Automating Collective Robotic System Design

Alexander Furman
Department of Computer Science
University of Cape Town
Cape Town, South Africa
Email: FRMALEOO3 @myuct.ac.za

Abstract—This paper presents a study on methods for body-
brain (behavior-morphology) co-evolution in a collective evolu-
tionary robotics system. We investigate a neuro-evolution de-
velopmental encoding method designed for the co-evolution of
robot behavior-morphology couplings. This behavior-morphology
evolution method is evaluated across increasingly complex (diffi-
cult) collective behavior task environments. This is in comparison
to controller evolution within pre-engineered robot morphologies
(sensory configurations). Task-complexity is equated with the
degree of cooperation required in collective robotics tasks. Results
indicate that the developmental method produces significantly
more effective behavior-morphology couplings, compared to those
evolved with direct encoding methods and controllers evolved
within fixed morphologies. These results suggest that such devel-
opmental encoding methods could serve as a general evolutionary
simulation design tool for automating collective robotic designs.
An end goal is for such collective robotic system designs to be
rapidly prototyped and deployed in the physical task environ-
ments for which they were evolved.

I. INTRODUCTION

Despite over two decades of research in body-brain
(behavior-morphology) co-evolution in evolutionary robotics
[1], designing methods to suitably automate the design of
behavior-morphology couplings for increasingly complex tasks
remains an open problem in evolutionary design. The problem
of evolutionary robot behavior-morphology design is exacer-
bated in collective [2] and swarm [3] robotics.

Although collective [3] and more generally swarm [2]
robotics are gaining significant research attention given their
vast range of potential applications [4], [5], [6], [7], [8],
general methods for automating the design of collective and
swarm robotic system design are still lacking!. Specifically,
evolutionary optimization methods for automating the design
of robot controllers (collective behavior) as well as sensory-
motor systems (morphologies) coupled to these controllers.

General evolutionary design methods to automate the de-
sign of collective robotic systems are especially important
for two key reasons. First, robot morphology significantly
impacts the types and complexity of behaviors that each
robot’s controller elicits [9]. There are numerous examples
in body-brain co-evolution of how morphological evolution
significantly impacts elicited behaviors [10], [11], [12], [13].
Second, collective behavior design remains a complex and
challenging task, as collective robotic behavior is an emergent
property resulting from interactions between individual robots

I'This study focuses on collective robotic systems, simply defined as swarm-
robotic systems with fewer individual robots (tens instead of hundreds).

Danielle Nagar
Department of Computer Science
University of Cape Town
Cape Town, South Africa
Email: NRGDANOO1 @myuct.ac.za

Geoff Nitschke
Department of Computer Science
University of Cape Town
Cape Town, South Africa
Email: gnitschke@cs.uct.ac.za

and robots and the environment [14]. Such robot interactions
cannot be explicitly pre-defined in controllers given the high
uncertainty, noise, and complexity of interactions that are
inherent in collective robotic behavior.

Methods for collective robotic design are also confounded
by morphological design that must adapt to suit changing task
constraints. Hence, if robot morphologies are also adaptable
then pre-designing robot and environment interactions such
that specific collective behaviors emerge in response to specific
tasks becomes an intractably complex.

We advocate a general methodological design approach
using evolutionary optimization for automating the design of
collective robotic systems [15]. However, in this study we
propose evolutionary optimization methods to co-adapt both
controllers (behaviors) and morphologies (sensory configura-
tions) of robots in homogenous groups. That is, the same
controller-morphology adaptations are applied to each robot in
the group at each iteration of the evolutionary design process.

In this study automated collective controller-morphology
design is an evolutionary optimization problem that is solved
off-line prior to collective robotic system construction and
deployment in specific task environments. The evolutionary
optimization algorithm thus searches a space of possible robot
designs (controller-morphology couplings) with the goal of
maximizing given task performance metrics in simulation.

With notable exceptions [16], there has been relatively little
work on evolutionary controller-morphology design method-
ologies for collective robotics, where task performance is de-
pendent upon collective (cooperative) behavior. We anticipate
that such design methodologies will become indispensable
given the increasing relevance of collective robotics applica-
tions such as planetary exploration [17], oceanic monitoring
[18] and autonomous drones [19].

Furthermore, while the benefits of developmental encoding
(specialized mapping functions between genotypes represent-
ing controller-morphology couplings to complete robot de-
signs) have been demonstrated in various evolutionary robotic
body-brain co-evolution studies [10], [11], [13], [12], using
developmental encodings to co-adapt controller-morphology
couplings and thus automate the design of collective robotic
systems has received little research attention [20], [21].

This study thus has two objectives. First, to demonstrate
that developmental encoding is a suitable approach for evolv-
ing robot controllers and morphologies in collective robotic
systems. We define a developmental encoding neuro-evolution

method (HyperNEAT-M, extending HyperNEAT [22]), to ac-
count for robot controller-morphology evolution for given
collective behavior tasks. The second objective is to use the
experimental demonstration of HyperNEAT-M as an initial
contribution to a general evolutionary optimization method
for automating collective robotics system design, where such
evolved designs could be rapidly prototyped and physically
produced for their specific task environments [23], [24].

In this study, the efficacy of HyperNEAT-M as the evo-
lutionary controller-morphology design method is evaluated
across increasingly complex (difficult) collective gathering
[25] tasks. Collective gathering is a well-established collective
robotics benchmark task [3], and was thus deemed suitable
as a collective behavior test case. Task complexity is equated
with the degree of cooperation required for robots to gather
(cooperatively push) resources from one area to another.

The collective gathering task is also a suitable surrogate
for a range of current and speculative collective robotics
applications [26], such as exploration and mapping [17],
surveillance and environment monitoring [19], and collective
construction and repair [27]. In such tasks it is assumed that the
environments are remote and hazardous where tasks must be
accomplished autonomously given dynamically changing task
constraints. For example, changing mission specifications and
resource constraints for autonomous construction of landing
sites in preparation for human expeditions to other planets [28].

For simplicity and experimental tractability in this study,
robot designs are homogenous, a robot’s morphology is spec-
ified as its sensory configuration from a pre-specified sensor
set, and controller-morphology couplings are evolved across
increasingly task complexity for collective gathering.

II. METHODS

To evaluate controller (behavior) and morphology (sen-
sory configuration) evolution in collective robotic systems,
an extension to Hypercube-based NEAT (HyperNEAT) [22]
(HyperNEAT-M) was developed. We chose to extend the Hy-
perNEAT method as it has already been successfully applied as
a controller evolution method in various collective evolutionary
robotic tasks [29], [20], [21]. For experiments that evaluated
controller evolution in robots with static morphologies (pre-
defined sensory configurations), the HyperNEAT method was
used (section II-B), otherwise HyperNEAT-M (section II-C)
was applied to evolve robot controllers and morphologies.

A. NEAT and NEAT-M: Benchmark Methods for Controller
and Controller-Morphology Evolution

In order to conduct a benchmark comparison with direct-
encoding neuro-evolution methods, we employed two methods
(NEAT and NEAT-M) from related work [30]. Neuro-Evolution
of Augmenting Topologies (NEAT) [31], was used for con-
troller evolution in robots with fixed morphologies (section
II-D). To evaluate controller and morphology evolution in robot
groups, the Neuro-Evolution of Augmenting Topologies and
Morphologies (NEAT-M) was used. The application of both
NEAT and NEAT-M to controller and controller-morphology
evolution of robot groups given the collective gathering task
is fully described in related work [30].

B. HyperNEAT: Controller Evolution

HyperNEAT [22] is an indirect (developmental) encoding
neuro-evolution method that extends NEAT [31] and uses two
networks, a Composite Pattern Producing Network (CPPN)
[32] and a substrate (neural network controller). The CPPN
is the generative (developmental) encoding mechanism that
indirectly maps evolved genotypes to controllers and encodes
pattern regularities, symmetries and smoothness of the ge-
ometry of a given task in the form of the substrate. This
mapping functions via having coordinates of each pair of nodes
connected in the substrate fed to the CPPN as inputs.

The CPPN then outputs a value assigned as the synaptic
weight of that connection and a value indicating whether that
connection can be expressed or not. HyperNEAT uses the evo-
lutionary process of NEAT to evolve the CPPN and determine
controller fitness values. The main benefit of HyperNEAT is
scalability as it exploits task geometry and thus effectively
represents complex solutions with minimal genotype structure
[22]. This makes HyperNEAT suitable for evolving complex
collective behaviors for a range of tasks [33], [34].

C. HyperNEAT-M: Controller-Morphology Evolution

While a CPPN in HyperNEAT computes only a connection
weight value as a function of two Cartesian points (that is,
two connected nodes), a HyperNEAT-M CPPN computes a
sensory configuration constituted by five additional values:
range, bearing, Field of View (FOV), orientation and type
(figure 1, left). This is achieved by adding additional output
nodes to the CPPN, in similar fashion to that demonstrated in
related work, where neural controller parameters were encoded
directly into the CPPN [35].

The sensory configuration (robot morphology) is computed
by converting numerical CPPN output ([—1.0,1.0]) to a sen-
sory parameter. For categorical parameters (sensor type), where
each categorical value maps to a number in the CPPN’s output
range [—1.0,1.0] (for example, 0.2 for an UltraSonic sensor
and 0.5 for a Low Res Camera. Numerical sensory parame-
ters (range, sensor position, FOV, orientation) are computed
by normalizing CPPN output given the maximum parameter
ranges pre-defined for a given sensor type.

For example, if the CPPN outputs 0.2 for a sensor position
value and the maximum bearing range pre-defined for that
specific sensor type is [—2.0, 2.0], then the bearing parameter
will be set to 0.4 (0.2 normalized to the range [—2.0,2.0]).
The pre-defined maximum parameter ranges for each sensor
type are provided in table II and based on Khepera III robot
specifications [36].

Subsequently, each connection in the resulting network
(neural controller) encoded by the CPPN contains a sensory
configuration (type, range, sensor position, FOV, orientation)
and connection weights. The sensor position parameter, that is
the location of a sensor on the chassis of a robot, corresponds
to the Cartesian coordinate of an input node on the substrate
which receives environmental input from that sensor (figure 1,
center). The final configuration for each sensory input node is
established by traversing the outgoing connections from each
CPPN input node and selecting the sensory configuration
from the connection with the highest weight.

Robot Forward
Heading

Sensor
Ultrasonic Sensor S Position

(]
Infrared Proximity Sensor

(]
Color Sensor
®

4
Low Res Camera

Sensor Key

) Ultrasonic

@ !nfrared Proximity

~_~"Sensor
w Range Wheel Motors

Robot Body

Color

Low Res Camera

Fig. 1. LEFT: HyperNEAT-M Substrate (Neural controller). The CPPN computes the substrate connection weights between each sensory input node and motor
output node, as well as a sensory parameter tuple for each connection: range, bearing, Field Of View (FOV), orientation, type. FOV image on far left: Initialized
robot with sensory FOVs that correspond with both substrate topology and evolved sensory parameters. Robots were initialized, as per the substrate, with one low
resolution camera, two ultrasonic sensors, two infrared proximity sensors and two color sensors (as well as a bottom-proximity gathering zone detector). Wheel
motors were fixed throughout controller-morphology evolution. CENTER: Example robot with one sensor. Position determines sensor location on the robot’s
chassis with respect to the robot’s heading. Orientation then determines the direction the sensor faces with respect to this position. RIGHT: Example simulation
environment containing 20 robots and a distribution of different block types. The gathering zone containing gathered blocks (blue squares) is highlighted at the

bottom. Varying sensory parameters (sensor type, position, orientation, field of view and range) are highlighted as shaded semi-circles.

Any given sensor (input node) of a robot is only enabled
if it has at least one active outgoing connection.

D. Robot Controllers, Sensors and Motors

Experiments (section IV) tested only homogenous groups
meaning robots used the same neural controller for a given
generation of the HyperNEAT controller and HyperNEAT-M
controller-morphology evolution processes.

Robots used either a fixed morphology (controllers evolved
with HyperNEAT) based on the sensory-motor configuration
of Khepera III robots or an adaptive morphology (controllers
and sensory configuration evolved with HyperNEAT-M). In the
latter case, the robot body is also modeled on the Khepera III,
but HyperNEAT-M adapts the number and type of sensors and
their placement on the robot chassis (section II-C).

The sensor types used were ultrasonic, infrared proximity,
color, and low-res camera (table II). Sensor FOVs were
modeled as conical fields emanating from the outer edge of
a robot’s body for a given range (figure 1, left). An additional
ground facing sensor (not shown in figure 1) was included by
default in both fixed and adaptive morphology robots, but was
not subject to morphological adaptation in the latter case. This
sensor detected when the robot was in the gathering zone.

In all experiments (section IV), both HyperNEAT and
HyperNEAT-M evolved robot groups began with a pre-
designed neural controller substrate of seven (7) sensory input
nodes, coupled via a randomly initialized CPPN to two motor
output nodes (wheels). Specifically, the initial sensory config-
uration was two (2) ultrasonic sensors, two (2) color sensors,
one 1 low-resolution camera and two (2) infrared proximity
sensors (figure 1, left).

That is, this initial substrate evaluated in company with a
population of initially minimal CPPNs with random weight
initializations [22]. These initial CPPN connections and func-
tions were randomly initialized from a pre-specified set with
connection weights initialized within a given range [22]. The

CPPN mapping controller inputs to outputs was then subject
to complexification during HyperNEAT adaptation.

To ensure that HyperNEAT-M controllers were initially
able to execute actions and accomplish the collective gath-
ering task with some degree of success, motor outputs were
fixed throughout the HyperNEAT-M evolutionary adaptation
process. All controller (NEAT, HyperNEAT) and controller-
morphology adaptation methods (NEAT-M, HyperNEAT-M),
used hidden and output sigmoidal [37] nodes. All controllers
were initialized with a bias node connected to the motor
outputs. The bias node had a constant weight value of —1.0
and was not subject to evolutionary adaptation.

Robot actuators (two wheel motors) controlled a robot’s
heading at a constant speed. Movement was calculated in terms
of real valued vectors (dx and dy). Left and right wheel motors
in figure 1 (left, center) needed to be explicitly activated by
the robot’s controller.

A robot’s heading was determined by normalizing and
scaling its motor output values by the maximum distance a
robot could traverse in one iteration (table II). That is:

dx = dppaz(01 — 0.5)
dy = dpmaz(02 — 0.5)

Where, 01 and o, are the motor output values. To calculate
the distance between this robot (v), other robots and blocks in
the environment, the squared Euclidean norm, bounded by a
minimum observation distance was used.

For an appropriate experimental results comparison (sec-
tion IV), initial controller configurations of HyperNEAT and
HyperNEAT-M evolved robots also corresponded to that used
by controller (NEAT) and controller-morphology (NEAT-M)
methods in related work [30].

E. Controller Heuristics

Given that the research focus was on evolving collective
gathering behavior in robots with respect to fixed or adaptive
morphologies, behavioral control heuristics were included to
speed up the evolution of collective gathering behaviors. If
a robot was within gripping distance (table II) of a block
it would automatically attach itself and attempt to push the
block. If the robot was unable to push the block it would wait
for help (table II), for another robot to attach to the same
block. If another robot did not attach itself to the block in this
time, this robot would detach itself and continue to search the
environment. If a robot was pushing a block and the gathering
zone was detected then it would detach from the block. Blocks
dropped in the gathering zone could not be picked up again.

III. COLLECTIVE GATHERING TASK

Collective gathering requires robots to locate distributed
resources (blocks) in a bounded environment and transport
them, via cooperative pushing, to a gathering zone [38].

Cooperation was defined as the number of robots required
to push a given block type. Task difficulty (environment com-
plexity) was defined as a function of the number of blocks and
degree of cooperation mandated for task accomplishment.

Block types were: small, medium, or large, which could be
pushed by at least one, two and three robots, respectively. Thus,
task difficulty was calibrated via initializing environments 1,
2, and 3 (simple, medium, difficult, respectively) with varying
combinations of block types (table II). For example, the simple
environment contained 10 small and 5 medium sized blocks,
so robots could work concurrently with minimal cooperation
to move all blocks to the gathering zone.

Collective gathering task performance (fitness) was the
average number of blocks pushed into the gathering zone by
robots over five simulated task trials (lifetimes) in a given
generation of evolutionary adaptation (table I). We defined v,
as total value of resources (blocks) in the gathering zone, v; as
total value of all resources (blocks) in the environment, s. as
the number of simulation time-steps in the robots’ lifetime and
s¢ as number of trial evaluations per genotype (representing
a given controller-morphology configuration). As such, task
performance 7' was maximized according to equation 1:

T =100 x 2¢ 420 x (1.0 — %) (1

Ut St

In equation 1, 100 was the maximum number of blocks
that could be gathered during an experiment run, and 20 was
an experimentally determined weighting (boosting fitness for
efficient individual and cooperative gatherers).

IV. EXPERIMENTS

Collective gathering experiments measured the impact of
controller evolution in robots with fixed morphologies (NEAT,
HyperNEAT) versus robots where both controller and mor-
phology were adapted for each robot (NEAT-M, HyperNEAT-
M). Experiments applying the direct-encoding neuro-evolution
methods: NEAT and NEAT-M, for robot controller and
controller-morphology evolution in the collective gathering

task, are described in related work [30]. These experiments
use the same neuro-evolution (table I), task simulation and
experiment (table II) parameters, and as such the application
of NEAT and NEAT-M is not further discussed here.

Experiments executed simulations of 20 robots (section
II-D) in a bounded two dimensional continuous environment?
containing a distribution of small, medium and large blocks
(table II). Blocks were randomly distributed throughout the
environment, excluding the gathering zone. Robots were ini-
tialized and randomly placed in the gathering zone. Figure 1
(right) illustrates an example simulation environment contain-
ing 20 robots (with specific evolved sensory configurations)
gathering a distribution of small, medium, and large blocks.

The three block type distributions given in table II corre-
spond to three environments testing the impact of collective
gathering tasks requiring low, medium and high cooperation
(environments 1, 2, 3: simple, medium, and difficult, respec-
tively) for all blocks to be gathered. These block type distribu-
tions were selected given that previous research indicated that
specific block type distributions facilitate emergent cooperative
behavior during collective robotic evolution [38], [30].

Experiments applied HyperNEAT (controller evolution
in fixed morphology robots) or HyperNEAT-M (controller-
morphology evolution in robots) to evolve collective behavior
for 200 generations. A generation comprised five trial runs
of each genotype in the population, where one trial run was
10000 simulation iterations, representing one lifetime for all
robots in their environment. At each generation, average group
task performance (fitness) was taken over the five trial runs of
each genotype and used for HyperNEAT and HyperNEAT-M
genotype selection. The best group fitness was then taken at
the end of each run and an average calculated over 20 runs.

Only homogenous robot groups were tested, meaning that
at each HyperNEAT and HyperNEAT-M generation, the se-
lected controller was copied 20 times to represent the group.
HyperNEAT-M evolved groups were thus also morphologically
homogenous per generation, meaning that robot morphology
was adapted at each generation but all 20 robot morphologies
were the same (for a given generation).

Table I presents the simulation and neuro-evolution (Hyper-
NEAT and HyperNEAT-M) parameter settings. These param-
eter values were determined experimentally. Minor changes to
these values produced similar results for both HyperNEAT and
HyperNEAT-M evolved groups. All other parameters used the
same settings as in previous work [31], [30].

V. RESULTS AND DISCUSSION

Table III and figure 2 present the average best fitness
(collective gathering task performance), calculated over 20
runs, for groups evolved by controller evolution (NEAT, Hy-
perNEAT) versus controller-morphology evolution (NEAT-M,
HyperNEAT-M) methods in environments: 1, 2, and 3.

Environment 1 contained mostly small blocks and required
a low degree of cooperation to optimally solve (for all blocks
to be gathered). Environment 2 contained an equal distribution

2Simulator, controller and controller-morphology evolution methods are
online at: https://github.com/costofcomplexity/SSCI2019

TABLE 1. NEURO-EVOLUTION PARAMETERS: USED FOR HYPERNEAT AND HYPERNEAT-M

Crossover rate 0.32
Probability to apply a mutation operator 0.34
Sensor weight perturbation 0.08
Mutation Operators : Selection rate Add/ Rem.o.ve senso-r . . 0.07
Sensor position / Orientation perturbation 0.10
Sensor FOV / Range perturbation 0.07
Add / Remove hidden node 0.05
Add / Remove connection weight 0.05
Connection weight perturbation 0.335
Generations per experiment / Experiment replications (runs) 200 / 20
Trial (robot lifetime) evaluations per generation 5
Population size 150
Controller connection weight range [—1.0,1.0]
Controller Hidden, output nodes Sigmoidal

Controller Input nodes

Sensor input: [0.0,1.0]

Initial Connection Density 0.5

Initial Sensory Input Nodes / Output Nodes 572

Output Nodes 2

Minimum sensor placement distance (Portion of chassis circumference) 0.01

TABLE II. EXPERIMENT AND COLLECTIVE GATHERING TASK SIMULATION PARAMETERS
Small 0.01 x 0.01
Block size Medium 0.015 x 0.015

Large 0.02 x 0.02
Ultrasonic (0.0,1.0] / (0.0, m)

Sensor types : Range / FOV

Infrared Proximity
Color
Low Res Camera

Gathering Zone Detection

(0.0,0.4] / (7/6,57/6)

(0.0,0.4] / (7/6,57/6)

(0.0,0.8] / (7/9,87/9)
Bottom facing

Sensor bearing range

Sensor orientation range

Robot lifetime (Time-steps per simulation task trial)
Robot group size

Wait for help (cooperation) time

Robot size (Diameter) / Gripping distance

Initial robot / block positions

Environment width x height / Gathering zone size

[—7, 7] Radians
[—7/2,7/2] Radians
10000

20

Remaining lifetime

0.004 / 0.002 (As portion of environment size)

Random (Outside gathering zone)
1.0x 1.0/05x0.2

Minimum / Maximum number of sensors 1710
1: Simple 10, 5,0
Task environments (Blocks: small, medium, large) 2: Medium 555
3: Difficult 0,5, 10
Small 1 Robot
Cooperation needed for block pushing Medium 2 Robots
Large 3 Robots

TABLE III.

AVERAGE TASK PERFORMANCE FOR GROUPS EVOLVED BY EACH METHOD: NEAT AND NEAT-M [30], HYPERNEAT AND HYPERNEAT-M

VALUES IN PARENTHESES ARE STANDARD DEVIATIONS. ENVIRONMENTS 1, 2, AND 3, ARE LABELED simple, medium AND difficult, AS COLLECTIVE
GATHERING IN THESE ENVIRONMENTS REQUIRES MINIMAL, MEDIUM AND MAXIMAL DEGREES OF COOPERATION (RESPECTIVELY).

NEAT NEAT-M HyperNEAT HyperNEAT-M
(Static Morphology) | (Co-adapting Morphology) | (Static Morphology) | (Co-adapting Morphology)

Environment 1 0.76 0.92 0.91 0.96

(Simple) (0.082) (0.071) (0.031) (0.01)
Environment 2 0.45 0.73 0.58 0.79

(Medium) (0.065) (0.087) (0.053) (0.074)
Environment 3 0.32 0.52 0.31 0.50

(Difficult) (0.049) (0.070) (0.082) (0.094)

10 1.0

4
=)

o
1
il

%
|

Task Performance
o
»

o
~

=3
w

0.2}

01

Environment 3
NEAT-M NEAT

Environment 2
NEAT-M NEAT

Environment 1
NEAT-M NEAT

:

0.7 |

06 ﬁ :
= g -

0.4 |

0.2 —

Task Performance

0.1

0.0

Environment 3
HyperNEAT-M HyperNEAT

Environment 2
HyperNEAT-M HyperNEAT

Environment 1
HyperNEAT-M HyperNEAT

Fig. 2. Box plots of average maximum fitness for robot groups evolved by NEAT, NEAT-M (left, figure from related work [30]) and HyperNEAT, HyperNEAT-M
(right), for environments 1 (simple), 2 (medium) and 3 (difficult). Environment 1: Required low cooperation and contained mostly small blocks. Environment
2: Required medium cooperation and contained mostly medium sized blocks. Environment 3: Required high cooperation and contained mostly large blocks.

of small, medium and large sized blocks and required a
medium degree of cooperation for robots to optimally solve.
Environment 3 contained mostly large blocks and required high
cooperation to optimally solve (table III).

Results indicated that for increasing environment complex-
ity (collective gathering task difficulty, section III), groups with
adaptive morphology and controller evolution out-performed
groups using a fixed morphology and evolving controllers. This
was the case between all methods that evolved controllers for
fixed morphology robots (NEAT and NEAT-M [30]) versus
methods that evolved robot controllers and morphologies (Hy-
perNEAT and HyperNEAT-M). Note that, results for NEAT
and NEAT-M evolved groups are taken from previous work
[30], where the same simulation task environments and exper-
iment parameters as in this study (table II, I) were used.

This fitness gain of controller-morphology evolution over
controller evolution is supported by a statistically significant
difference (p < 0.05, pair-wise t-tests [39] with Bonferroni
correction [40]). That is, a statistically significant difference
between the average best collective gathering task performance
(fitness) of NEAT, NEAT-M, HyperNEAT and HyperNEAT-
M evolved groups. Statistical tests thus indicated that there
was a significant difference between groups evolved with static
versus co-adapting morphologies for all environments.

The average fitness of HyperNEAT-M evolved groups was
significantly higher than HyperNEAT evolved groups, and

similarly the average fitness of NEAT-M evolved groups was
significantly higher than that of NEAT evolved groups. This
average best fitness gain also held for HyperNEAT-M over
NEAT-M evolved groups (in environments 1 and 2), where
HyperNEAT-M evolved groups yielded the highest average
fitness overall for all task environments (figure 2, table III).

Robots adapted with HyperNEAT-M (evolving controllers
and morphologies) yielded the highest average fitness for all
task environments, however there was no significant difference
between NEAT-M and HyperNEAT-M evolved groups in the
most difficult version of the task (environment 3). In other
comparisons, HyperNEAT-M yielded an average fitness gain
of approximately 9%, 20% and 12% over the comparative
methods (NEAT, NEAT-M and HyperNEAT) in environments
1 (simple), 2 (medium) and 3 (difficult), respectively.

Thus, for increasing task complexity, HyperNEAT-
M yielded significant average fitness benefits over both
controller evolution (NEAT, HyperNEAT) and comparative
controller-morphology (NEAT-M) evolution methods. This
was especially the case in medium difficulty task (environment
2), where there was an average 20% fitness gain. In this
environment, the success of HyperNEAT-M is theorized to
be due to the demonstrated benefits of controller-morphology
adaptation in such collective gathering tasks [30], [21] and
the nature of task environment 2.

Consider that in environment 2 there was an equal dis-
tribution of block types, where a third of the blocks could
be moved by individual robots, a third required at least two
robots to cooperatively push and the final third required at
least three robots to cooperatively push. Comparisons with
the related controller-morphology evolution method (NEAT-
M, table III, figure 2) demonstrates that such an approach
is suitable for evolving controller-morphology couplings that
enable cooperation. In environment 2, the fitness of groups
evolved with these methods is further boosted by the relative
ease of individually gathering a third of the blocks.

In environments 1 and 2, the average fitness gains of
HyperNEAT are further supported by its capability to exploit
geometric features such as symmetry, regularity and modular-
ity in robot morphology and controller evolution in collective
behavior task environments [41], [21].

In the simplest task (environment 1), there was the least
difference between controller and controller-morphology evo-
Iution methods. This was expected as achieving optimal fitness
in environment 1 did not require any cooperation and there
were enough robots (20 in the group, table II), to ensure
sufficient concurrency in the gathering behavior so as the
group could achieve near optimal task performance (table III).
However, in the most difficult task environment (environment
3), HyperNEAT-M evolved groups still yielded more of an
average fitness gain (12%) over other methods compared to
an average gain of 9% in the simplest task (environment 1).

Thus, importantly, these results also indicate that the role
of indirect (developmental) encoding has less of an impact
in these task environments than that of robot controller-
morphology evolution. This result is especially salient for the
most difficult version of the task (environment 3), where both
NEAT-M and HyperNEAT-M evolved groups yield statistically
comparable average fitness. The lack of any significant fitness
gain of HyperNEAT-M over NEAT-M in environment 3 is
attributed to the difficult nature of the task, which mandated
the cooperation of at least three robots to push two thirds
of the blocks into the gathering zone. However, the impact
of more complex task environments on the efficacy of these
controller-morphology evolution methods is the subject of
ongoing experiments and future work.

These results also support previous work demonstrating
that while fixed morphology and controller evolution ap-
proaches are sufficient for relatively simple tasks, adapting be-
havior and morphology is advantageous as collective behavior
task complexity increases [16], [20], [21].

Furthermore, this study’s results support the efficacy of
simple extensions to well-established neuro-evolution methods
(such as NEAT [31] and HyperNEAT [22]) for the purposes
of robot controller-morphology evolution. As in related work
[30], this study demonstrated that such simple extensions
significantly boost the quality of evolved collective behaviors
given increasing task complexity, while also addressing the
larger goal of defining a general evolutionary optimization
methodology for automating collective robotic design.

An added value of controller-morphology evolution meth-
ods such as NEAT-M and HyperNEAT-M is that they re-
quire significantly less computational expense compared to
traditional cooperative co-evolution methods that have been

applied to robot controller-morphology evolution [10], [11],
[13]. It is for this reason that there are relatively few examples
of cooperative co-evolution of robot controller-morphology in
collective robotic systems [4].

Thus, this study contributes to the larger research objective
of defining a suitable robot controller-morphology evolution
method for the efficient and effective design of collective
robotic systems [15]. Where as previous work has focused
on automating collective robotic design as a controller (col-
lective behavior) optimization algorithm [3], [2], [4], this
study also focused on demonstrating the efficacy of controller-
morphology evolution methods in collective behavior tasks.

These results hold important implications for future appli-
cations in the artificial evolution of physical problem solving
products [23] such as collective robotics systems [42] that have
been specially designed to autonomously accomplish specific
tasks in specific environments. Such methods for automating
the design of robot controller-morphology couplings is thus
envisaged as the computational component of rapid prototyp-
ing technologies that could be used to build physical robotic
systems on demand to accomplish challenging tasks in isolated
and perilous environments [17], [27], [26].

Future work will focus on evaluating the efficacy of
HyperNEAT-M for evolutionary optimization of significantly
larger collective robot groups (robot swarms) as well as for
a diverse range of complex collective behavior tasks that
require or benefit from heterogenous groups [26]. That is,
the efficacy of HyperNEAT-M will be tested for evolving
controller-morphology couplings for behaviorally and mor-
phologically heterogenous groups that are significantly larger
and must accomplish complex collective behavior tasks with
potential real-world applications such as planetary exploration
and terra-forming [17], collective construction and repair [27]
and surveillance and environment monitoring [19].

VI. CONCLUSIONS

This research investigated a developmental encoding neuro-
evolution method (HyperNEAT-M) that applied to the evo-
lutionary (automated) design of robot controllers and mor-
phologies. HyperNEAT-M was applied to automate the design
of collective robotics systems such that robots were suitably
designed (in terms of controller-morphology couplings) for
increasingly complex collective gathering tasks (requiring in-
creasing degrees of cooperation).

Results indicated that HyperNEAT-M produced signifi-
cantly more effective behavior-morphology couplings, com-
pared to those evolved with direct encoding methods and
controllers evolved within fixed morphologies. Results thus
elucidated that such developmental encoding methods could
serve as a general evolutionary simulation design tool for
automating collective robotic designs. An end goal of this
research is the off-line evolutionary design of collective robotic
systems (comprising behaviorally and morphologically het-
erogenous robots) for specific collective behavior tasks, and
the subsequent rapid prototyping, construction and deployment
of collective robotic systems in corresponding physical task
environments.

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

S. Doncieux, N. Bredeche, J.-B. Mouret, and A. Eiben, “Evolutionary
robotics: what, why, and where to,” Frontiers in Robotics and Al —
Evolutionary Robotics, vol. 2(4), pp. 1-18, 2015.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: A review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7(1), pp. 1-41, 2013.

S. Kernbach, Handbook of Collective Robotics: Fundamentals and
Challenges. Singapore: Pan Stanford Publishing, 2013.

G. Yang, J. Bellingham, P. Dupont, P. Fischer, L. Floridi, R. Full, N. Ja-
cobstein, V. Kumar, M. McNutt, R. Merrifield, B. Nelson, B. Scassellati,
M. Taddeo, R. Taylor, and M. Veloso, “The grand challenges of science
robotics,” Science Robotics, vol. 7650, pp. 1-15, 2018.

1. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson,
J. Kaandorp, S. Hauert, and J. Sharpe, “Morphogenesis in robot
swarms,” Science Robotics, vol. 3(25), 2018.

J. Yu, B. Wang, X. Du, Q. Wang, and L. Zhang, “Ultraextensible ribbon-
like magnetic microswarm,” Science Robotics, vol. 9(3260), 2018.

S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan, and C. Hober-
man, “Particle robotics based on statistical mechanics of loosely coupled
components,” Nature, vol. 567(1), pp. 361-365, 2019.

H. Xie, M. Sun, X. Fan, Z. Lin, L. Chen, and L. Wang, “Reconfigurable
magnetic microrobot swarm: multimode transformation, locomotion,
and manipulation,” Science Robotics, vol. 4(1), 2019.

S. Kriegman, N. Cheney, and J. Bongard, “How morphological devel-
opment can guide evolution,” Nature Scientific Reports, vol. 8, 2018.

H. Lipson and J. Pollack, “Automatic design and manufacture of robotic
life forms,” Nature, vol. 406(1), pp. 974-978, 2000.

G. Homnby and J. Pollack, “Creating high-level components with a
generative representation for body-brain evolution,” Artificial Life, vol.
8(3), pp. 1-10, 2002.

N. Cheney, J. Bongard, and V. S. H. Lipson, “Scalable co-optimization
of morphology and control in embodied machines,” Journal of the Royal
Society Interface, vol. 15, 2018.

J. Auerbach and J. Bongard, “Environmental influence on the evolu-
tion of morphological complexity in machines,” PLoS Computational
Biology, vol. 10(1), 2014.

G. Nitschke, “Designing emergent cooperation: a pursuit-evasion game
case study,” Artificial Life and Robotics, vol. 9, no. 4, pp. 222-233,
2005.

M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G.Francesca,
L. Garattoni, D. Garzon, K. Hasselmann, M. Kegeleirs, J. Kuckling,
F. Pagnozzi, A. Roli, M. Salman, and T. Stutzle, “Automatic off-line
design of robot swarms: A manifesto,” Frontiers of Robotics and Al,
vol. 6(59), pp. 1-6, 2019.

G. Buason, N. Bergfeldt, and T. Ziemke, “Brains, bodies, and beyond:
Competitive co-evolution of robot controllers, morphologies and envi-
ronments,” Genetic Programming and Evolvable Machines, vol. 6(1),
pp- 25-51, 2005.

M. Sabatini and G. Palmerini, “Collective control of spacecraft swarms
for space exploration,” Celestial Mechanics and Dynamical Astronomy,
vol. 105(1), pp. 229-244, 2009.

J. Jaffe, P. Franks, P. Roberts, D. Mirza, C. Schurgers, R. Kastner, and
A. Boch, “A swarm of autonomous miniature underwater robot drifters
for exploring submesoscale ocean dynamics,” Nature Communications,
vol. 8(14189), pp. 1-8, 2017.

G. Vasarhelyi, C. Viragh, G. Somorjai, T. Nepusz, A. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, pp. 1-13, 2018.

J. Watson and G. Nitschke, “Evolving robust robot team morphologies
for collective construction,” in Proceedings of the IEEE Symposium
Series on Computational Intelligence. Cape Town, South Africa: IEEE
Press, 2015, pp. 1039-1046.

R. Putter and G. Nitschke, “Evolving morphological robustness for
collective robotics,” in Proceedings of the IEEE Symposium Series on
Computational Intelligence. Honolulu, USA: IEEE Press, 2017, pp.
1104-1111.

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[33]

[34]

[37]

[38]

(391
[40]

[41]

[42]

K. Stanley, D’Ambrosio, and J. Gauci, “Hypercube-based indirect
encoding for evolving large-scale neural networks,” Artificial Life, vol.
15(1), pp. 185-212, 2009.

A. Eiben and J. Smith, “From evolutionary computation to the evolution
of things,” Nature, vol. 521, pp. 476-482, 2015.

D. Howard, A., D. K. Eiben, J.-B. Mouret, P. Valencia, and D. Winkler,
“Evolving embodied intelligence from materials to machines,” Nature
Machine Intelligence, vol. 1(1), pp. 12-19, 2013.

D. Strombom and A. King, “Robot collection and transport of objects:
A biomimetic process,” Frontiers in Robotics and Al, vol. 5(48), 2018.

L. Garattoni and M. Birattari, “Autonomous task sequencing in a robot
swarm,” Science Robotics, vol. 3(20), 2018.

J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343(6172),
pp. 754-758, 2014.

C. Parker and H. Zhang, “Collective robotic site preparation,” Adaptive
Behavior, vol. 14(1), pp. 5-19, 2006.

D. D’Ambrosio and K. Stanley, “Generative encoding for multiagent
learning,” in Proceedings of the Genetic and Evolutionary Computation
Conference. Atlanta, USA: ACM Press, 2008, pp. 819-826.

J. Hewland and G. Nitschke, “Evolving robust robot team morphologies
for collective construction,” in The Benefits of Adaptive Behavior and
Morphology for Cooperation in Robot Teams. Cape Town, South
Africa: IEEE, 2015, pp. 1047-1054.

K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99-127, 2002.

K. Stanley, “Compositional pattern producing networks: A novel ab-
straction of development,” Genetic Programming and Evolvable Ma-
chines: Special Issue on Developmental Systems, vol. 8, no. 2, pp. 131—
162, 2007.

D. D’Ambrosio and K. Stanley, “Scalable multiagent learning through
indirect encoding of policy geometry,” Evolutionary Intelligence, vol.
6(1), pp. 1-26, 2013.

S. Didi and G. Nitschke, “Multi-agent behavior-based policy transfer,”
in Proceedings of the European Conference on the Applications of
Evolutionary Computation. Porto, Portugal: Springer, 2016, pp. 181—
197.

S. Risi and K. Stanley, “A unified approach to evolving plasticity and
neural geometry,” in Proceedings of the International Joint Conference
on Neural Networks. Amsterdam, Netherlands: IEEE, 2012, pp. 1-8.

F. Lambercy and J. Tharin, Khepera III User Manual: Version 3.5.
Lausanne, Switzerland: K-Team Corporation, 2013.

J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation. Redwood City: Addison-Wesley, 1991.

G. Nitschke, M. Schut, and A. Eiben, “Evolving behavioral specializa-
tion in robot teams to solve a collective construction task,” Swarm and
Evolutionary Computation, vol. 2, no. 1, pp. 25-38, 2012.

B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes.
Cambridge University Press.

O. Dunn, “Multiple comparisons among means,” Journal of the Amer-
ican Statistical Association, vol. 56(293), pp. 52-64, 1961.

J. Watson and G. Nitschke, “Evolving robust robot team morphologies
for collective construction,” in Proceedings of the IEEE Symposium
Series on Computational Intelligence. Cape Town, South Africa: IEEE,
2015, pp. 1039-1046.

M. Jelisavcic, M. D. Carlo, E. Hupkes, P. Eustratiadis, J. Orlowski,
E. Haasdijk, J. Auerbach, and A. Eiben, “Real-world evolution of robot
morphologies: A proof of concept,” Artificial life, vol. 23(2), pp. 206—
235, 2017.

