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Abstract—This paper investigates a novel method combining
Scalable Evolution Strategies (S-ES) and Hierarchical Reinforce-
ment Learning (HRL). S-ES, named for its excellent scalability,
was popularised with demonstrated performance comparable to
state-of-the-art policy gradient methods. However, S-ES has not
been tested in conjunction with HRL methods, which empower
temporal abstraction thus allowing agents to tackle more chal-
lenging problems. We introduce a novel method merging S-ES
and HRL, which creates a highly scalable and efficient (compute
time) algorithm. We demonstrate that the proposed method
benefits from S-ES’s scalability and indifference to delayed
rewards. This results in our main contribution: significantly
higher learning speed and competitive performance compared
to gradient-based HRL methods, across a range of tasks.

Index Terms—Hierarchical Reinforcement Learning, Evolution
Strategies, Ant Gather, Ant Maze, Ant Push

I. INTRODUCTION

Reinforcement learning (RL) [1] has been used to create
artificially intelligent agents for tasks ranging from robot
locomotion [2] to video games such as StarCraft [3] and
board games such as Chess and Go [4]. Many such agents
use Markov Decision Process or gradient based learning
methods, such as Deep Q-Networks (DQNs) [5] and policy
gradient methods [1], [6]. Single policy (flat) RL is generally
used for relatively simple problems, however increasingly
complex problems (with sparse rewards or requiring multiple
unrelated skills), are mostly unsolvable by current flat RL
methods. To solve such RL problems (herein referred to as
hard tasks) one can use Hierarchical Reinforcement Learning
(HRL). HRL is a class of RL methods excelling at complex
RL problems by decomposing them into sub-tasks, mimicking
how humans build new skills on top of existing simpler skills.
Gradient based RL methods are also used by HRL and have
solved various hard RL environments such as Montezuma’s
revenge [7], [8] and generating complex robot behaviours [7],
[9]. Evolutionary strategies (ES) [10] have also been applied
to RL task environments, and have demonstrated competitive
task-performance with flat gradient based RL methods in
robot locomotion and Atari game-playing [11]. However, ES
has still not been applied to solve hard HRL problems.

ES has been used as a black-box optimizer for various tasks
including, optimizing designs in structural and mechanical
engineering problems [13], robot locomotion [11], [14], [15]

and loss function optimization [16]. There many variants of
ES [10], each with different evolutionary parameters. For
example, CMA-ES [17] and (1 + γ)-ES [10], and Scalable
Evolution Strategies (S-ES) [11].

All ES methods use a sample-and-evaluate scheme (figure
1). Initially, policy variants are sampled around current
policies parameters and variants are then evaluated to obtain
fitness values. This provides information about the local fitness
landscape, which is used to inform an update to the current
policy. S-ES uses fitness to approximate a gradient and moves
current policy parameters in a direction maximizing average
reward. Given that ES is both a black-box process (making it
indifferent to temporal details) and is a gradient-free method,
it suffers from sub-optimal sample efficiency [18]. However,
Liu et al. [19] showed promising results addressing this
inefficiency using trust regions which allowed for monotonic
improvement [19]. S-ES has demonstrated results comparable
to gradient-based methods [11], on benchmark tasks including
MuJoCo [20] and Atari game playing [5]. However, S-ES has
not been demonstrated on hard RL tasks (requiring long-term
credit assignment), such as Montezuma’s revenge [5] and
robot locomotion [9], [21].

HRL potentially solves much more complex tasks than
flat RL methods, since HRL allows policies to abstract away
large amounts of complexity and focus on solving simple
sub-goals [9], [21]. This is usually done by creating two
classes of policies in a policy hierarchy: a primitive and a
controller. The primitive is responsible for direct control of
the agent and the controller manages the primitive, guiding its
actions. For example, the HRL method feudal-RL [22], allows
for communication between the controller and primitive by
having the controller set goals for the primitive to complete.
Recent feudal-RL methods such as FeUdal Networks for
HRL (FuN) [7] and HRL with Off-Policy Correction (HIRO)
[9] have shown promise for learning sparse reward problems
and hierarchies requiring complex primitives. For example,
HIRO uses a two-level hierarchy (one controller and one
primitive) where the controller sets the goal and reward for
the primitive. The goal can take various forms such as a
position an agent must reach in the task environment and the
reward is based on agent’s distance to the goal position.
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Fig. 1. ES optimization example in a 2D problem space. The white dot is the main policy and the black dots are its perturbations. The main policy is guided
from areas of low reward (blue) to areas of high reward (red). Image from: Karpathy et al. [12].

HIRO, FuN and related HRL algorithms use gradient-based
RL methods to optimize their hierarchy of policies [7]–[9],
[23]. However, to date, non-gradient based RL solvers, such
as ES, have not been extensively tested on hard RL problems
(typically reserved for gradient based HRL solvers).

Another option to adapt RL agents to solve hard tasks is
transfer learning. This entails training an agent to solve some
simple task and then transferring the learnt policy (behaviour)
to a related hard task. This allows the agent to get a warm
start in the hard task by using policy information gained
from the related easier task. There are various approaches to
transfer knowledge to an RL agent to boost task-performance
on hard tasks [24], [25], such approaches can be combined
with HRL policies to improve task-performance or sample
efficiency of HRL methods [9], [21]. ES has many advantages
over gradient based RL methods, but two advantages make
ES especially suited for HRL problems. First, it is invariant
to delayed rewards and second, it has a more structured
exploration mechanism [11], [14].

Robustness to delayed rewards is especially useful for hard
HRL tasks defined by long-term credit assignment. Similarly,
many hard RL problems are also defined by multiple large
local minima, requiring effective exploration methods to
solve. Such advantages suggest that ES, specifically S-ES,
will out-perform gradient based HRL solvers across various
hard HRL problems. Furthermore, contrary to state-of-the-art
RL and HRL methods, S-ES is highly robust to hyper-
parameter changes [11]. Since HRL methods only introduce
more hyper-parameters, the brittleness of current RL methods
[2], [26] greatly increases HRL parameter tuning time.
Thus, we introduce a new method1 for training two-level
policy hierarchies, optimized using a S-ES method: Scalable
Hierarchical Evolution Strategies (SHES).

We compare SHES task-performance to other gradient based
HRL methods, also evaluated on the same tasks [7], [9], [21],

1https://github.com/sash-a/ScalableHrlEs.jl

[27]. The main objective is to demonstrate that SHES performs
well on tasks that are challenging for gradient based HRL
methods and hence that S-ES is suitable for training hierar-
chies of policies. Our SHES method addresses various RL and
HRL deficiencies by leveraging the benefits of S-ES to create
an HRL method requiring minimal hyper-parameter tuning and
that is competitive with state-of-the-art HRL methods across
three hard HRL task environments.

II. METHODS

This section presents our method for learning hierarchical
reinforcement learning policies using evolutionary strategies:
Scalable Hierarchical Evolution Strategies (SHES).

A. Policy Hierarchy

SHES is a Feudal RL [22] style method where high level
policies (controllers) direct and provide rewards to lower
level policies (primitives). The initial feudal RL method [22]
used a multi-level feudal hierarchy, whereas SHES uses a
two-level hierarchy consisting of a single controller policy µc

and a single primitive policy µp.

The controller sets goals and cannot directly perform task
environment actions, while the primitive directly controls the
agent with actions in the task-environment. The aim of such
actions is to achieve goals set by the controller. More formally,
given an environment state st, the controller produces a goal
gt ∈ Rd (gt ∼ µc(st)). The controller produces gt every c
steps, where c is a hyper-parameter known as the controller
interval. The goal is transformed using a static function such
that it is always relative to the current state. For example, if
the goal is a position it is updated every time-step so as the
position is relative to the agent. The controller interval c is
kept as a hyper-parameter since we observed that learning c
often results in it degenerating into the simplest cases where
c becomes 1 or the maximum episode length [7].

This provides the controller with a level of temporal
abstraction which (for tested task-environments) enables it to
plan a path without having to plan all agent actions required



Algorithm 1 SHES Algorithm
Input: Learning rate α, noise standard deviation σ, roll-outs

n, initial policy parameters θc and θp

1: for t = 0,1,2... do
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6: end for
7: end for

to follow this path. The primitive is passed the goal gt and
the state st and tasked with reaching the goal. It samples an
action at ∼ µp(st, gt) from its policy which is applied to the
agent. The controller receives a reward from the environment,
however is also responsible for rewarding its primitive. As in
similar works the primitive reward is based on its distance
to its goal gt [7], [9], however the exact reward function is
discussed in section II-B.

In Feudal RL, rewards are not shared between controller
and primitive. For example, if the primitive reaches the goal
set by the controller, but this does not provide a high enough
reward then the primitive will receive a high reward, but
the controller will not. This is known as reward hiding and
is a key principle of Feudal RL [22]. SHES follows this
primitive reward scheme and SHES does not share rewards
between primitives and controllers [7], since it introduces an
unnecessary hyper-parameter.

SHES is an extension of S-ES, where the main difference
is that SHES co-evolves two policies and stores a set of
parameters for both the controller θc and primitive θp. Every
generation it creates n new controller and primitives pairs by
perturbing the parameters θc and θp. Perturbation is done by
adding a small amount of noise sampled from an n-variate
Gaussian to the parameters θci = θc + ϵc ∼ N (0, σ2). The
primitive is similarly perturbed using a noise vector sampled
from the same Gaussian ϵp ∼ N (0, σ2). A shared noise table
[11]2 allows for the sharing of common random numbers at
negligible extra memory cost compared to single policy S-ES,
and increases the scalability and learning speed of SHES.

Each perturbed controller and primitive pair is evaluated in
the task environment, where controller fitness is the cumula-
tive environmental reward and primitive fitness is cumulative
reward from its controller. Both primitive and controller fitness
are separately ranked and shaped as in S-ES. Ranked and
shaped fitness is then used to approximate the gradients for
the controller and primitive, which are optimized using the
ADAM optimizer [28]. In Feudal RL, controllers must adapt

2The sharing of common random numbers was shown by Salimans et al.
[11] to allow for near linear speedup when scaling up to 1440 CPU cores.

to non-stationary problems, since controllers and primitives
learn simultaneously. That is, the controller learns not only
how to solve the problem, but also how to recommend suitable
goals to the current primitive. Such non-stationary problems
are particularly challenging for many methods [9], however
SHES’s robustness to noise made this trivial to solve. That is,
the SHES controller simply interprets the primitive’s changing
behaviour as noise and suitably adapts its behaviour.

B. Primitive Reward

There are various ways to formulate the primitive reward
[7], [9], [29], but in this study primitive reward is equated to
the agent reaching its target consistently and quickly while
avoiding local minima. SHES rewards the agent based on
the portion of total distance covered (given a recommended
position), plus a bonus for reaching the target (Equation 1).

Rp
t = 1− dt/dc + (1 if dt < L else 0) (1)

Where, dt is the Euclidean distance between the agent and
the goal gt at time-step t, dc is the distance at time-step, c
(most recent time-step controller recommended a goal), and
L is a distance threshold (L = 1 in this study). This improves
upon simply rewarding the primitive with the negative
distance by allowing it to be positive if the primitive performs
well thus avoiding a large local minima and normalizing the
distance to make it agnostic to target distance. Also, adding
an extra reward for being close to the target incentivises the
agent to reach the goal as quickly as possible to maximize
the time for which it receives this extra reward.

This was found to be the best performing primitive reward
given the deficiencies observed for primitive rewards used
by HIRO [9] and FuN [7]. HIRO rewarded primitives with
negative distance to the goal gt [9], encouraging agents to
move to the target quickly. However this introduced local
minima where the agent could simply die instantly thus
avoiding anymore negative reward. FuN rewarded its primitive
based on the cosine similarity of the path the agent took since
the goal was suggested and the straight line from the agent’s
position to the goal. This encouraged the primitive to follow
a specific path, making it more predictable for the controller,
but this reward put little emphasis on speed of learning.

C. The Goal

A new goal is recommended every c steps by the controller
and for the next c-1 steps this goal is transformed using a
fixed goal transition function. Each step the current goal
gt is concatenated onto the primitive’s observations. The
primitive goal gt is the vector from agent position to the goal
recommended by the controller. This goal recommendation
was selected given the difficulty for primitives to learn
suitable representations, observed in related approaches. For
example, in HIRO [9], the goal passed to the agent is the
entire state space, so the primitive must attempt to match
the position of all agent joints and the overall position of
the agent. This HIRO [9] approach limits types of usable



primitive rewards and increases learning difficulty for the
primitive, hence our selected goal recommendation approach.

As with primitive rewards, goal encoding has a significant
impact on task-performance. An obvious goal encoding to use
a vector from the agent’s position to goal gt. We found that
this did not work since the values are not normalized, thus
the primitive ANN performs worse because of non-normalized
input data [30]. However, normalizing the goal vector means
the agent no longer has any notion of distance to goal gt.
We solve this by concatenating the distance to the goal onto
a normalized vector, where the distance is scaled down to
an appropriate range (dividing it by 1000). We encode the
primitive goal as the sin and cos of the angle from the agent to
the goal gt. This was done by allowing the controller to output
a relative vector from the agent to the target and transforming
this vector into an angle from the agent to the target. The sin
and cos of this angle is the goal gt passed to the primitive.

D. Transfer Learning

Transfer learning presents another option for learning
hierarchies of policies and as such will serve a suitable
comparison to SHES. There are various transfer learning
methods for RL and HRL [24], [25], [31], but we use a
simple pre-trained primitive [32], which is pre-trained using
SHES. We call this method SHES-TL. Pre-training is only
for the primitive as one cannot pre-train a controller without
already having a trained primitive. Thus training is split
into two phases, first the primitive pre-training and second
combined training where the controller makes use of the
pre-trained primitive. Pre-training allows all controllers from
each task environment to be tested using the same primitive,
thus improving sample efficiency since the primitive can be
trained once for many similar tasks.

First, the SHES primitive is trained using a random
controller, thus promoting the generality of the primitive.
Once the primitive has achieved the desired performance it is
saved and used as the primitive for controllers during training
on hierarchical environments. Next, hierarchical training has
two options for running the pre-trained primitive, its weights
can be unfrozen or frozen meaning that it either continues to
learn with the controller or it keeps its task-performance from
the pre-training stage. SHES-TL uses a frozen primitive since
preliminary experiments demonstrated that frozen primitives
significantly out-performed unfrozen primitives.

Thus, given a frozen primitive, SHES-TL benefits from a
general and reusable primitive, mitigating the non-stationary
problem-space problem for controller adaptation. However,
SHES-TL requires more samples as the primitive and con-
troller do not use the same samples (as is the case in SHES).
A limitation of pre-training is the primitive observation space
during pre-training must match its observation space during
hierarchical training. Since the observation spaces of task-
environments used in our experiments differ, one cannot train a

primitive with the exact same observations as required in each
of the environments. As such we extract common observations
for all the environments and create a pre-training environment
using these observations. This requires the primitive’s observa-
tions in the hierarchical environment are sliced so the primitive
only receives the observations it was pre-trained with. This
mandates manual selection of observations and gives transfer
learning an advantage as the primitive only receives the
observations it needs for learning. Given this advantage and
transfer learning mitigating the non-stationary problem, SHES-
TL is a suitable comparative method for SHES.

E. Mutation Policy

The SHES method uses a many-to-many perturbation
policy, meaning that each time a controller is perturbed a
primitive is also perturbed. This is presented in algorithm 1
(line 5), where F evaluates a perturbed controller θct + ϵci ∗ σ
and a perturbed primitive θpt + ϵpi ∗ σ. The benefit of this
approach is that it decreases compute time and increases
the sample efficiency, since both the primitive and controller
learn at the same time. However, it ranks controllers on an
uneven playing field as they used different primitives variants,
which can have a large impact on task performance.

Another option is a one-to-many perturbation policy. This
approach alternates between only perturbing the primitive
while using the main controller, or only perturbing the con-
troller while using the main primitive. This alleviates concep-
tual drawbacks by allowing controller variants to be ranked
on equal grounds because they all use the same primitive.
However, it was found that this approach had a large impact
on sample efficiency, thus the many-to-many approach is used.

F. Noise Sampling

SHES adapts S-ES antithetic mirrored sampling [33], [34],
so as to operate on two policies and reduce variance. Since the
controller and primitive both sample their own noise vectors
(ϵc, ϵp), one way to perform antithetic sampling in SHES is to
evaluate the pair of negatively perturbed policies (−ϵc,−ϵp)
and positively perturbed policies (+ϵc,+ϵp). Though, this
leaves out two potential combinations when combining the
positive with the negative perturbations. Using four pertur-
bations led to a minor speed increase because of how it
allows one to simplify the final matrix dot product when
approximating the gradient. That is, perturbing four times
instead of two, simplifies the dot product even further, since
there are four fitness values using the same noise vector. For
large dot products this greatly reduces the computation time
by reducing the length of each matrix by a factor of four.
Hence, SHES performs four perturbations instead of two.

G. Speedup

Given that SHES is an extension of S-ES, it is expected to
yield the same linear speedup and scalability benefits as S-ES
[11]. Thus it is expected that SHES run-time is reduced by a
factor of the number of cores used. The key difference between



SHES and S-ES is communication overhead. However, the dif-
ference is minimal, since SHES communicates an extra three
numbers (one 32 bit float and two integers), for each evaluation
in order to represent the performance of two policies instead of
one. Given the small amount of extra data sent between CPU
cluster nodes, we do not expect the extra communication of
SHES to significantly impact its computational speedup.

III. EXPERIMENTS

SHES was evaluated versus HIRO and SHES-TL (section
II) in the Ant Gather, Ant Maze, Ant Push tasks (left, center,
and right in figure 2, respectively). These tasks were selected
since each is defined by sparse rewards and require learning
both robot locomotion and navigation behavior.

Ant Gather: The agent receives +1 reward for each green
food object it collects and −1 reward for each red poison
object it collects. Food and poison are generated in random
positions each time the environment is initialized. Test score
is defined as the maximum reward throughout an episode.

Ant Maze: The agent must learn to move to the opposite
side of the maze (red dot in figure 2, center). During training
the agent must reach a randomly generated target inside the
maze (blue dot in figure 2, center), and is rewarded based on
the distance to this target. During testing the agent must come
sufficiently close to the red dot by the final episode iteration
to receive a test score of 1, otherwise the agent receives 0.

Ant Push: The agent must learn to push the red block
to right allowing it to reach the end goal at the top of the
maze (red dot in figure 2, right). It is rewarded based on its
distance to the red dot and receives a test score of 1 if within
5 units of the red dot by the final episode iteration.

All task environment simulations were re-implemented in
Julia3(using the same assets and physics engine as previous
work [9]), and SHES, SHES-TL experiments were executed
on a cluster (2, 10, 25 nodes) comprising Intel Xeon 24 core
CPUs running at 2.6GHz with 64GB of RAM. HIRO was
executed on an Intel Xeon 24 core CPU running at 2.6GHz
with 32GB RAM and an Nvidia V100 GPU. All experiments
were run 10 times. Results graphs (figure 3, 4 and 5) present
the mean value (test reward and training reward) with
standard error. Figure 3 presents test reward, whereas figures
4 and 5 presents training reward. All experiments were
run for a maximum time of 10 hours and a maximum of
3000 generations, and experiments halted when one stopping
condition was reached. For example, in the case of SHES, a
higher the core count resulted in more generations completed
in 10 hours and a sufficiently high core count resulted in the
generation limit being reached before 10 hours (figure 4).

3https://github.com/sash-a/HrlMuJoCoEnvs.jl

Comparative method results for HIRO, are taken from
previous work [9]. This method was selected since it is a HRL
method that currently yields state-of-the-art task-performance
across the Ant Gather, Ant Maze and Ant Push tasks [9]. We
also re-ran the HIRO4 [9] method (10 runs) on all tasks, in
order to gauge mean task-performance, compared to SHES.

IV. RESULTS AND DISCUSSION

Figures 3 (a), (b) and (c) indicate SHES is competitive with
HIRO [9]. In Ant Gather SHES out-performs the maximum
test reward yielded by HIRO by a factor of 1.24, and
significantly exceeds the mean test reward of our own HIRO
experiments (p = 0.008, Mann–Whitney U test [35]). For Ant
Push (Figure 3, c), SHES test reward significantly exceeds
our HIRO method re-implementation and re-run (p = 0.0007).
However, for Ant Maze (Figure 3, b), results indicate that
SHES is unable to learn to solve the task (thus flat test
reward results), and significantly under-performs compared to
our HIRO method (p < 0.0001). These results demonstrate
that SHES out-performs HIRO on two of the three tasks.
However, this comes at the cost of sample efficiency. SHES
requires over 100× more samples than HIRO to attain this
performance. Though, this is not unexpected given that
gradient free optimization has been demonstrated as less
efficient than gradient based optimization [18].

For example, Salimans et al. [11] presented S-ES sample
efficiency up to approximately 8 times worse than Trust
Region Policy Optimization (TRPO) [36] on simple 2D
locomotion environments. Thus, one expects even more
sample inefficiency on harder 3D locomotion and navigation
tasks, meaning the sample inefficiency of SHES is countered
by the fact that HIRO (as an off-policy HRL method), was
specifically designed to be sample efficient. SHES does
however, out-perform HIRO in terms of run-time, when given
sufficient compute. For example, for the Ant Gather task
(Figure 3, a), SHES task-performance over time, rises faster
than HIRO indicating increased learning efficiency, as well as
demonstrating distributed computing benefits of SHES. That
is, as presented in figure 4, for all tasks, learning efficiency of
SHES (600 cores) exceeds SHES (240 cores), which in turn
exceeds SHES (48 cores). In the case of the Ant Push task
(Figure 3, c), SHES yields a comparable task-performance to
HIRO, however, later task-performance (after approximately
3 hours) rises faster than HIRO further supporting learning
speed and distributed computing benefits of SHES (figure 4).

Also, the high task-performance of SHES on Ant Gather
(Figure 3, a), further supports the benefit of the SHES
method’s indifference to delayed rewards in HRL problems.
That is, Ant Gather is the task environment (of the three
tasks tested) with the most sparse reward and is the task
on which SHES yields the highest task-performance relative
to HIRO. This supports the applicability of SHES to sparse

4https://github.com/tensorflow/models/tree/master/research/efficient-hrl



Fig. 2. Ant Gather (left) Ant Maze (center) and Ant Push environments (right). These three task-environments were used to evaluate the SHES method.

(a) (b) (c)

Fig. 3. SHES versus HIRO (48 CPU cores) average task-performance (10 runs) in (a): Ant Gather, (b): Ant Maze, (c): Ant Push. Colored regions show
standard deviation. HIRO (Nachum et al.) maximum test reward (not reward over time) is also plotted.

(a) (b) (c)

Fig. 4. Training reward, showing impact of (48, 240, 600) CPU cores in (a): Ant Gather, (b): Ant Maze, (c): Ant Push.

(a) (b) (c)

Fig. 5. Training reward (showing transfer learning impact) of SHES, SHES-TL in (a): Ant Gather, (b): Ant Maze, (c): Ant Push).



Hyper-parameter SHES, SHES-TL HIRO
Controller Interval 25 10
Controller distance 4 10
Learning rate 0.01 0.001
Sigma 0.02 n/a
Episodes per policy 5 n/a
Policy per generation 1000 n/a
Time horizon (Agent lifetime) 500 500
Experiment parameter SHES, SHES-TL HIRO
Runs 10 10
Generations 3000 3000
Run-time Limit 10 hrs 10 hrs
CPU Cores 48, 240, 600 24 + Nvidia V100 GPU

TABLE I
EXPERIMENT AND METHOD (SHES, HIRO) PARAMETERS

reward problems and its benefit over gradient based methods.

The relatively poor performance of SHES on the Ant
Maze task (Figure 3, b), versus its significantly higher
task performance on the Ant Gather and Ant Push tasks
(Figure a, c), compared to HIRO is hypothesized to be a
result of the short time horizon that the agent is given (500
time-steps), since when testing with longer time horizons
(1000 time-steps), SHES was able to easily solve the Ant
Maze task. This is supported by previous work [37]. This
is further support by observing agent behavior in the maze
environment5. Observing the best performing SHES policies
in the Ant Maze task, it is notable that the agent reaches
most targets, but targets sufficiently far across the maze
are unreachable given the short time horizon. Thus, SHES
agents only learn suitable solutions when agent lifetime is
sufficiently long to complete the task.

Figure 5 presents comparative results (mean training
reward) of SHES versus SHES-TL on the Ant Gather, Ant
Maze and Ant Push tasks. For all environments SHES-TL
improves learning efficiency (speed) as evidenced by the
steeper rise of the SHES-TL curves for each task (figure
5 a, b, c). However, these results do not include the time
taken to pre-train the primitive, though the same primitive
was used for all tasks and could be used for multiple
other tasks, thus reducing pre-training time. These results
demonstrate the benefits of SHES-TL in the form of learning
efficiency and task performance, but also show that SHES
yields comparable task performance compared to a transfer
learning method in two of the three tasks tested (figure 5 a, c).

Figure 6 presents the SHES method’s computational
speedup as a function of number of cores plotted versus perfect
linear speedup. SHES has sub-linear speedup, but with a linear
trend. This is not unexpected given the strictly serial parts
of SHES, namely fitness shaping, ranking and the gradient
calculation. SHES offers approximately a one sixth speedup

5https://github.com/sash-a/ScalableHrlEs.jl/blob/master/README.md

for each core added, which was tested up to 600 cores.
Interestingly SHES is able to achieve more speedup per core
than S-ES, this is likely due to the higher proportion of parallel
work it needs to perform, because of its extra policy. This
computational speedup as a function of increasing numbers
of cores is one of the main benefits of SHES. To further
illustrate, consider that SHES (600 cores) was able to match
the test score of HIRO in under an hour, on both the Ant
Gather and Ant Push tasks. Replication of HIRO on these
tasks (running for 10 million training steps [9]), took over 12
hours to achieve the same test score when executed on an
Nvidia V100 GPU. Thus SHES offers at least a 12× compute
speedup and increased task performance over HIRO.

V. CONCLUSIONS

The main contribution of this work was a new evolu-
tionary HRL method: SHES. Across most hard HRL tasks
tested, SHES achieved significant computational speedup and
increased learning efficiency as well as out-performing a
current state of the art off-policy HRL method: HIRO. In
comparison to HIRO, SHES performed especially well on
sparse reward RL tasks and also performed comparably to pre-
trained variants of the same method. Thus, the SHES method
addresses a current need for computationally expedient HRL
methods that yield high-task performance across a range of
HRL (and more generally RL) tasks.
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