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Abstract

Recent work has demonstrated the viability of DNA robotics
and artificial molecular machines for molecular transporta-
tion and cargo sorting with potential applications in manu-
facturing responsive molecular devices, programmable ther-
apeutics, and autonomous chemical synthesis. We extend
previous work on cooperative molecular transportation using
artificial molecular machines, where we similarly function-
alize DNA-conjugated microtubules driven by kinesin mo-
tor proteins. DNA-functionalized microtubules propelled by
surface-adhered kinesin motors enable the self-organization
of molecular swarms, where such swarms load and transport
cargo (microbead) in a simulated chemical environment. We
demonstrate programmable molecular swarms for cargo sort-
ing and cooperative transport. Cargo loading occurs when
sufficient microtubules are at the same location as the cargo,
and cargo unloading occurs at specific points in the environ-
ment through interaction with localized DNA species. Our
contribution is the design of a chemotaxis molecular con-
troller, forcing the swarm to tumble (random change direc-
tion) when the system is not following a molecular gradient
corresponding to the cargo type, thus directing it to specific
points for cargo unloading. This work thus contributes to the
open problem of how to best design programmable molecular
machines for various tasks in microscopic environments.

Introduction
Molecular machines that perform mechanical tasks are
key functional components in all biological organisms.
The design and synthesis of artificial molecular machines
(Balzani et al., 2000; Kay and Leigh, 2015; Hagiya et al.,
2014) have promised various nanoscale and micro-scale
applications including microscopic electric motors (Zhang
and et al., 2023) and robotic swarms (Palagi and Fischer,
2018; Dorigo et al., 2020; VanSaders and Glotzer, 2021).
Designing programmable molecular robots that automati-
cally conduct complex (user-assigned) tasks in microscopic
environments is a grand challenge in molecular engineering.
Specifically, how to design molecular machines that are
general problem solvers in microscopic environments
(Thubagere and et al., 2017; Akter and et al., 2022).

Previous work has demonstrated the viability of fab-
ricating many micro-robotic swarms using, for example,
colloidal systems comprising active crystals or polymeric
gels (Wang and et al., 2015; Xie and et al., 2019). Such
swarming behavior can be directed using magnetic (Yan and
et al., 2016) or electric fields (Palacci and et al., 2013), light
(Katuri and et al., 2021; Akter and et al., 2022), or chemical
signaling (Aubert-Kato et al., 2017; Zadorin et al., 2017)
such that specific swarming behaviors emerge. Despite
such advances in the design and synthesis of molecular
machine swarms, microscale robots are still far from being
capable of solving one of the grand visions of robotics −
automated self-organization of swarm-robotic systems for
solving various collective cooperative behavior tasks (Yang
and et al., 2018), as currently envisioned by computational
simulations (Yang and Bevan, 2020).

In this study, we demonstrate in silico one of such
collective behavior tasks, cooperative cargo sorting, using
simulated swarms of hundreds of biological molecular
machines, specifically, microtubules propelled by kinesin
motors as transporters. That task is a combination of behav-
iors that were previously demonstrated experimentally in
vitro: collective cargo transport (Akter and et al., 2022) and
molecular cargo sorting (Thubagere and et al., 2017). Here,
multiple agents have to cooperate to transport different
types of cargo to their designated target locations (Figure 1).

Akter and et al. (2022) use swarms of microtubules
that can form bonds with each other and with the cargo
(micro-beads) through the interaction of complementary
DNA strands grafted to their surface. In their work, those
DNA strands were chemically modified to integrate azoben-
zene molecules, which allowed them to break DNA-DNA
bonds through interaction with UV light, and restored their
binding abilities through interaction with visible light. By
illuminating the target area with UV light, they were able
to demonstrate experimentally the cooperative transport of
cargo to a single target (Figure 1). The Akter and et al.
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Figure 1: Illustration of the loading and transport of DNA-modified polystyrene beads as the model cargo (represented as cyan
spheres) by the swarm of molecular transporters, adapted from (Akter and et al., 2022). Microtubules (MT) interact with each
other through the hybridization of the DNA strands on their surface. Once a swarm large enough is formed, it may pick up cargo
and transport it. Upon reaching the destination a physical mechanism (configuration switching of azobenzene in the original
work; DNA strand displacement in this work) unloads the cargo.

(2022) approach has two limitations for the current task: (a)
their system cannot differentiate between different targets
and (b) their system cannot sense the direction of the target
area. Using their approach, cargo is unloaded in any target
area, regardless of its type, and is impossible to pick back up.

Thubagere and et al. (2017) demonstrated a simple molec-
ular robot moving across a track made of DNA capable of
picking up labeled cargo and dropping it off at its target lo-
cation. As in the study of Akter and et al. (2022), cargo is
picked through the interaction of complementary strands at-
tached respectively to the robot and the cargo. In their case,
the DNA strand attached to the cargo has a free section that
can combine with the target, triggering the displacement of
the cargo to the target (Figure 2). By design, their system
does not allow for cooperation between agents, as they are
incapable of walking together on the track.

Contributions

This study extends the work of Akter and et al. (2022) by
adding a target label, similar to the design of Thubagere
and et al. (2017), to the DNA strand attached to the cargo,
defining their type. Swarm formation occurs via physical
interactions between microtubules (collisions) and the hy-
bridization (that is, association) of DNA strands chemically
attached to their surface. That hybridization is reversible but
acts as a stabilizer for the swarm. Cargo loading happens at
various points (initial cargo locations) and is based on the
same interaction between DNA molecules. If the number
of microtubules is large enough (dependent on the size and
weight of the bead) the cargo will be loaded. The target
areas have DNA strands attached to the surface, using the
complementary sequence of the label of the expected cargo,
similar to Thubagere and et al. (2017). Doing so solves
issue (a) mentioned in the previous Section: the swarm can
now differentiate between different types of cargo.
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Figure 2: Loading and unloading of cargo based on trans-
fers through DNA complementarity (strand displacement).
DNA strands are represented as arrows corresponding to
the 5’ to 3’ orientation. Colors show complementarity.
Top: cargo is loaded on the molecular robot (microtubule)
through the complementarity of anchoring sites. Bottom:
single-stranded target site on the cargo hybridized to the
DNA present in the target area, and cargo is unloaded via an
exchange in the anchoring site (strand displacement). The
anchoring site in the target strand is longer than that on the
robot, making the exchange energetically favorable.

Finally, we add a molecular controller to the beads based
on previous experimental work (Gines and et al., 2017;
Aubert-Kato et al., 2017; Zadorin et al., 2017), implement-
ing here the controller for a run-and-tumble-like strategy,
thus providing some rudimentary chemotaxis. Tumbling is
implemented by physically bending microtubules, thus forc-
ing them to run in circles. At the same time, signal species
are produced and diffused from the target area, providing a
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Figure 3: Environment. The microtubules are shown in white. The two targets are depicted as colored squares in opposite
corners. Beads (cargo) are shown in the color that corresponds to their target. The initial state shows a typical distribution of
cargo. The intermediate state shows swarms of microtubules, some of which have cargo loaded. At the end of a typical run,
most beads have reached their target, while a few got stuck on the sides of the environment.

gradient to follow (Zadorin et al., 2017). Doing so solves is-
sue (b): the swarm can sense the correct direction of the tar-
get, thus accelerating delivery compared to a random walk.

Research Objective

Our objective is to demonstrate theoretically that the
molecular swarm, with the extensions presented in the
contribution, can solve the cooperative cargo sorting
task. The swarm is to function in an environment with
two cargo types, where the degree of cooperation (bead
weight, thus affecting the number of robots required for
transport) determines task complexity, and the amount of
cargo (cooperatively) transported over time determines the
collective behavior task performance (Figure 3).

This objective is evaluated with three cooperative difficul-
ties and three types of controllers, for a total of nine config-
urations. For cooperative difficulty, we evaluate an environ-
ment containing a random uniform distribution of cargo with
two cargo types (red and green) and two drop-off points (la-
beled with the same colors), where the bead weight is such
that at least 1, 2 or 5 microtubules are required to transport
cargo. The simplest case does not require cooperation, as
a single microtubule can perform the task, but cooperation
can still increase the movement speed of cargo, leading to
improved performance. For controller types, we consider
three cases:

• No tumble, which corresponds to no controller added to
the beads. The system thus relies only on the random walk
of the swarm to reach the target.

• No gradient, which corresponds to a controller that will
periodically trigger the tumbling of the swarm carrying
the bead, regardless of the change in distance to the target.

• Gradient, which corresponds to the same periodic molec-
ular system, with an additional module sensing the change
in the concentration of a signaling species. When the sig-
nal increases, the next oscillation is delayed, making the
swarm remain on course. Note that the gradient sensing
module only offers a delay; the controller will still trigger
a tumble eventually even if the direction is correct.

This study demonstrates that tumbling is beneficial for
task performance with respect to cooperative cargo sorting.
However, we found that the impact of gradient sensing is de-
pendent on the level of cooperation required. In some cases,
periodic tumbling can be more beneficial than delayed tum-
bling, potentially due to the timing of the oscillations.

Methods
This section describes the core methodology of our study,
which comprises: the agents (swarming microtubules), the
cargo (micro-beads) to be cooperatively transported, the
molecular framework used to implement the controller (the
PEN toolbox), and the simulation environment.

Molecular Environment and the PEN Toolbox
Our simulation environment1 is designed to mirror that of
previous work, with microtubules moving around, poten-
tially forming swarms and interacting with cargo (Akter
and et al., 2022). We set two specific areas in opposite
corners as target unloading spots for the two different types
of cargo (Figure 3). We also assume that they are the
source of their respective molecular signal, diffusing in the
environment (Aubert-Kato et al., 2017; Zadorin et al., 2017).

The core methodology of this study uses molecular
programming (Adleman, 1994), that is, using molecules

1Simulation source code and raw data are available at https:
//doi.org/10.5281/zenodo.7947035



(such as DNA, RNA, and proteins) to process information.
Molecular programming relies on chemical concentrations
to represent data and chemical reactions to transform data.
There have been many in vitro demonstrations of molecular
programming including computing a square root (Qian
and Winfree, 2011), emulating neural networks (Qian
et al., 2011), assembling DNA nanostructures (Seeman,
2003), encoding a toggle-switch (Padirac et al., 2012),
cascaded DNA pattern formation (Abe et al., 2021), and a
2D predator-prey model (Padirac et al., 2013).

This study uses the PEN (Polymerase, Exonuclease,
Nickase) toolbox (Montagne and et al., 2011), a molecular
programming approach relying on the interaction between
DNA molecules and enzymes to encode three basic opera-
tions (or modules): activation, inhibition, and degradation.

The PEN toolbox distinguishes between two types of
DNA molecules: short (11 to 13 bases long) signal strands
and longer (22 to 25 bases long) template strands. Signal
strands can attach to complementary templates to produce
other signal strands (activation), or temporarily inhibit ac-
tivity (inhibition). Signal strands are continuously degraded
by one of the enzymes (exonuclease), and template strands
are chemically protected against degradation. As such,
the concentration of signal strands changes through time
depending on their interactions with the template strands.

PEN toolbox activation and inhibition modules can
be combined in various ways to form programs that
exhibit various behaviors, in both in vitro experiments,
including an oscillator (Montagne and et al., 2011) and
toggle switch (Padirac et al., 2012), and in-silico experi-
ments (including a two-bit counter (Aubert and et al., 2020)
and simple molecular robot controller (Hagiya et al., 2016)).

The efficacy of the PEN toolbox has been demonstrated
using in vitro experiments including an approach that
produced collective behaviors in thousands of agents,
exhibiting fundamental mechanisms of living organisms
including distributed decision-making and morphogenesis
(Gines and et al., 2017). This work was the basis of later
in vitro experiments (Aubert-Kato and et al., 2017; Zadorin
et al., 2017) that demonstrated swarms of bio-micro-robots
conceptualized as DNA-functionalized microbeads, with
functionality to send and receive signals and self-assemble.

Thus, we chose to implement the molecular controller of
our system with the PEN toolbox as it is chemically compat-
ible with microtubules (Senoussi et al., 2021) and has been
previously used in vitro in combination with microbeads,
which we use as cargo in the present work.

p'j+1
p'j

pipi+1

pi-1

Fbind

Fexcl

Figure 4: Interactions between microtubules, showing the
forces exerted on segment extremity pi. External forces
(Fbind and Fexcl) are oriented as the normal to the segment
applying them. Internal forces (interactions between ends
of segments in the same microtubule) are shown as arrows
along the segments. Dashed lines represent (potential) fur-
ther segments. The forward force is not shown.

Molecular Agents
Agents, in our simulation environment, correspond to
individual microtubules gliding on the surface, propelled by
molecular motors. While typical models of microtubules
only focus on the position of their center of mass and
orientation (see for instance Sumino et al. (2012) or Bär
et al. (2020)), we need a more explicit model to capture
interactions between microtubules and beads, as well as a
way to represent their curvature when tumbling.

As such, we model microtubules as linearly jointed
segments. We take inspiration from Kaneko et al. (2020)
and assume each segment is a highly stiff spring connecting
both of its extremities and simulate their movement by
computing the forces applied to those extremities.

Formally, assuming a microtubule is a list (p1, . . . , pn)
of n segment extremities, and assuming their ”weight” is
normalized to 1, the acceleration of ith extremity pi is:

api
= Finternal +

∑
seg∼pi

(Fexcl(seg, pi) + Fbind(seg, pi))

+
∑

bead∼pi

Fbind(bead, pi)

(1)

where seg ∼ pi and bead ∼ pi are the set of segments
and beads in the neighborhood of pi, respectively. Finternal

corresponds to the spring forces from the one or two
segments pi belongs to. Each extremity is also subjected
to two external forces: an exclusion force from nearby
microtubules Fexcl and a spring-like connecting force
corresponding to the binding of DNA species on the surface
of the microtubule to other microtubules or beads Fbind,
similar to those in Akter and et al. (2022) (Figure 4).

Finally, the front extremity is subjected to a forward
force, corresponding to the action of molecular motors



Experiment Parameters
Required cooperation 1, 2 or 5

Controller types No tumble
No gradient

Gradient
Runs (per experiment) 100

Task trial duration 200000 steps
Wrap around : Microtubules Yes

Beads No
Micro-tubules (swarm) 300

Bead initialization Uniform random
Simulation Parameters

1 spacial unit 250 nm
1 time step 0.5 s
Arena size 75µm x 75µm

Beads 5 per target
Bead radius (display) 1.25 µm

Target size 12.5µm x 12.5µm
Interaction range 0.5 µm

Microtubule length 5 µm
Forward speed of microtubules 250 nm/s

Chemical Parameters
Prey species production Vmax 1000.0 s−1

Prey species production KM 200.0 (no unit)
Predation rate p 60.0 s−1

Prey degradation rate λN 0.6 s−1

Predator degradation rate λP 6.0 s−1

Gradient degradation rate impact δ 6.0 s−1

Table 1: Experiment and Simulation Parameters

present on the surface of the environment. When tumbling,
that force is instead angled by 90◦.

We set the length of the microtubules in the simulation
to be 5 µm, moving with a base velocity of 250 nm·s−1

based on values from the literature (Lüdecke et al., 2018).
Beads are simulated to connect to nearby microtubules
through a spring force corresponding to the binding of
complementary DNA strands, similar to the interaction
between microtubules. Bead weight has been normalized so
that a weight of N requires N agents to effectively move
across the environment.

Cargo: Beads and molecular dynamics
Cargo in our system is implemented as microbeads dis-
tributed throughout the environment. As in previous work
(Akter and et al., 2022), the beads are functionalized with
DNA molecules, allowing collection by the swarm (agents)
when in sufficiently close proximity.
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Figure 5: Reaction network of the molecular controller.
Nodes are signal species, arrows represent templated re-
actions, and bar-headed arrows represent inhibitions in the
PEN toolbox formalism. Elements marked by an asterisk
(*) are attached to the beads. The left part shows the simpli-
fied reaction network for the Predator-Prey oscillator (Fujii
and Rondelez, 2013). The dashed sections implement an in-
coherent feed-forward network (Aubert et al., 2013), which
responds to increases in the level of the beacon species SG

and SR for the green and red cargo respectively. The out-
put of that gradient sensing module is designed to increase
the degradation rate of N (Montagne et al., 2016), changing
oscillator behavior. Overall, beads will periodically produce
spikes in the tumbling species N, except if they are moving
towards increasing concentrations of their beacon species.

We also extend the method of Akter and et al. (2022)
with additional DNA molecules implementing a molecular
controller (Figure 5) based on the PEN toolbox. Figure 5
(left side), shows the simplified reaction network for
the Predator-Prey oscillator (Fujii and Rondelez, 2013),
where N corresponds to the tumbling species, consumed
by species P, which in turn produces more of species P
through the activity of the polymerase enzyme. Reaction
network dynamics are as follows: templated autocatalysis
increases the concentration of N over time. In turn, the
predator species P multiplies over time by acting as a
template to turn N molecules into more P molecules. As the
concentration of P increases, the rate of predation eventually
becomes higher than the production of N. Both species
are progressively degraded over time by the exonuclease.
Once the concentration of N gets too low, the degradation
rate of P overcomes the predation rate, thus reducing its
concentration to a level where the autocatalysis of N can
pick up again, thus completing the cycle.

Additionally, the prey species N is designed to interact
with DNA species present on the microtubules, inducing a
strong asymmetry and forcing them to turn. While that extra
interaction adds a load on the system, previous experimental
work showed that oscillations can still occur (Dehne et al.,



2021). Note that the molecular program triggering the
creation of all species involved in the oscillator is made of a
single DNA molecule, which we attach to the bead.

The dashed sections (right side of Figure 5) are two
copies of an incoherent feed-forward network (Aubert et al.,
2013), which only produces an output in response to an
increase in the level of a target-dependent beacon species
(SG or SR). When the signal is present, it combines with a
PEN template species to create an output species. Concur-
rently, an inhibiting species is created, targeting that first
template. Output is produced as long as the strength of the
signal increases beyond the strength of the inhibition. Once
the inhibition is too strong or if the signal’s concentration
decreases, no more output is produced, and both inhibitor
and output are degraded over time, eventually resetting
the system. This system requires two individual template
species to be added to the bead. The output of that gradient
sensing module is designed to increase the degradation rate
of N (Montagne et al., 2016), thus delaying spikes in N.

As a result, the concentration of N will remain low for
longer periods of time while moving toward the relevant tar-
get, thus allowing the swarm connected to the cargo to keep
moving in a straight line. On the other hand, when the cargo
is going in the wrong direction (no increase in the beacon
species), the system will produce spikes at regular intervals,
thus forcing the swarm to tumble and change direction. The
concentration of the relevant species is computed through
the following set of ordinary differential equations:

d[N ]

dt
=

Vmax · [N ]

KM + [N ]
− p · [N ][P ]− (λN + δ · [G]) · [N ]

d[P ]

dt
= p · [N ][P ]− λP · [P ]

(2)
Where [.] represents the concentration of a given species.

G is the output of the gradient module (Figure 5). For
the sake of simplicity, in the simulation, [G] is set to the
improvement in distance to the target when moving towards
it and 0 otherwise, while the molecular dynamics of the
module itself is not computed. [G] is always set to 0 in the
”no gradient” controller. Other parameters are explained in
Table 1.

Finally, we extended the DNA strand used by the beads to
attach to microtubules to have a toehold section allowing un-
loading once reaching the target area (Thubagere and et al.,
2017). As such, the controller only requires one additional
DNA species (no gradient) or three additional DNA species
(gradient) compared to Akter and et al. (2022). We con-
sider this design realistic since molecular programs of that
size have been experimentally demonstrated in vitro to work
even when grafted to microbeads (Gines and et al., 2017).

Figure 6: Distance over time of cargo for different con-
trollers (”Type”) and normalized bead weight (”BW”). Each
configuration was run for 100 runs. Note that a distance
from 6.25µm (side) to 8.8µm (corner) corresponds to a bead
in the target area.

Agent, environment, cargo, and experiment parameters used
in the simulation are summarized in Table 1.

Experiments and Results
Experiments evaluated the efficacy of the molecular swarm
for transporting labeled cargo to the relevant target area.
We also investigated the relationship between the average
task performance of the molecular controllers and the level
of cooperation required to move the cargo. Experiments
measured and recorded the distance between cargo and the
center of their target area over time for all combinations
of controller types (no tumble, tumbling without gradient
sensing, and tumbling with gradient sensing) and cooper-
ation constraints due to cargo weight (Figure 6). With the
exception of the ”no tumble” controller (that is, no control,
change in direction only caused by interactions between
microtubules) at the highest cooperation level, all simulated
systems noticeably brought the cargo closer to their target.

For weight 1.0, the full system performs better than both
no tumble and no gradient (which are comparable to each
other). For weight 2.0, interestingly, the no gradient system
performs the best, which corresponds to randomly forcing
direction changes at regular intervals. For weight 5.0, both
methods of tumbling are much better than no tumbling.
As expected, the higher the weight, the more difficult it is
for the swarm to coherently pick up the cargo and bring it
to its destination. Note that, due to the chemical kinetics,
the cargo is quickly dropped upon entry into the target
area, meaning that the average distance would not converge
towards 0 but rather towards a value close to the size of the



Figure 7: Average fraction of beads on target over time.
Type corresponds to the controller type and BW to normal-
ized Bead Weight.

target area. An additional limitation of using distance as a
metric is that cargo may get stuck on the sides or corners of
the arena, potentially in places that are close to the drop-off
zone. As such, we also evaluated the actual fraction of
cargo that reached their target over time (Figure 7).

The fraction was lower than what could be expected from
the distance alone, confirming that some beads may get
dropped near the target but not directly on it. Interestingly,
the results show that the gradient-sensing method is lagging
behind in the medium cooperation experiment. Visual
inspection of the behavior of the swarms showed that they
often tumbled just before reaching the target area. We
investigated that behavior by looking at the concentration
of the tumbling species over time, with and without the
gradient sensing module (Figure 8).

The controller without gradient sensing (blue) provides
regular oscillations similar to implementations of the
system found in the literature (Fujii and Rondelez, 2013;
Dehne et al., 2021). The addition of the gradient sensing
module triggers a strong change in the behavior of the
oscillations depending on the position of the bead with
respect to its target and its current movement. In particular,
we note that, even when moving in the correct direction,
the oscillator will still eventually spike (which is expected),
but at a much higher intensity than usual. That behavior
may disaggregate the swarm, potentially dropping the cargo.

Additionally, once on target, side effects of the gradient
sensing module will induce oscillations of higher ampli-
tude than usual. Multiple cargoes dropped in close vicin-
ity may be enough to force nearby swarms to tumble unex-

not loaded
loaded, moving
towards targed

loaded, close
to target

unloaded, 
on target

Figure 8: Concentration of the tumbling species N on a typ-
ical bead over time (orange). Concentration of the same
species, without the gradient sensing module, is shown in
blue for reference.

pectedly. Once again, that tumbling may disaggregate the
swarm, dropping the cargo just outside the target area. That
issue could be solved by adding a ”kill switch” to the target
area, preventing further oscillations from occurring.

Conclusion
Scale in swarms has been shown to be a critical component
in the emergence of complex behaviors (Witkowski and
Ikegami, 2019). Molecular swarms with more than a million
agents have been previously demonstrated (Aubert-Kato
et al., 2017; Zadorin et al., 2017; Akter and et al., 2022),
reaching the required scale. In this paper, we demonstrated
that simple molecular programs can implement controllers
for such swarms, leveraging emergent behavioral complex-
ity. This study focused on a typical task from evolutionary
robotics: the implementation of cooperative cargo sorting.

Our study combined simple molecular systems: a swarm
of microtubules capable of the cooperative transport of
cargo, and a gradient-sensing oscillator with the ability to
physically bend microtubules, thus implementing a simple
run-and-tumble strategy for chemotaxis. In particular, those
elements were selected for their compatibility with the
others in wet lab experiments.

We demonstrated that our system was indeed capable of
solving the task at hand. The gradient sensing approach
was generally beneficial compared to random movement.
Unexpectedly, in the medium cooperation scenario, per-
forming regular tumbles regardless of the gradient proved
more beneficial than the gradient sensing approach, and
both approaches had identical performance in the high co-
operation scenario. We expect such results to be connected
to the timing of oscillations compared to the movement of



the cargo and further behavioral improvements could be
achieved through optimization of the controller’s chemical
parameters. Another potential reason comes from the fact
that the gradient sensing mechanism lead to stronger spikes
once the cargo was on target, which may force swarms to
tumble just before reaching the goal. However, this could
be addressed with a kill switch in the molecular controller.

In future work, we will attempt to scale up the number of
agents in the simulation to provide results closer to the full
capacities of molecular systems. The realism of the simula-
tor can also be improved by explicitly computing the diffu-
sion of molecular species through reaction-diffusion and by
using more complex (but more realistic) models for the re-
action kinetics (Aubert-Kato, 2020). Additionally, a system-
atic exploration of small reaction networks (2 to 5 template
species) could yield a larger range of swarming behaviors
(Cazenille et al., 2019).
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Chaté, H., and Oiwa, K. (2012). Large-scale vortex lattice
emerging from collectively moving microtubules. Nature,
483(7390):448–452.

Thubagere, A. and et al. (2017). A cargo-sorting DNA robot. Sci-
ence, 357(eaan6558).

VanSaders, B. and Glotzer, S. (2021). Sculpting crystals one burg-
ers vector at a time: Toward colloidal lattice robot swarms.
PNAS, 118(3):113–124.

Wang, W. and et al. (2015). From one to many: Dynamic assem-
bly and collective behavior of self-propelled colloidal motors.
Accounts of Chemical Research, 48(1):1938–1946.

Witkowski, O. and Ikegami, T. (2019). How to make swarms open-
ended? evolving collective intelligence through a constricted
exploration of adjacent possibles. Artificial life, 25(2):178–
197.

Xie, H. and et al. (2019). Reconfigurable magnetic mi-
crorobot swarm: Multimode transformation, lo-
comotion, and manipulation. Science Robotics,
28(4):DOI:10.1126/scirobotics.abm0677.

Yan, J. and et al. (2016). Reconfiguring active particles by electro-
static imbalance. Nature Materials, 15(1):1095–1099.

Yang, G. and et al. (2018). The grand challenges of science
robotics. Science Robotics, 14(3).

Yang, Y. and Bevan, M. (2020). Cargo Capture and Transport by
Colloidal Swarms. Science Advances, 6(4).

Zadorin, A. S., Rondelez, Y., Gines, G., Dilhas, V., Urtel, G., Zam-
brano, A., Galas, J.-C., and Estevez-Torres, A. (2017). Syn-
thesis and materialization of a reaction–diffusion french flag
pattern. Nature chemistry, 9(10):990–996.

Zhang, L. and et al. (2023). An electric molecular motor. Nature,
613(1):doi.org/10.1038/s41586–022–05421–6.


