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EXTENDED ABSTRACT

An unsolved problem in both natural and artificial evolutionary sys-
tems is determining the exact environmental and evolutionary con-
ditions that enable complexity to evolve [16]. This is especially per-
tinent in evolutionary robotics [4] where possible problem-solving
behavior is constrained by brain (controller) and body (morphol-
ogy) complexity [12]. We evaluate the impact of environments and
complexity costs on robotic controller and morphology evolution
across various evolutionary robotics task scenarios. This study uses
evolutionary robotics as an experimental platform to investigate the
arrow of complexity hypothesis [3], previously demonstrated to hold
in artificial evolutionary systems given an imposed complexity cost
[2]. Specifically, we test whether energy costs imposed on evolving
robot controller and morphology complexity enables the evolution
of increasingly complex controller and morphological designs con-
comitant with increasing environment complexity. Morphological
complexity was equated with possible sensor configurations for
a physical counterpart Khepera IIl mobile robot [8], and neural
complexity was equated to artificial neural network topological
configurations that coupled with a robot’s evolved morphology.

Methods and Experiments

To evaluate controller (behavior) and morphology (sensory configu-
ration) evolution in robots, we use an extension of Neuro-Evolution
of Augmenting Topologies (NEAT) [14], for controller-morphological
adaptation: Neuro-Evolution of Augmenting Topologies and Mor-
phologies NEAT-M) [6]. NEAT-M co-adapts Artificial Neural Net-
work (ANN) robot controllers and morphologies via evolving direct
genotypic encodings of both robot behavior (ANN controller) and
morphology (ANN connections to an array of robot sensors). Robot
behavior-morphology adaptation was driven by crossover and mu-
tation operators that evolved ANN connection weights and hidden
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nodes (behavior adaptation only), added or removed sensors or per-
turbed sensor parameters (morphology and behavior adaptation).

NEAT-M equated the evolving topology of an ANN’s sensory
input layer with a robot’s adaptive sensory configuration!. Robots
began with a minimal sensory configuration of five sensors (one of
each type) as an evolutionary starting point for NEAT-M. The five
sensor types were: Ultrasonic, Infrared Proximity, Color, Low Reso-
lution Camera and Bottom Proximity. These sensors were selected
as they are typically available for the Khepera III mobile robot [8].
Two wheel motors were explicitly activated by the ANN controller,
but fixed throughout evolutionary adaptation.

Controller-morphology evolution was driven by crossover and
mutation operators adapting ANN connection weights and hidden
node topology (behavior adaptation), adding or removing sensors
or perturbing sensor parameters (morphology and behavior adap-
tation). At each generation of NEAT-M, crossover and mutation
operators [6] were applied. For each sensor type, sensor parame-
ters could be perturbed by mutation operators, that add or remove
sensors, as well as modify, add or remove ANN connection weight
values, add and remove weight connections to sensors, and change
sensor positions and orientations (on the robot’s periphery). The
mutable parameter set for each sensory input node was: Sensor
Type, FOV, Range, Position, and Orientation.

The Morphological Complexity Cost, (MC, equation 1), was de-
fined as the sum of the energy costs associated with robot sensors.

MC = Z C(S;) 1)
i=1

Where, n was the number of sensors and C(S;) the energy cost for
a sensor, S;. The maximum sensors on a robot was 10, the bottom-
proximity sensor was always active and the sensor type with the
highest battery usage was the low-resolution camera. The maxi-
mum MC was 10 X 0.001 + 0.0001 = 0.0101, and minimum MC was
1% 0.0001 + 0.0001 = 0.0002. The latter was for a robot with one
infrared proximity sensor (the lowest energy consuming sensor).

For neural complexity, we measured the number of connections
and neurons in an ANN controller [1]. Neural Complexity (NC) was
thus the number of connections ¢ (¢ € [4,200]) and sensory and
hidden nodes n (n € [2,23]) in an ANN controller. The simplest
sensory-motor configuration was two sensory input nodes directly
connected to the wheel motors, meaning the controller contained
four nodes and four connections. The most complex sensory-motor
configuration was 11 sensory input nodes, 10 hidden nodes and

!Experiment parameter descriptions and values and simulator source-code is available
online: github.com/robotcomplexity/2020
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two output nodes, meaning the evolved controller used 22 nodes
and 200 node connections. Given this ANN topological complexity
(NC), we calculated Neural Energy Cost (NEC) using equation 2:

NC
NEC= —— «NM @)

Cmax T Nmax
Where, ¢pax = 200 (maximum connections for most complex
ANN), n4x = 33 (maximum nodes for most complex ANN). Neural
Magnitude (NM) = 10 (magnitude of difference in sensory-updates
between robots running the simplest versus most complex ANN).

At each iteration of a robot’s lifetime (10800 time steps) its battery
level (equation 3) was decremented by the MC (equation 1) or NEC
(equation 2), for experiments testing the impact of morphological
and neural complexity costs, respectively.

Bty1 = By — MC(-NEC) ®)

Where B; was the battery level at time step ¢, and robots could have
their active lifetime reduced given full battery drain.

Experiments measured the impact of morphological and neu-
ral complexity costs on robot controller-morphology evolution
across increasing task complexity. Task complexity was the degree
of cooperation needed for optimal task performance (to move all
blocks into the environment’s gathering zone). Experiments ran
simulations of 20 robots in bounded two dimensional continuous
environments containing distributions of small, medium and large
blocks. Simple, medium, and difficult environments contained in-
creasing numbers of medium and large blocks which increased task
difficulty. Each experiment applied NEAT-M to evolve cooperative
transport behavior for 250 generations, where one generation was
five robot lifetimes. Each lifetime was a task trial simulation that
tested different (random) robot starting positions, orientations, and
block locations for all environments. Average collective transport
task performance was calculated over 20 evolutionary runs.

Average task performance (T) was the number of blocks pushed
into the gathering zone by robots over 250 generations and 20 runs.
Where, v was the total value of resources in the gathering zone, v;
the total value of all resources in the environment, s, the number
of simulation time-steps in the robots’ lifetime and s; the number
of trial evaluations per robot genotype (behavior-morphology cou-
pling). T (equation 4) was thus maximized by behavior-morphology
evolution (the same adaptations were applied to all robots).

T = 100 X - + 10 % (1.0 — -%) o)
Ut St

Where, 100 was the maximum number of blocks that could be

gathered during an evolutionary run, and 10 was an experimentally

determined weighting (boosting fitness for efficient gatherers).

Results and Discussion

This study’s main contribution was the demonstrated benefits of
complexity (energy) costs for evolving simple yet effective robots
that function comparably to more complex designs. In the simple
environment, complexity costs enabled the evolution of simpler
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controllers and morphologies, that elicited collective behaviors com-
parable to robots that evolved significantly more complex designs.

Robots evolved with energy costs had their lifetimes reduced by
approximately 50% as a result of the imposed complexity costs. This
has important implications for the evolutionary design of sensory-
motor and controller systems of physical robots that must optimally
solve tasks in minimal time. Minimization of neural controller com-
plexity and maximization of behavioral efficacy is pertinent if such
controllers are to be mapped onto physical controller hardware,
such as PID controllers [7]. Also, evolutionary design of minimal
controller-morphology designs eliciting effective behaviors, means
engineering such physical designs can in turn minimize energy
and fiscal expenditure on hardware. This is especially valuable in
swarm-robotic systems comprising potentially thousands of robots
that must work cooperatively [13, 15].

Overall, results suggest that contrary to intuitive hypotheses on
the evolution of complexity [3], and in support of previous work
[5, 6, 9, 10], that increased controller and morphological complex-
ity is not necessarily required for evolving robot controller and
morphology designs with more effective (higher task performance)
behaviors as environment complexity (task difficulty) increases. For
example, overly complex controllers have been demonstrated as
containing unnecessary neural complexity that hinders behavioral
performance as task complexity changes [11]. Ongoing work is
using evolutionary robotics as an experimental platform to test
various environment, controller and morphology complexity defi-
nitions at other levels of abstraction and thus evaluate complexity
costs across a broad spectrum of evolutionary scenarios.
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