
Evolving an Artificial Creole
Gregory Furman, Geoff Nitschke

FRMGRE001@myuct.ac.za,gnitschke@cs.uct.ac.za
Department of Computer Science

University of Cape Town, South Africa

ACM Reference Format:
Gregory Furman, Geoff Nitschke. 2020. Evolving an Artificial Creole. In
Proceedings of The Genetic and Evolutionary Computation Conference 2020
(GECCO ’20). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/n.n

EXTENDED ABSTRACT
There has been a significant amount of research on computational
modeling of language evolution to understand the origins and evo-
lution of communication [5–8]. However, there has relatively been
relatively little computational modeling of environmental factors
that enable the evolution of creole languages [2, 9], specifically,
modeling lexical term transmission between intersecting language
groups, within the context of artificial creole language evolution
[4]. This study used an iterative agent-based naming game [8] sim-
ulation to investigate the impact of population size and lexical
similarity [7] of interacting language groups on the evolution of
an artificial creole lexicon. We applied the synthetic methodology
[6], using agent-based artificial language evolution as an experi-
mental platform to investigate two objectives. First, to investigate
the impact of population size of interacting groups (with differing
lexicons) on the evolution of a common (creole) lexicon. Second,
to evaluate the concurrent impact of lexical similarity between
interacting agent groups on the evolution of a creole lexicon.

Methods and Experiments
Experiments initialized a 40x40 bounded grid with a random distri-
bution of 150 agents and 50 resources. With uniform randomness
each agent was assigned a lexical similarity threshold value in the
range: [0.0, 1.0], and an initial fitness value equal to 5. Each resource
was assigned a value in the range: [1.0, 10.0], which corresponded
to fitness received when agents consumed that resource. An agent’s
similarity threshold dictated what portion of a lexical term (charac-
ter set) for a resource had to be from the given agent’s own lexicon.
Each agent was initialized with a lexicon of 26 ASCII characters
(an agent’s genotype representation). Experiments contained three
agent types: A, B and C , where a given agent type was initialized
with 26 randomly selected ASCII characters. All agents moved ran-
domly about the grid for their lifetime (15000 simulation iterations),
during which a variable number of naming games were played.
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A naming game was played whenever an agent moved to a grid
position adjacent to a resource, and there was at least one other
agent in the talking radius1. The agent then randomly selected one
agent within the talking radius as a listener. The two-agent naming
game then commenced with the first agent (speaker), sending a
resource name of between 3 and 10 randomly characters (generated
from its own lexicon), to the listener. The listener checked the word
against its similarity threshold, to evaluate if the word contained a
portion of characters (native to its lexicon) less than its similarity
threshold. If so, the word was deemed similar, the naming-game
terminated and this word was entered into the common (creole) lex-
icon. If the received word was deemed not similar, then the listener
mutated (randomly changed a character to one from its own lexicon)
or added a character (0.5 probability for either mutation, costing 1
fitness point). The speaker and listener roles then switched and the
speaker (former listener) then spoke the mutated word back to the
listener (former speaker). The listener then checked if the mutated
word contained a portion of characters (from its native lexicon)
less than its similarity threshold. This switching of speaker-listener
roles and the naming game continued until the word was deemed
similar by an agent or the the fitness of an agent dropped below a
minimum fitness threshold.

When all agents adjacent to resources had played naming games,
the next round of agent movements began. After 15000 agent move-
ments, agents were assigned a fitness value equal to the resources
they had consumed. One generation of artificial evolution equalled
the population’s lifetime (15000 iterations). Each generation, each
agent was assigned a fitness equal to the resources consumed dur-
ing its lifetime. N-point crossover [1] (where N was selected with
uniform randomness between 1 and genotype length - 1) was then
applied to the fittest 20% of agents, randomly paired, where portions
of lexicons (genotypes) were swapped-over and child genotypes
produced. The similarity threshold and lexical characters in child
genotypes were then mutated (to another ASCII character) with
0.05 degree of probability. Similarity thresholds were mutated with
Gaussian mutation (σ = 0.5) [1]. Sufficient child genotypes were
produced to replace the least fit 20% of the population. Each experi-
ment was 1000 generations and 50 runs and evaluated the impact of
varying initial portions of different lexicons types (A, B, C), on the
evolution of lexical similarity thresholds and thus agents adopting
characters from other lexicon types. Experiments tested popula-
tions with agent type [A, B, C] lexical distributions: [A=50, B=50,
C=50], [A=100, B=25, C=25], [A=25, B=100, C=25], [A=25, B=25,
C=100]. Experiments computed average (over 50 runs) similarity
threshold and lexical proportion (the portion of an agent’s original
lexicon, of type A, B or C, that entered the creole lexicon).
1Simulation and experiment parameters and source code is available online at:
https://github.com/gregfurman/artificial-creole-2020
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Figure 1: Left: Average population similarity threshold. Right: Average agent lexical portions over artificial evolution, given
initial agent type (A, B, C) distribution: [A=100, B=25, C=25]. Averages were calculated over 50 evolutionary runs.

Results and Discussion
Results indicated for agent populations initially containing unequal
portions of each agent (lexicon) type, the largest lexical portion
(of the total population) decreases over evolutionary time and the
minority lexical portions concurrently increase. This held for all
experiments testing unequal agent type portions: [100, 25, 25], [25,
100, 25], [25, 25, 100]. As one example, figure 1 (right) illustrates
this trend for the experiment testing the distribution: [100, 25, 25],
for agent types A, B, C. Current research is testing whether this
trend eventually results in convergence of statistically comparable
portions of lexical types over multiple evolutionary runs. Given
equal portions of lexical agent types, then the portion of character
transfer between lexicons over evolutionary time was statistically
insignificant (F-test, p < 0.05). Thus the initial portion of agents
with a given initial lexicon type did not significantly impact the
evolution of comparative lexicon type portions. This result is sup-
ported by related work in artificial creole evolution that similarly
contends that common lexical structure is most impacted by the
relative population sizes of intersecting language groups [4]. This
trend of equalizing lexical portions is indicative of lexical merging
over evolutionary time as different agents interact and agree on
resource names to consume resources and gain fitness. Figure 1
(left) illustrates that in early-stage evolution the average (popula-
tion) similarity threshold decreases to below 0.5 before eventually
increasing to over 0.6 within 1000 generations. This is theorized to
be a result of evolutionary selection for dissimilar lexicons maxi-
mizing lexical mixing and diversity in order to increase resource
naming (expanding the creole lexicon) and thus boost fitness.

After a sufficient amount of lexical mixing has occurred, agents
with progressively higher lexicon similarity thresholds (more simi-
lar lexicons) are selected for, meaning that the population’s average
similarity threshold increases as agent lexicons become more simi-
lar over evolutionary time. However, the evolutionary and environ-
mental mechanisms responsible for this result remain the topic of
ongoing research. To elucidate environmental factors influencing
lexical transmission, mutation and merging of lexicons in natural
creole evolution [3], current research is investigating the impact
of factors including socio-economic influence of populations with
initially distinct lexicons and varying lexical morphology similarity
between interacting agent populations.
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