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ABSTRACT

Behavioural diversity has been demonstrated as beneficial in bi-
ological social systems, such as insect colonies and human soci-
eties, as well as artificial systems such as large-scale software and
swarm-robotics systems. Evolutionary swarm robotics is a pop-
ular experimental platform for demonstrating the emergence of
various social phenomena and collective behaviour, including be-
havioural diversity and specialization. However, from an automated
design perspective, the evolutionary conditions necessary to syn-
thesize optimal collective behaviours (swarm-robotic controllers)
that function across increasingly complex environments (difficult
tasks), remains unclear. Thus, we introduce a comparative study
of behavioural-diversity maintenance methods (swarm-controller
extension of the MAP-Elites algorithm) versus those without be-
havioural diversity mechanisms (Steady-State Genetic Algorithm),
as a means to evolve suitable degrees of behavioural diversity over
increasingly difficult collective behaviour (sheep-dog herding) tasks.
In support of previous work, experiment results demonstrate that
behavioural diversity can be generated without specific speciation
mechanisms or geographical isolation in the task environment, al-
though the direct evolution of a functionally (behaviorally) diverse
swarm does not yield high task performance.

CCS CONCEPTS

+ Computing methodologies — Evolutionary robotics.

KEYWORDS
Swarm-Robotics, Quality-Diversity Methods, Behavioural Diversity

ACM Reference Format:

Scott Hallauer, Geoff Nitschke, and Emma Hart. 2023. Evolving Herding
Behaviour Diversity in Robot Swarms. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO °23 Companion), July 15-19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3583133.3590528

1 INTRODUCTION

Behavioural (or functional) diversity in natural populations has
been shown to improve both their robustness and overall perfor-
mance. For example, functional diversity in bee populations has
been demonstrated to increase pollination rates [3]. Furthermore,
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cultural diversity amongst humans in the workplace is related to
better problem solving with different ways of approaching the
same tasks [5]. A more general study using agent-based modelling
also found that a diverse team of problem solvers is more likely to
outperform a team of high-ability problem solvers [4].

Our aim, in this project, is to investigate methods for generating
behavioural diversity in a collective herding task with the end goal
of creating a heterogeneous robot swarm. It is envisioned that the
practical benefits might involve sub-task specialisation amongst
robots which improve overall swarm task performance (e.g. some
robots which circle the target zone and others which search the en-
vironment periphery for more agents to herd). This is approached
using two evolutionary algorithms: Steady-State Genetic Algorithm
(SSGA) and Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites). The key difference between these algorithms is that MAP-
Elites explicitly promotes diversity, whereas SSGA does not. We
compare the effectiveness of these algorithms from the two per-
spectives of either evolving behaviours for a homogeneous swarm
(that could be combined in future to make a heterogeneous swarm)
or directly evolving a heterogeneous swarm.

2 METHODS

2.1 Simulation Task Environment

The collective herding task is simulated using an extended version
of the Roborobo! multi-agent simulation framework [1]. A swarm
of N robots, called "dogs", is assigned the objective of capturing
a dispersed flock of M agents, called "sheep”, inside a centrally-
located target zone. Sheep actively avoid entering the target zone,
unless pursued by a dog. Once they enter the target zone, they are
considered "captured" and removed from the simulation. The 2D
environment is bounded on all sides by walls. Figure 1 provides a
visual snapshot of the environment during a simulation run.

2.2 Agent Representation

Two types of agent, dogs and sheep, are simulated in this task
environment. Although both incorporate a similar body shape and
sensory configuration, there are major differences in the controllers
used (and thus behaviours elicited).

2.2.1 Dogs. These are the robot agents that undergo neuro-evolu-
tion for the herding task. They incorporate a simple, circular mor-
phology similar to Khepera or e-puck robots. In terms of sensory
configuration, a radar-type proximity sensor is used which detects
the nearest instance of each type of object (dog, sheep and wall)
within a specific range and field of view, where dog radar sensors
detect objects at 15-degree intervals.
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Figure 1: Simulation environment for the collective herding
task. Red agents are dogs, green agents are sheep and the yellow
circle represents the target zone.

A fully-connected artificial neural network (ANN) is implemented
for each dog’s controller. The topology consists of 9 input nodes,
10 hidden nodes and 2 output nodes, resulting in a total of 110
connection weights for the genome. The 9 input nodes include
distance and angle values from 3 radar sensors (one for each object
type), distance and angle values from a target zone sensor, and a
bias input which is set to a constant value of 1. Distance values
are normalised in the range [0, 1], where 0 is undetected and 1 is
as close as possible. Angle values are normalised in the range [-1,
1], where -1 is -180 degrees and 1 is +180 degrees. The 2 output
nodes include the dog’s translation value in the range [-1, 1] (where
-1 is maximum translation speed backwards and +1 is maximum
translation speed forwards) and the dog’s rotation value in the
range [-1, 1] (where -1 is maximum rotation speed to the left and
+1 is maximum rotation speed to the right). The tanh activation
function is used between network layers.

2.2.2  Sheep. These are the heuristic agents that wander around the
arena and should be herded into the target zone. The same circular
morphology employed by the dog agents is also used by the sheep
agents. Additionally, the same radar-type proximity sensor is used,
although different range and field of view values may be set.

A variation of the "boids" algorithm for flocking behaviour [8]
is implemented for each sheep’s controller. This controller remains
static throughout the evolutionary process and guides the move-
ment of the sheep using simple avoidance and flocking rules. Avoid-
ance rules are based on proximity thresholds for each type of ob-
ject, ordered by priority (i.e., avoiding dogs is more important than
avoiding the target zone). Flocking rules are configured with the
coherence and alignment parameters. Coherence controls the rate
at which sheep steer towards each other, while alignment controls
the rate at which sheep match the average direction of other sur-
rounding sheep. Unlike the dogs which can vary their translation
speed, sheep move at a constant speed throughout their lifetime.
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Neuro-evolution Parameters

Replications per experiment (runs) 20

Generations per experiment run 200

Trial evaluations per generation 3

Initial population size 100

ANN dimensions (nodes): input / hidden / output | 9/10/2

MAP-Elites archive: dimensions / bins 3/729

Crossover probability 0.5

Mutation probability 0.2
Simulation Parameters

Time steps per trial evaluation 800

Initial agent positions Random (outside target zone)

Dog team size: easy / medium / difficult 20/15/10

Sheep flock size: easy / medium / difficult 10/15/20

Dog translation speed: easy / medium / difficult 1/0.75/0.5

Sheep translation speed: easy / medium / difficult | 0.5/0.75/1

Arena size (width X height) 600 X 600

Target zone size (radius) 100

Dog radar proximity sensor: range / FOV (0, 100] / [-90°, 90°]
Sheep radar proximity sensor: range / FOV (0,50] / [-180°, 180°]
Sheep object avoidance (radius): wall / dog / sheep | 15/50/5

Sheep target zone avoidance: radius / strength 50/0.25

Table 1: Neuro-evolution and simulation parameters. Con-
figuration options used for the neuro-evolution process and all
experimental simulations of the collective herding task.

2.3 Evolutionary Algorithms

The ANN controllers governing dog behaviour are directly en-
coded as genomes of floating point weights, each in the range [-1,
1]. These genomes are optimised for high task performance (see
section 2.4) using two alternative evolutionary algorithms, based
on either the Steady-State Genetic Algorithm (SSGA) [9] or the
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [6]
algorithm. The algorithms are applied to the evolution of both ho-
mogeneous and heterogeneous swarms as detailed in the following.

2.3.1 SHOM: SSGA Homogeneous. In this approach, a population
of genomes is randomly initialised and evaluated for the first gener-
ation. Thereafter, for each generation, individuals are selected from
this population by tournament selection with a tournament size
of 3. These individuals undergo two-point crossover and Gaussian
mutation, each with a specific probability, before being evaluated.
Each individual genome is evaluated as a homogeneous team of
dogs (i.e., every dog in the simulation task environment has the
same ANN weights applied to it). The evaluated individual genomes
then become the offspring population for the next generation.

2.3.2 SHET: SSGA Heterogeneous. This method is similar to SHOM
(see section 2.3.1), except that each genome consists of floating point
weights for N dog ANN controllers. Therefore, each individual
genome is evaluated as a heterogeneous team of dogs, with each
dog using a unique subset of ANN weights from the genome.

2.3.3  MHOM: MAP-Elites Homogeneous. Similar to the SSGA-based
algorithms (see sections 2.3.1 and 2.3.2), a population of genomes
is randomly initialised and evaluated for the first generation. How-
ever, during evaluation, a set of three behavioural characteristics is
also measured: (1) average distance between each dog and its near-
est neighbouring dog, (2) average distance between each dog and
its nearest neighbouring sheep, and (3) average distance between
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Figure 2: Archive size, maximum fitness and QD score results for experiments. The algorithms which evolve homogeneous swarms
(SHOM and MHOM,) are on the left, while the algorithms which evolve heterogeneous swarms (SHET and MHET) are on the right. Results
from the easy, medium and difficult task environments are presented for each algorithm, averaged over 20 runs.

each dog and the target zone. These behavioural characteristics are
normalised in the range [0, 1], where 0 is an average distance of 0
and 1 is the maximum distance observed for that characteristic in a
calibration test run. Individual genomes are, as with SHOM, evalu-
ated as a homogeneous team of dogs. Evaluated solution genomes
are stored in a multi-dimensional archive, positioned in bins based
on their behavioural characteristic values. If there already exists
another solution genome at the assigned bin, the new solution is
only inserted if it has a higher fitness score. For every subsequent
generation, individuals are selected from this solution archive by
tournament selection with a tournament size of 3. Crossover and
mutation is the same as for the SSGA-based algorithms.

2.3.4 MHET: MAP-Elites Heterogeneous. This method is similar to
MHOM (see section 2.3.3), except genomes consist of floating point
weights for N dog ANN controllers. Therefore, each individual
genome is evaluated as a heterogeneous team of dogs, with each
dog using a unique subset of ANN weights from the genome.

2.4 Fitness Evaluation

Solution genomes are evaluated based on the number of sheep
captured, ¢, out of the total number of sheep, ¢, during the simulation
lifetime. Therefore, an evaluation score of 0 corresponds with none
of the sheep captured and an evaluation score of 1 corresponds with
all of the sheep captured. Due to the stochastic nature of the task
environment, final genome fitness is averaged across n evaluation
trials. Equation 1 summarises this fitness calculation.
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3 EXPERIMENTS

We conducted four sets of experiments with the simulation frame-
work!, each using a different evolutionary algorithm (SHOM, SHET,
MHOM and MHET). Three difficulties of task environment (easy,
medium and difficult) were tested and averaged over 20 runs.
Task difficulty is based on the ratio of dogs to sheep and their
relative maximum translation speeds. The easy task has more dogs
that move faster than sheep, while the difficult task has more sheep
that move faster than dogs. The three behavioural characteristics
(see section 2.3.3) are tracked and recorded for evaluated individuals
across all experiments. Although not used in SSGA, these values
allow for post-processing the evolved populations and projecting
them into three-dimensional solution archives which can be directly
compared with those produced by MAP-Elites for behavioural diver-
sity. Parameter values for the neuro-evolution process, simulation
environment and different task difficulties can be found in Table 1.

4 RESULTS AND DISCUSSION

Figure 2 presents the archive size, maximum fitness and QD score
over evolutionary time for each algorithm across task environment
difficulties, averaged over 20 simulation runs. Archive size (Figure
2a and 2b) refers to the number of solutions (or individuals) in the
population displaying unique behavioural characteristics. Maxi-
mum fitness (Figure 2c and 2d) refers to the fitness score of the
best-performing individual in the population, where a score of 0
means that no sheep were captured during trial evaluations and a
score of 1 means that all sheep were captured (see section 2.4). QD
score (Figure 2e and 2f), as introduced in [7], refers to the sum of
fitness scores for all individuals in the archive, which is maximised
by increasing both the diversity and fitness of solutions.

For both homogeneous and heterogeneous swarms, it is evident
from the archive size (Figure 2a and 2b) that MAP-Elites gener-
ates a set of solutions with significantly greater (p < 0.001, in all
cases) behavioural diversity that increases over time compared
with those generated by SSGA that decreases over time. This is
to be expected since SSGA tends to converge on and optimise a
single high-performing solution, whereas MAP-Elites maintains
and grows a population of functionally diverse solutions. It is no-
table that evolved homogeneous swarms generate a significantly
greater (p < 0.05, in all cases) number of uniquely behaving solu-
tions compared with heterogeneous swarms. This is likely due to
the fact that heterogeneous solutions contain inherent behavioural
diversity which overlap in the measurement of their behavioural
characteristics. In other words, multiple heterogeneous allocations
of behaviour can result in the same behavioural characteristics be-
ing measured at the swarm level, due to some individual behaviours
cancelling out the effects of other individual behaviours.

Fitness results (Figure 2c and 2d) indicate significantly reduced
(p < 0.001, in all cases) task performance for directly-evolved het-
erogeneous swarms compared with homogeneous swarms. This is
most likely due to the significantly larger search space to explore

IExperiment source code: https://anonymous.4open.science/r/gecco23-sheepdogai
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in the limited 200 simulation generations. As such, a longer evolu-
tionary process may yield better results. Alternatively, a multi-step
approach towards evolving heterogeneous swarms may be more
appropriate, whereby an allocation of solutions pre-evolved for
a homogeneous swarm is optimised for a heterogeneous swarm,
as alluded to in our research objective. Although the maximum
achieved fitness does not differ significantly (p > 0.05) between
SSGA and MAP-Elites in homogeneous swarms (Figure 2c), with
the exception of the medium task difficulty (p < 0.001), it is clear
from the corresponding QD score results (Figure 2e) that MAP-
Elites generates a significantly more (p < 0.001, in all cases) diverse
set of high-performing individuals. The trend of significantly higher
(p < 0.001, in all cases) QD score for MAP-Elites compared with
SSGA also holds in heterogeneous swarms (Figure 2f). These re-
sults support previous work which demonstrates that behavioural
diversity can be generated without specific speciation mechanisms
or geographical isolation in the task environment [2].

Overall, these preliminary results demonstrate that behavioural
diversity can be generated for high-performing solutions in homo-
geneous swarms. It also provides evidence that there may be more
effective alternatives to the direct evolution of a heterogeneous
swarm. Based on current results, future work will investigate the
potential of evolving functionally diverse allocations for a hetero-
geneous swarm from an archive of existing behaviours.

5 CONCLUSION

In this paper, we investigated the direct evolution of behavioural
diversity for homogeneous and heterogeneous swarms in a collec-
tive herding task environment. We found MAP-Elites successfully
generates high-performing sets of diverse solutions for homoge-
neous swarms, although directly-evolved heterogeneous swarms
do not achieve comparable fitness results. Future work will explore
approaches for the evolution of heterogeneous swarm allocations.
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