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Abstract—The incidence of most diseases varies greatly with
seasons, and global climate change is expected to increase
its risk. Predictive models that automatically capture trends
between climate and diseases are likely to be beneficial in
minimizing disease outbreaks. Machine learning (ML) predictive
analytic tools have been popularized across many health-care
applications, however the optimal task performance of such
ML tools largely depends on manual parameter tuning and
calibration. Such manual tuning significantly limits the full
potential of ML methods, especially for high-dimensional and
complex task domains, as typified by real-world health-care
application data-sets. Additionally, the inaccessibility of many
health-care data-sets compounds innate problems of method
comparison, predictive accuracy and the overall advancement of
ML based health-care applications. In this study we investigate
the impact of Relevance Estimation and Value Calibration, an
evolutionary parameter optimization method applied to automate
parameter tuning for comparative ML methods (Deep learning
and Support Vector Machines) applied to predict daily diarrhoea
cases across various geographic regions. Data-augmentation is
also used to complement real-world noisy, sparse and incomplete
data-sets with synthetic data-sets for training, validation and
testing. Results support the efficacy of evolutionary parameter
optimization and data synthesis to boost predictive accuracy in
the given task, indicating a significant prediction accuracy boost
for the deep-learning models across all data-sets.

Index Terms—Predictive Machine Learning, Evolutionary Pa-
rameter Optimization, Deep-Learning, Support Vector Machines

I. INTRODUCTION

The continuous spread and severity of various infectious
diseases has resulted in increased interest in designing
applications that aid in reducing their widespread occurrence
to avoid outbreaks and epidemics. Disease outbreak and
spread is often exacerbated by climate change whose
prevalence is said to be one of the major challenges for
controlling diseases especially in developing countries [1]
[2]. Several observations have indicated that extreme weather
events ranging from heat drought or heavy rainfall lead to
changes in the ecology of infectious which poses a threat to
humans through increased morbidity and mortality [3] [4].
For example, Musengimana et al. [5] demonstrated that for
every increase in temperature, the rate of some infectious
disease hospitalizations increased by eight percent.

Hence, developing computational and formal models able
to capture complex relationships and long-term dependencies
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between climate factors and diseases may be effective for
predicting disease outbreaks, thus offering public health
authorities the means for timely detection and control of
disease outbreaks across various geographic regions.

Various supervised Machine Learning (ML) including
Support Vector Machines (SVMs) [6] and deep learning
techniques such as Convolutional Neural Networks (CNNs)
[7], Long Short-Term Memory Networks (LSTMs) [8] have
been applied in medicine and health-care research for
developing predictive and diagnostic models for various
diseases. For example, CNNs have been effectively applied
to Malaria parasite [9] and Tuberculosis [10] related disease
detection. Whereas, LSTMs have been used to predict
the outbreak of Typhoid, Chicken Pox and Scarlet Fever
[11] in sample populations, and SVMs have been used to
detect Hepatitis [12]. Despite such advances in health-care
applications, overall ML method task performance still largely
depends on available training data and method parameter
settings which is a significant challenge for most predictive
ML methods [13] [14]. Currently, many ML studies still
use time consuming and computationally expensive manual
parameter tuning techniques, with often sub-optimal predictive
performance for complex tasks [13].

Sub-Saharan Africa is a geographic region that experi-
ences significant annual changes in temperature and precipita-
tion, with unpredictability of climate exacerbated by climate
change. Such climate factors play a vital role in the long-term
trends of diseases [4], [5] [15]. For example, in South Africa,
diarrhoea is one major infectious diseases driven by climate
change [16]. In Western Cape province of South Africa,
the rate of diarrhoea hospitalizations was strongly correlated
to increases in minimum and maximum temperatures [5].
Whereas, in the Limpopo province, Ikeda et al. [4] found
high numbers of diarrhoea cases coincided with below normal
precipitation rates. Diarrhoea is a major health concern that
accounts for three percent of total annual death records across
South Africa [16] and still higher reported rates in other
countries [17]. Predictive models would enable governments
and healthcare providers to take necessary action and intervene
to mitigate risks related to diarrhoea, thus minimizing the costs
of delivering related medical care.



The overall aim of this study is to ascertain the suitability
of various ML methods, given various climate factors and
synthetic (generative) training data, for accurately predicting
diarrhoea outbreaks. Specifically, the study aims to elucidate
what type of ML method is most suitable when coupled
with given types of training and test data. That is, data-sets
comprising specific climate variables, data sparseness and
noise and a synthetic data compliment, that when coupled
with a given ML method enables optimal prediction efficacy.

To address this objective, we compared the predictive
task-performance (number of expected daily diarrhoea cases)
of three ML methods (CNNs, LSTMs and SVMs) across nine
South African provinces. Given the sparse and noisy nature
of the data-sets used for method training and testing, we
necessarily augmented [18] the available data with synthetic
data generated using Generative Adversarial Networks
(GANs) [19]. Also, given deficient related work to guide
ML method parameter tuning and calibration for disease
outbreak prediction, we used Relevance Estimation and Value
Calibration (REVAC) [20], an evolutionary algorithm design
for meta-heuristic parameter tuning [21], and applied to
optimise ML method parameters used in this study.

This study’s key contribution was its comprehensive study
and application of pertinent ML methods to real-world
health-care data sourced from various South African medical
institutions. This enabled us to devise an effective predictive
ML methodology for sub-Saharan Africa, which is (globally)
one of the regions most adversely affected by diarrhoea
outbreaks [17]). The study’s second contribution was its
demonstration of the efficacy of automated (evolutionary)
parameter tuning [20], [21], combined with data-augmentation
(data synthesis to complement deficient training data [14]),
for the given predictive ML task and data-sets.

II. METHODS

This section presents an overview of ML methods, param-
eter tuning, and data-sets used for training and testing.

A. Data-sets

Data-sets! used focused on nine South African provinces:
Western Cape, Eastern Cape, Northern Cape, North West, Free
State, Limpopo, KwaZulu Natal, Gauteng, and Mpumalanga.
For each province, data-sets consisted of nine features:
Diarrhoea cases and eight climate features®. Data-set sources
were classified as real-world (1) and synthetic (2) data-sets.

1) Real-world Data-sets: For each province, a ten-year
period (2008—2018) of daily sales records of Loperamide,
an anti-diarrhoea compound evaluated in the treatment
of patients with chronic non-specific diarrhoea in South
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2Climate variables: Maximum, Minimum and Air temperature, Humidity,
Evaporation and Precipitation rate, Surface pressure, Wind velocity.

Africa was obtained from Clicks pharmaceuticals. These
data were used as proxy for diarrhoea cases in the region.
The number of diarrhoea cases per day for a specific
province was computed as the number of Loperamide sales
per day in the given province. Six-hourly data on eight
climate factors between the period of (2008—2019) were
obtained from the National Centers for Atmospheric Research
and Environmental Prediction®. These data-sets were re-
gridded to daily average format to match the daily diarrhoea

case data format (making a total of 3,763 time-series samples).

2) Synthetic Data-sets: Generative Adversarial Networks
(GANSs) [14] were used to generate 20,000 synthetic time-
series samples with 24 time step for the diarrhoea data and
eight climate data in each country province. GANs were
selected as they have been previously demonstrated as effective
for generating different types of realistic data [22] [23]. The
aim of generating synthetic was to have sufficient data for
making predictions, where synthetic data was augmented with
the real-world data-sets in two ways: upward augmentation
and downward augmentation. When the data-sets were aug-
mented upwards, the training set included a combination of
the real-world and synthetic samples, but the test set included
only the synthetic data-sets and when the data-sets were
augmented downwards, the training set included mainly the
synthetic data-sets and the test set included the real-world
data-set. Based on previous studies [14], augmentation with
considerable amounts of synthetic data enhance performance
while too much synthetic data slows down performance. Thus,
to effectively utilize the augmented data, for all experiments,
we used the following mixture (percentage) ratios when com-
bining our synthetic and real-world data-sets (respectively):
90:10, 80:20, 70:30, 60:40, and 50:50.

B. Configuration of ML Algorithms

1) CNN Method: Our CNN method was designed with
1D convolutions to match the sequential nature of our input
data. CNNs are a class of feed-forward, deep neural networks
that consist of multiple convolutional and activation layers,
pooling layers, and a fully connected layer. These layers are
designed to perform specific tasks such as feature extraction
from the input data. After several iterations of convolutions,
activation and pooling the final output is computed in the
fully connected layer of the network [7].

2) LSTM Method: LSTMs are example of Recurrent Neural
Networks (RNNs) [7] that address the issue of exploding and
vanishing gradients. They contain memory cells that maintain
its state overtime and is managed by gating units that control
how it memorize, erase, and expose information. These
gating units are called the input gate, forget gate and output
gate respectively. The ability of the gating units enables the
network to handle sequential data effectively [7].

3https://psl.noaa.gov/



3) SVM Method: SVMs are mathematical models whose
main function is to find hyper-planes capable of creating
margins that separates data points in a high dimensional
feature space with the smallest structural risk using kernel
functions. SVMs are widely accepted for their ability to solve
nonlinear regression estimation problems [6]. In addition,
their non-parametric nature enables them to represent complex
and non-linear functions easily. We used an SVM with a
Radial Basis Function (RBF) Kernel [6] for all our predictions.

Deep learning methods (CNN, LSTM) were implemented
with the Keras and TensorFlow* library while the Python
Scikit-Learn® library was used to develop our SVM. All
methods were configured for reproducible experiments, we
thus used fixed random seeds for all experiments®. All method
parameters (table II) were tuned using either Grid-search
(section II-D2) or REVAC (section II-D1). For all experiments,
our DL models used Min-Max normalization since it largely
adopted for most neural network regression models [24]. The
standard scaling technique [25] was adopted for SVM since
SVMs assume that the data given as input is within a standard
range. We used the Scikit-Learn package’ to implement all
normalization. Data-sets used for testing and training were
divided into a ratio of 70:30. Data-sets with earlier dates were
used for training and data-sets with later dates were used to
test and verify method predictive accuracy.

C. Performance Evaluation Criteria

To compare and evaluate the performance of our ML
methods, the Root Mean Square error (RMSE) was used given
its demonstrated efficacy in many ML prediction studies [3],
[11]. Specifically, the RMSE metric is superior at disclosing
differences in method performance and is recommended given
evaluations based on understanding predictions [26]. RMSE
is the square root of the mean of the squared differences
between actual outcomes and the method predictions. RMSE
is calculated as presented in equation (1).

) D (i — i) (1)

i=1

RMSE = |(

3=

In equation (1), z; is the actual value while y; is the
predicted value and n the total number of observations. The
method with the smallest RMSE error is considered to be the
best performing in terms of prediction accuracy.

D. Determining Optimal ML Parameters

1) Relevance Estimation and Value Calibration: REVAC
is an evolutionary algorithm formally designed to automate
meta-heuristic parameter tuning. Given an objective, a
population of parameter vectors, NN iterations and a task
environment, REVAC explores, selects, and evaluates
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favourable parameter set values. Using artificial evolution
operators such as mutation, recombination, selection and
replacement, it improves and updates the distribution of the
parameter vectors such that after each iteration, there is an
increasing chance of obtaining optimal performance given
that tuned parameters values are adopted for training an ML
method. In this study, REVAC was implemented as a meta-
layer to search for optimal parameter values for each of our
ML methods (SVM, LSTM, CNN) when applied to the task
of predicting diarrhoea cases. The REVAC implementation
used for this study was based on the methodology used by
Nannen & Eiben [20]. The list of REVAC tuned parameters
and their resultant values is presented in table II.

2) Grid-Search Parameter Tuning: Grid-search is an
automatic parameter tuning technique that trains an ML
method with a combination of possible parameters on the
training set and evaluates and outputs the best parameters
based on a given task performance metric [13]. Grid-search
parameter tuning was implemented for each ML method
using the Python Scikit-Learn Grid Search CV package’.

Both REVAC and Grid search selected combinations of
possible parameter values from ranges of user-specified values.
Table II presents the list and range of parameters values
specified for each ML method. Deep learning parameters not
specified in table II, used the default values of the Keras
package. The objective of the both techniques was to minimize
the RMSE output of each ML method’s prediction, for a given
input data-set. For each ML method and given province data,
the best tuned parameters (leading to the lowest RMSE outputs
during REVAC and Grid-search parameter tuning), were the
parameters used for final method predictions.

III. EXPERIMENTS

Experiments’ (table I) were carried out to predict the
number of daily diarrhoea cases across geographic regions
(nine South African provinces in this case study).

We considered past observations (lags) in our method
predictions since patterns of the past are likely to be repeated
in the future. Thus, we tested the predictions of the three ML
methods with respect to four different lag periods from all
input features (climate features and previous diarrhoea cases).
The lag periods we considered include lag of one day, five
days, two weeks and three weeks. For example, a one day
lag meant that the predictions made by a method for January
6th, 2018 was made with input variables (for all features)
for January 5th, 2018, while a five day lag meant predictions
for January 6th, 2018 was made with input variables (for
all features) for January 1st, 2018. These lag periods were
chosen since preliminary experiments showed such lags
produced more accurate predictions for all methods.

7https://github.com/ProjectRepo2021/predicting-outbreaks



TABLE I
EXPERIMENTS OVERVIEW

Experiment Parameter Datasets Research
Description Tuning Technique Used Objective
(1) Predictions with real-world data Grid Search Real-world data Determine best predicting ML model given real-world data
(2) Predictions with real-world Grid Search Upward and Determine the effect of augmented data on predicting

and synthetic data

downward augmented data

performance of ML models.

(3) Predictions with augmented data REVAC tuning

and REVAC tuned parameters

Upward and

downward augmented data

Determine the impact of REVAC tuning on

predicting performance of ML models

TABLE I
EXPERIMENT PARAMETERS AND THEIR RANGES

SVM LSTM

CNN REVAC

C: [1, 100]
Gamma: [0.001, 0.1]

dropout rate: [0.1,0.2,1.0]
LSTM layers: [1,2,3]
neurons: [6,12,16,18,24,28,32,50,64,100]
batch size: [4,16,18,32,64]
learning rate: [0.001, 0.01]
epochs size: [40,50,60,70,100,120,150,200]

pool size: [1,2] generation size: [100]
convolutional layers: [1,2,3]
kernel size: [6,12,16,18,24,28,32,64]
batch size: [4,16,18,32,64]

learning rate: [0.001, 0.01]

population size: [80]
crossover parent size: [2]
child size: [1]

replacement size: [1]

epochs size: [40,50,60,70,100,120,150,200]

Thereafter, we determined the best performing ML method
via comparing the RMSE from the predictions made by each
method (with respect to the four lag periods). This was done
in three experiments, where for each ML method predictions
were repeated three times for each lag, across each province
data-set and the average RMSE computed. Experiment 1 was
implemented with the real-world data, with the objective
of determining which ML method performs best given the
amount of data instances contained in the given data-sets.

We then measured the degree of impact of each climate
variable on the best performing diarrhoea prediction methods
for each given data-set (country province), via conducting a
sensitivity analysis [27]. We adopted the Backward step-wise
method [27] to measure the effect of one variable at a time
while keeping the other variables fixed. Sensitivity was then
measured by observing changes in the RMSE error of each
given method based on the omission of a specific variable.
This sensitivity analysis demonstrated the larger the increase
in RMSE, the higher the importance of the omitted variable.

Experiment 2 determined the impact of data-augmentation
(data synthesis) applied to training and testing data on the
predictive task performance of the three ML methods. The
input data-sets used for predictions were the upward and
downward augmented data-sets (combinations of the synthetic
and real-world data-sets, section II). Predictions were made
with each input data-set separately for each province. Each
input data was divided in the ratio 70:30 for training and
testing, respectively. Parameters selected by Grid-search
tuning in experiment 1 were maintained for each ML method
and their respective province data-sets.

Experiment 3 was performed to determine the impact of
REVAC parameter tuning on the prediction task performance
of the three ML methods given data-augmentation (partially
synthetic data). The key difference of experiment 3 (compared
to experiments 1 and 2), is its use of REVAC to tune method
parameters given partially synthetic data-sets (section II).
The number of REVAC generations was set to 100 with
an initial population size of 80 for each parameter (based
on demonstrated efficacy in previous work [20], [21]). All
REVAC algorithm parameters are presented in table IIL
Parameters tuned by REVAC for each method and a given
province data-set, were then used for final method predictions.

IV. RESULTS AND DISCUSSION

Results overall, indicate the CNN, followed by the LSTM
method out-performed SVM predictive task-performance (av-
erage RMSE calculated over all data-sets and lag-periods,
section III). However, for all data-sets and data-augmentations,
there was no single method that consistently yielded a signifi-
cantly higher (Wilcoxon test [28], p > 0.05) task performance
(lower average RMSE), compared to other methods. Prediction
results made with real-world data-sets indicate that the CNN
yielded the best predictive task performance (lowest average
RMSE), followed by the LSTM, and the SVM yielding
the poorest performance (highest RMSE). For each country
province data-set, the CNN, given well established universal
function approximation and pertinent feature detection [7],
yielded a comparatively higher task performance (despite
limited training set size).
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Fig. 2. A comparison of method prediction accuracy, averaged for all country provinces data-sets. Lower RMSE average indicates better performance accuracy.

CNN: Convolutional Neural Network, LSTM: Long-Short Term Memory Neural Networks, SVM: Support Vector Machine.

This result is supported by related work similarly demon-
strating increased prediction accuracy of CNNs compared to
other supervised-learning methods applied to various infec-
tious disease prediction tasks [9], [10]. Figure 1 indicates
that data augmentation (section II) significantly improved
(Wilcoxon test, p < 0.05) the task performance for all methods
and data-sets. Figure 2 indicates the CNN method’s overall
average (over all data-sets) RMSE for predictions using real-
world, upward augmented, and downward augmented data-
sets were 31.55, 23.11 and 25.80 respectively, whereas the
SVM method’s overall RMSE was 33.89, 22.17 and 27.97
respectively, and LSTM method RMSE results were 32.91,
21.93 and 23.78 respectively.

Thus, significant task performance increases (lower average
RMSE) were observed for all methods using augmented data-
sets compared to predictions by the same methods using only
real-world data-sets. This indicates that all tested methods
benefit from larger training data-sets and also supports the

efficacy of data-augmentation [29] for boosting predictive task
performance. However, LSTM out-performed (though without
significant difference, Wilcoxon test, p > 0.05) other methods
given any augmented data-sets. We surmise that the LSTM
method yields an increased task performance as training
data-set size increases, where the relatively poor LSTM
task performance in experiment 1 was the result of sparse
and noisy real-world data-set with small size (compared to
augmented data-set size, section II).

For example, Yang et al. [30] demonstrated LSTM task
performance benefits given large training set size, and Jia et
al. similarly reported that [11] the capability of LSTMs to
learn long-term dependencies and patterns in sequential data
(regardless of noise) given sufficient training set size. However,
the task and methodological designs resulting in the relatively
poor LSTM task performance observed in experiment 1 re-
mains a focus of ongoing research.
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Fig. 3. Percentage change in performance of each method over each province given predictions made with REVAC tuned parameters. (a) upward augmented
data and (b) downward augmented data-set. Higher percentage RMSE indicates higher task performance improvement.

TABLE III
ML METHOD’S OVERALL RMSE AVERAGES FOR PREDICTIONS WITH BOTH REVAC AND GRID SEARCH METHOD PARAMETERS

REVAC tuning

Grid search tuning

ML Method
Upward Augmented data ~ Downward Augmented data ~ Upward Augmented data ~ Downward Augmented data
CNN 22.07 23.86 23.11 25.80
LSTM 21.60 23.61 21.93 23.78
SVM 22.17 27.30 22.17 27.97

In terms of elucidating the impact of parameter tuning in
company with data augmentation on method task performance,
figure 1 indicates that using Grid-search tuned parameters,
the average percentage increase in task performance of the
CNN method was the least when compared to the other
methods in each individual country province. Additionally,
table III, indicates that the SVM average RMSE (22.17)
out-performed the CNN’s RMSE average (23.11) when Grid-
search parameters were used with the upward augmented
data-sets (see experiment 2, table I).

The instances where SVM out-performed the CNN was
hypothesized to be the result of CNN parameter settings used
during training, as similarly reported in related deep-learning
based predictive applications [9], [10], [11]. To test this
hypothesis we thus setup an experiment where all methods
had parameters tuned with REVAC evolutionary optimization
(experiment 3). Figure 3 presents the percentage change in
RMSE results, for all methods, when method parameters
were tuned with REVAC instead of Grid-search. These results
indicate that CNN prediction results improved for all province
data-sets, where the highest percentage increase recorded
for the CNN was approximately 12% and the least recorded
increase was approximately 2.5%.

However, table III indicates that LSTM method prediction
task performance (given REVAC tuning) still out-performed

other methods, further supporting suppositions that LSTM
task performance benefits from augmented data-sets. Figure
3, also indicates that SVM yields the least average percentage
increase and the highest average percentage decrease across
all country provinces. These results (figure 3), thus indicate
that REVAC parameter tuning is more suitable for deep
learning methods and less suitable for SVM methods. We
theorize this to be a result of the low dimensional search
space constituted by SVM’s few method parameters. That
is, an SVM (using an RBF kernel) method parameters are
gamma and C only, meaning that parameter tuning will likely
have limited impact on SVM task performance.

Finally, the results from our sensitivity analysis presented in
figure 4, indicated that the prediction of diarrhoea outbreak by
all methods is influenced by specific climate factors. The most
prominent factors are precipitation, humidity, evaporation and
temperature, where levels of influence differ across provinces.
These findings are supported by related work [1], [5] that
similarly observed that diarrhoea cases increases for every one
degree centigrade increase in temperature. Other related work
[4], [3], has similarly demonstrated that precipitation rate and
humidity are strongly related to increases in diarrhoea related
disease and hospitalizations.



Free State

Western Cape Eastern Cape
Minimum Temperature — EEEEE— Minimum Temperature  IEE— Windspeed  mummm—
% Maximum Temperature IR Humidity —m— Minimum Temperature  EE————
‘g Precipitation  EEEE—————— Maximum Temperature IR Maximum Temperature  EEEE——
g Humidity ——— Average Temperature I Humidity - E———
% Evaporation EE——— Evaporation  EE— Average Temperature I
E Average Temperature  EEEE—————— Windspeed m———— Precipitation
© Windspeed  EE— Precipitation E—— Evaporation
Pressure Pressure Pressure
6s 70 75 80 8 90 3 26 27 28 29 16165 17 175 18 185
Mpumalanga North West Northern Cape
Pressure  E—— Windspeed  umme— Pressure | E—
o MaximumTemperature SE——S—m Average Temperature  IEEE———— Precipitation  ————
% Precipitation  IEE——— Humidity  ne— Minimum Temperature I
'>5 Minimum Temlperature | Minimum Temperature  IEE——— - Humidity
[ Windspeed I Pressurc  EEE— Maximum Temperature IR
E Average TemperaltL!re | Precipitation Evaporation 1 —
5 Humidity —E—— Maximum Temperature Average Temperature I
Evaporation Evaporation Jind: d
13 132 134 136 138 14 142 114 116 118 12 122 9.9 10 101 102 103 104 105
Gauteng KwaZulu Natal Limpopo
QG ) Minimum Temperature — IEEEE—
E Windspeed Humidity - e—— Maximum Temperature G
5 Average Tempemtf”ﬁ — Maximum Temperature T ———— Windspeod  E——
z Evaporation — Windspeed  mumm——
= Pressurc  I— Pressure  EE——— Pressure
E Precipitation  |—————— Average Temperature I Evaporation
© Minimum Temperature Evaporation  IEEE————— Average Temperature I
Humidity Precipitation  E— Precipitation
Maximum Temperature Minimum Temperature Humidity
67 68 69 70 71 72 73 74 75 40 45 50 55 60 9.2 925 93 935 94 945 95 955 96

Percentage RMSE

Percentage RMSE

Percentage RMSE

Fig. 4. Sensitivity analysis results for the CNN applied to each country province data-set. X-axis indicates method prediction accuracy once a given variable
(Y-axis) is omitted. The longer the bar, the larger the loss in CNN accuracy and the more important the variable. This sensitivity analysis indicates: precipitation,
humidity, evaporation, and temperature, climate variables as having the greatest impact on predictive task-performance.

Overall, this study demonstrated the benefits (predictive task
performance increases), given the application of evolutionary
parameter tuning (REVAC in this case study) combined
with data-augmentation (generative data synthesis), for all
evaluated ML methods (CNN, LSTM, and SVM). However,
the impact of data-sets of varying complexity (size, noise
and sparseness) as well as varying data-set compositions
(synthetic versus real-world) on predictive task performance
for a broader range of ML methods and predictive task
domains remains the topic of current research.

V. CONCLUSIONS

This study evaluated the application of Support Vector
Machines (SVMs), Long-Short Term Memory Neural
Networks (LSTM) and Convolutional Neural Networks
(CNNs), on the task of predicting daily diarrhoea given
a set of disparate training and test data-sets (indicative of
nine South African provinces). Prediction task performance
was with respect to climate variable sets and varying

combinations of real-world and synthetic (augmented) data-
sets training and testing data. Results indicated that overall
(for all real-world data-sets), the CNN yielded the highest
accuracy predictions, and a sensitivity analysis revealed
the precipitation, humidity, evaporation, and temperature
climate variables as having the greatest impact on predictive
CNN task-performance. Also, for most data-sets, synthetic
data-augmentation and evolutionary parameter tuning by
the Relevance Estimation and Value Calibration (REVAC)
method resulted in a significantly higher CNN predictive task
performance, compared to the LSTM and SVM. The study’s
key contribution was its methodological guide (empirical data
for predictive machine learning algorithm design, parameter
tuning and data-set calibration), for future research using
climate variable oriented data-sets to predict disease outbreak
across varying geographic regions. The study thus contributes
to ongoing efforts to develop automated -early-warning
systems for broad-spectrum disease outbreak prediction
across various geographic areas and climate zones.
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