Swarm and Evolutionary Computation 2 (2012) 25-38

journal homepage: www.elsevier.com/locate/swevo

Contents lists available at SciVerse ScienceDirect

Swarm and Evolutionary Computation

SWARM a0
EVOLUTIONARY
COMPUTATION

Regular paper

Evolving behavioral specialization in robot teams to solve a collective

construction task
G.S. Nitschke ®*, M.C. Schut®, A.E. Eiben®

2 Computational Intelligence Research Group, Computer Science Department, University of Pretoria, Pretoria, 0002, South Africa
b Computational Intelligence Group, Computer Science Department, Vrije Universiteit, Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 31 December 2010
Received in revised form

5 August 2011

Accepted 17 August 2011

Available online 14 September 2011

Keywords:
Neuro-evolution
Collective construction
Specialization

behaviors.

This article comparatively tests three cooperative co-evolution methods for automated controller design
in simulated robot teams. Collective Neuro-Evolution (CONE) co-evolves multiple robot controllers using
emergent behavioral specialization in order to increase collective behavior task performance. CONE is
comparatively evaluated with two related controller design methods in a collective construction task.
The task requires robots to gather building blocks and assemble the blocks in specific sequences in order
to build structures. Results indicate that for the team sizes tested, CONE yields a higher collective behavior
task performance (comparative to related methods) as a consequence of its capability to evolve specialized

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The automated design and adaptation of collective behavior in
simulated (agent) or situated and embodied (robot) groups [1] of-
ten use biologically inspired design principles. Collective behavior
refers to group behaviors that result from the interaction of indi-
vidual agents or robots [1]. The objective of such systems is to repli-
cate desirable collective behaviors exhibited in biological systems
such as social insect colonies [2], multi-cellular organisms [3], and
economies of a nation and companies [4].

As an essential part of survival in nature, there is a balance of
cooperation versus competition for resources between and within
different species. An individual’s ability to survive (its fitness)
changes over time since it is coupled to the fitness of other
individuals of the same and different species inhabiting the same
environment. Co-adaptation between species is referred to as co-
evolution [5] and has manifest itself in the form of increasingly
complex competitive and cooperative behaviors [6]. Natural co-
evolution has provided a source of inspiration for the derivation
of co-evolution algorithms [7]. Co-evolution algorithms work via
decomposing a given task into a set of composite sub-tasks that
are solved by a group of artificial species. These species either
compete (competitive co-evolution) or cooperate (cooperative co-
evolution) with each other in order to solve a given task. Co-
evolution provides a natural representation for many collective

* Corresponding author.
E-mail addresses: gnitschke@cs.up.ac.za (G.S. Nitschke), schut@cs.vu.nl
(M.C. Schut), gusz@cs.vu.nl (A.E. Eiben).

2210-6502/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.swevo0.2011.08.002

behavior tasks, since each species is equatable with the behavior
of individual agents or robots.

In certain biological systems, behavioral specializations have
evolved over time as a means of diversifying the system in
order to adapt to the environment [8]. For example, honey
bees efficiently divide labor between specialized individuals via
dynamically adapting their foraging behavior for pollen, nectar,
and water as a function of individual preference and colony
demand [9]. That is, in many biological systems, specialization is
the fundamental mechanism necessary for the group to adapt to
task and environment constraints and achieve optimal efficiency.

This research proposes combining Neuro-Evolution (NE) [10]
and cooperative co-evolution [11] to adapt Artificial Neural Network
(ANN) [12] agent controllers in order that a group of simulated
agents solve a collective behavior task.

This research falls within the purvey of evolutionary robotics
research [13]. Within the larger taxonomy of cooperative multi-
robot systems [14]. The robot teams simulated in this research
are defined as being cooperative, heterogeneous, aware, weakly
coordinated, and distributed. That is, the teams are cooperative
in that the robots co-operate in order to perform some global
tasks [15]. The teams are heterogeneous since each robot is
initialized with and develops a different behavior [16] over the
course of a cooperative co-evolution process. The teams are
aware in that robots take into account the actions performed
by other robots in order to accomplish their own task [17]. The
teams are weakly coordinated in that they do not employ any
explicit or predefined coordination protocol [17]. In this research,
coordination and cooperation are emergent properties resulting
from the interaction between robots and their environment [18].

http://dx.doi.org/10.1016/j.swevo.2011.08.002
http://www.elsevier.com/locate/swevo
http://www.elsevier.com/locate/swevo
mailto:gnitschke@cs.up.ac.za
mailto:schut@cs.vu.nl
mailto:gusz@cs.vu.nl
http://dx.doi.org/10.1016/j.swevo.2011.08.002

26 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

1.1. Neuro-Evolution, and collective

behavior

cooperative co-evolution,

NE is the adaptation of ANNSs using artificial evolution [10]. The
main advantage of NE is that details about how a task is to be
solved does not need to be specified a priori by the system designer.
Rather, a simulator is used to derive, evaluate and adapt controller
behaviors for a given task [19]. For a comprehensive review of NE
methods the reader is referred to Floreano et al. [20].

Cooperative co-evolution methods use cooperation between
multiple species (populations of genotypes) and competition
between genotypes within a species to derive solutions. Applied
to a collective behavior task, genotypes within a species constitute
candidate partial solutions to a complete solution. That is,
genotypes within the same species compete for the role of the
fittest genotype (a candidate partial solution). Individuals selected
from each species are co-evolved in a task environment where they
collectively form complete solutions. Genotypes from each species
that work well together (as complete solutions) are selected for
recombination. The fittest complete solutions are those that yield
the highest collective behavior task performance, when tested in a
given simulator.

The advantages of cooperative co-evolution include versatil-
ity and applicability to many complex, continuous, and noisy
tasks [21]. The use of multiple species provides a natural represen-
tation for many collective behavior tasks [22-24], and specializa-
tion is often effectuated in the behaviors evolved by species (partial
solutions) in response to task and environment constraints [25,26].

An overview of all methods that combine NE and cooperative
co-evolution is beyond the scope of this article. Recent reviews
of NE based cooperative and competitive co-evolution, applied to
solve collective behavior tasks, can be found in [20,27].

Given the success of previous cooperative co-evolution meth-
ods that use NE to solve collective behavior tasks, this research
proposes to apply the Collective Neuro-Evolution (CONE) method,
detailed in Section 2 to solve a complex collective construction
task. The goal of this article is to evaluate the task performance
of CONE in comparison with two related controller design meth-
ods that use NE. The two other controller design methods tested
are Multi-Agent Enforced Sub-Populations (MESP) [28], and Cooper-
ative Co-Evolutionary Algorithm (CCGA) [29]. CCGA and MESP were
selected since both methods have been demonstrated as being ap-
propriate for facilitating specialization in the behaviors of ANN
controlled agents and for solving collective behavior tasks [25,28].
All methods are evaluated in a Gathering and Collective Construction
task (Section 3).

1.2. Collective construction

This article investigates a collective construction task (Sec-
tion 3). Collective construction tasks require that agents coordi-
nate their behaviors or cooperate in order to build structures in
the environment. Most research that applies adaptive methods to
solve collective construction tasks has been studied in the context
of simulated agent groups [30-32].

The collective construction task studied in this article, requires
that agents first gather resources and place them in a construction
zone. Collective gathering tasks require that agents search for,
and transport resources from given locations to another part of
the environment [2]. Collective gathering tasks typically require
that agents divide their labor amongst sub-tasks to derive a
collective behavior that maximizes the quantity of resources
gathered. Thus collective gathering (and by extension collective
construction) tasks are interpretable as optimization problems and
have been studied with mathematical models [33-35]. There are
numerous examples of adaptive methods applied to simulated

agent groups in order that collective gathering [36-38,35,39] or
construction [30,40,41,31,32] tasks are solved.

For example, Theraulaz and Bonabeau [30] proposed a con-
troller for an agent team given a collective construction task in
a three-dimensional simulation environment. Agents moved ran-
domly on a cubic lattice and placed building blocks whenever they
encountered a stimulating configuration in the structure being built.
Agent behaviors were guided by previous work, since each time an
agent placed a building block, it modified the shape of the con-
figuration that triggered its building action. The new configura-
tion then stimulated new building actions by other agents, which
resulted in the emergence of a collective construction behavior.
Results indicated that these local stigmergic agent interactions
succeeded in building multiple complete structures that resembled
nests built by social insects such as wasps.

Guo et al. [41] used a controller based on a Gene Regulatory
Networks (GRN) to derive behaviors for a simulated multi-
robot team given a collective construction task. The collective
construction task was for the robots to self assemble into
various shapes and patterns. Local interactions of the robots were
represented by biologically inspired reaction-diffusion model.
Results indicated that the GRN inspired multi-robot controller was
effectively able to balance two different (specialized) behaviors in
each robot. First, to approach and join a predefined shape, and
second, to avoid collisions with other robots.

Expanding upon previous research using reactive ANN con-
trollers for agents that build structures in two dimensional simu-
lation environments [42], Panangadan and Dyer [32] introduced a
connectionist action selection mechanism (ConAg) agent controller.
An agent team was given the task of collecting colored discs (build-
ing blocks) and transporting them to a particular location to build
a structure with a given configuration. A Reinforcement Learn-
ing [43] method was used so as each agent learnt a sequence of
behaviors necessary for it to perform the construction task, and
a heuristic controller comparatively tested. Results indicated that
the behavior and success of heuristic-based controller was depen-
dent upon the shape of the structure being built, and sensitive to
disc locations in the environment. This was not the case for the
ConAg controller, which was sufficiently robust so as to continue
building the desired structure even if discs were moved during
construction.

As with these related research examples, this article studies a
simulated agent group that must solve a collective construction
task. In this article, collective refers to the increase in task
performance that results from the division of labor and agents
working concurrently.

1.3. Research objectives and hypotheses

Objective 1: To extend previous work [44], and investigate the
efficacy of CONE as a controller design method for a
more complex collective construction task (robots must
build up to 10 structures, each structure containing
up to 100 components). Nitschke [44] demonstrated
that CONE was effective at evolving specialized robot
controllers that complemented each other to form
collective construction behaviors that built one object
using 10-30 components.

Objective 2: Test CONE for evolving controllers in teams that
contained a greater number of robots (teams of 50 or
100). Nitschke [44] described a collective construction
task using teams of 30 robots.

Hypothesis 1: For the given collective construction task, CONE
evolved teams yield a statistically significant higher task
performance, for all environments and teams tested,
compared to CCGA and MESP evolved teams.

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 27

Hypothesis 2: CONE Genotype and Specialization Difference Metrics
(GDM and SDM, respectively), that adaptively regulate
inter-population recombination, evolve behavioral spe-
cializations that result in statistically significant higher
task performances, comparative to CCGA and MESP
evolved teams. Without these specializations the higher
task performance of CONE evolved teams could not be
achieved.

1.4. Contributions

This research extends the collective construction task described
in [44]. However, there are four key differences in this article’s
research.

1. Larger team sizes. Nitschke [44] tested only team sizes of 30
robots, where as this research tests team sizes of 50 and 100
robots. The team sizes used in this research are comparable to
team sizes tested in swarm robotics experiments [45].

2. Increased task complexity. Nitschke [44] evaluated robot teams
for the task of collectively building structures that consist
of between 10 and 30 building blocks, where only a single
structure had to be built. This article’s experiments evaluate
teams that concurrently build one to 10 structures. Each
structure comprises 10-100 building blocks.

3. Increased fidelity in multi-robot simulator. Nitschke [44] simu-
lated robot teams using a simple low-fidelity multi-robot sim-
ulator implemented using the MASON simulation toolkit [46].
In the MASON simulator, robot sensors and actuators, and the
physics of robot movement only had relevance within the sim-
ulation. This research uses an extension of the high-fidelity
EvoRobot Khepera robot simulator, which allows teams of up to
100 Kheperas to be simulated. EvoRobot was used so as robot
behaviors evolved in simulation could potentially be trans-
ferred to physical Khepera robots.

4. Self Regulating Difference Metrics. Nitschke [44] used a version
of CONE with static values for the Genotype and Specialization
Difference Metrics (GDM and SDM, respectively). The GDM and
SDM regulate inter-population recombination based on average
weight differences and degrees of specialization exhibited by
controllers (Section 2.3). In this article’s research, the GDM
and SDM are self-regulating meaning that inter-population
recombination is adaptively regulated.

For the reader’s convenience, a list of abbreviated terms and
symbols used throughout this article are presented in Table 7, at
the end of the article.

2. Methods: collective neuro-evolution (CONE)

CONE is an automated controller design method that uses
cooperative co-evolution to adapt a team of ANNs (agent
controllers). Given n genotype populations (species), n controllers
are evolved (one in each population). Controllers are collectively
evaluated (as a team) according to how well they solve a given
task. Each controller is a recurrent feed-forward ANN with one
hidden layer. The hidden layer is fully connected to the input and
output layers, with recurrent connections to the input layer. Each
hidden layer neuron is encoded as a genotype. CONE evolves the
input-output connection weights of hidden layer neurons, and
within each species combines the fittest of these neurons into
complete controllers.

CONE extends the work of [28] on Multi-Agent Enforced Sub-
Populations (MESP), with the inclusion of two novel contributions.
First, CONE solves collective behavior tasks using emergent
behavioral specialization in agents. Second, CONE uses genotype
and specialization metrics to regulate inter-population genotype

recombination and facilitate behavioral specialization appropriate
for each agent. When these specialized agent behaviors interact,
the team is able to increase task performance and solve collective
behavior tasks that could not otherwise be solved.

Unlike related cooperative co-evolution methods, including
CCGA [11], ESP [47], and MESP [28], CONE uses Genotype and Spe-
cialization Difference Metrics (GDM and SDM, respectively), to reg-
ulate genotype recombination between and within populations.
Based upon genotype similarities and the success of evolving be-
havioral specializations, the GDM and SDM control recombination
and direct the evolution of collective behaviors in an agent team.

For succinctness, this section describes only CONE'’s representa-
tion (Section 2.1), how behavioral specialization is measured (Sec-
tion 2.2), the GDM and SDM (Section 2.3) and CONE'’s iterative
evolutionary process (Section 2.4). Nitschke [27] presents a com-
prehensive description of CONE.

The design choices for CONE'’s representation and iterative pro-
cess were motivated by two sets of previous research. First, the
work upon which CONE is based [47], which successfully solved
collective behavior tasks [22,28]. Second, research on genetically
heterogeneous agent teams (agents have different genotypes) in-
dicates that such teams are amenable to evolving specialized
behaviors [48,49], especially in cooperative co-evolutionary sys-
tems [50].

The use of the GDM and SDM as mechanisms to regulate inter-
population recombination was motivated by research on partially
heterogeneous agent groups. A partially heterogeneous group is
an agent group comprised of sub-groups that are, on average,
more genetically similar (but not identical) to individuals of their
given sub-group, comparative to individuals of the rest of the
population [51]. In this article’s research, such sub-groups are
defined as species. The impact of partial genetic heterogeneity
on the evolution of group behaviors, especially with respect to
the evolution of multiple, complementary specialized behaviors
has received little investigation in evolutionary multi-agent [52],
or swarm robotics [45] research. However, Luke et al. [48] and
Luke [53] suggest that partial genetic heterogeneity in an evolving
agent group can lead to specialized behaviors. This is supported
by studies in biology Hamilton [54] and Lehmann and Keller [55].
Furthermore, Perez-Uribe et al. [56,51] indicated that increases in
team fitness were related to selection within genetically related
agents. As an extension, the GDM and SDM were derived with the
supposition that recombining genetically and behaviorally related
agents, would increase the team’s task performance, or allow the
team to solve tasks that could not otherwise be solved.

2.1. Representation: multi-population structure

As with related NE methods [29,47], CONE segregates the
genotype space into n populations so as to evolve n controllers.
CONE mandates that ANN; (1 < i < n) is derived from population
P;, where P; contains u; (initially) or w; (u > 0, due to controller
size adaptation) sub-populations. Fig. 1 exemplifies the use of sub-
populations in CONE. ANN; and ANN, (evolved from populations
1 and 2, respectively) has three hidden layer neurons, whilst ANN 3
(evolved from population 3) has four hidden layer neurons. Thus,
populations 1 and 2 consist of three sub-populations, for evolving
the three neurons in ANN; and ANN,. Where as, population 3
uses four sub-populations for evolving the four neurons in ANN3.
ANN; is derived from P; via selecting one genotype from each
sub-population and decoding these genotypes into hidden layer
neurons (Fig. 2). ANN; consists of w input neurons, and v output
neurons, fully connected to all hidden layer neurons. In this
research, CONE uses a fixed number of input, output and hidden
layer neurons.

28 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

SP 1, | GP: Genotype Population
SP: Sub-Population

Fig. 1. CONE example. A controller is evolved in each population. All controllers
are evaluated in a collective behavior task. Double ended arrows indicate self
regulating recombination occurring between populations. ANN: Artificial Neural
Network (controller). GP X: Genotype Population X. SP X,: Sub-Population z in
Genotype Population X.

Genotype g =

o P I N O
L

f f

Input connection Output connection
weights weights

|gw+v

Tag: Hidden
layer position

Input Neurons

g1 gw
Decoding to
phenotype:
Hidden layer
neuron
gw+1 gw+v

Output Neurons

Fig. 2. CONE genotype. There is a direct mapping between a genotype and a hidden
layer neuron. A genotype has w genes indicating the neuron’s input connection
weights, and v genes for the neuron’s output weights. A tag (gy) specifies the
neuron’s position in a controller’s hidden layer, and hence the sub-population to
which the genotype belongs.

The CONE process is driven by mechanisms of cooperation
and competition within and between sub-populations and popula-
tions. Competition exists between genotypes in a sub-population
that compete for a place as a hidden layer neuron in the fittest con-
troller. Cooperation exists between sub-populations, in that fittest
genotypes selected from each sub-population must cooperate as a
controller. Cooperation also exists between controllers since con-
trollers must cooperate to accomplish a collective behavior task.

2.2. Behavioral specialization

An integral part of CONE is defining and measuring controller
behavioral specialization. The degree of behavioral specialization
(S) exhibited by a controller is defined by the frequency with
which the controller switches between executing distinct motor
outputs (actions) during its lifetime. The S metric used is an
extension of that defined by Gautrais et al. [35], and was selected
since it is applicable to individual controller behaviors, accounts
for a partitioning of a controller’s work effort among different
actions, and is simple enough to work within CONE. The metric
is also general enough to define specialization as the case where
controllers regularly switch between different actions, spending
an approximately equal portion of its lifetime on each action, but
where there is a slight preference for one action.

Eq. (1) specifies the calculation of S, which is the frequency with
which a controller switches between each of its actions during its
lifetime. Eq. (1) assumes at least two distinct agent actions and that
an agent executes an action during the same simulation iteration of
an action switches. InEq.(1),Ais the number of times the controller
switches between different actions, and N is the total number of
possible action switches.

S=5 (1)

An S value close to zero indicates a high degree of specialization.
In this case, a controller specializes to primarily one action, and
switches between this and its other actions with a low frequency.
An S value close to one indicates a low degree of specialization. In
this case, a controller switches between some or all of its actions
with a high frequency. A perfect specialist (S = 0), is a controller
that executes the same action for the duration of its lifetime (A =
0). An example of a non-specialist (S = 0.5) is where a controller
spends half of its lifetime switching between two actions. For
example, if A = 3, N = 6, then the controller switches between
each of its actions every second iteration.

Controllers are labeled as specialized if S is less than a given
behavioral specialization threshold (for this study a 0.5 threshold
was selected). Otherwise, controllers are labeled as non-specialized.
If a controller is specialized, then it is given a specialization label
action x, where x is the action executed for more than 50% of
the iterations of the controller’s lifetime. If multiple controllers
are specialized, then controllers are grouped according to their
common specialization label. In the case that an agent performs
alow number of action switches (S < 0.5), such that it executes at
least two actions for approximately equal durations, then the agent
is assumed to have multiple specializations, since continuous and
equal periods of time are spent on each action. If an agent performs
a low number of action switches (S < 0.5), and is able to execute
at least two actions simultaneously, then the agent is assumed to
have one specialization defined by the interaction of these actions
and named by the experimenter. This is the case in this study,
since robot controllers can execute two actions simultaneously
(Section 3.3).

2.3. Regulating recombination and adaptation of algorithmic param-
eters

The purpose of the genotype and specialization difference
metrics (GDM and SDM, respectively) is to adaptively regulate
genotype recombination between different populations as a
function of the fitness progress of all controllers. As part of
the regulation process, two dynamic algorithmic parameters, the
Genetic Similarity Threshold (GST), and Specialization Similarity
Threshold (SST), are used by the GDM and SDM, respectively.

The initial GST and SST values are floating point values
randomly initialized in the range: [0.0, 1.0]. Whenever the GST
value is adapted by the GDM, a static value (§GST) is either added
or subtracted to the GST value. Similarly, when the SST value
is adapted by the SDM, a static value (8SST) is either added or
subtracted to the SST value. The remainder of this section describes
the mechanisms used to adapt the SST and GST values.

2.3.1. Genotype difference metric (GDM)

The GDM is a heuristic that adaptively regulates recombination
of similar genotypes in different populations. Any two genotypes a
and b are considered similar if the average weight difference [57]
between a and b < GST. Regulating genotype recombination
between populations is integral to the CONE process. That is,
controllers must not be too similar or dissimilar so as the
(specialized) behaviors of controllers properly complement each

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 29

other in accomplishing a collective behavior task. The GST value,
and hence inter-population genotype recombination, is adapted as
a function of the number of previous recombinations and a team’s
average fitness progress (of the fittest n controllers). The following
rules were used to regulate the GST value and thus the number
of inter-population recombinations, with respect to average team
fitness and the number of inter-population recombinations that
occurred over the previous V generations.

1. If recombinations between populations have increased over the
previous V generations, and fitness has stagnated or decreased,
then decrement the GST value, so as to restrict the number of
recombinations.

2. If recombinations between populations have decreased or
stagnated, and fitness has stagnated or decreased over the last
V generations, then increment the GST value, to increase the
number of recombinations.

Similar genotypes in different populations may encode very
different functionalities, recombining similar genotypes may
produce neurons that do not work well in the context of a
controller. The Specialization Difference Metric (SDM) addresses this
problem.

2.3.2. Specialization difference metric (SDM)

The SDM adaptively regulates genotype recombination based
on behavioral specialization similarities exhibited by controllers.
The SDM ensures that only the genotypes that constitute
controllers with sufficiently similar behaviors are recombined. If
the behavior of two controllers are calculated to have sufficiently
similar specializations, the GDM is applied to regulate inter-
population recombination. The SDM measures the similarity
between the specialized behaviors of controllers ANN; and ANN;.
Controllers are considered to have similar specializations if the
following conditions are true:

1. |S(ANN;) — S(ANNj)| < SST, where, S (Eq. (1) in Section 2.2)
is the degree of behavioral specialization exhibited by ANN; and
ANN;.

2. If ANN; and ANN; have the same specialization label.

The SST value is adapted as a function of behavioral specializa-
tion similarities and a team’s average fitness (of the fittest n con-
trollers) progress. The following rules are used to regulate the SST
value, and hence the number of inter-population recombinations
with respect to the average degree of behavioral specialization (S)
and fitness of a team.

1. If the S of at least one of the fittest controllers has increased
over the last W generations, and average fitness stagnates or
is decreasing over this same period, then decrement the SST
value. Thus, if the fittest controllers have an average S that is too
high for improving team fitness, then recombination between
populations is restricted.

2. If the S of at least one of the fittest controllers has decreased
over the last W generations, and average fitness stagnates or is
decreasing over this same period, then increment the SST value.
Thus, if the fittest controllers have an average S that is too low
to improve team fitness, then allow for more recombination
between populations.

2.4. Collective neuro-evolution (CONE) process overview

This section overviews CONE'’s iterative evolutionary process.
Nitschke [27] presents a comprehensive description of each step
of CONE’s process.

1. Initialization. n populations are initialized. Population P; (i €
{1,...,n}) contains u; sub-populations. Sub-population P;
contains m genotypes. P; contains genotypes encoding neurons
assigned to position j in the hidden layer of ANN; (ANN; is
derived from P;).

2. Evaluate all genotypes. Systematically select each genotype g in
each sub-population of each population, and evaluate g in the
context of a complete controller. This controller (containing g)
is evaluated with n— 1 other controllers (where, n is the number
of controllers in a team). Other controllers are constructed via
randomly selecting a neuron from each sub-population of each
of the other populations. Evaluation results in a fitness being
assigned to g.

3. Evaluate elite controllers. For each population, systematically
construct a fittest controller via selecting from the fittest
genotypes (elite portion) in each sub-population. Controller
fitness is determined by its utility. Utility is the average fitness
of the genotypes corresponding to a controller’s hidden layer.
Groups of the fittest n controllers are evaluated together in
task simulations until all genotypes in the elite portion of each
population have been assigned a fitness. For each genotype, this
fitness overwrites previously calculated fitness.

4. Parent selection. If the two fittest controllers ANN; and ANN; con-
structed from the elite portions of P; and P; are calculated as hav-
ing sufficiently similar behavioral specializations (Section 2.2)
then P; and P; become candidates for recombination. For P; and
P; to be recombined, both ANN; and ANN; must have the same
specialization label (Section 2.2). That is, both ANN; and ANN;
must be behaviorally specialized to the same action. Between P;
and P; each pair of sub-populations is tested for genetic similarity
(average weight difference is less than GST). Genetically similar
sub-populations are recombined. For sub-populations that are
not genetically similar to others, recombination occurs within
the sub-population. Similarly, for populations that are not be-
haviorally similar to other populations, recombination occurs
within all sub-populations of the population.

5. Recombination. When pairs of sub-populations are recombined,
the elite portion of genotypes in each sub-population is
ranked by fitness. Genotypes with the same fitness rank are
recombined. For recombination within a sub-population, each
genotype in the sub-population’s elite portion is systematically
selected and recombined using one-point crossover [58], with
another randomly selected genotype from the sub-population’s
elite portion.

6. Mutation. Burst mutation with a Cauchy distribution [47] is
applied to each gene of each genotype with a given probability.

7. Parameter adaptation. If the fitness of one of the fittest
controllers has not progressed in:

(a) V generations: Adapt Genetic Similarity Threshold (GST).
(b) W generations: Adapt Specialization Similarity Threshold
(SST).

8. Stop condition. Reiterate steps [2, 7] until a desired collective
behavior task performance is achieved, or the process has run
for X generations.

3. Task: Gathering and Collective Construction (GACC)

The Gathering And Collective Construction (GACC) task requires
that robots place building blocks in a construction zone in a specific
sequence to build a predefined structure. This GACC task extends
previous work, that demonstrated that behavioral specialization
is beneficial for accomplishing a collective construction task [44].
The GACC task presented in this article extends Nitschke [44] via
increasing task complexity, using more robots and building blocks,
and imposing a constraint that teams must concurrently construct
multiple objects. The motivation for increasing task complexity,
and testing larger team sizes was to thoroughly test the efficacy
of CONE as a controller design method. Table 1 presents the GACC
task parameters. The calibration of these parameters is discussed
in Section 4.2.

30

Table 1

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

Simulation and neuro-evolution parameters. For the GACC task.

Simulation and Neuro-Evolution Parameter settings

Robot movement range
Light/proximity detection sensor
range

Initial robot positions
Construction zone location
Environment width/height

Block distribution (initial locations)
Simulation runs (evolution/testing
phases)

Iterations per epoch (robot
lifetime)

Generations

Epochs

Mutation (per gene) probability
Mutation type

Mutation range

Fitness stagnation V /W
Population elite portion

Weight (gene) range

Crossover

ANN sensory input neurons

ANN hidden layer neurons (CONE
evolved)

ANN motor output neurons
Genotype

Genotype length

Team size

Genotype populations

Genotypes per population

Total genotypes

0.01 (of environment width/length)
0.05 (of environment width/length)

Random (Excluding construction zone)
Environment’s Center

10 m/10 m

Random (Excluding construction zone)
20

1000 Iterations

100

10

0.05

Burst (Cauchy distribution)
[—1.0,4+1.0]

5/10 Generations (CONE)
20%

[—1.0,4+1.0]

Single point

20

4

4
Vector of floating point values
24 (CONE/MESP)/96 (CCGA)
50/100

50/100

200/100

10000

A GACC task was selected since it is a simulation with poten-
tial collective behavior applications including multi-robot gath-
ering and collective construction in hazardous or uninhabitable
environments, such as underwater habitats or space stations [59].
This GACC task is collective in that robots must coordinate their
behaviors so as to concurrently gather building blocks and then
deliver the building blocks to a construction zone in a correct se-
quence. This GACC task consists of three sub-tasks.

1. Search for building blocks': The environment contains type A and
Bblocks. A light on each block makes it detectable by robot light
Sensors.

2. Transport blocks: Robots must grip and transport blocks to
a construction zone, a predefined space in the environment.
All robots have a priori knowledge of the location of the
construction zone, and thus do not need to discover the
construction zone.

3. Build structure: In the construction zone, robots must place
the blocks in a specific sequence of block types required for
structure assembly. This sequence is specified by a construction
schema. The construction schemas tested in this GACC task are
presented in Section 3.2.

Team task performance is the number of blocks placed in the
construction zone (in a correct sequence) during a team’s lifetime.
Fig. 3 presents an example of the GACC task being accomplished
by a team of 10 robots. In Fig. 3, the construction schema used is
labeled: Assembled Block Structure.

Assembled Block Structure = A(East), B(North, South, East),
A(End), A(End), B(East), A(North, South, East), A(End), A(End),
A(East), B(End);

Where, for a given block type (A and B), North, South, East, West
denotes the block side to which the next block type in a sequence
is to be connected. End denotes a final block to be connected to
another block’s side.

1 The terms building block and block are used interchangeably.

1000 cm
A
Q ,,,,,,, Construction Zone
; ol
5 30[10
g i A i
- =S - | o
o
®] (@)

Construction Schema = { A(East), B(North, South, East),
A(End), A(End), B(East), A(North, South, East), A(End),

A(End), A(East), B(End) }

A A —
Assembled Block Structure = AB BA AB

A A

Fig. 3. Gathering and Collective Construction (GACC) Example. Seven type A, and
three type B blocks are randomly distributed throughout the environment. In the
construction zone, five blocks are connected as a partially assembled structure. The
construction schema and target structure are given at the bottom. The team uses 10
robots.

3.1. Simulation environment

The environment is a 1000 cm x 1000 cm continuous area, sim-
ulated using an extended version of the EvoRobot simulator [60],
and contains:

e Q building blocks (Q € {2, ..., 100}, type {A, B}). Type A and B
blocks have a low and high intensity light on their tops, respec-
tively.

e N robots (N € {2,...,100}). Table 4 presents light detection
sensor and gripper settings for block detection and transport,
respectively.

e A construction zone (100 cm x 100 cm) at the environment’s
center.

Initially, blocks (1.0 cm x 1.0 cm) and robots (5.5 cm in
diameter) are randomly distributed in the environment, except in
the construction zone.

3.2. Assembling structures

A structure is defined as a combination of m blocks (where,
m € {2,...,Q}). A construction schema specifies how blocks
must be assembled in order for a structure to be built. That is, a
construction schema defines which block sides (for a given block
type) must connect to the next block in a sequence.

Construction schema = {B;j(c), ..., Bj(c)};
Where: i,j € {1,...,Q},c € {North, South, East, West, End},
B = Block.

To keep construction simple, it is assumed that any block can be
initially placed in the construction zone. However, the next block
must be connected to one side of the initially placed block. Consider
the example in Fig. 3. If a type B block is the first to be placed in
the construction zone, then (for the given construction schema) the
next block placed must be a type A block connected to the north,
west, or south face, or a type B block connected to the east face.
Alternatively, another type B block can be connected to the west
face, or a type A block to the east face. The task is complete when
all blocks have been transported to the construction zone and
connected according to the sequence defined by the construction
schema.

Table 2 presents the construction schemas used for the simula-
tion environments tested. For each environment, one construction
schema is used. Table 3 presents, for each environment, the num-
ber of type A and B blocks, and the number of structures that must
be assembled from these blocks.

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 31

Table 2
Construction schemas. For given environments, the block type sequence (A, B) to
build a structure. E: East, W: West, N: North, S: South. End: No more connections.

Environment Construction schema

1,6 A(E)B(E)B(S)B(E)B(E)B(E)B(S)B(E)B(S)A(End)
2,7 A(E)B(E)B(S)A(E)B(E)B(E)A(S)B(E)B(S)A(End)
3,8 B(S)A(S)B(E)A(E)B(N)A(N)B(E)A(E)B(S)A(End)
4,9 B(E)A(E)A(S)B(E)A(E)A(E)B(S)A(E)A(S)B(End)
5,10 B(E)A(E)A(S)B(E)A(E)A(E)A(S)A(E)B(S)B(End)
Table 3
Simulation environments: Block type distribution and structures to be built.
Environment Type A blocks Type B blocks Structures
1 2 8 1
2 14 6 2
3 20 10 3
4 22 18 4
5 30 20 5
6 45 15 6
7 52 18 7
8 68 12 8
9 80 10 9
10 94 6 10

Khepera Sensor Quadrants (SQ) Khepera Sensor and Actuator Configuration

SI-8/ SI-0

SI-15

SI-14

MO-0 MO-1 S1-6

SI-13

SI-2/ SI-10
SI-6/ SI-14

SI-4/ SI-12

[SI-0, SI-7]: Light Sensors
[MO-0, MO-1]: Wheel Motors

[SI-8, SI-15]: Infrared Proximity Sensors
[MO-2]: Gripper Motor

Fig. 4. Robot sensors and actuators. Each simulated Khepera has eight light ([S-0,
S-7]) and eight infra-red proximity ([S-8, S-15]) sensors on its periphery. Each robot
also has three actuators: two wheel motors ([MO-0, MO-1]), and one gripper motor
(MO-3).

3.3. Robots

Robots are simulated Kheperas [61]. Each robot is equipped
with eight light sensors (for block detection) and Infra-Red (IR)
proximity (for obstacle avoidance) detection sensors, providing
each a 360 degree Field of View (FOV). Also, each robot has
two wheel motors for controlling speed and direction, and a
gripper for transporting blocks. Fig. 4 depicts the sensor and
actuator configuration of each robot. Detection sensor values are
normalized in the range [0.0, 1.0], via dividing a sensor reading
by the maximum sensor value. Table 1 presents the robots’ light
and proximity detection sensor ranges, and maximum movement
range.

3.3.1. Light detection sensors

Eight light detection sensors enable each robot to detect blocks
in eight sensor quadrants ([S-0, S-7] in Fig. 4). Type A blocks
have a low intensity light on top. Type B blocks have a high
intensity light on top. Table 4 presents the detection sensor settings
required to detect type A and B blocks. When light sensors are
activated, all eight sensors are simultaneously activated with a
given setting. Sensors remain active until the setting is changed

with the next activation. Detection sensor q returns a value
inversely proportional the distance to closest block in sensor
quadrant g, multiplied by the intensity of the light on top of the
closest block.

3.3.2. Infrared (IR) proximity detection sensors

Eight IR proximity detection sensors ([S-8, S-15] in Fig. 4)
covering eight sensor quadrants, enable robots to detect and avoid
obstacles (other robots and the environment’s walls). IR detection
sensor g returns a value inversely proportional to the distance
to the closest obstacle in sensor quadrant q. The IR proximity
detection sensors are constantly active, and are initialized with
random values. The IR sensor values are updated every simulation
iteration that the robot is within sensor range of an obstacle.

3.3.3. Movement actuators

Each robot is equipped with two movement actuators (wheel
motors) that control its speed and heading in the environment.
Wheel motors need to be explicitly activated. In a simulation
iteration of activation, the robot will move a given distance
(calculated according its current speed), and then stop. A robot’s
heading is calculated by normalizing and scaling the two motor
output values (MO-0 and MO-1) in order to derive vectors dx and
dy.

dx = dmax(MO-0 — 0.5).
dy — dmax(MO-1 — 0.5).

where, dp,. is the maximum distance a robot can traverse per
iteration. A minimum distance §? is to prevent singularities [62] in
the simulator when a robot is very close to a block or obstacle. To
calculate the distance between robot r, and blocks or obstacles o,
the squared Euclidean norm, bounded by 82 is used. Eq. (2) presents
the distance metric.

8(r,0) = min([lx — y||*, §%). (2)

3.3.4. Block gripper

Eachrobot is equipped with a gripper turret (Fig. 4) for gripping
blocks, transporting them, and placing them in the construction
zone. The gripper is activated with the value of motor output MO-
2.In order to grip block type A or B, specific output values must be
generated (Table 4). These values correspond to the gripper setting
necessary to grip type A and B blocks.

3.3.5. Artificial neural network (ANN) controller

Each robot used a recurrent ANN controller (Fig. 5), which fully
connecting 20 sensory input to four hidden layer (sigmoidal) and
four motor output neurons. Prior to controller evolution (Sec-
tion 4.4), n controllers were placed in a shaping phase (Sec-
tion 4.2). The shaping phase incrementally evolved block gripping,
transportation and obstacle avoidance behaviors necessary to ac-
complish the CGAC task. Also, prior to the evolution phase, the
number of hidden layer neurons was derived during a parameter
calibration phase (Section 4.3). Sensory input neurons [SI-0, SI-7]
accepted input from each of eight IR detection sensors, neurons
[SI-8, SI-15] accepted input from each of eight light detection sen-
sors, neurons [SI-16, SI-19] accepted input from the previous acti-
vation state of the hidden layer.

Action selection: At each iteration, one of four Motor Outputs
(MO) are executed. The MO with the highest value is the action
executed. If either MO-0 or MO-1 yields the highest value, then the
robot moves.

1. MO-0, MO-1: Calculate dx,dy vectors from MO-0, MO-1
output values, and move in direction derived from dx, dy
(Section 3.3.3).

2. MO-2: Activate gripper (Section 3.3.4).

3. MO-3: Activate light detection sensors (Section 3.3.1).

32 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

Table 4

Block detection and transportation. Block detection and transportation require robots to use different light detection sensors and gripper settings, respectively.

Block type Required light detection sensor setting Required gripper setting
A (Low intensity light) 0.1 0.5: Gripper at half width
B (High intensity light) 1.0 1.0: Gripper at maximum width

Infrared Proximity Sensors Light Detection Sensors Previous Hidden Layer State

[1
SI-15 SI-16 .. SI-19

SI-0 SI-7 SI-8

MO-0 MO-1 MO-2 MO-3

C Maximum

Action

Fig. 5. Robot artificial neural network (ANN) controller. A feed-forward ANN with
recurrent connections is used to map sensory inputs to motor outputs.

3.4. Behavioral specialization

Each robot performs distinct actions for detecting or gripping
blocks, or moving. As such, each robot is able to specialize
to detecting, or gripping or moving, or to behaviors that are a
composite of the detecting, gripping and moving actions. For
example, robots that execute the detect, grip and move actions for
type A blocks, such that type A blocks are placed in the construction
zone, are called Type A Constructors.

Initially, each robot adopts a search behavior, via moving and
using light detection sensors. When a block is found, it uses a
gripping action to grip the block. Finally, a robot moves with
the gripped block toward the construction zone. The block is
then placed in the construction zone, and this process repeats.
However, since the GACC task requires that blocks be placed in the
construction zone in a specific sequence, robots must concurrently
coordinate their search, gripping and block placement behaviors.
For example, consider an environment where type A blocks are
particularly scarce, and type B blocks are plentiful, and the number
of robots equals the number of blocks. In this case, an appropriate
collective behavior would be for most robots to search for, grip, and
move type A blocks to the construction zone, and concurrently, for
relatively few robots to search for, grip and move type B blocks to
the construction zone. Such a collective behavior would minimize
the time for the team to build the structure.

The degree of behavioral specialization (S) exhibited by each
robot (controller) is calculated by the specialization metric
(Section 2.2) and applied at the end of each robot’s lifetime in
the test phase (Section 4.5). If S < 0.5, the robot’s behavior is
specialized, otherwise it is non-specialized. The 0.5 threshold was
selected since if S = 0.5, then a robot spends half of its lifetime
switching between its move, detect and grip actions, and spends
an equal portion of its lifetime on each action. Specialized robots
are labeled according to a robot’s most executed action, or an
aggregate of actions. These specialization labels are Constructor,
Mover, Gripper, or Detector.

Constructor: Robots that spend more time moving with a gripped
block, than executing other actions. Type A, B Constructors
are those specialized to gripping and moving with Type
A, B blocks, respectively.

Robots that spend more time moving than executing
other actions.

Mover:

Detector: If the most executed action is detecting type A or type
B blocks, a robot is labeled as a type A or type B detector,
respectively.

Gripper: If the most executed action is gripping type A or type B
blocks, a robot is labeled as a type A or type B gripper,
respectively.

4. Experiments

This section describes the Gathering And Collective Construction
(GACC) experimental setup. Each experiment placed a team (50 or
100 robots) in each simulation environment (Table 3), and applied
a controller design method (CCGA, MESP or CONE) to evolve the
team’s GACC behavior. Experiments measured the impact of a
given team size, environment, and controller design method upon
the team’s task performance. The experimental objective was to
ascertain which controller design method achieves the highest task
performance for all environments tested, and to investigate the
contribution of behavioral specialization to task performance.

4.1. Experiment phases

Each experiment consisted of the following phases.

e Shaping phase: CONE was used to evolve a team in a set of
increasingly complex tasks (Section 4.2).

e Parameter calibration phase: CONE was used to evolve a team in
a set of increasingly complex tasks (Section 4.3).

e Evolution phase: Next, the fittest team in the shaping phase
was taken as the starting point for CONE, CCGA and MESP
evolution (100 generations). One generation is a teams’ lifetime.
Each lifetime lasts for 10 epochs. Each epoch consists of 1000
simulation iterations. An epoch is a simulation scenario that
tests different robot starting positions, orientations and block
positions in an environment. For each method, 20 simulation
runs® were performed for each environment (Section 4.4).

e Test phase: The fittest team evolved by CCGA, MESP, and
CONE was selected and executed (in each environment) for
100 lifetimes. The testing phase did not apply any controller
evolution. For the fittest team evolved by CCGA, MESP and
CONE, task performance was calculated over 100 lifetimes and
20 simulation runs (Section 4.5).

4.2. Shaping phase

Shaping experiments applied CONE to incrementally evolve
collective behaviors in the following set of increasingly complex
tasks (Exp x). CONE was used in the shaping phase experiments
since, compared to CCGA and MESP, it more quickly evolved
behavioral solutions to the shaping tasks.

Exp 1: In an environment with two robots, using only IR proximity
sensors, an obstacle avoidance (robots and walls) behavior
was evolved. Two robots were the minimum for evolving
obstacle avoidance.

Exp 2: In an environment with one robot and type A block, using
IR and light sensors, a type A block detection behavior was
evolved.

2 Experiments were run on the lisa cluster (www.ka.sara.nl/home/willem/www.
sara.nl/). Experiments used 250 nodes (each node has two Intel® Xeon™ 3.4 GHz
processors).

www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/
www.ka.sara.nl/home/willem/www.sara.nl/

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 33

Table 5
Parameter calibration. Values tested for the GACC Task.

Parameter Value range Range interval
Robot movement range [0.01,0.51] 0.05
Light/proximity detection sensor range [0.01, 0.10] 0.01
Simulation runs [10, 30] 2
Iterations per epoch (robot lifetime) [500, 1500] 100
Generations [50, 150] 10
Epochs [2,20] 2
Mutation (per gene) probability [0.0,0.11] 0.01
Fitness stagnation V (CONE) [5, 15] 1
Fitness stagnation W (CONE) [10, 25] 1
Population elite portion [5,55] 5%
Hidden Layer (HL) neurons [1,10] 1

Exp 3: In an environment with one robot, using IR and light
sensors, and type B block a type B block detection behavior
was evolved.

Exp 4: In an environment with one robot, using IR and light
sensors, and a type A block, a type A block gripping behavior
was evolved.

Exp 5: In an environment with one robot, using IR and light
sensors, and a type B block, a type B block gripping behavior
was evolved.

Exp 6: In an environment with one robot, using IR and light
sensors, and a type A block, a block detection and gripping
behavior was evolved.

Exp7: In an environment with one robot, using IR and light
sensors, and a type B block, a block detection and gripping
behavior was evolved.

The fittest controller evolved in shaping experiment 7 was then
subjected to parameter calibration experiments (Section 4.3).

4.3. Parameter calibration phase

Parameter calibration experiments were executed for the
parameters given in Table 5 for CONE, CCGA, and MESP (team sizes
of 50 and 100) in each simulation environment. Table 5 presents
the calibrated parameter values.

Each of the parameters (Table 5) was systematically selected
and varied within 100% of its value range at 20% intervals. Thus, 10
different parameter values were tested for each parameter. When
a given value was selected, other parameter values were fixed at a
median value in the range tested. The impact of given parameter
values (in CCGA, MESP, and CONE), was ascertained via running
each method for 50 generations. An average task performance
was calculated (for a given team size and environment) over 10
simulation runs. A low number of generations and runs was used
to minimize the time and computational expense of parameter
calibration experiments.

Each of the parameters (Table 5) were calibrated independently.
Thus, parameter inter-dependences were not taken into account,
since the complexities of parameter interactions could not be ade-
quately explored using this parameter calibration scheme. How-
ever, investigating the parameter interactions during calibration
remains a current research topic [63]. The impact of the behav-
ioral specialization threshold, the number of hidden layer neurons
and simulation runs are briefly outlined in the following, since vary-
ing these parameters was found to have most affect on CCGA, MESP
and CONE evolved team task performance.

Behavioral specialization threshold. Calibration experiments
found that decreasing the specialization threshold to below 0.4
resulted in less controllers being classified as specialized and
thus less specialized controller recombinations. This reduced the
recombination of specialized controllers and beneficial behaviors
between populations. Increasing the specialization threshold
above 0.6 resulted in more controllers being classified as
specialized and thus more controllers being recombined between
populations. This resulted in the propagation of specialized

behaviors that were not necessarily beneficial. The overall impact
of a specialization threshold value outside the range [0.4, 0.6] was
a decreasing task performance for all teams tested.

Hidden layer neurons. Calibration experiments determined that
for CCGA, MESP, and CONE teams (evolved in all environments),
an appropriate number of hidden layer neurons was five, four, and
four, respectively. In order to keep method comparisons fair, and
evolution time to a minimum, each method used four hidden layer
neurons during the evolution phase.

Simulation runs. Calibration experiments determined that 20
runs was sufficient to derive an appropriate estimate of average
task performance for evolved teams. Less than 20 evolutionary
runs was found to be insufficient, and more than 20 runs consumed
too much time and computational expense.

Finally, the parameter values calibrated for CCGA, MESP and
CONE were used as the parameter settings for the evolution phase
(Section 4.4).

4.4. Evolution phase

The n populations used by CCGA, MESP and CONE were
initialized with copies of the fittest shaped genotype, where each
gene in each genotype was subject to burst mutation [64] with
a 0.05 probability. Burst mutation uses a Cauchy distribution
which concentrates most values in a local search space whilst
occasionally permitting larger magnitude values. Thus, the CCGA,
MESP, and CONE methods began their behavioral search in the
neighborhood of the best shaped solution.

Evolving Collective Behavior with CCGA. For a team of n robots
(where, n € [50, 100]), n populations are initialized. Each
population is initialized with 400 or 200 genotypes. For a team
size of n = {50, 100}, run for 100 generations, the number of
evaluations E, is:

CCGAr = 400 (genotypes per population) *n (populations)
+100 (generations) 10 (epochs per generation);

CCGAg = {20400 000(n = 50), 40 800 000(n = 100)}.

In order that the number of CCGA evaluations equals that of
MESP and CONE, the elite portion (fittest 20%) of genotypes in
each population are re-evaluated. That is, for each population,
elite portion genotypes are systematically selected and evaluated
together with genotypes randomly selected from the elite portions
of the other populations. The number of evaluations required to
evaluate the elite portion of controllers equals 400 000 (n = 50) or
800000 (n = 100).

Evolving Collective Behavior with MESP/CONE. MESP and CONE
create n (n € [50,100]) populations from which n robot
controllers are evolved. Population i consists of u sub-populations,
where u is the number of HL neurons. For teams of 50 and 100
robots (populations), each population is initialized with 400 or
200 genotypes. The process used to select and evaluate controllers
is the same for MESP and CONE, and is described in Section 2.4.
Specific to CONE is the Specialization Distance Metric (SDM) and
Genotype Distance Metric (GDM). For a team size of n = {50, 100},
executed for 100 generations, the number of evaluations E, is:

MESP/CONE; = 400 (genotypes per population) *n (popula-
tions) %100 (generations) 10 (epochs per generation);

MESP/CONE; = {20400 000(n = 50), 40 800 000(n = 100)}.

This number of evaluations includes 400 000 evaluations (n =
50), or 800000 evaluations (n = 100) required to evaluate
controller utility (Section 2.4) of the fittest 20% of controllers.

4.5. Test phase

Finally, the fittest teams evolved by CCGA, MESP, and CONE,
for each team size and environment was placed in the test phase.
Each test phase experiment was non-adaptive and executed for

34 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

100 team lifetimes (each lifetime was 1000 simulation iterations),
for a given team size and environment. Task performance results
are averages calculated over these 100 lifetime runs. Since the test
phase did not evolve controllers, the computational expense was
marginal compared to a CCGA, MESP, or CONE evolutionary run.
Section 5 presents the testing phase results, and statistical tests
conducted.

5. Results

This section presents experimental results of applying CCGA,
MESP or CONE evolved GACC behaviors, for a given team size (50 or
100 robots) and simulation environment (Table 3). Statistical tests
were applied in order to compare task performance differences
between teams evolved by each method. For this comparison, the
following procedure was followed.

e The Kolmogorov-Smirnov test [65] was applied, and found that
all data sets conformed to normal distributions.

e An independent t-test [65] was applied to ascertain if there
was a statistically significant difference between the task
performances of any two teams. The confidence interval was
0.95.

Bonferroni multiple significance test correction [66] was used
to overcome the problem t-tests reporting a spurious significance
of difference as a result of being applied for pairwise comparison
between multiple data sets. T-tests were applied to test for
significant difference between the following data set pairs, for a
given team size and environment.

e Task performance results of CCGA versus MESP evolved teams.
e Task performance results of CCGA versus CONE evolved teams.
e Task performance results of MESP versus CONE evolved teams.

5.1. Gathering and collective construction task performance

Figs. 6 and 7 present the average task performances of teams
evolved by CCGA, MESP, and CONE in each environment for team
sizes 50 and 100, respectively. Task performance is the number
of blocks placed in the correct sequence in the construction zone,
over a team’s lifetime. Average task performance was calculated
for CCGA, MESP, and CONE evolved teams via executing each, in
each environment, for 20 test phase runs (Section 4.5).

Statistical tests indicated that for both team sizes, CONE evolved
teams yielded a higher average performance (with statistical
significance), compared to CCGA and MESP evolved teams. This
result held for environments [4, 10], and supports hypothesis
1 (Section 1.3). That is, CONE evolved teams on average, yield
comparatively higher (statistically significant) performances.

Observing the task performance results of CONE evolved teams,
it can be noted that as the complexity of the task increases
(from the simplest in environment 1, to the most complex in
environment 10), the performance of the CONE evolved teams also
increases in a linear fashion. In the team of 100 robots there is a
statistically significant difference in performance between each of
environments [1, 10]. This is also the case for teams of 50 robots
tested in environments [1, 7]. However, for environments [8, 10],
teams of 50 robots yield no significant performance difference
between environments.

This lower task performance for teams of 50 robots is theorized
to be a result of the complexity of environments [8, 9, 10] coupled
with an insufficient number of specialized robots to ensure a team
performance comparable to that observed for teams of 100 robots.
Consider that, most of the time, a robot would be unable to place
the block it was holding, since the block would be out of sequence.
In CONE evolved teams, one emergent behavior was that robots
would drop blocks that they could not place. Such robots would

100- Average Number of Blocks Placed in Construction Zone

] (Team: 50 Robots)

v ggd DCCGA
£
=]
r: 30 mMESP
S
£ 70| BCONE
2
5 60
5
§ 50
c
o 404
0
§ 30
o
w 20
3
o 10
o

0,

Environment

Fig. 6. Average Gathering and Collective Construction task performance. For CCGA,
MESP, and CONE evolved teams (of 50 robots) for each environment.

Average Number of Blocks Placed in Construction Zone

100+ (Team: 100 Robots)

90| DCCGA |
g0 || WMESP
70 BCONE

60
50
40+
30

204

10-

o i T
1 2 3 4 5

Environment

Blocks Placed in Construction Zone

T

6 7

Fig. 7. Average Gathering and Collective Construction task performance. For CCGA,
MESP, and CONE evolved teams (of 100 robots) for each environment.

then leave the construction zone to continue searching for other
blocks. Another emergent behavior in CONE evolved teams was
that of idle constructor, some of which would be in the construction
zone at any given simulation iteration. Blocks dropped within
sensor range of an idle constructor would be picked up and their
placement attempted. This behavior of idle constructors becoming
active and frequently picking up dropped blocks increased the
number blocks that were placed in the correct sequence. In the
case of teams of 50 robots, a relatively low number were in the
construction zone at any given simulation iteration. This resulted
in a comparatively lower task performance for teams of 50 robots
evolved by CONE in environments [8, 9, 10].

Also, to demonstrate that specialized behavior is required
to effectively and efficiently place objects in a given sequence,
experiments that did not use a construction schema were conducted.
Experiments that did not use a construction schema did not
require a team to place blocks in any particular sequence. Thus,
behavioral coordination was not required. These results are not
presented here since: (1) statistically comparable performances
were attained for the fittest CCGA, MESP and CONE evolved teams,
(2) behavioral specialization did not emerge, and investigating the
contribution of behavioral specialization to collective behavior is
the focus of this study.

These results thus confirm that the task constraints imposed by
a construction schema is necessary for specialization to emerge in
a team'’s evolved collective behavior. Section 6 discusses results
(of experiments using construction schemas), the contribution
of behavioral specialization, and relates this contribution to
hypothesis 2 (Section 1.3).

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 35

5.2. Emergent behavioral specializations

This section outlines the behavioral specialization that emerged
in teams evolved by CCGA, MESP, and CONE in environments
[4, 10]. No behavioral specialization emerged in teams evolved by
CCGA, MESP, or CONE in environments [1, 3]. Lack of emergent
specialization in these environments is supposed to be a result of
the relative simplicity of environments [1, 3] (Table 3) compared to
environments [4, 10]. Behavioral specialization was identified via
applying the specialization metric (Section 2.2) to robot behaviors
exhibited during the test phase (Section 4.5). Teams that were
not calculated as specialized, were by default classified as non-
specialized.

5.2.1. Evolved CONE specialization: constructor

In approximately 40% of the fittest teams evolved by CONE, a
specialization termed constructor emerged. Constructors simulta-
neously performed the grip and move actions for more than 50%
of their lifetime. Constructors infrequently switched from moving
and gripping to the detector action.

5.2.2. Evolved CONE specialization: constructor/block dropping

In approximately 25% of the fittest teams evolved by CONE,
a behavioral specialization termed -constructor/block dropping
emerged. Robots with this specialization performed the either the
constructor (Section 5.2.1) or a block dropping behavior for more
than 50% of their lifetime. These robots infrequently switched from
either the constructor or block dropping behavior to performing
the detector action, but frequently switched between executing
constructor and block dropping behavior for most of their lifetime.
The block dropping behavior was executed if a robot transporting
a block was unable to place it in the construction zone, due to the
block being out of sequence.

5.2.3. Evolved CCGA/MESP/CONE specialization: constructor/idle

In the fittest teams evolved by CCGA, MESP and CONE, a
behavioral specialization termed constructor/idle emerged. This
specialization emerged in approximately 35%, 55% and 50% of the
fittest teams evolved by CCGA, MESP, and CONE, respectively. In
the fittest CONE evolved teams, robots with this specialization
performed the either the constructor behavior or remained idle for
more than 50% of their lifetime. CONE evolved robots would switch
from its idle to constructor behavior if a block was dropped within
its sensor range. These robots infrequently switched to performing
the detector action, but frequently switched between executing
constructor and idle behavior for most of their lifetime. However,
CCGA and MESP evolved robots simply remained idle for more than
50% of their lifetime, infrequently switching to the detector action
during this time.

6. Discussion

This section discusses the contribution of specialized behavior
to collective behavior task performance (Sections 6.1 and 6.2). The
contribution of the Genotype and Specialization Difference Metrics
(GDM and SDM) to the task performances of CONE evolved teams
is also evaluated (Section 6.3).

6.1. Emergent specialization

In the fittest CONE evolved teams, constructors were special-
ized to gripping, moving with and placing (in the construction
zone) type A and B blocks. Unspecialized robots searched the en-
vironment for blocks, and transported them to the construction
zone. Upon arriving in the construction zone, unspecialized robots
attempted to place the block they were transporting. Most of the

time, a block could not be placed, since it was out of sequence. A
robot would then drop the block and leave the construction zone
to continue searching for other blocks. This block dropping behav-
ior allowed constructors, idle in the construction zone, to place
dropped blocks in the correct sequence. This in turn minimized the
number of robots in the construction zone and physical interfer-
ence between robots.

The idle behavior emerged in the fittest CCGA, MESP, and
CONE evolved teams for most environments ([4, 10]). However,
in the case of CONE evolved teams the idle behavior was coupled
with a constructor behavior. Thus, CONE evolved robots switched
between the constructor and idle behavior for most of their
lifetime. It is theorized that the idle behavior emerged as a means
to reduce physical interference between many constructors that
concurrently moved toward the construction zone, to attempt to
place blocks.

The constructor specialization did not emerge in any of
the CCGA and MESP evolved teams, for all team sizes and
environments tested. The behaviors of robots in the fittest CCGA
and MESP evolved teams were calculated as being unspecialized. In
the fittest CCGA and MESP evolved teams, robots that were unable
to place blocks in the construction zone at a given simulation
iteration would try to place the block at every subsequent iteration.
If there were many robots in the construction zone, concurrently
attempting to place blocks, where none of these blocks were
the next in the construction sequence, the result was physical
interference that obstructed collective construction behavior. The
degree of interference increased with the team size, resulting in
CCGA and MESP (comparative to CONE) evolved teams yielding a
statistically lower task performance for environments [4, 10]. The
block dropping behavior also emerged in CCGA and MESP evolved
teams. However, when a block was dropped by a CCGA or MESP
evolved robot, there were no constructor robots to place the block.
Instead, the block remained in the construction zone until it was
rediscovered by the same or another robot. This resulted in slow
structure build times by CCGA and MESP evolved teams, which in
turn yielded low task performances.

These results are supported by another collective behavior
study [24], which also indicates that CONE is appropriate for
evolving collective behavior solutions to tasks where specialization
is beneficial, and the type of specialization (that is beneficial) is not
known a priori.

6.2. Specialization lesion study

To test hypothesis 2 (Section 1.3), this section presents a
specialization lesion study to evaluates the impact of the constructor
specialization upon team task performance. The study was
conducted on the supposition that the high task performance of
CONE evolved teams, compared to CCGA and MESP evolved teams,
results from the interaction between specialized and unspecialized
behaviors. To test this supposition, the lesion study removed
the constructor controllers and replaced them with unspecialized
heuristic controllers. Heuristic controllers were used so as team
behavior was unspecialized and teams remained the same size for
comparison purposes. Robots were initialized in random positions
in the environment and executed the following heuristic behavior.
Robots had their light and proximity detection sensors constantly
active and moved in a straight line toward the closest block.
Otherwise, the robot moved in a straight line, in a random
direction, and avoided collisions with the environment boundary.
A robot gripped any block it encountered and moved it to the
construction zone. If the robot could not place the block it would
try again the next simulation iteration.

For each team size and environment, the fittest CONE evolved
team (now consisting of unspecialized controllers) was re-
executed in 20 test phase simulation runs (Section 4.5), and

36 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

Table 6

Average number of blocks placed (lesioned versus unlesioned teams): Columns [2, 5]: A/B is the average task performance of team sizes 50/100. ENV: Environment.

ENV Fittest CONE evolved team Lesioned CONE evolved team Fittest CCGA evolved team Fittest MESP evolved team
1 8/7 5/5 9/9 8/7

2 18/18 9/10 17/19 16/18
3 28/26 17/20 26/27 27/25

4 35/39 22/23 28/29 26/28

5 46/48 26/27 40/41 38/39

6 55/58 31/34 42/46 45/44

7 63/68 35/32 47/50 49/49

8 69/77 36/40 49/49 47/52

9 70/86 39/41 51/52 52/53

10 68/95 40/45 50/52 51/51

Table 7 Genotype and Specialization Distance Metric Analysis:

Nomenclature: Abbreviated terms and symbols. Unless otherwise noted the terms and
symbols apply to CCGA, MESP and CONE.

Term/Symbol Explanation

CONE Collective Neuro-Evolution (Section 2)

CCGA Cooperative Co-evolutionary Genetic Algorithm (Section 2)
MESP Multi-Agent Enforced Sub-Populations (Section 2)

NE Neuro-Evolution (Section 1)

Species Genotype population

Generation 1 Robot (Team) lifetime

Robot lifetime 10 Epochs

Epoch 1000 Simulation iterations

Specialization Defines if a controller’s behavior is specialized

Threshold

(CONE)

V (CONE) GDM activated after V generations given no fitness increase
W (CONE) SDM activated after V generations given no fitness increase
GDM (CONE) Genotype Difference Metric (Section 2.3)

SDM (CONE) Specialization Difference Metric (Section 2.3)

[a, b] All values between and including a and b

n Number of genotype populations (controllers) (Section 2.1)
ANN; Artificial neural network controller i (Section 2.1)

P; Population i (Section 2.1)

S (CONE) Degree of behavioral specialization (Section 2.2)

SST (CONE) Specialization Similarity Threshold (Section 2.3)

GST (CONE) Genetic Similarity Threshold (Section 2.3)

S8GST (CONE) 46 applied to GST (Section 2.3)

SSST (CONE) +§ applied to SST (Section 2.3)

S(ANN;) Degree of specialization exhibited by ANN i (Section 2.3)

an average task performance calculated. The contribution of the
constructors was ascertained by comparing the average task
performance, for each environment and team size, of lesioned
versus unlesioned CONE evolved teams. Table 6 presents this
task performance comparison. Lesion study results indicate that
there is a statistically significant task performance reduction in
lesioned teams. That is, lesioned teams were unable to produce
collective behaviors with an average task performance comparable
to that of CONE evolved teams. This result supports the supposition
that CONE evolves an inter-dependency between specialized
and unspecialized behaviors, and partially supports hypothesis 2
(Section 1.3). That is, without the constructor specialization, the
higher task performance of CONE evolved teams could not be
achieved.

6.3. The contribution of the CONE difference metrics

In order to further test hypothesis 2 (Section 1.3), this section
presents a study to examine the contribution of the Genotype
and Specialization Difference Metrics (GDM and SDM, respectively).
For this GDM and SDM study, CONE was re-executed with the
following variant experimental setups.

1. CONE-1: Teams were evolved by CONE without the GDM. The
SDM for inter-population genotype recombination remained
active.

2. CONE-2: Teams were evolved by CONE without the SDM. The
GDM remained active.

100 - Average Number of Blocks Placed in Construction Zone

(Team: 50 Robots)
90 +

80 OCONE-1: No GDM

70 BCONE-2: No SDM . 3 T '

60 +| mCONE-3: No GDM and SDM |

5011 - CONE [T
40+ ;

30+ v

20+ v

1042z

Blocks Placed in Construction Zone

Environment

Fig. 8. Average number of blocks placed in the construction zone (Team size: 50
robots). Teams evolved by CONE without the Genotype Difference Metric (GDM),
Specialization Difference Metric (SDM), or both the GDM and SDM.

Genotype and Specialization Distance Metric Analysis:

100+ Average Number of Blocks Placed in Construction Zone
(Team: 100 Robots) r
90 -
o :
s CONE-1: No GDM .
70 | BCONE-2: No SDM '
60| MCONE-3: No GDM and SDM v
|
50| cONE T

Blocks Placed in Construction Zone

Environment

Fig. 9. Average number of blocks placed in the construction zone (Team size: 100
robots). Teams evolved by CONE without the Genotype Difference Metric (GDM),
Specialization Difference Metric (SDM), or both the GDM and SDM.

3. CONE-3: Teams were evolved by CONE without the GDM and
SDM.

Each of these CONE variants (CONE-1, CONE-2, and CONE-3)
was applied to evolve teams in each environment, for team sizes
of 50 and 100. The fittest team evolved by CONE-1, CONE-2, and
CONE-3 was executed for 20 test-phase simulation runs (Sec-
tion 4.5). Figs. 8 and 9 present average team task performances
yielded by CONE-1, CONE-2, and CONE-3 for team sizes of 50 and
100, respectively. For comparison, the average task performance of
the original CONE setup is also presented.

A statistical comparison of these results (Figs. 8 and 9) indicates
that teams evolved by CONE without the GDM (CONE-1), SDM
(CONE-2), and both the GDM and SDM (CONE-3), yielded a
significantly lower task performance compared to CONE evolved

G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38 37

teams for most environments. That is, for team sizes 50 and 100,
there was no significant task performance difference between
CONE and CONE variant evolved teams for environments [1, 3].
However, CONE evolved teams yielded a significantly higher task
performance for environments [4, 10]. Furthermore, teams evolved
by the CONE variants yielded task performances comparable to
CCGA and MESP evolved teams. That is, there was no statistically
significant difference between the average task performances of
teams evolved by the CONE variants, CCGA, and MESP for all
environments and team sizes tested.

These results further support hypothesis 2 (Section 1.3), since
they indicate that both the SDM and GDM were necessary for CONE
to evolve teams with the most effective GACC behaviors. That is,
when only the GDM or SDM or neither the SDM or GDM were active
within the CONE process (CONE-1, CONE-2 or CONE-3), the fittest
teams achieved average task performances comparable to that of
the fittest CCGA and MESP teams.

7. Conclusions and future directions

This article evaluated controller design methods that coupled
cooperative co-evolution and neuro-evolution to solve a collective
behavior task. The research goal was to demonstrate that the
Collective Neuro-Evolution (CONE) method evolves controllers
in teams of simulated robots, such that the teams’ collective
behaviors out-perform that evolved by related methods. The
collective behavior task was Gathering and Collective Construction
(GACQ).

Results found genotype and specialization metrics used by
CONE for regulating recombination between genotype populations
facilitated beneficial specialized behaviors. The interactions be-
tween specialized and unspecialized behaviors in CONE evolved
teams resulted in a higher GACC task performance, compared to
teams evolved by related controller design methods. The CONE
metrics regulated inter-population genotype recombination based
on the similarity of specialized behaviors exhibited by controllers
and the similarity of genotypes. These results are supported by pre-
vious work that applied CONE to evolve controllers in a multi-rover
task [24]. This article’s study, thus, also demonstrates that CONE
is appropriate for evolving collective behaviors in tasks where be-
havioral specialization is beneficial, but the form of specialization
is not known a priori.

Future work will focus on investigating inter-dependences be-
tween the genotype and specialization metrics in CONE evolved
teams, and mechanisms that lead to emergent specialization. Fur-
thermore, CONE's capability to evolve collective behavior solutions
requiring both behavioral and morphological specialization will be
examined. Thus, the principles of CONE to effectuate specializa-
tion as a means of increasing collective behavior task performance
will be adapted and tested for agents in cooperative co-evolution
systems not using artificial neural network controllers. Different
controller types, such as rule-based controllers, will be tested in
various collective behavior tasks to ascertain if other controller
types yield the same benefits.

References

[1] C. Schultz, L. Parker, Multi-Robot Systems: From Swarms to Intelligent
Automata, Kluwer Academic Publishers, Washington, DC, USA, 2002.

[2] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, Oxford, England, 1998.

[3] D. Hawthorne, Genetic linkage of ecological specialization and reproductive
isolation in pea aphids, Nature 412 (1) (2001) 904-907.

[4] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds, MIT Press, Cambridge, USA, 1997.

[5] D.Futuyma, M. Slatkin, in: D. Futuyma, M. Slatkin (Eds.), Coevolution, Sinauer
Associates, Sunderland, Massachusetts, USA, 1983.

[6] J. Polechova, N. Barton, Speciation through competition: a critical review,
Evolution 59 (6) (2005) 1194-1210.

[7] R. Wiegand, An analysis of cooperative coevolutionary algorithms, Ph.D.
Thesis, Computer Science Department, George Mason University, Fairfax,
Virginia, USA, 2004.

[8] H. Seligmann, Resource partition history and evolutionary specialization of
subunits in complex systems, BioSystems 51 (1) (1999) 31-39.

[9] N. Calderone, R. Page, Genotypic variability in age polyethism and task
specialization in the honey bee. Apis mellifera, Behavioral Ecology and
Sociobiology 22 (1) (1988) 17-25.

[10] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (9)
(1999) 1423-1447.

[11] M. Potter, K. De Jong, Cooperative coevolution: an architecture for evolving
coadapted subcomponents, Evolutionary Computation 8 (1) (2000) 1-29.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice
Hall, Princeton, USA, 1998.

[13] S. Nolfi, D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines, MIT Press, Cambridge, USA, 2000.

[14] A.Farinelli, R. Farinelli, L. Iocchi, D. Nardi, Multi-robot systems: a classification
focused on coordination, IEEE Transactions on Systems, Man, and Cybernetics,
Part B 34 (2004) 2015-2028.

[15] F. Noreils, Toward a robot architecture integrating cooperation between
mobile robots: application to indoor environment, International Journal of
Robotics Research 12 (1) (1993) 79-98.

[16] P.Stone, Layered Learning in Multiagent Systems, MIT Press, Cambridge, USA,
2000.

[17] M. Batalin, G. Sukhatme, Spreading out: a local approach to multi-robot
coverage, in: H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Eds.), Distributed
Autonomous Robotic Systems, Springer, New York, USA, 2002, pp. 373-382.

[18] L. Steels, Toward a theory of emergent functionality, in: Proceedings of the
First International Conference on Simulation of Adaptive Behavior, MIT Press,
Cambridge, USA, 1990, pp. 451-461.

[19] R.Miikkulainen, Neuroevolution, in: C. Sammut, G. Webb (Eds.), Encyclopedia
of Machine Learning, Springer, New York, USA, 2010, pp. 716-720.

[20] D. Floreano, P. Diirr, C. Mattiussi, Neuroevolution: from architectures to
learning, Evolutionary Intelligence 1 (1) (2008) 47-62.

[21] K. Chellapilla, D. Fogel, Evolving neural networks to play checkers without
expert knowledge, IEEE Transactions on Neural Networks 10 (16) (1999)
1382-1391.

[22] B. Bryant, R. Miikkulainen, Neuro-evolution for adaptive teams, in: Proceed-
ings of the Congress on Evolutionary Computation, IEEE Press, Canberra, Aus-
tralia, 2003, pp. 2194-2201.

[23] J. Blumenthal, G. Parker, Competing sample sizes for the co-evolution of het-
erogeneous agents, in: Proceedings of the International Conference on Intelli-
gent Robots and Systems, IEEE Press, Sendai, Japan, 2004, pp. 1438-1443.

[24] G. Nitschke, M. Schut, A. Eiben, Collective neuro-evolution for evolving
specialized sensor resolutions in a multi-rover task, Evolutionary Intelligence
3(1)(2010) 13-29.

[25] M. Potter, L. Meeden, A. Schultz, Heterogeneity in the coevolved behaviors
of mobile robots: the emergence of specialists, in: Proceedings of the
International Joint Conference on Artificial Intelligence, AAAI Press, Seattle,
2001, pp. 1337-1343.

[26] L. Li, A. Martinoli, A. Yaser, Learning and measuring specialization in
collaborative swarm systems, Adaptive Behavior 12 (3) (2004) 199-212.

[27] G. Nitschke, Neuro-evolution for emergent specialization in collective behav-
ior systems, Ph.D. Thesis, Computer Science Department, Vrije Universiteit,
Amsterdam, Netherlands, 2009.

[28] C.Yong, R. Miikkulainen, Coevolution of role-based cooperation in multi-agent
systems, Technical Report Al07-338, Department of Computer Sciences, The
University of Texas, Austin, USA, 2007.

[29] M. Potter, The design and analysis of a computational model of cooperative
coevolution, Computer Science Department, George Mason University, Fairfax,
Virginia, USA, 1997.

[30] G. Theraulaz, E. Bonabeau, Coordination in distributed building, Science 269
(1) (1995) 686-688.

[31] J. Werfel, R. Nagpal, Three-dimensional construction with mobile robots and
modular blocks, The International Journal of Robotics Research 27 (3-4) (2008)
463-479.

[32] A. Panangadan, M. Dyer, Construction in a simulated environment using
temporal goal sequencing and reinforcement learning, Adaptive Behavior 17
(1) (2009) 81-104.

[33] E. Bonabeau, G. Theraulaz,]. Deneubourg, Quantitative study of the fixed
threshold model for the regulation of division of labour in insect societies,
Proceedings of the Royal Society of London, Series B263(1)(1996) 1565-1569.

[34] G. Theraulaz, E. Bonabeau,]J. Deneubourg, Fixed response thresholds and the
regulation of division of labor in insect societies, Bulletin of Mathematical
Biology 60 (1) (1998) 753-807.

[35] J. Gautrais, G. Theraulaz,]. Deneubourg, C. Anderson, Emergent polyethism as a
consequence of increased colony size in insect societies, Journal of Theoretical
Biology 215 (1) (2002) 363-373.

[36] A. Murciano, J. Millan, Learning signaling behaviors and specialization in
cooperative agents, Adaptive Behavior 5 (1) (1997) 5-28.

[37] A.ljspeert, A. Martinoli, A. Billard, L. Gambardella, Collaboration through the
exploitation of local interactions in autonomous collective robotics: the stick
pulling experiment, Autonomous Robots 11 (2) (2001) 149-171.

[38] M. Waibel, D. Floreano, S. Magnenat, L. Keller, Division of labor and
colony efficiency in social insects: effects of interactions between genetic

38 G.S. Nitschke et al. / Swarm and Evolutionary Computation 2 (2012) 25-38

architecture, colony kin structure and rate of perturbations, Proceedings of the
Royal Society B 273 (1) (2006) 1815-1823.

[39] E. Bonabeau, A. Sobkowski, G. Theraulaz,]. Deneubourg, Adaptive task
allocation inspired by a model of division of labour in social insects, in: Bio-
Computing and Emergent Computation, World Scientific, Singapore, 1997,
pp. 36-45.

[40] G. Thomas, A. Howard, A. Williams, A. Moore-Alston, Multirobot task
allocation in lunar mission construction scenarios, in: Systems, Man and
Cybernetics, 2005 IEEE International Conference on Volume 1, IEEE Press,
2005, pp. 518-523.

[41] H. Guo, Y. Meng, Y. Jin, A cellular mechanism for multi-robot construction
via evolutionary multi-objective optimization of a gene regulatory network,
BioSystems 98 (3) (2009) 193-203.

[42] A. Panangadan, M. Dyer, Goal sequencing for construction agents in a
simulated environment, in: Proceedings of the International Conference on
Artificial Neural Networks, IEEE Press, Las Vagas, USA, 2002, pp. 969-974.

[43] R.Sutton, A. Barto, An Introduction to Reinforcement Learning, John Wiley and
Sons, Cambridge, USA, 1998.

[44] G. Nitschke, Neuro-evolution methods for gathering and collective construc-
tion, in: Proceedings of the 10th European Conference on Artificial Life,
Springer, Budapest, Hungary, 2009, pp. 111-119.

[45] G. Beni, From swarm intelligence to swarm robotics, in: Proceedings of the
First International Workshop on Swarm Robotics, Springer, Santa Monica, USA,
2004, pp. 1-9.

[46] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, MASON: a multiagent
simulation environment, Simulation 81 (7) (2005) 517-527.

[47] F. Gomez, Robust non-linear control through neuroevolution, Ph.D. Thesis,
Computer Science Department, University of Texas, Austin, USA, 2003.

[48] S.Luke, C.Hohn,].Farris, G.]Jackson,]. Hendler, Co-evolving soccer softbot team
coordination with genetic programming, in: RoboCup-97: Robot Soccer World
Cup [, Springer-Verlag, Berlin, Germany, 1998, pp. 398-411.

[49] G. Baldassarre, D. Parisi, S. Nolfi, Coordination and behavior integration in
cooperating simulated robots, in: Proceedings of 8th Int. Conf. Simulation
Adaptive Behavior, MIT Press, Cambridge, USA, 2003, pp. 385-394.

[50] N. Garcia-Pedrajas, C. Hervas-Martinez, D. Ortiz-Boyer, Cooperative coevo-
lution of artificial neural network ensembles for pattern classification, IEEE
Transactions on Evolutionary Computation 9 (3) (2005) 271-302.

[51] M. Waibel, L. Keller, D. Floreano, Genetic team composition and level of
selection in the evolution of cooperation, IEEE Transactions on Evolutionary
Computation 13 (3) (2009) 648-659.

[52] M. Mirolli, D. Parisi, How can we explain the emergence of a language that
benefits the hearer but not the speaker, Connection Science 17 (3) (2005)
307-324.

[53] S. Luke, Genetic programming produced competitive soccer softbot teams for
robocup 97, in: Proceedings of 3rd Annu. Conf. Genetic Programming, Morgan
Kaufmann, San Mateo, USA, 1998, pp. 214-222.

[54] W. Hamilton, The genetical evolution of social behavior i + ii, Journal of
Theoretical Biology 7 (1) (1964) 1-52.

[55] L. Lehmann, L. Keller, The evolution of cooperation and altruism: a general
framework and a classification of models, Journal of Evolutionary Biology 19
(5) (2006) 1365-1376.

[56] A. Perez-Uribe, D. Floreano, L. Keller, Effects of group composition and level
of selection in the evolution of cooperation in artificial ants, in: Advances of
Artificial Life: Proceedings of the Seventh European Conference on Artificial
Life, Springer, Dortmund, Germany, 2003, pp. 128-137.

[57] M. Wineberg, F. Oppacher, Underlying similarity of diversity measures
in evolutionary computation, in: Proceedings of Genetic and Evolutionary
Computation Conference, Springer, Chicago, USA, 2003, pp. 1493-1504.

[58] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer, Berlin,
Germany, 2003.

[59] J. Werfel, R. Nagpal, Extended stigmergy in collective construction, IEEE
Intelligent Systems 21 (2) (2006) 20-28.

[60] S. Nolfi, Evorobot 1.1 user manual, Technical Report, Institute of Cognitive
Sciences, National Research Council, Rome, Italy, 2000.

[61] F. Mondada, E. Franzi, P. lenne, Mobile robot miniaturization: a tool for
investigation in control algorithms, in: Proceedings of Third International
Symposium on Experimental Robotics, IEEE Press, Kyoto, Japan, 1993,
pp. 501-513.

[62] A. Agogino, K. Tumer, Efficient evaluation functions for multi-rover systems,
in: Proceedings of the Genetic and Evolutionary Computation Conference,
Springer, New York, USA, 2004, pp. 1-12.

[63] A.Eiben, S. Smit, Parameter tuning for configuring and analyzing evolutionary
algorithms, Swarm and Evolutionary Computation 1 (1) (2011) 19-31.

[64] F.Gomez, R. Miikkulainen, Incremental evolution of complex general behavior,
Adaptive Behavior 5 (1) (1997) 317-342.

[65] B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes, Cambridge
University Press, Cambridge, UK, 1986.

[66] C.W. Dunnett, A multiple comparisons procedure for comparing several
treatments with a control, Journal of the American Statistical Association 50
(1955) 1096-1121.

	Evolving behavioral specialization in robot teams to solve a collective construction task
	Introduction
	Neuro-Evolution, cooperative co-evolution, and collective behavior
	Collective construction
	Research objectives and hypotheses
	Contributions

	Methods: collective neuro-evolution (CONE)
	Representation: multi-population structure
	Behavioral specialization
	Regulating recombination and adaptation of algorithmic parameters
	Genotype difference metric (GDM)
	Specialization difference metric (SDM)

	Collective neuro-evolution (CONE) process overview

	Task: Gathering and Collective Construction (GACC)
	Simulation environment
	Assembling structures
	Robots
	Light detection sensors
	Infrared (IR) proximity detection sensors
	Movement actuators
	Block gripper
	Artificial neural network (ANN) controller

	Behavioral specialization

	Experiments
	Experiment phases
	Shaping phase
	Parameter calibration phase
	Evolution phase
	Test phase

	Results
	Gathering and collective construction task performance
	Emergent behavioral specializations
	Evolved CONE specialization: constructor
	Evolved CONE specialization: constructor/block dropping
	Evolved CCGA/MESP/CONE specialization: constructor/idle

	Discussion
	Emergent specialization
	Specialization lesion study
	The contribution of the CONE difference metrics

	Conclusions and future directions
	References

