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1 INTRODUCTION
Recently there has been increasing academic and industry research
attention on producing adaptive control systems for autonomous ve-
hicles. To accommodate such autonomous vehicles there have been
proposals that current road and highway infrastructure undergo
significant changes. For example, replacing traffic lights and stop
signs and allowing autonomous vehicles to coordinate their own
interactions so as to avoid collisions and safely navigate through
intersections [1]. One approach is to design vehicle controllers such
that desired multi-agent behaviors (coordinated driving behaviors)
are automatically synthesized for vehicles driving on any given
road network [3].

This study investigates evolutionary controller design for en-
abling effective and efficient coordinated driving behavior for au-
tonomous vehicle traffic operating on roads built exclusively for
autonomous vehicles. That is, roads and highways without the
current road infrastructure of traffic lights, intersection stop sig-
nals and vehicle lanes [1]. Vehicle controllers must coordinate their
driving behaviors so as all vehicle traffic effectively and efficiently
passes through increasingly difficult road networks. Effectiveness
and efficiency are vehicle traffic task performance metrics, equat-
ing to the number of collisions and time taken to traverse a given
road, and must thus be minimized. Task difficulty is the number of
vehicles (traffic density) and obstacles on the road. Specifically, a
goal of this work is to automate the synthesis of vehicle controllers
such that when multiple vehicles interact a desired coordinated
driving behavior emerges for any given task environment (road,
vehicles and obstacles).

This study’s main contribution is the evolutionary synthesis of
coordinated, effective and efficient vehicle traffic. First, objective-
based search, second, non-objective based search, and third Hybrid
search combining the objective and non-objective-based search
functions. Vehicle controller evolution was the coupling of an ob-
jective, non-objective or hybrid evolutionary search method with
NEAT [6] for adapting neural controllers.
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2 METHODS
Vehicle controllers were evolved with one of three NEAT variants
(fitness function, novelty search, hybrid search), with the goal of maxi-
mizing the average distance traversed on a given controller evolution
track while minimizing collisions with static and dynamic obstacles
and other vehicles. Static obstacles represented unexpected objects
on the road and dynamic obstacles oncoming traffic and pedestrians.

Fitness Function: Controllers were awarded a fitness equalling
the portion of the track’s length covered (via checkpoints) over 45
simulation (task trial) iterations:

fitness(x) =
1

cars

cars∑
i=0

(
cppassed

cptotal
∗ 0.9coll ) (1)

Where, cars represents the number of vehicles, cppassed the
number of checkpoints vehicles successfully pass, cptotal the total
number of check-points on that track, and coll the number of ve-
hicle collisions (values lower than 0.9 resulted in slower evolution
and often caused evolution to stagnate).

Novelty Search:Uses a noveltymetric to determine a controller’s
novelty [5], described by sparseness (equation 2), combining be-
havior characterization (vehicle speed) and a metric to compute a
controller’s sparseness (novelty):

Sparseness(x) =
1
k

k∑
i=0

dist(x, µi ) (2)

Where, µ is the ith-nearest neighbor of x with respect to the
novelty metric, and where the distance component in equation 2
uses the Euclidean distance.

Hybrid Search: Linearly combines novelty and fitness to create
a weighted sum [4], where the score that controller i receives is
defined by equation 3:

score(i) = ρ. f it(i) + (1 − ρ).nov(i) (3)

Where, ρ = 0.5, to equally combining (normalized) fitness and
novelty for controller i:

f it(i) =
f it(i) − f itmin

f itmax − f itmin
,nov(i) =

nov(i) − novmin
novmax − novmin

(4)

3 EXPERIMENTS AND RESULTS
Two sets of experiments were conducted: controller evolution and
controller generalization test experiments. The evolution experi-
ments applied NEAT for vehicle controller evolution directed by
objective-based, novelty or hybrid search, where average task per-
formance was calculated over 20 runs. One experiment comprised



controller evolution coupled with one of these three evolutionary
search methods, where each evolutionary run was 100 generations
and each generation consisted of six simulation task trials that ini-
tialized three vehicles in random starting positions within a starting
area at the start of the evolutionary evaluation track.

In the controller generalization test experiments, the highest
task-performance evolved controller yielded after each of 20 evolu-
tionary runs, was transferred to either one, three or five vehicles for
non-evolutionary simulation test runs. Each generalization experi-
ment was the 20 best controllers (evolved by a given NEAT search
method) being executed (run in non-evolutionary task trial simu-
lations) on three increasingly difficult variations of three test tracks.

Results indicate that controller evolution directed by hybrid
search was significantly more expedient at evolving effective con-
trollers compared to objective and novelty search (Mann-Whitney
U, p ≤ 0.05). An average (normalized) fitness of approximately
0.75 was reached by hybrid search after 20 generations, compared
to 0.43 and 0.46 yielded by objective and novelty search, respec-
tively. Results also indicate that all search methods yielded just
above 60% task performance, where controller evolution directed
by hybrid search significantly out-performed (Mann-Whitney U, p
≤ 0.05) the objective and novelty search methods. However, there
was no significant difference between objective and novelty search
directed controller evolution. This result supports hybrid evolu-
tionary search in this task and also previous work in multi-agent
behavior evolution [2].

Generalization test results for the fittest controllers evolved by
objective, novelty and hybrid search, indicated that vehicle con-
trollers evolved with objective-based search were best able to gen-
eralize to the test tracks, whereas controllers evolved with hybrid
search were least well suited to generalize to the test tracks. Mann-
Whitney U (p ≤ 0.05) tests indicated a significant difference between
generalization test average task performance results of each search
method, where the fittest controllers evolved by objective, hybrid
and novelty search yielded an average task performance of 0.29,
0.20, and 0.24, respectively, in these generalization tests.

The efficacy of hybrid search is theorized to be a result of the thor-
ough behavior space search. This exploratory capability of hybrid
search is also supported by related work [2]. However, broad search
space exploration enabled the discovery of minimally complex con-
trollers achieving significantly higher average fitness, compared to
objective and novelty search evolved controller behaviors. While
this simple neural complexity was effective on the controller evolu-
tion track, controller generalization tests indicated that such simple
controllers were ineffective across all test tracks.

The higher neural complexity of the fittest controllers evolved
by objective and novelty search enabled sufficient behavioral func-
tionality such that these controllers yielded significantly higher

average task performance across all test tracks. This result is sim-
ilarly supported by related multi-agent behavior evolution work
[2], demonstrating increased evolved controller complexity as detri-
mental to task performance on specific tasks (controller evolution
track in this case), but generally beneficial to task performance
across several tasks of varying difficulty (test tracks in this study).

Thus objective search was most effective for eliciting driving
behaviors capable of generalizing to a broader set of related task
environments (roads) of varying difficulty. This result does not
support the general efficacy of hybrid-based controller evolution
demonstrated in related multi-agent work [2], indicating that the
coordinated driving task is not well suited to evolutionary search
using behavioral diversity (novelty and hybrid search), but rather
to objective-based search with a strictly defined fitness function.

An end goal of this research is develop evolutionary methods to
automate autonomous vehicle controller design. Thus when such
vehicles transit any given road or highway, an effective (safe) and
efficient (expedient) coordinated-driving behavior emerges from
vehicle interactions. Such automated controller design methods
could potentially assist in designing fully distributed intelligent
transportation systems, where autonomous vehicle manufactur-
ers develop autonomous vehicle fleets that do not rely on costly
centralized control systems for future roads or highways.

4 CONCLUSIONS
This study investigated controller automation for coordinated vehi-
cle traffic on autonomous vehicle only roads. Results indicated that
the fittest driving behaviors evolved by hybrid search did not gener-
alize well to new test roads, compared the fittest driving behaviors
evolved by objective-based and novelty search. The relatively poor
performance of the fittest hybrid evolved controllers in these gener-
alization tests indicates that while hybrid search was efficient and
effective, the task constraints and variability of test tracks were not
conducive to controllers evolved by hybrid search.
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