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Abstract

Chemical product design refers to the practice of developing
novel chemical products given properties to be optimised and
constraints to be satisfied. Strategies for chemical product
design can be based on multi-objective constrained optimi-
sation in a large search space of compounds whose proper-
ties are uncertain and partially known. Advances in machine
learning, multi-objective optimisation, formal representation
of chemical compounds and identified correlations between
molecular structures and relevant properties, have fostered
increased interest in computer-based techniques to identify
candidate compounds for innovation in chemical products.
In this paper we empirically explore a combination of state-
of-the-art machine learning and evolutionary multi-objective
optimisation methods to support chemical product design. In
order to ground our arguments as concrete examples, we con-
sider the design of domestic detergents, and explore how au-
tomating computational design can be controlled via specifi-
cation of hyper-parameters, so as to generate solutions (de-
tergents) with desired features. Our results contribute to the
methodological problem of automating chemical product de-
sign, and more broadly functional molecular design.

Introduction
Chemical product design based on computational identi-
fication and optimisation of compounds given expected
chemical properties has reduced design iterations and cycle
times in comparison to trial-and-error synthesis methods
(Chen and et al., 2018; Schneider, 2018). Computational
identification and optimisation of compounds operates via
iterative selection and modification of compounds to opti-
mise selected properties of chemicals such as solvents, ionic
liquids, polymers and medications (Ng and Gani, 2019).
Desired properties can include, for example, low aquatic
toxicity and favourable synthetic accessibility (Lysenko and
et al., 2018; Zhuang and Ibrahim, 2021).

Traversal of the chemical design space to identify com-
pounds of interest is computationally intractable, given that
the chemical design space is estimated to contain over 10200

organic compounds (Reymond, 2015). Computational
tractability has been managed by combining computational

chemistry and machine learning, specifically, heuristics to
optimise search space exploration (Keith and et al., 2021).
This approach has been demonstrated to be effective in
de novo molecular design and insight generation for drug
discovery, materials science and pharmaceuticals (Bender
and Cortes-Ciriano, 2021; Paul, 2021; Tkatchenko, 2020).

Various deep learning methods have been successfully
applied for synthetic inference of properties and genera-
tion of compounds (Gawehn et al., 2016): auto-encoders
have been trained to convert latent spaces as compound
descriptor formats such as the Simplified Molecular Input
Line Entry Specification (SMILES) (Gómez-Bombarelli and
et al., 2018); graphs have been used to encode molecular
structures (Samanta and et al., 2019); deep recurrent neural
networks have been trained to generate chemically feasible
innovative materials given molecular data (Yuan and et al.,
2020) and to predict translation between reactants and
products (Yuan and et al., 2020); and graph based gener-
ative (Gebauer et al., 2019) as well as Bayesian methods
(Ikebata and et al., 2017) have enabled innovative organic
compound synthesis. Many such computational product
design methods are only partially automated, using various
chemical data sets and molecular simulations to predict
material properties of selected candidates (Curtarolo and et
al., 2013; Pyzer-Knapp and et al., 2015). Prediction success
rates are limited by the quality of data sets and require
human expertise (Gómez-Bombarelli and et al., 2018).

Previous work has also demonstrated that evolutionary
algorithms yield competitive results for chemical product
design (Jensen, 2019; Kwon and et al., 2021; Leguy and
al., 2009; Varela and Santos, 2022; Yoshikawa and et al.,
2018), provided that the chemical design space is defined
via specific molecular encoding. Selection and mutation
are defined based on molecular fragments rather than atoms
(Polishchuk, 2020) and specified using either grammars
(Yoshikawa and et al., 2018; Nigam and et al., 2020) or
statistical relations (Jensen, 2019).



The combination of machine learning to predict and
evolutionary algorithms to optimise property values in-
creases the likelihood of generation of synthetically viable
compounds by accelerating stochastic search through
evolutionary methods and improving property assessment
through machine learning (Brown and et al., 2004; Le and
Winkler, 2016), however ascertaining the most suitable
combination of these approaches remains an open problem.

The development of new methods for automated chemical
product design focusing on environmental sustainability
is an issue of increasing importance. Thus, we have
experimented with a method based on deep learning and
evolutionary multi-objective optimisation (Belure et al.,
2017; Winter and et al., 2019) to mitigate the effects of
disposal of chemical products in the environment. Specifi-
cally, we have experimented with Geometric Deep Learning
(Bronstein and et al., 2021) to estimate molecular properties
and Information-geometric Evolutionary Multi-objective
Optimisation (Ollivier and et al., 2017), to search through a
chemical design space for sets of compounds that optimise
multiple concurrent objectives such as minimisation of
aquatic toxicity and maximisation of synthetic accessibility.

Innovations in the method introduced here are con-
centrated on the procedures to select the initial set of
candidate compounds – which determine the region in the
chemical design space to be explored to identify optimised
compounds – and to define the seed compounds based
on which the following generations of solutions are built.
These procedures have been designed to ensure that the
chemical design space is sufficiently explored (searched) to
identify good candidate solutions.

In this study, we empirically evaluate our proposed
method using a specific chemical product design case
study – namely, the development of novel detergents for
domestic use – and build sets of compounds that minimise
indicators of toxicity and maximise indicators of synthetic
accessibility, given an initial compound with the function-
ality of a known detergent. Results present the impact
of chemical compound design experiments using various
hyper-parameter settings to elucidate suitable method
configurations for the given problem space.

In section II (Methods to Optimise Product Design), we
review the proposed computational method, based on Ge-
ometric Deep Learning and Information-geometric Optimi-
sation. In section III (Optimised Design of Detergents), we
describe the problem of development of novel detergents,
how it can be solved using the proposed method, and our
obtained empirical results. In section IV (Discussion), we
present a brief discussion. Section V (Conclusions and Fu-
ture Work), presents conclusions and proposed future work.

II Methods to Optimise Product Design
A chemical design space is a set of compounds whose
properties have been estimated using various techniques. It
can be assumed that available properties are reliable, how-
ever it can also be expected that some values are missing.
Chemical design spaces feature interesting structuring that
can be explored to search for compounds that have specific
properties. Specifically, it has been empirically validated
that molecular properties correlate with particular patterns
in their 3D structures, and consequently molecules featuring
similar patterns also have similar properties (Crum-Brown
and Fraser, 1865), an assumption known as the Similar
Property Principle (Mitchell, 2014).

As a consequence of the Similar Property Principle,
once appropriate patterns are identified for a given property,
they can be used to characterise a distance relation between
molecules, based on which properties can be estimated
for all molecules in a chemical design space, based on
the additional assumption that unknown properties of a
molecule can be recurrently inferred given the (known)
properties of their neighbours.

Once properties are estimated for all molecules in a
design space, optimisation techniques can be employed to
traverse the data set to find the most suitable compounds
given properties to be optimised. What characterises a
compound as a good product (for a given task) can be
a complex combination of several properties, and user
requirements typically focus on a relatively small subset
of properties to be optimised. Hence, good heuristics to
generate novel products start with a set M0 of known
compounds that work reliably for the given task, and then
search for alternative compounds to optimise the user
specified properties within a region of the design space
such that the distance between every molecule in the region
and at least one M0 ∈ M0 is bounded by a value T̂0, thus
ensuring that the general properties of M0 are preserved up
to an acceptable approximation.

The two issues we address to build solutions for such
heuristics are: (1) how to identify the appropriate patterns
to define distances between molecules given properties
of interest, and then to infer missing properties based
on observed patterns, and (2) how to traverse the design
space starting from M0 in such way that all properties of
interest are optimised simultaneously and distances between
solutions and at least one M0 ∈ M0 are bounded by T̂0.

Our proposed heuristics is based on the Tanimoto
similarity (Bajusz et al., 2015) between molecular finger-
prints (Cereto-Massagué and et al., 2015). A molecular
fingerprint is based on features vectors, listing selected
substructures and connections between substructures such



that a specific compound can be characterised as a Boolean
vector (indicating presence or absence of each feature in the
compound). The Tanimoto similarity between compounds
Mi and Mj is defined as Ti,j = k

i+j+k in which i is the
number of features present in the fingerprint of Mi, where
j is the number of features present in the fingerprint of Mj ,
and k is the number of features present in both fingerprints.

Tanimoto similarity is available from open access data
sets such as PubChem (Kim and et al., 2016), which
contains over 108 compounds. PubChem also contains
workhorse property estimates for all compounds, used as
coarse approximations for properties of interest, for exam-
ple, toxicity can be estimated using XLogP (high XLogP
suggests low toxicity) and synthetic accessibility can be
estimated using molecular complexity and molecular weight
(low complexity and weight suggest high accessibility).

Fine grained property estimates require more refined
models, for example, Geometric Deep Learning (Bron-
stein and et al., 2021), where problem representation and
solutions are co-optimised and a model for identification
of patterns and inference of properties can be built to
estimate properties for unforeseen molecules with improved
accuracy. The problem with this approach is that it requires
large data sets to build a model, as well as extensive
computational resources.

Given the prohibitive computational costs of models
using PubChem1, we build accurate estimates for toxicity,
using a molecular data set (containing 251k molecules)
provided by a private company2. A small percentage (2%)
of the data set was previously classified with respect to
aquatic toxicity, based on which a Boolean decision model
classifying molecules as toxic or non-toxic was built. At
least two molecules shared the same SMILES description,
despite being distinct molecules, confirming that Tanimoto
similarity based on fingerprints extracted from SMILES rep-
resentation can be too coarse if accurate property estimates
are required. Namely, 2-ethoxy-N-hydroxybenzamidine
and 2-ethoxy-N’-hydroxybenzenecarboximidamide have the
same SMILES descriptor (CCOC1=CC=CC=C1C(=NO)N),
but the former is classified as non-toxic and the latter is
classified as toxic.

Our method uses Tanimoto similarity and the similarity
obtained via Geometric Deep Learning: given an initial set
of compounds M0 and a distance T̂0 that specifies a similar-
ity measure threshold, Tanimoto similarity is employed to
retrieve from PubChem the set of compounds Mi such that
Tanimoto similarity between at least one M0 ∈ M0 and Mi

1https://pubchem.ncbi.nlm.nih.gov/
2Smarter Sorting Inc:https://www.smarterx.com/

obeys the following inequality: TM0,Mi ≤ T̂0. From this set
of compounds, fine-grained similarity measures obtained
via Geometric Deep Learning are used to rule out com-
pounds identified as toxic. The final set characterises the
search space from which the subset of optimal compounds
with respect to user specified properties is identified. This
uses an Information-geometric Evolutionary Multi-objective
Optimisation algorithm as described in the following.

Recent machine learning advances have led to the de-
velopment of transformers, achieving impressive results in
natural language processing, machine translation, and im-
age analysis (Zhang and et al., 2021). Transformers utilise
Self-Attention Mechanisms (SAM) to explore data organised
in simple structures, such as sequence relations in texts and
neighbourhood relations in image segments, and build more
general, goal-oriented relations. More sophisticated data
organisation, such as what can be represented using graphs
(Bronstein and et al., 2021), has proven to be challenging
for transformers. Graph transformers have been developed
to address this based on purpose-oriented forms of graph
encoding, leading to advancements in molecular property
prediction by incorporating topological and geometric
information representing molecular structure, based on the
Similar Property Principle (Mitchell, 2014).

Recent approaches directly integrate graph structural
information into transformers via implementing improved
positional encoding and improved attention maps derived
from graph topology (Cai and Lam, 2020; Hussain et al.,
2021; Mialon and et al., 2021; Ying and et al., 2021),
and exploration of 3D molecular structure, specifically
considering inter-atomic distance as geometric informa-
tion to be explored in attention maps (Zhou and et al., 2023).

Our method extends Uni-Mol (Zhou and et al., 2023),
with superior empirical accuracy in comparison with
competing architectures on benchmark data sets for molec-
ular property prediction. The Uni-Mol method uses a
transformer based backbone with incorporated invariant
spatial positional encoding and pair-level representation
to effectively capture 3D information. Unlike previous
molecular pre-training models (Hu and et al., 2019; Li
and et al., 2021; Wang and et al., 2022), Uni-Mol treats
a molecule as a set of 3D nodes with atom type and 3D
coordinates, rather than a graph. Previous models used a
spatial local-connected graph to represent 3D nodes (Schütt
and et al., 2017; Gasteiger et al., 2020, 2021; Liu and al.,
2022), which may not capture effectively long-range atomic
interactions. Uni-Mol leverages transformers to capture
such interactions using a Pre-LayerNorm architecture to
handle 3D spatial data (Xiong and et al., 2020), invariant
spatial positional encoding, pair representation, and an
SE(3)-Equivariance coordinate head.



Positions in three-dimensional space are real val-
ued, hence positional encoding has to be invariant
under global rotation and translation. To achieve this,
Uni-Mol adapts relative positional encoding by using
Euclidean distances between atom pairs, and a pair
type aware Gaussian kernel (Shuaibi and et al., 2021).
The D-channel positional encoding of atom pair ij
is denoted as pij = {G(A(dij , tij ; a,b), µk, σk)|k ∈
[1, D]}, A(d, r; a,b) = ard + br where the Gaussian
density function is G(d, µ, σ) = 1

σ
√
2π

e−[(d−µ)2/(2σ2)], µ
and σ are Gaussian density function parameters, dij is the
Euclidean distance of atom pair ij, and tij is the pair-type
of atom pair ij. The pair-type here is not the chemical
bond, which is instead determined by atom types of pair ij.
A(dij , tij ; a,b) is the affine transformation with parameters
a and b, dij corresponding to its pair-type tij .

Transformers are designed to maintain both token-level
and pair-level representations. Token-level representation
is used as a baseline for fine-tuning in downstream tasks.
However, the spatial positions of the input are encoded at
the pair-level, which enables the model to better capture
the 3D spatial relationships between atoms. To initialise
the pair-level representation, a spatial positional encoding
is employed. The atom-to-pair communication is achieved
through the use of multi-head SAM in the form of query-
key products. This allows for updating of the pair-level
representation and further refinement of characterisation of
complex spatial relationships between atoms.

The update of ij pair representation is denoted as

q0ij = pijM, ql+1
ij = qlij + {Ql,h

i
(Kl,h

j
)T

√
d

|h ∈ [1, H]} where
qlij is the pair representation of atoms ij in l-th layer, H is
the number of attention heads, d is the dimension of hidden
representations, Ql,h

i (Kl,h
j ) is the Query-Key of the i-th

(j-th) atom in the l-th layer h-th head, and M ∈ RD × H
is the projection matrix to make the representation the same
shape as multi-head Query-Key product results. Uni-Mol
incorporates the 3D information into the atom representa-
tion through the use of pair-to-atom communication. This is
achieved by utilising the pair representation as a bias term
in SAM. This allows for the propagation of the pair-level
information to the atom-level. SAM with pair-to-atom com-
munication is denoted as Attention(Ql,h

i ,Kl,h
j , V l,h

j ) =

softmax(
Ql,h

i
(Kl,h

j
)T

√
d

+ ql−1,h
ij )V l,h

j where V l,h
j is the j-th

atom in the l-th layer h-th head.

The use of 3D spatial positional encoding and pair
representation in Uni-Mol enhances its ability to capture the
complex spatial relationships between atoms.

However, the model still lacks the capability to di-
rectly output 3D coordinates, which is crucial for tasks
that require 3D spatial information. To address this
limitation, a SE(3)-Equivariance head is used in Uni-
Mol. This addition allows for the direct output of 3D
coordinates and enhances the model’s overall perfor-
mance in tasks that require 3D spatial information:
x̂i = xi +

∑n
j=1

(xi−xj)cij
n , cij = ReLU((qLij − q0ij)U)W

where n is the number of total atoms, L is the number
of layers in model, xi ∈ R3 is the input coordinate of
i-th atom, and x̂i ∈ R3 is the output coordinate of i-th
atom, ReLU(y) = max(0, y) is Rectified Linear Unit,
U ∈ RH×H and W ∈ RH×1 are the projection matrices to
convert pair representation to a scalar.

In order to effectively pre-train Uni-Mol, we used a
large-scale data set of organic molecules, where molecular
pre-training data consisted of approximately 19 million
molecules, which were sourced from multiple public data
sets. To obtain the 3D conformations, a combination of
ETKGD (Riniker and Landrum, 2015) and Merck Molec-
ular Force Field optimisation (Halgren, 1996) from RDKit
tool (Landrum and et al., 2013) was used to randomly gen-
erate ten conformations for each molecule. Additionally, a
2D conformation was generated to address rare cases where
3D conformations could not be generated.

Self-supervised learning is crucial for effective learning
from large-scale unlabeled data. Uni-Mol utilises a masked
atom prediction task as its self-supervised objective. For
each molecule or pocket, a special atom [CLS] is added
to represent the entire molecule, with its coordinate being
the centre of all atoms. However, as 3D spatial positional
encoding contains pair distances, the corresponding atom
types could be inferred easily, and therefore, the masked
atom prediction cannot encourage the model to learn useful
information To overcome this limitation and encourage
learning from 3D information, a 3D position denoising task
was designed. This task involves adding uniform noise
of [−1Ȧ, 1Ȧ] to the coordinates of 15% of the randomly
selected atoms, after which the spatial positional encoding
is calculated based on the corrupted coordinates.

Two additional heads were also employed to recover the
correct spatial positions. The first head, the pair-distance
prediction head, uses the pair representation to predict
the correct Euclidean distances of the atom pairs with
corrupted coordinates. The second head, the coordinate
prediction head, utilises the SE(3)-Equivariance coordinate
head to predict the correct coordinates for the atoms with
corrupted coordinates. The overall pre-training process and
architecture of Uni-Mol are illustrated in figure 1.



Figure 1: Uni-Mol graph transformer. Left: Pre-training architecture. Middle: Inputs, including masked objects and spatial
positional encoding created by pairwise Euclidean distances are used for training. Right: Pairwise and individual object repre-
sentations comprise foundations for model.

The interested reader is advised to check the original
presentation of Uni-Mol for additional details (Zhou
and et al., 2023). To maintain consistency with the pre-
training process, the same data pre-processing pipeline
was employed during fine-tuning. For molecules, multiple
random conformations can be generated in a short time,
making it possible to use them as data augmentation during
fine-tuning to enhance performance and robustness. In
cases where 3D conformations could not be generated, the
molecular graph was used as a 2D conformation. Similar to
natural language processing and image analysis, the repre-
sentation of [CLS], which represents the entire molecule
or the mean representation of all atoms, was used in con-
junction with a linear head to fine-tune on downstream tasks.

Once a set of candidate compounds which are sufficiently
similar to the initial compounds in M0 is selected accord-
ing to the criteria described in previous paragraphs and toxic
molecules are removed from this set, the next step in our
method is the identification of a solution set containing only
optimal compounds. Broadly, we characterise our problem
as an Information-geometric Evolutionary Multi-objective
Optimisation task with imperfect information:

• Given a set A of relevant properties which can be ascribed
to specified compounds (and which are assumed to have
domains ranging through real-valued intervals); a subset
Aopt ⊆ A of those properties which must be optimised,
i.e. either minimised or maximised; a subset Aconstr ⊆ A
of those properties which define constraints, i.e. such that
for each property Ac ∈ Aconstr we have defined two val-
ues vmin

c , vmax
c , vmin

c ≤ vmax
c ; and a set of compounds

to be considered as candidate solutions for the problem;

• Find a set of compounds which are good enough approx-
imations of the compounds that optimise the properties in
Aopt while ensuring that properties Ac ∈ Aconstr belong
to the interval [vmin

c , vmax
c ].

The strategy to navigate towards near-optimal com-
pounds given specified properties Aopt and Aconstr follows
the conceptual framework of Multi-objective Covariance
Matrix Adaptation Evolution Strategy – Mo-CMA-ES (Igel

et al., 2007), adapted to a non-parametric setting, without
mutations and with selection defined for whole molecules.

Starting from the set of candidate compounds, given a
generic threshold T̂ ≥ T̂0, we retrieve from the candidate
compounds the subset Mc

0 = {M : ∃M0 ∈ M0 :
TM0,M ≥ T̂}. By definition, M0 ⊆ Mc

0. For each
Mi ∈ Mc

0, we check whether the constraints defined for
properties in Aconstr are satisfied, and build M̃c

0 ⊆ Mc
0

containing only the compounds that satisfy all constraints.
From these, we build the Pareto frontier of candidate
solutions which comprise a Pareto equilibrium considering
all properties in Aopt estimated according to “workhorse”
values readily available from PubChem, this way building
the initial solution set S̃0 = {Mi : Mi ∈ Pareto frontier}.
As a final step, we rule out from S̃0 those compounds
identified as toxic using the estimates provided by the graph
Transformers, thus building the final Pareto frontier S0.

Given a generation size λ, we select at random M01,
..., M0λ from S0, to build the offspring set of compounds
M1, which is used respectively to build Mc

1,M̃c
1, S̃1 and

S1. This procedure is repeated to build S2,S3 . . . , until
some stability criteria is reached in SN for some finite N –
for example, until |Sk+1|

|Sk| ≈ 1. To help avoid local optima,
we also include, following the strategy of Mo-CMA-ES, a
growth factor Ĝ > 1 for λ: if |Sk+1|

|Sk| < 1, then λ is updated

to λ× Ĝ, and if |Sk+1|
|Sk| > 1, then λ is updated to λ

Ĝ
.

The final solution set SN obtained comprises the com-
pounds suggested as potential solutions upon discretion of a
human product designer. Figure 2 presents an overview of
this chemical design (discovery and optimisation) process.

III Optimised Design of Detergents
In order to work on a real-world problem, we have focused
on the development of new detergents for domestic use. De-
tergents are built from compounds with peculiar molecular
configurations, for which the Similar Property Principle is
valid (Smulders and et al., 2002). Molecules that are used
in detergents typically have a strip-like shape, sometimes



Figure 2: Overview of proposed method: given an initial chemical design space, a set of candidate solutions is selected
based on Tanimoto similarity T̂0; from this set, initial compounds are identified based on Tanimoto similarity T̂ ; using the
initial compounds, high-risk compounds are removed using Geometric Deep Learning (GDL) and optimised compounds are
identified using Evolutionary Multi-objective Optimisation (EMOO), thus building a solution set; the obtained solution set is
used as a new set of initial compounds to iterate the process and build new generations of optimised compounds, until stability
is reached; the final result is the set of suggested compounds for consideration for product design.

with a bifurcation. This forms either a V-like or an Y-like
shape and features lipophilic (hydrophobic) behaviour at
one end, or at the bifurcated end when a bifurcation occurs,
and hydrophilic behaviour at the other. For example, when a
liquid detergent is applied on a greasy surface (for example,
a frying pan that has just been used for cooking) forming
a film, the lipophilic (hydrophobic) end of molecules is
attracted by the greasy surface and the hydrophilic end
remains free and away from the surface. When the film is
washed with running water, the hydrophilic end of detergent
molecules is pulled away with the current, bringing together
with it the grease and thus cleaning the surface.

In this section, XLogP measures the ratio between
lipophilicity and hydrophilicity of a compound, and can
be maximised to build an approximate indication of low
toxicity and good cleaning properties. Toxicity estimates
can be further refined using graph transformers, as outlined
in previous sections. Considering that a chemical product
must be manufactured via industry, it is important to assess
manufacturing costs. Typically, these costs are inversely
correlated with synthetic accessibility, which denotes
the required effort to synthesise a compound. Synthetic
accessibility, in turn, is approximately inversely correlated
with Molecular Weight and with Molecular (structural)
Complexity. Hence, manufacturing costs can be approxi-
mately assessed based on these two properties.

The properties to be optimised can be, therefore, XLogP
(to be maximised), and Complexity and Molecular Weight
(to be minimised). Additionally, we consider a Boolean
constraint provided by graph Transformers, that classifies
compounds as either toxic or non-toxic. In our experiments,
we simulate the initial set of compounds M0 by starting
with a specific compound Minit which has been used
previously in a patented detergent, namely Methylhexadecyl
hydrogen sulphate, whose SMILES representation is given
by CCCCCCC(C)CCCCCCCCCOS(=O)(=O)O and which
is present in a detergent mixture that has been patented
in 2015 (Ellison and et al., 2015), and then selecting ten
compounds at random from PubChem featuring Tanimoto
similarity at least 97% with respect to Minit.

There are three hyper-parameters that control the be-
haviour of the traversal of the set of candidate compounds:

1. Initial similarity threshold T̂0: larger T̂0 ensure that solu-
tions will be similar to M0, which can be good when pri-
ority is given to preserving the properties of M0 in final
solutions, at the cost of reducing possibilities for optimi-
sation of properties of interest.

2. Generic similarity threshold T̂ : larger T̂ slow down con-
vergence, possibly inducing the method to go through ad-
ditional cycles in order to reach stabilisation.

3. Generation size λ: larger λ decrease the randomness in
selection of compounds to act as initial compounds in next



Figure 3: Cardinality of solution sets according to T̂ and T̂0

Figure 4: Cardinality of solution sets according to λ and T̂0

generations – in the limit, if λ ≥ the cardinality of the
present solution set, randomness is eliminated completely.

We experimented with various values for these hyper-
parameters, specifically: T̂0 ∈ [0.95, 0.97], T̂ ∈ [0.95, 0.99]
and λ ∈ [5, 15]. As expected, smaller T̂0 and of T̂ generated
more comprehensive solution sets with remarkably few
exceptions (less than 2% of the compounds in each solution
set), solution sets obtained with larger T̂ were subsets of
solution sets obtained with smaller T̂ .

Figure 3 presents the cardinality of final solution sets,
for T̂ ∈ {0.95, 0.97, 0.99} and T̂0 ∈ {0.95, 0.97}. In these
experiments, we have adopted λ = 10. Where, different λ
influence the selection of compounds in intermediate gener-
ations during traversal of the set of candidate compounds,
and do not have direct influence of comprehensiveness
of solution sets. Figure 4 presents the cardinality of final
solution sets, for λ ∈ {5, 10, 15} and T̂0 ∈ {0.95, 0.97}. In
these experiments, we have adopted T̂ = 0.97.

As a qualitative metric, we check what compounds are
in the final solution sets, observing that 14 compounds
were present in all solution sets, irrespective of choice of
hyper-parameter values. Five of these compounds belong to
patented detergents, namely:

1. • 2-Methylpentadecyl hydrogen sulfate
• (CCCCCCCCCCCCCC(C)COS(=O)(=O)O)
• patent issued in 2002 (Kvietok and et al., 2002),

2. • 20-Methyldocosyl hydrogen sulfate
• (CCC(C)CCCCCCCCCCCCCCCCCCCOS(=O)(=O)O)
• patent issued in 2014 (Scheibel and et al., 2014),

3. • 2-Methylhexadecyl hydrogen sulfate
• (CCCCCCCCCCCCCCC(C)COS(=O)(=O)O)
• patent issued in 2015 (Federle and et al., 2015),

4. • 2-Octylundecyl hydrogen sulfate
• (CCCCCCCCCC(CCCCCCCC)COS(=O)(=O)O)
• patent issued in 2019 (Holland and et al., 2019),

5. • 2-Octyldecyl hydrogen sulfate
• (CCCCCCCCC(CCCCCCCC)COS(=O)(=O)O)
• patent issued in 2020 (Holland et al., 2020).

All other compounds, despite not having identified previ-
ous patents in PubChem indicating their use as detergents,
share structural similarities with each other.

IV Discussion
This study investigated the optimisation of a specific
chemical product, as a specific case study representative
of the larger field of automated chemical product design.
That is, given a space of candidate solutions for a specific
problem organised as a graph in which edge labels denote
similarities between pairs of candidates, and given a collec-
tion of properties to be optimised and reference points in the
space of solutions, we find solution sets comprising points
within a region defined by balls centered on each of the
reference points. Solution sets are defined in such way that
there are no two points Mi and Mj in a solution set where
Mi is better than Mj at every property being optimised.

In this case study of chemical product design, we include
the availability of more than one available procedure to esti-
mate and verify properties of candidate solutions, consider-
ing that accurate procedures can be highly expensive and in-
expensive procedures can be inaccurate. Specifically, in our
method, candidate solutions are compounds found in a large
scale data set such as PubChem, and the reference point is
given by a set of compounds which are active elements in
previously known (patented) detergents. This ensures that
all solutions are sufficiently similar to at least one detergent
belonging to the reference set and will thus share properties
with it. This ensures all such solutions are worth checking
as potential candidates for novel detergents (with optimal
properties), where properties to be optimised are acceptable
proxies for attributes found in high quality real-world prod-
ucts such as low risk of aquatic toxicity and low manufac-
turing costs.



This discovery of existing detergents, with optimised
properties (section III), was enabled by our extension of
Uni-Mol coupled with Information-geometric Evolutionary
Multi-objective Optimisation (section II). Specifically, we
applied the Tanimoto similarity measure between pairs of
compounds to navigate across a space of candidate solutions
and to subsequently build precise estimates for risks related
to aquatic toxicity, based on Geometric Deep Learning,
which are then used to eliminate (from solution sets),
those compounds with high toxicity risk. Our empirical
results indicate that this method is capable of identifying
potentially risky compounds which are not noticed using
less accurate methods. To effectively and efficiently manage
exploration of candidate solution space, our method can be
fine tuned using various hyper-parameters (section II).

The effectiveness of the method presented here was
demonstrated via the identification of chemical compound
solutions which had been previously identified using
standard chemical synthesis processes (Chen and et al.,
2018; Schneider, 2018). This suggests that our method is
suitable for discovering novel solutions that are structurally
similar to previously identified solutions (for example,
current detergents synthesized by chemical product de-
sign), but with further optimised properties (such as lower
toxicity). Figure 2 presents an overview of this chemical
product design process, where the optimised compounds
discovered in our solution set were equivalent to 14 existing
compounds (already patented detergents highlighted in
section 3: Optimised Design of Detergents). This result
further validates the efficacy of our method as an assistive
computational chemical design tool and as a molecular
property optimisation tool.

Overall, results obtained thus far indicate the potential
of our method as a computational tool to assist with opti-
mising chemical product designers, via rapid identification
of novel solutions (compounds) with advantageous design
properties. Current research is further validating our compu-
tational method on a broader range of chemical compound
design and optimisation tasks. For example, comprehensive
verification of some compounds belonging to the obtained
solution sets which, however, have not been part of previ-
ous patents identified in PubChem, indicate that these com-
pounds can cause skin and eye irritation, hence being possi-
bly inappropriate as compounds to be included in domestic
detergents. These attributes, however, have not been consid-
ered here, and will be considered in future experiments.

V Conclusions and Future Work
This study presented an empirical validation of a compu-
tational chemical design and optimisation method to assist
with novel chemical product design. Our preliminary results
indicate that our proposed method is particularly useful for
identifying alternative optimal chemical design solutions
given a known (near optimal) solution as a starting point.
This study’s experiments focused on the optimisation of
molecular properties relevant to ensuring low environmental
impact of product and production costs. The proposed com-
putational method is sufficiently general to be applicable to
solving various chemical design and optimisation (and more
broadly molecular design) problems, given that all such
design problems operate in solution spaces characterised by
specific structural (molecular) definitions.

Future work will validate our method as a computational
tool for assisting optimal chemical product design for var-
ious real-world applications, as a step towards automated
molecular design. Specifically, we shall focus on using gen-
erative and predictive machine learning in combination with
generative computational chemistry to devise novel molecu-
lar compounds to be used in pharmaceuticals or other func-
tional chemical agents. We shall also focus on further val-
idation of our method using quantitative analysis and com-
parative assessment with respect to existing approaches that
could be used for the same design problems we have taken
into consideration.
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