generations (V in Table 3) the GST was adapted. Similarly, if the

fitness of at least one of the n fittest controllers had not progressed in 20 generations

(V in Table 3), the SST was adapted. CONE parameter adaptation is described in

Sect. 2.3.

The next generation of CONE and MESP then began (with genotype evaluation).

After 500 generations, the fittest controller derived from n (n = [2, 3]) populations

represented a team of two or three predators best suited to solve validation tasks 2 or

3, respectively. As a further validation of CONE’s complexity, the CONE process

was also executed on validation tasks 2 and 3, but without the evaluation of elite
controllers. The evaluation of elite controllers, in addition to the GDM and SDM,

was a key difference between CONE and related cooperative co-evolution methods

such as CCGA and MESP.

3.3.8 CONE validation experiments: results discussion

Independent t-tests gauged average fitness differences between CNE, CCGA, and

CONE evolved teams. Validation experiments used the same procedure for

statistical comparison as the pursuit-evasion experiments (Sect. 4.5).

Validation task 1: CNE, CCGA, MESP and CONE evolved predators that

yielded a statistically comparable average fitness. Task 1 prey capture occurred

when the predator collided with the prey. The prey-capture behavior that most

frequently emerged for CNE, CCGA, MESP and CONE evolved predators was that

the predator would move straight, switching directions randomly when a wall was

encountered. When the prey came within sensor range, the predator would move

directly towards the prey and attempt to collide with it.
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Validation task 2: CNE, CCGA, MESP and CONE evolved predator teams

yielded a statistically comparable average fitness. Prey capture occurred when both

predators were pushing against the prey at the same time. The prey-capture behavior

that most frequently emerged for CNE, CCGA, MESP and CONE evolved teams

was that both predators would move straight, and turn in a random direction when a

wall was encountered. When the prey came within sensor range, a predator would

move directly towards it. In some simulation instances, the two predators would

collide with the prey and capture it.

Validation task 3 results: CONE evolved teams yielded the highest average

fitness, with statistical significance, compared to CNE, CCGA and MESP evolved

teams. CCGA and MESP evolved teams yielded a higher average fitness, with

statistical significance, compared to CNE evolved teams, though comparable to each

other. For task 3, different prey-capture behaviors were evolved by CNE, CCGA,

MESP and CONE. However, in experiments that executed CONE without the elite
controller evaluation step, CONE evolved teams yielded a team fitness comparable

to CCGA and MESP evolved teams. This result is discussed in Sect. 4.9.

3.3.8.1 CNE evolved homogenous team behaviors In CNE evolved teams, all

three predators used the same behavior to form a collective prey-capture strategy.

The CNE evolved behavior that most frequently emerged was for the predators to

move straight, turning away in a random direction when a wall was encountered.

When the prey came within sensor range of a predator, that predator would move

directly towards it. If the prey came within sensor range of all three predators then

all predators would concurrently move towards the prey whilst avoiding each other.

At certain simulation iterations this would strategy would result in the prey being

immobilized between the three predators. However, the prey would often escape the

hold of predators. This resulted in CNE evolved teams having the lowest average

fitness.

3.3.8.2 CCGA and MESP evolved heterogenous team behaviors In CCGA and

MESP evolved teams, the three predators evolved dissimilar behaviors, that

collectively formed a prey-capture strategy. CCGA and MESP evolved teams

yielded a comparable average team fitness for all three validation tasks. For both

CCGA and MESP, the strategy that most frequently emerged was similar to the

pursuer-blocker prey-capture behavior (Sect. 4.1) observed in the pursuit-evasion

experiments. In CCGA and MESP evolved teams, it was the interaction of predators

with complementary behaviors that resulted in a significantly higher average fitness

(compared to CNE evolved teams). The behaviors adopted by predators in CCGA

and MESP evolved teams were calculated as being non-specialized (Sect. 2.2). That

is, each of the CCGA and MESP evolved predators switched between the pursuer
and blocker behavioral roles (Sect. 4.1) with a high frequency.

3.3.8.3 CONE evolved heterogenous team behaviors Similar to CCGA evolved

teams, the three CONE evolved predators used dissimilar behaviors. The prey-

capture strategy that most frequently emerged was similar to the role-switcher
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prey-capture behavior (Sect. 4.3) observed in the pursuit-evasion experiments. In

CONE evolved teams, it was the interaction of predators with complementary

specialized behaviors that resulted in a higher average fitness (compared to CNE,

MESP and CCGA evolved teams). That is, CONE evolved predators switched

between idle, knocker and flanker roles (Sect. 4.3) with a low frequency, and thus

tended to maintain a single role for the duration of their lifetime. As with CCGA,

CONE’s multi-population architecture encouraged emergent heterogeneity in

evolved team behaviors. However, CONE’s regulated inter-population genotype

recombination based on behavioral specialization similarities of controllers and

genetic similarities between populations was successful in evolving other advan-

tageous forms of specialization.

Section 4 presents experiments validating the role of CONE’s Specialization and

Genotype Difference Metrics (SDM and GDM) in evolving beneficial forms

specialization, and a discussion of the contribution of emergent behavioral

specialization to collective prey-capture behaviors and predator team fitness.

3.4 Evolving collective prey-capture behavior: experimental phases

Each experiment placed a team of two to six predators in the simulation

environment, with one or two prey, and applied CCGA, MESP or CONE to evolve

the team’s collective prey capture behavior. Experiments measured the impact of a

team type (Table 1) and controller design method (CCGA, MESP, or CONE) on

predator team fitness. The experimental objective was to ascertain which method

achieved the highest task performance for all team types, and to investigate the

contribution of behavioral specialization to collective prey capture performance.

Team fitness was calculated as the the average time for which a prey was captured. It

was assumed that each predator contributed equally to prey capture, and thus

received an equal fitness reward for prey capture. Team fitness was an average

calculated over all epochs of a team’s lifetime, and over all simulation runs.

The structural credit assignment problem [2] is often evident in multi-robot tasks

[62, 97], but was avoided in the context of this team fitness function. As with

Table 1 Team types

Pursuit-evasion experiments

(pre-experimental and

experimental phase) tested 10

team types (compositions of

predator and prey)

Team type Team composition

1 Two predators and one prey

2 Three predators and one prey

3 Four predators and one prey

4 Five predators and one prey

5 Six predators and one prey

6 Two predators and two prey

7 Three predators and two prey

8 Four predators and two prey

9 Five predators and two prey

10 Six predators and two prey
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Quinn’s [89] work on NE and behaviorally heterogenous teams, a fitness function

that assigns an equal fitness share to each robot in the team [16] sufficed for the NE

controller adaptation methods and task tested in this study. This fitness assignment

approach had the advantage of ensuring that there is no conflict between an

individual controller’s (robot’s) goal to maximize its own fitness, and the team’s

goal to maximize its fitness. Thus, each robot’s individual fitness could only be

increased via increasing team fitness [95]. Furthermore, the accuracy of fitness

assigned to each individual controller was improved by evaluating each individual

in the context of multiple teams in multiple task scenarios. This fitness function has

been successfully applied in previous research [74]. Experiments used the following

phases.

3.4.1 Parameter calibration phase

Prior to the pursuit-evasion experiments, simulation parameters, prey controller

weights, and the number of HL neurons used by predator and prey controllers, were

derived in parameter calibration experiments (section 3.5).

3.4.2 Pre-experimental phase

A first set of pursuit-evasion experiments applied CCGA, MESP, and CONE to

evolve collective prey capture behavior for each team type (table 1). The purpose of

this phase was for the experimenter to observe prey capture behaviors that emerged

during the evolutionary processes of CCGA, MESP and CONE. Observed emergent

prey-capture behaviors were identified according to sensory-motor activation

values. Thus, whenever a prey was collectively captured (by at least two predators),

the sensory input values and corresponding motor output values of each predator

(that captured the prey) was recorded for the period of prey capture. These recorded

ranges of sensory-motor values were then given behavioral labels. Section 4

presents the identified predator behaviors and their labels. Each (CCGA, MESP, and

CONE) experiment was executed for 20 simulation runs. Each run consisted of 500

generations. One generation was a predator/prey lifetime. Each lifetime lasted for 10

epochs. An epoch was a simulation scenario that tested different predator and prey

orientations and starting positions in the simulation environment. Each epoch

consisted of 1000 simulation iterations.

3.4.3 Experimental phase

A second set of pursuit-evasion experiments applied CCGA, MESP, and CONE to

evolve collective prey capture behavior for each team type. The experimental phase

setup was the same as that used for the pre-experimental phase. Given that distinct

predator behaviors were identified in the pre-experimental phase, the Behavioral
Specialization Metric (Sect. 2.2) was applied to ascertain if emergent behaviors

were specialized. Also, during the CONE evolutionary process, the Specialization
Difference Metric was applied to regulate inter-population recombination based

upon behavioral specializations exhibited by CONE evolved predator behaviors.
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Section 4 presents the average fitness, for each team type, of CCGA, MESP and

CONE evolved teams.

3.4.4 Post-experimental phase

Predator behaviors classified as specialized (in the experimental phase) were

observed and assigned specialization labels by the experimenter. A predator was

assigned a specialization label, if that predator executed a given specialized

behavior for more than 50 % of its lifetime in the last generation of the CCGA,

MESP or CONE evolutionary process. Specialization labels were thus the most
executed specialized behavior for each predator in the fittest CCGA, MESP or

CONE evolved teams. If a given predator did not executed a specialized behavior

for most of its lifetime, then that predator was assigned a non-specialized label.

Specialization (and non-specialization) labels were assigned for the purpose of

comparing the behavioral composition of the fittest CCGA, MESP, and CONE

evolved teams. The behavioral specializations adopted by predators in the fittest

CCGA, MESP, and CONE evolved teams was then correlated with average team

fitness. Section 4 presents the specialization labels assigned to individual predator

behaviors in the fittest teams. Section 4 also presents collective prey capture

behavior labels assigned by the experimenter.

3.5 Parameter calibration phase

Parameter calibration experiments were executed for CONE, CCGA, and MESP,

and each team type. Table 2 presents the parameters that were calibrated. Prior to

running parameter calibration experiments, it was first necessary to evolve prey

evasion behavior. This evolved prey behavior was then used in parameter

calibration experiments. Calibrated parameters and the evolved prey behavior were

Table 2 Parameter calibration

Parameter Value range Range interval

Robot movement range [ 0.01, 0.51 ] 0.05

Light/proximity detection sensor range [ 0.01, 0.10 ] 0.01

Simulation runs [ 10, 30 ] 2

Iterations per epoch (Robot lifetime) [ 500, 1500 ] 100

Generations [ 50, 150 ] 10

Epochs [ 2, 20 ] 2

Mutation (per gene) probability [ 0.0, 0.11 ] 0.01

Fitness stagnation V (CONE) [ 5, 15 ] 1

Fitness stagnation W (CONE) [ 10, 25 ] 1

Population elite portion [ 5, 55 ] 5 %

Hidden Layer (HL) neurons [ 1, 10 ] 1

Values tested for the pursuit-evasion task
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then used in the pre-experimental and experimental phases (Sect. 3.4). Table 3

presents the calibrated parameter values.

3.5.1 Prey controller evolution

Prior to being placed in pursuit-evasion experiments, the prey ANN controller was

evolved with an evasion behavior. This controller evolution adapted the number of

HL neurons and input-output connection weights.

One prey and two predators (coded with heuristic pursuit behaviors) were placed

in a simulation environment. CONE was applied to the prey to evolve an evasion

behavior. Two predators were used as previous research [74] demonstrated two to

be the minimum for this pursuit-evasion task. A predator’s heuristic behavior was

such that it moved directly towards the prey, or towards the prey’s last known

Table 3 Pursuit-evasion parameters

Simulation runs/environment size 20 / 1000 cm x 1000 cm

Team types (predator/prey

composition)

[1, 10]

Robots (predators/prey) Khepera

Proximity/light sensor range 22 cm (Predator/Prey)

Predator/Prey team size [2, 6] / [1, 2]

Generations/Epochs/Epoch

iterations

500 / 50 / 1000

Mutation probability/Range 0.05 / [-1.0, ?1.0]

Mutation/Crossover operator Burst (Cauchy distribution) / Single point

Fitness stagnation V/W 10 / 20 Generations (CONE)

Behavioral Specialization

Threshold

0.5 (CONE)

Genotype Similarity Threshold

(GST)

[0.0, 1.0] (dynamic/CONE)

Specialization Similarity

Threshold (SST)

[0.0, 1.0] (dynamic/CONE)

Genotype population elite portion 25 %

Weight (gene) range [-10.0, ?10.0]

Predator ANN Input/Output/HL

neurons

22 / 2 / 6

Total number of genotypes 600 (CCGA, MESP, CONE)

Genotype structure Hidden layer neuron input-output weights (MESP/CONE), All

weights (CCGA)

Genotype representation Floating point value vector

Genotype populations [2, 6] (CCGA, MESP, CONE)

Genotype length 24 (CONE, MESP), 144 (CCGA)

Genotypes per population [300, 200, 150, 120, 100] (CCGA, CONE: [2, 6] predators), 100

(MESP)

Simulation settings. HL hidden layer
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location, or in a straight line in a random direction. When faced with a wall, the

predator moved away in an opposite random direction. Initially, the prey controller

used one HL neuron. A CONE experiment was executed for 20 simulation runs.

Each run was 100 generations. One generation was a predator/prey lifetime. Each

lifetime was 10 epochs. Each epoch was 500 simulation iterations. An epoch was a

simulation scenario that tested different predator and prey orientations and starting

positions in the environment. CONE experiments were re-run five times. Each time

another HL neuron was added to the prey’s controller. Five HL neurons was the

minimum number required to evolve an evasion behavior that consistently evaded

predators in all simulation runs. The fittest evolved prey controller was used in the

parameter calibration and then the pursuit-evasion experiments.

3.5.2 Pursuit-evasion parameter calibration

Each of the parameters in Table 2 were systematically selected and varied within

100 % of its value range at 20 % intervals. Thus, 10 different parameter values

were tested for each parameter. When a given value was selected, other parameter

values were fixed at the median value in their range. The impact of given parameter

values was ascertained via running CCGA, MESP, and CONE for 500 generations,

and 20 simulation runs (for each team type). Each of the parameters given in

Table 2 were calibrated independently. Thus, parameter inter-dependencies were

not taken into account, since the complexities of parameter interactions could not

be adequately explored using this parameter calibration scheme. Investigating the

parameter interactions during calibration remains a current research topic [26].

However, the impact of the behavioral specialization threshold, the number of HL
neurons and simulation runs are briefly outlined here. Varying these parameters

had the greatest impact on team fitness (for CCGA, MESP and CONE evolved

teams).

3.5.2.1 Behavioral specialization threshold Calibration experiments found that

deceasing the specialization threshold to below 0.5 resulted in fewer controllers

being classified as specialized and thus fewer specialized controller recombinations.

This reduced recombination of specialized controllers and beneficial behaviors

between populations. Increasing the specialization threshold above 0.6 resulted in

more controllers being classified as specialized and thus more controllers being

recombined between populations. This in turn resulted in the propagation of

specialized behaviors that were not necessarily beneficial. The overall impact of a

specialization threshold value outside the range [0.5, 0.6] was a decreasing task

performance for all team types tested.

3.5.2.2 HL neurons Calibration experiments determined that for CCGA, MESP,

and CONE evolved teams (for all team types), an appropriate number of HL

neurons was five, seven, and seven, respectively. For a fair method comparison,

predator controllers used six hidden layer neurons (Fig. 6).
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3.5.2.3 Simulation runs Calibration experiments determined that 20 evolutionary

runs was sufficient to derive an appropriate estimate of average team fitness CCGA,

MESP, and CONE evolved teams. Less than 20 runs was found to be insufficient,

and more than 20 runs too time and computationally expensive.

3.6 Pursuit-evasion experiments

After parameter calibration and prey controller evolution, CCGA, MESP and CONE

were applied to evolve collective pursuit behavior for each team type (Table 1). The

n populations used by CCGA, MESP and CONE were initialized with genotypes

comprised of genes with random values in the range: [0.0, 1.0]. For team sizes of

[2, 6], each population was initialized with 300, 200, 150, 120 or 100 genotypes,

respectively. For CCGA, each population contained genotypes corresponding to

complete ANN controllers [86]. At each generation of CCGA, the fittest genotype

was selected from each population, and evaluated as n controllers (a predator team)

in the pursuit evasion task. Each genotype was encoded as a vector of 144 floating

point values, representing sensory input and motor output weights connected to the

HL in each predator controller. That is, 24 sensory inputs multiplied by six HL

neurons plus two motor outputs (Fig. 6). For MESP and CONE, each population

contained genotypes that were decoded into individual HL neurons. Section 2

describes the procedure used to construct complete ANN controllers from each

population, and to evaluate n controllers in the pursuit-evasion task. Each genotype

was encoded as a vector of 24 floating point values, representing the sensory input

and motor output weights connected to one HL neuron (Fig. 6).

3.7 Evolving collective pursuit behavior with CCGA

For a team of n predators, where n 2 ½2; 6�), n populations were initialized. For a

predator team size of n = {300, 250, 200, 150, 120, 100}, run for 500 generations,

the number of evaluations E, was:

CCGAE = {300, 200, 150, 120, 100} (genotypes per population) � n ¼ ½2; 6�
(populations) � 500 (generations) � 50 (epochs per generation);

CCGAE = {15 300 000 (n = [2, 6])};

This includes 300 000 CCGA evaluations required to the evaluate the elite

portion (fittest 20 %) of genotypes in each population. For each population, elite

portion genotypes were systematically selected and evaluated together with

genotypes randomly selected from the elite portions of the other populations.

These elite portion evaluations were included so as the total number of evaluations

per CCGA experiment would equal that of MESP and CONE.

3.8 Evolving collective pursuit behavior with MESP / CONE

For a team size of n = [2, 6], executed for 500 generations, the number of

evaluations E, was:
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MESP/CONEE = {300, 200, 150, 120, 100} (genotypes per population) � n ¼
½2; 6� (populations) � 500 (generations) � 50 (epochs per generation);

MESP/CONEE = {15 300 000 (n = [2, 6])};

This number of evaluations includes 300 000 evaluations required to evaluate

controller utility (section 2.4) of the fittest 20 % of controllers.

4 Results and discussion

This section describes collective prey capture behaviors evolved by CCGA, MESP,

and CONE for each team type (Table 1).

4.1 CCGA / MESP / CONE evolved behavior: pursuer-blocker

Pursuer-blocker was a prey capture behavior that emerged in approximately 80 %

of CCGA, 60 % of MESP and 40 % of CONE experiments. Figure 9 depicts an

example of the pursuer-blocker behavior using team type 2. Predators A and B are

the pursuers, positioned behind and to either side of the prey. Predator C assumed

the role of a blocker. When the prey moved within light sensor range of predator C,

this predator moved directly towards the prey. The prey then turned to avoid

predator C, however its evasion was halted by pursuers, and the prey was captured

by the three predators. Pursuer-blocker was most effective for team types 2 and 3.

Team types 4 and 5 yielded comparatively poor results due to physical interference

that occurred between predators as they collectively approached a prey. Pursuer-

blocker failed with team type 1, as two predators were insufficient for prey capture.

4.2 CCGA / MESP / CONE evolved behavior: spider-fly

Spider-fly2 was a prey capture behavior that emerged in approximately 20 % of

CCGA, 50 % of MESP, and 20 % of CONE experiments. Figure 10 presents an

example of the spider-fly behavior using team type 2. At simulation time t the prey

A B

C

A: Pursuer 1
B: Pursuer 2
C: Blocker

Fig. 9 Pursuer-blocker
behavior. A tangential bar in a
circle indicates the current
heading of a predator or prey
robot. Black circles: predators.
White circle: prey

2 Spider-fly is from related research of Nolfi and Floreano [81], where evolved predator behaviors

exhibited spider like predatory behavior (when capturing a fly).
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followed a wall, and was pursued by predators B and C. As the prey reached the

corner and turned about, predator A (previously idle in close proximity to the

corner) became active. The result was that at simulation time t ? w the prey was

immobilized between the corner and predators A, B, and C. The spider-fly behavior

was most effective when using team types 1 to 3. Team types 4 to 6 failed in the

early stages of the CONE evolutionary process (B 250 generations) due to physical

interference that occurred between predators as they collectively approach a prey.

However, team types 4 to 6 often succeeded in later stages of the CONE process

([250 generations) given that the fourth, fifth and sixth predators evolved so as to

assume idle behaviors (Sect. 4.5).

4.3 CONE evolved behavior: role-switcher

Role-switcher was a prey capture behavior that emerged in approximately 80 % of

experiments applying CONE. Figures 11 and 12 illustrate two versions of role

switcher using team types 2 to 3. Several versions of the role-switcher behavior

emerged. However, only two are described and illustrated here for clarity. In each

version, different predators adopted multiple and complementary behavioral roles,

and switched between these roles to maintain the effectiveness of the prey capture

behavior. These behavioral roles were named: flanker, knocker and idle. A flanker
was a predator that remained in close proximity to the left or right hand rear side of

A

B

CA: Idle
B: Pursuer 1

2reusruP:C

C

Simulation time t Simulation time t + w

A: Pursuer 3
B: Pursuer 1

2reusruP:C

B

C
A

B

Fig. 10 Spider-fly behavior. A tangential bar in a circle indicates the current heading of a predator or
prey. Black circles predators. White circle prey

C

B

A

Simulation time t + w

A: Flanker
B: Knocker

Idle:C

A: Knocker
B: Flanker

Knocker:C

Simulation time t

B

A
C

Fig. 11 Role switcher behavior 1. A tangential bar in a circle indicates the current heading of a predator
or prey. Black circles predators. White circle prey

522 Genet Program Evolvable Mach (2012) 13:493–536

123



a prey. A flanker repeatedly collided with a prey so as to force the prey’s movement

in a particular direction. A knocker was a predator that consistently moved in a

semi-circular motion so as to repeatedly collide with the prey, and thus slow its

movement. An idle predator did not move. The role switcher strategy was effective

for team types [2, 5] and [7, 10]. Given that at least three predators were within

sensory range of a prey, the closest three participated in the role-switcher behavior,

whilst the other predators remained idle. Section 4.5 discusses idle behavior

emergence. Two predators (team type 1) were insufficient to immobilize a prey in

this case.

4.3.1 Role switcher behavior 1

Figure 11 illustrates an example of the first version of role switcher operating with

team type 2. At simulation time t the prey turns left 90 degrees to evade predators A

and B. Predator B switches its behavior from a knocker to a flanker role, and

predator C switches from an idle to a knocker role. The result is that predators stay

in close proximity to the prey, and at time t ? w, capture it within a triangular

formation.

4.3.2 Role switcher behavior 2

Figure 12 illustrates an example of the second version of the role switcher behavior,

operating with team type 3. At simulation time t the prey turns left 90 degrees to

evade predators A and B. Predator B switches its behavior to an idle role, whilst

predator A switches to a knocker role. At the same time predator D switches from an

idle to a knocker role, whilst predator C maintains its flanker role. The result is that

at simulation time t ? w predators A, C and D capture the prey within a triangular

formation.

4.3.3 Role switcher behavior 3

Figure 13 exemplifies the third version of the role switcher behavior, operating with

team type 2. At time t the prey turns left 180 degrees to evade predators A and B,

C

B

A

Simulation time t + wSimulation time t

A: Flanker
B: Knocker

reknalF:C
D: Idle

D

A: Knocker
B: Idle

reknalF:C
D: Knocker

C

A
D

B

Fig. 12 Role switcher behavior 2. A tangential bar in a circle indicates the current heading of a predator
or prey robot. Black circles predators. White circle prey
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both predators A and B switch their behaviors from knocker to flanker roles. At the

same time predator C switches its behavior from a flanker to a knocker role. At time

t ? w the predators manage to immobilize the prey within a triangular formation.

4.4 Pursuit-evasion experiments testing two prey

Experiments testing two to six predators with two prey were also conducted.

Figure 14 presents average fitness (CCGA, MESP and CONE), as lower for

experiments testing two prey (team types [6, 10]), compared to experiments testing

one prey (team types [1, 5]). This resulted from predators frequently switching

pursuit behavior. If two prey were in close proximity to each other, then predators

often switched between pursuing each. This inconsistent pursuit behavior, and

A B

C

A: Knocker
B: Knocker

Flanker:C

A: Flanker
B: Flanker

Knocker:C

Simulation time t + wSimulation time t

A

B

C

Fig. 13 Role switcher behavior 3. A tangential bar in a circle indicates the current heading of a predator
or prey robot. Black circles predators. White circle prey
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captured by CCGA, MESP, and CONE evolved teams
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predators avoiding collisions with each other when in prey pursuit, decreased the

chance of collective prey capture.

4.5 Pursuit-evasion task experimental analysis

To draw conclusions, statistical tests were used to gauge average fitness (time for

which a prey is captured) differences between CCGA, MESP and CONE evolved

teams. Figure 14 presents the average fitness yielded by CCGA, MESP, and CONE

evolved teams for all team types (Table 1).

– The Kolmogorov-Smirnov (KS) test [30] was applied to each data set. The KS

test found that all data sets conformed to normal distributions.

– Independent t tests [30] were applied to ascertain if there was a statistically

significant difference between average team fitness.

Bonferroni multiple significance test correction [25] was used to overcome the

problem of t-tests reporting a spurious significance of difference as a result of

pairwise comparisons between multiple data sets. The threshold for statistical

significance was 0.016, and the null hypothesis was that data sets did not

significantly differ. T-tests were applied in pair-wise comparisons to test for

significant difference between the following average fitness data sets. Average

fitness was calculated via selecting the fittest team for a given method, team type

and simulation run. An average fitness (of fittest teams) was then calculated for 20

runs executed for each team type and method.

– CCGA versus MESP evolved teams.

– CCGA versus CONE evolved teams.

– MESP versus CONE evolved teams.

Statistical test results partially support the second hypothesis of this article:

Behavioral specialization facilitated by CONE beneficially contributes via CONE
evolved teams yielding a higher average fitness, compared to CCGA and MESP
evolved teams. That is, for 80 % of team types, CONE evolved teams with a higher

fitness (statistically significant) compared to CCGA and MESP evolved teams. For

team types using two predators (1 and 6), CONE evolved teams yielded a

comparable fitness to CCGA and MESP evolved teams.

The higher performance of CONE evolved teams is supported by the idle
predator behavior. It is theorized that the idle behavior emerged as a means of

reducing physical interference between predators. The idle behavior was an

essential component of the role switcher prey capture behavior. Teams that used the

idle behavior (as part of the role switcher prey capture behavior) increased their

effectiveness and thus fitness. In CONE evolved teams, idle behaviors emerged for

all team types, except 1 and 6 (those using two predators). This was the case since

the role switcher behavior only functioned with three to six predators (Sect. 4.3).

Furthermore, the idle behavior did not emerge in CCGA or MESP evolved teams.

This suggests that CONE was able to facilitate a form of behavioral specialization

(the idle behavior) appropriate for supporting an effective prey capture behavior
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(role switcher). Section 4.6 discusses the contribution of the idle behavior to

collective prey capture.

4.6 CONE difference metric / elite controller experiments

This section discusses the contribution of the Genotype Difference Metric (GDM)

and Specialization Difference Metric (SDM) for facilitating behavioral specializa-

tion and increasing CONE evolved team fitness. This section also discusses the

contribution of elite controller evaluation (Sect. 2.4) to the task performance of

CONE evolved teams. To this end CONE was re-executed with the following

variants to the original experimental setup.

1. CONE-1: Teams were evolved by CONE without the GDM. The SDM for

regulating inter-population genotype recombination remained active.

2. CONE-2: Teams were evolved by CONE without the SDM. The GDM

remained active.

3. CONE-3: Teams were evolved by CONE without the GDM and SDM.

4. CONE-4: Teams were evolved by CONE without elite controller evaluation

(step 3 in the CONE process, Sect. 2.4).

Figure 15 presents the results of applying CONE-1, CONE-2, CONE-3, and

CONE-4 to evolve team types: [1, 10]. Team fitness was averaged over 20 runs. For

comparison, results attained by CONE (original experimental setup) evolved teams

are also presented. Statistical comparisons indicated that teams evolved by CONE

without the GDM (CONE-1), SDM (CONE-2), and both the GDM and SDM

(CONE-3), yielded a significantly lower task performance comparable to CONE

evolved teams, for team types: [3, 10]. Thus, both the GDM and SDM were

beneficial in terms of increasing average team fitness.
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Statistical tests indicated that CONE-3 evolved teams yielding an average fitness

comparable to CCGA and MESP evolved teams. Also, Fig. 15 presents CONE-1

and CONE-2 as yielding higher task performances comparative to CONE-3, for all

team types. Statistical tests supported CONE-1 and CONE-2 evolved teams as

yielding a significantly higher average fitness compared to CONE-3 evolved teams.

This indicates that the GDM and SDM, yield benefits when working independent of

each other. However, for team types 1 and 6, predators evolved by CONE-1 and

CONE-2 yielded an average fitness comparable to CONE evolved teams. This was

theorized to be a result of the role-switcher prey capture behavior not emerging in

team types 1 and 6. Thus, for team types 1 and 6, there was no need for CONE to

evolve more complex behavioral specializations suited to the role switcher

behavior.

This result further supports hypothesis 2. That is, CONE’s genotypic and

behavioral regulation mechanisms facilitate specialization necessary for achieving a

higher team fitness compared to CCGA and MESP evolved teams. The advantage of

behavioral specialization for capturing two prey also supports hypothesis 2. That is,

for team types: [7, 10] there was greater difference in average team fitness between

CONE and CONE-1, CONE-2, and CONE-3 evolved teams compared to the

difference calculated for team types: [2, 5]. This indicates that the contribution of

behavioral specialization facilitated by both the GDM and SDM increases with the

task’s complexity. This, together with the statistical comparison of average fitness

yielded by CONE versus CCGA and MESP evolved teams, completely supports

hypothesis 2.

These results are also supported by related research that analyzed the role of

GDM and SDM in the evolution of rover controllers and behavioral specialization in

a multi-rover search task [76]. Thus, the GDM and SDM experiments conducted for

the pursuit-evasion and multi-rover tasks demonstrated some generality of the GDM

and SDM for encouraging behavioral specialization that in turn increased team

fitness. This is supported by the different approaches used to define agent behaviors

in the pursuit-evasion versus the multi-rover task. Predator behaviors in the pursuit-

evasion task were defined by the interaction of specific motor output values and the

correlation with specific sensory input values (Sect. 3.2.4). Where as, rover

behaviors in the multi-rover task were defined by a series of motor outputs that

produced a series of distinct behaviors [76]. In both tasks, the GDM and SDM were

applicable to agent behaviors and behavioral specialization was measured

Thus, CONE difference metric experiments determined that specialization in

CONE evolved teams was encouraged by CONE’s genotypic and behavioral

difference metrics. In this pursuit-evasion case study, the key emergent specializa-

tion was the idle behavior, which in turn facilitated a key prey capture behavior:

Role-Switcher. The Role-Switcher behavior in turn allowed CONE evolved teams

to achieve a higher fitness (statistically significant), compared to CCGA and MESP

evolved teams, for most team types.

In terms of the contribution of elite controller evaluation, statistical tests

indicated that CONE-4 evolved teams yielded an average fitness that was

significantly lower than CONE evolved teams. This held true for team types:

[2, 3, 4, 5, 7, 8, 9, 10] (Fig. 15). For these same team types, average fitness was
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comparable to CCGA and MESP evolved teams. As with the experiments running

CONE-1, CONE-2, and CONE-3, all methods evolved teams with comparable task

performances for team types 1 and 6. This was a result of the lack of any need for

CONE to evolve behavioral specializations, and complex collective prey-capture

behaviors for team types 1 and 6.

4.7 Idle behavior exclusion experiments

The idle behavior is theorized to have emerged as a means to reduce physical

interference between predators as they collectively moved to capture a prey. The

idle behavior thus increased the effectiveness of prey capture.

To test this supposition, additional experiments were conducted in which CCGA,

MESP, and CONE were re-run. Each method was re-executed for 20 simulation

runs using the experimental setup specified in Sect. 3, but including the following

adjustment. During the evolutionary process, predators received a fitness penalty

equal to the number of simulation iterations that they remained stationary. These

experiments were designed to discourage the emergence of idle behavior, and were

called idle behavior excluded experiments.

These experiments yielded two main results elucidating the idle behavior’s

contribution. First, the Spider-Fly prey capture behavior (Sect. 4.2) did not emerge

in CCGA, MESP, or CONE evolved teams. Second, the Role-Switcher prey capture

behavior (Sect. 4.3) did not emerge in CONE’s adaptation of predator teams.

Rather, it was only the Pursuer-Blocker prey-capture behavior (Sect. 4.1) that

emerged in the idle behavior excluded experiments. That is, the Pursuer-Blocker

behavior did not use the idle behavior, where as, for the Spider-Fly and Role-

Switcher behaviors the idle behavior was an important contribution. This statement

is supported by the result of the fittest teams (evolved by CCGA, MESP, and

CONE) in the idle behavior exclusion experiments yielding a comparable average

fitness. Also, the average fitness was approximately 46, 53, and 60 % lower for

CCGA, MESP and CONE evolved teams, respectively. This was in comparison to

teams evolved using the original experimental setup (Sect. 3). This result held for all

team types, except 1 and 6. The reason is that the Spider-Fly and Role-Switcher

behaviors did not emerge in team types 1 and 6, where as, the Pursuer-Blocker

behavior emerged in all team types.

The idle behavior exclusion experiments indicated that idle behavior was

beneficial to the evolution of effective prey capture behaviors. This was especially

the case for the Role-Switcher behavior. That is, Role-Switcher only emerged in

CONE evolved teams and emerged for all team types (except 1 and 6). It was

supposed that Role-Switcher was primarily responsible for the higher average team

fitness (of CONE evolved teams) observed for all team types (except 1 and 6).

Experiments described in Sect. 4.8 test this supposition that the emergence of the

Role-Switcher behavior led to the significantly higher task performance observed

for CONE evolved teams.

An important implication of these results, is that only robots that are

indispensable for task accomplishment, participate in a collective behavior. The

idle behavior exclusion experiments indicated that teams not using the idle behavior
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yielded lower fitness. This was a result of physical interference occurring between

predators as they collectively approached a prey. This interference disrupted the

formation of collective prey capture behaviors. This result has important implica-

tions for the engineering of multi-robot behaviors. For example, in multi-robot

tasks, robots that are non-essential could stand-by and conserve energy for the

contingency that if one or more other robots are damaged or destroyed, the idle

robots could assume the vacated behavioral roles and complete the task.

Also, the emergence of the idle behavior is relevant to biological literature. For

example, a large number of unproductive lazy workers have been observed in

various species of social insect societies [83]. The presence of idle workers was

found to be a byproduct of individuals switching between different behavioral

specializations during the accomplishment of a collective behavior task. Thus, only

individuals that are strictly needed work on a given task [29, 64].

4.8 Behavioral lesion experiments

This section discusses the contribution of the Role-Switcher behavior to the higher

average team fitness of CONE evolved teams compared to CCGA and MESP

evolved teams (Fig. 14). To elucidate the contribution of Role-Switcher a

behavioral lesion experiments were conducted. This entailed removing the predator

behaviors that constituted the Role-Switcher prey capture behavior from the

behavioral repertoire of CONE evolved teams. Such teams were known as lesioned
teams. The fittest CONE evolved teams (for each team type) were modified into

lesioned teams. The behavioral lesion experiments re-executed the fittest CONE

evolved teams in non-adaptive pursuit-evasion experiments that tested each team

type. Each behavioral lesion experiment was executed for 20 simulation runs, where

each run equalled one predator/prey lifetime. Team fitness of lesioned teams was

calculated over all simulation runs (for a given team type) and compared to that

calculated for CONE evolved teams using the original experimental setup (Sect. 3).

In the post-experimental phase (Sect. 3.4), Role-Switcher (Sect. 4.3) was observed

as consisting of specialized predator behaviors labeled: flanker, knocker, and idle.

Thus, lesioned teams were the fittest CONE evolved teams (for each team type) with

flanker and knocker behavioral specializations disabled. Only these behaviors were

removed since they were used in Role-Switcher. Whenever the sensory-motor

correlation that defined either of these behavioral specializations (Sect. 3.2.5) was

detected then a hard-wired heuristic controller was activated. The time for which the

heuristic controller remained active equalled the average prey capture time calculated

for the Role-Switcher behavior (for the fittest CONE evolved teams using each team

type). Heuristically controlled predators moved directly towards a prey when within

light sensor range, or towards a prey’s last known location, and in a random direction

if the prey was not found at its last known location.

Table 4 presents the average fitness (calculated over 20 runs) of the lesioned

teams as percentages of the original average fitness of CONE evolved teams. For

comparison the average fitness of the fittest CCGA and MESP evolved teams is

included. Table 4 indicates that the fittest CONE evolved teams (for each team type)

yielded a lower (statistically significant) average team fitness when Role-Switcher
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was removed. The importance of the Role-Switcher behavior is further supported by

the lower (statistically significant) average fitness of lesioned teams compared to

CCGA and MESP evolved teams.

Thus the behavioral lesion experiments demonstrated that Role-Switcher was

critical to the fitness achieved by CONE evolved teams. That is, without the Role-

Switcher behavior, the fittest CONE evolved teams performed poorly in comparison

to the fittest CCGA and MESP evolved teams. This result supports the central claim

of this article. That is, that CONE facilitates behavioral specialization, where such

specialization leads to collective behaviors and team fitness that could not otherwise

be achieved.

The ramification of these results is that behavioral specialization emerges in

response to the task and environment constraints for the benefit of collective

behavior task accomplishment. This research demonstrated this to be the case for

the pursuit-evasion task. Previous research using a multi-rover collective behavior

task [76] also indicated this to be the case.

4.9 Experiments that validate the complexity of CONE

To establish the necessity of CONE’s algorithmic complexity, and to elucidate

CONE’s principled approach, additional experiments were executed. These CONE
validation experiments (Sect. 3.3) demonstrated the efficacy CONE’s complex

cooperative co-evolution approach via a comparative application (with CNE and

CCGA) to three validation pursuit-evasion tasks.

Validation task 1 tested only one predator and prey, and no specialization or

cooperation was required for prey-capture. CONE evolved predators yielded a task

performance comparable to CNE and CCGA evolved teams. This was a result of

validation task 1 requiring only one predator with a simple non-specialized behavior

for prey-capture.

Validation task 2 tested two predators and one prey, where predator cooperation,

but no specialization was needed for prey-capture. CONE evolved predator teams

yielded a task performance comparable to CNE and CCGA evolved teams. This was

Table 4 Average Fitness of CONE Lesioned Teams. Presented values are percentages of the original

fitness of the fittest CCGA, MESP, and CONE evolved teams (for each team type). Team types 1 and 6

are not included since the Role-Switcher behavior did not emerge in the CONE evolved teams using these

team types

Team type CCGA (%) MESP (%) CONE (%)

2 65 52 42

3 64 48 36

4 67 51 41

5 56 59 49

7 52 45 40

8 59 48 36

9 55 60 37

10 58 63 36
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a result of behaviorally homogenous teams being adequate for prey-capture.

Validation task 2 did not require the evolution of behavioral heterogeneity. Thus,

CONE’s multi-population cooperative co-evolution architecture did not offer any

benefits in this task. Similarly, CONE’s GDM and SDM (designed to facilitate

behavioral during the cooperative co-evolution of teams) were not beneficial since

specialization was not required to accomplish validation task 2.

Validation task 3 tested three predators and one prey, where cooperation was

required and specialization was beneficial for prey-capture. This task was the same

as the pursuit-evasion experiment that tested team type 2 (Table 1, Sect. 3.4).

Validation task 3 (and the pursuit-evasion experiments) demonstrated that CONE

evolved predator teams achieved a comparatively high task performance via

evolving behavioral heterogeneity. That is, different predators adopted comple-

mentary behavioral specializations to collectively form cooperative prey-capture

behaviors. This behavioral heterogeneity emerged since, the requirements of

validation task 3 mandated the evolution of more complex collective prey-capture

behaviors. In this task, CONE’s cooperative co-evolution process together with its

GDM and SDM evolved forms of behavioral specializations, team behavioral

heterogeneity and a collective prey-capture behavior not observed in the compar-

ative cooperative co-evolution methods (CCGA and MESP). This statement is

supported by experiments that re-run CONE without the GDM and SDM (Sect. 4.6).

Section 4.6 discusses the contribution of the GDM and SDM to CONE evolved

prey-capture behaviors, as well as the higher task performance of CONE evolved

teams.

Furthermore, CONE was re-executed without elite controller evaluation, for all

pursuit-evasion experiments. This CONE variant was labeled CONE-4 (Sect. 4.6).

This was an important step in verifying the complexity in CONE’s principled

approach, since, elite controller evaluation was one of the key differences between

CONE and related cooperative co-evolution methods such as CCGA and CONE.

The results of CONE-4 experiments indicated that without elite controller

evaluation, CONE, CCGA, and MESP evolved teams all yielded comparable

average task performances (Fig. 15).

Thus, these validation experiments demonstrated that the complexity of CONE is

necessary if CONE is to evolve high performance team behaviors in tasks that

require cooperation, where such cooperation is formed from interacting behavioral

specializations. Validation task 3 (replicated from the pursuit-evasion experiments)

is a prime example of such a task. These validation experiments also elucidated the

CONE process, in a step by step application to three pursuit-evasion tasks ranging

from simple to complex.

5 Conclusions and future directions

This article evaluated a cooperative co-evolution method (CONE: Collective Neuro-
Evolution) that effectuated behavioral specialization as a problem solving mech-

anism in teams of ANN controllers applied to solve a collective behavior task. The

research hypothesis was that CONE facilitates behavioral specializations that
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benefit the fitness of CONE evolved teams. To test this hypothesis, CONE and

related cooperative co-evolution methods were applied to evolve collective prey

capture behaviors in a multi-robot pursuit-evasion task. Results indicated that

CONE evolved behavioral specializations that were integral to the formation of

collective prey capture behaviors. Such collective behaviors achieved a higher

fitness (significantly significant), compared to teams evolved by related methods.

This study, together with previous work [76], established that behavioral

specialization emerges in response to collective behavior task and environment

constraints, for the benefit of task accomplishment. In these specific tasks, CONE’s

genotypic and behavioral difference metrics for regulating inter-population

genotype recombination, were key to facilitating such behavioral specialization.

More generally, it is theorized that CONE’s multiple populations, cooperative co-

evolution nature, and its genotypic and behavioral difference metrics are all

essential components for effectuating beneficial forms of behavioral specialization

in a range of collective behavior tasks. However, this supposition is the subject of

ongoing research.

Furthermore, a number of future research directions are envisioned as part of this

ongoing research. In order to more thoroughly investigate more complex forms of

emergent specialization (behavioral and morphological), as it relates to predator-prey

behaviors, we intend to investigate more realistic (three dimensional) simulation

environments. For example, a relevant future research direction would be to

investigate the impact of morphological adaptations on the co-evolution of aerial

pursuit and evasion behaviors, as occurs with various bird species in nature [23, 46,

100]. The goal of such research would be to elucidate how certain behavioral and

morphological specializations in predators and prey impact upon the co-evolution of

pursuit and evasion strategies and relate them to those observed in nature.

Given that CONE has been demonstrated in collective tasks that require

relatively simple forms of behavioral specialization, for small to medium sized

agent teams [76], future work will focus upon applying CONE to collective

behavior tasks that require and benefit from more complex forms of specialization.

For example, morphological specialization in robotic swarm systems [49]. Future

work will also investigate the potential for generalizing the principles of CONE to

teams of embodied or simulated agents that do not use ANN controllers. Different

controller types (for example, rule-based controllers) will test the multi-population

structure, co-evolution process, and genotypic and behavioral difference metrics as

a means of effectuating specialization and increasing collective behavior task

performance. Thus a prevailing future goal is to ascertain if CONE is applicable to a

broad range of collective behavior tasks, and if other (non neural) controller types

yield similar benefits.
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