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Abstract—The evolutionary cost of morphological complexity
in biological populations remains an open question. This study
investigates the impact of imposing a cost on morphological
complexity given co-adapting behavior-morphology couplings in
simulated robots. Specifically, we investigate the environmen-
tal and evolutionary conditions for which morphological com-
plexity can be evolved without sacrificing behavioral efficacy.
This study evaluates the relationship between between task
difficulty (environment complexity) and evolved morphological
complexity. We use multi-objective neuro-evolution to evolve
robot controller-morphology couplings in task environments of
increasing difficulty, where the objectives are to minimize the cost
of (morphological) complexity and to maximize behavior quality
(task performance) over evolutionary time. Results indicate that
imposing a cost of complexity induces the evolution of simpler
morphologies with negligible differences in behavior (task per-
formance) across varying task environments. That is, with a cost
of complexity, evolution maintained a constant selection pressure
for morphological complexity across all environments.

I. INTRODUCTION

An open question in evolutionary robotics [1] and biology
[2], is under what environmental and evolutionary conditions
does complexity evolve. This is especially pertinent in evolu-
tionary robotics where the range of possible (task accomplish-
ing) behaviors is constrained by morphological complexity [3].
To contribute to this question, this study evaluates the impact of
imposing a cost on morphological complexity for increasingly
complex (difficult) evolutionary robotics environments (tasks).
In nature, such a complexity cost is based in hypotheses that
more complex environments facilitate the evolution of more
complex organisms, where evolution is constrained by fitness
costs on complexity [4], [5].

This study uses evolutionary collective robotics as an
experimental platform to address this question. Collective
robotics was selected as such systems are abstractions of
natural communities of organisms in which varying degrees of
morphological complexity has evolved across ecological niches
[6]. Also, whilst significant work has been done on co-evolving
behaviour and morphology for individual robots [7], [8], [9],
[10], [11], much less has been done on behavior-morphology
co-evolution in collective robotics [12], [13], [14], [15], [16],
especially for investigating the evolution of complexity. Collec-
tive robotics thus represents a suitable experimental platform
for investigating the evolution of morphological complexity.

Furthermore, from a practical perspective, the degree of
morphological complexity has important implications for the
engineering of physical robotic systems. That is, it is often
necessary to minimise expenditure on sensors and actuators

and avoid overly complicated or expensive robotic designs.
Thus, where ever possible, morphologies should be as cheap
and effective as possible whilst enabling as many (task ac-
complishing) behaviors as possible. This is especially pertinent
in collective robotic systems where redundant morphological
complexity amplifies design costs as robot numbers increase.

This research presents a comparative evaluation and anal-
ysis of the benefits versus disadvantages of imposing a mor-
phological complexity cost during robot controller-morphology
co-adaptation. Given the general evolutionary robotics aim
of evolving robot morphologies suitable for enabling the co-
evolution of task accomplishing behaviors in any given envi-
ronment [1], we formulated the following research objective.

To better elucidate the relationship between increasing
environment complexity (task difficulty), given co-adapting
robot behavior and morphology with an imposed fitness cost
on morphological complexity. Specifically, we aim to ascertain
under what environment and evolutionary conditions does
increasing environment complexity necessitate increased se-
lection pressure for increasing morphological complexity.

Formulation of this objective was also motivated by previ-
ous evolutionary robotics research results describing how dif-
ferent forms of morphological complexity evolve as a function
of the task and environment [17], [7].

For example, Auerbach and Bongard [17] demonstrated
that increased mechanical complexity, was not selected for
given behavior-morphology co-evolution in simulated robots
adapted across increasingly complex task environments1. Re-
lated work on co-adapting controllers and morphologies in
evolutionary collective robotics [13], [18], [12], [13], similarly
reported that simpler robot morphologies were selected for
as task complexity increased. However, subsequent research
using another definition of morphology [7], demonstrated
that a morphological complexity cost resulted in increasing
morphological complexity during robot behavior-morphology
co-evolution in increasingly complex task environments.

These studies demonstrated that increased environmental
complexity does not necessarily imply a need for greater mor-
phological complexity and that increased morphological com-
plexity does not necessarily result in more effective evolved
behaviors. Rather, the evolution of complexity depends upon
the definition of morphology and the environment in which
robot behavior-morphology is co-evolved [14], [18], [13].

To contribute to these results and our objective we use a

1Task environment and environment are used interchangeably.
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multi-objective extension of Neuro-Evolution of Augmenting
Topologies-Morphologies (NEAT-M) [14] that minimises mor-
phological cost whilst concurrently maximizing task perfor-
mance during controller-morphology co-adaptation in a bench-
mark collective robotics task: collective gathering [1]. This
evolved morphological complexity versus behavior efficacy
trade-off is evaluated for increasing task difficulty (environ-
ment complexity), where we define morphological complexity
as a function of a robot’s sensory configuration. That is, mor-
phological complexity is a function of the number and type of
sensors on a given robot’s chassis, whereas, evolved behavior
efficacy is equated with the robots’ collective gathering task
performance [19].

II. METHODS

This study evaluates the NEAT-M-MODS multi-objective
behavior-morphology evolution method extension of NEAT-
M [14], versus NEAT-M (single-objective evolution) for co-
adapting robot Artificial Neural Network (ANN) controllers
(behaviors) and morphologies (sensory-configurations) in var-
ious collective gathering task environments. The collective
gathering task required groups of robots to locate and cooper-
atively push resources (blocks) into a gathering zone (section
III). Groups were homogenous in that the same behavior-
morphology adaptations were applied to all robots.

For NEAT-M-MODS, behavior-morphology (section II-B)
evolution was directed by the maximisation of collective gath-
ering task performance and the minimization of morphological
complexity (representing a morphological complexity cost,
section II-C). The second objective was thus to evolve a
minimally effective sensory configuration that concurrently
enabled the evolution of effective behaviors. In order to as-
certain the impact of imposing a cost of complexity, NEAT-M
was comparatively evaluated except that maximizing collective
gathering task performance was the only objective.

A. NEAT-M-MODS Method Overview

Neuro-Evolution for Augmenting Topologies (NEAT)-M-
MODS is a multi-objective optimization extension of NEAT-
M [14] and NEAT-MODS [20]. However, NEAT-M evolves
a direct genotypic encoding of both robot behavior (ANN
controller) and morphology (ANN connections to an array of
sensors that constitute the robot’s sensory configuration).

NEAT-M-MODS supersedes the core functionality of
NEAT-M [14] via including NEAT-MODS [20], an NSGA-
II based Multi-Objective Evolutionary Algorithm that uses
multiple objectives to direct the evolutionary process of NEAT
[21]. NEAT-M-MODS initializes a genotype population, com-
putes each genotype’s score vector (multi-objective fitness),
speciates the population and subsequently computes a rank for
each genotype based on non-dominated sorting and crowding
distance comparisons [22]. The NEAT-M-MODS evolutionary
process is as follows (evolutionary operators and parameters
settings used by NEAT-M-MODS are given in table I).

(1) Apply mutation and crossover operators to randomly
paired genotypes within fittest x% of parent population (size
N) to produce child population (size N).

(2) Evaluate child population in task and compute score
vector (multi-objective fitness) for each child genotype.

(3) Combine fittest portions of parent and child genotypes
into combined population of 2N genotypes.

(4) Speciate the combined population into S species.

(5) Compute a rank for each combined population genotype
based on non-dominated sorting and crowding distance.

(6) Select (phase 1, 2 selection) genotypes from combined
population to create the next generation population.

(7) Repeat steps 1 to 6.

Hence, the multi-objective evolutionary process is directed
via augmenting the NEAT selection process to follow an elitist
strategy that uses the combined parent and child populations
of current solutions. Once this combined population is placed
into respective species (step 4) and sorted via non-domination
sorting and crowding-distance (step 5) as in NSGA-II [23],
selection occurs in two phases:

Selection phase 1 (Select species): The combined pop-
ulation is traversed by genotype rank to select a list of
species. A limiting function [20] ensures selected species are
genotypically diverse and contain pareto-optimal genotypes.

Selection phase 2 (Select individuals): The species list is
traversed via serial progression [20] to select N genotypes
to constitute the new parent population. Serial progression
ensures the list of selected genotypes is both genotypically
diverse and elitist in the context of pareto-optimality.

A thorough treatment of the original NEAT-MODS method
can be found in the associated paper [20].

B. Robot Behavior-Morphology Evolution

NEAT-M [14] and NEAT-M-MODS evolved robots began
with a minimal sensory configuration of five sensors (one of
each type), where each sensor corresponded to an input node in
the ANN controller. These input nodes were fully connected
to two motor output nodes (figure 1, left). As with NEAT
[21], ANN connections were randomly initialized with weights
within a pre-specified range (table II) and without any hidden
layers. ANN controllers were then subject to complexification
during the neuro-evolution process. ANN controllers used
Sigmoidal units [24] for hidden and output nodes, all sensory
input values were normalized to the range: [0.0, 1.0] for input
nodes, and controller connection weights and hidden-layer
topology was adapted with neuro-evolution (NEAT).

Figure 1 (center-left) presents the initial robot morphology
(sensory-configuration) used as an evolutionary starting point
for NEAT-M and NEAT-M-MODS. This initial sensory-motor
configuration (motor outputs were fixed throughout behavior-
morphology evolution) was selected to ensure that robots were
initially able to accomplish the collective gathering task with
some degree of success. The possible sensor types were:
(1) Ultrasonic, (2) Infrared Proximity, (3) Color, (4) Low
Resolution Camera, and (5) Gathering Zone Detector (table
II). These sensors were selected as they are typically available
for the Khepera III mobile robot [25].

For each sensor type, sensor parameters could be perturbed
by various mutation operators that add and remove sensors
(of a given type), as well as modify, add and remove ANN
connection weight values, add and remove weight connections



to sensors, and change sensor positions and orientations (on the
robot’s periphery). These mutation operators are presented in
table I, where the parameter-set for each sensory input node
is: Sensor Type, Field of View (FOV), Range, Position, and
Orientation. Figure 1 (center), presents an example robot with
one sensor and an illustration of the sensor parameters subject
to evolutionary adaptation.

Robot behavior-morphology evolution is driven by genetic
(crossover or mutation) operators (table I) that adapt ANN
connection weights and hidden nodes (behavior adaptation
only), add or remove sensors or otherwise perturb sensor
parameters (morphology and behavior adaptation). At each
generation (of both methods), either crossover or mutation
operators are applied. If mutation is applied then each of the
mutation operators described in table I is applied with a given
degree of probability. The crossover and mutation operators
are fully described in previous work [21], [14].

Whenever a new sensor was added (add sensor operator)
it was placed at a given minimum position distance (table I)
between two randomly selected sensors already on the robot’s
chassis. In the case where there was only one sensor currently
on the robot’s body the new sensor was placed randomly to
the left or right of this one sensor. The same procedure was
followed for the remove sensor operator, where at least one
sensor had to be positioned on a robot’s chassis.

Only sensors were subject to mutation during behavior-
morphology co-evolution. Robot movement actuators remained
fixed during behavior-morphology co-adaptation.

1) Movement Actuators: Two wheel motors controlled a
robot’s heading at a constant speed. Movement was calculated
in terms of real valued vectors (dx and dy). Wheel motors
(figure 1, center-left, center-right) were explicitly activated by
the ANN controller, where a robot’s heading was determined
by normalizing and scaling output values by the maximum
distance it could traverse in one simulation time-step. That is:

dx = dmax(o1 − 0.5)

dy = dmax(o2 − 0.5)

Where, o1 and o2 are the motor output values. To calculate
the distance between this robot (v), other robots and blocks in
the environment, the squared Euclidean norm, bounded by a
minimum observation distance was used (table I).

2) Controller (Behavioral) Heuristics: Given this study’s
research focus was on evaluating the impact of imposing a
complexity cost on behavior-morphology evolution, behavioral
heuristics from related work [14] were included to speed up
the evolution of collective gathering behaviors.

C. Morphological Complexity Definition

Morphological complexity2 is hereby defined as a function
of the number of sensors n (n ∈ [0, 10]) on a candidate
solution (robot) as well as the Field of View (FOV) value fi and
range value ri of each sensor Si in the set of n selected sensors.
The values fi and ri are constrained by the sensor type of Si.

2The term morphological simplicity is also used in this study’s results
and discussion (section V) given the evolutionary robotics goal of evolving
morphologically simple robots with behaviorally effective controllers [26].

Namely, ∨Fi and ∧Fi, and ∨Ri and ∧Ri, are the maximum
and minimum possible values of fi and ri, respectively, for
Si’s sensor type (table II). Thus, morphological complexity
M is minimized according to equation (1):

M = 5×
n∑

i=1

(
fi − ∧Fi

∨Fi − ∧Fi
+

ri − ∧Ri

∨Ri − ∧Ri

)
(1)

Where, there are five (5) points of complexity for the range
and FOV of each sensor type, and we define the following:

fi − ∧Fi

∨Fi − ∧Fi
: Fraction of total possible FOV used by Si.

ri − ∧Ri

∨Ri − ∧Ri
: Fraction of total possible Range used by Si.

III. COLLECTIVE GATHERING TASK

Collective gathering requires robots to locate distributed
resources (blocks) in a bounded environment and transport
them, via cooperative pushing, to a gathering zone [27]. This
task was selected given its pertinence to various collective
robotics applications in remote and hazardous real-world envi-
ronments such as space exploration [28], toxic waste clean-up
[29] and mine-field sweeping [30]. Also, collective gathering is
an established collective evolutionary robotics benchmark task
and is thus a suitable experimental platform for evaluating new
evolutionary design methods [1].

Cooperation was defined as the number of robots required
to push a given block type. Task difficulty (environment com-
plexity) was defined as a function of the number of blocks
and degree of cooperation mandated for task accomplishment.
Blocks types were: small, medium, or large, which could be
pushed by at least one, two and three robots, respectively (table
II). Thus, task difficulty was calibrated via initializing environ-
ments (simple, medium, difficult) with varying combinations
of block types (table II).

For example, in the simple environment, containing 10
small and 5 medium sized blocks, robots could work con-
currently with minimal cooperation needed to move all blocks
into the gathering zone. Collective gathering task performance
(fitness, section IV-A) was the total number of blocks pushed
into the gathering zone during the robots’ lifetime (table II).

IV. EXPERIMENTS

Experiments measured the impact of a fitness cost (NEAT-
M-MODS) versus no cost (NEAT-M) on morphological com-
plexity given behavior-morphology evolution for robots that
must solve collective gathering tasks. In NEAT-M-MODS,
multi-objective controller evolution (task performance maxi-
mization and complexity minimization) is used and in NEAT-
M, single objective optimisation (task performance) is used.

The experimental platform was an extended collective-
robotics simulator [14] implementing the collective gathering
task (figure 1, right), where robots were modeled after the
Khepera III [25], with co-adaptable ANN controllers and sen-
sor configurations3. Experiments executed simulations of 20

3The collective robotics simulator, NEAT-M and NEAT-M-MODS source-
code is online at: https://github.com/costcomplex/CEC2019



TABLE I. NEURO-EVOLUTION PARAMETERS

Crossover rate 0.32
Probability to apply a mutation operator 0.34

Mutation Operators : Selection rate

Sensor weight perturbation 0.08
Add / Remove sensor 0.07
Sensor position / Orientation perturbation 0.10
Sensor FOV / Range perturbation 0.07
Add / Remove hidden node 0.05
Add / Remove connection weight 0.05
Connection weight perturbation 0.335

Generations per experiment / Experiment replications (runs) 250 / 20
Trial (robot lifetime) evaluations per generation 5
Population size 150
ANN connection weight range [−1.0, 1.0]

ANN Hidden, output nodes Sigmoidal
ANN Input nodes Sensor input: [0.0, 1.0]
Initial Connection Density 0.5
Initial Sensory Input Nodes / Output Nodes 5 / 2
Output Nodes 2
Minimum sensor placement distance (Portion of chassis circumference) 0.01

TABLE II. EXPERIMENT AND SIMULATION PARAMETERS

Block size
Small 0.01 x 0.01
Medium 0.015 x 0.015
Large 0.02 x 0.02

Sensor types : Range / FOV

Ultrasonic (0.0, 1.0] / (0.0, π)
Infrared Proximity (0.0, 0.4] / (π/6, 5π/6)
Color (0.0, 0.4] / (π/6, 5π/6)
Low Res Camera (0.0, 0.8] / (π/9, 8π/9)
Gathering Zone Detection Bottom facing

Sensor bearing range [−π, π] Radians
Sensor orientation range [−π/2, π/2] Radians
Robot lifetime (Time-steps per simulation task trial) 10000
Robot group size 20
Robot size (Diameter) / Gripping distance / Speed (per time step) 0.004 / 0.002 / 0.013 (As portion of environment size)
Initial robot / block positions Random (Outside gathering zone)
Environment width x height / Gathering zone size 1.0 x 1.0 / 0.5 x 0.2
Minimum / Maximum number of sensors 1 / 10

Task environments (Blocks: small, medium, large)
Simple 10, 5, 0
Medium 5, 5, 5
Difficult 0, 5, 10

Cooperation needed for block pushing
Small 1 Robot
Medium 2 Robots
Large 3 Robots

robots in a bounded two dimensional continuous environment
containing a distribution of small, medium, and large blocks
(table II). Blocks were randomly distributed throughout the
environment, excluding the gathering zone, whereas robots
were initially randomly placed in the gathering zone. The
three block type distributions given in table II correspond to
increasing environment complexity (simple, medium, difficult),
necessary to test the impact of task difficulty on controller-
morphology evolution with and without a complexity cost.

To test the research objective (section I) we designed
two sets of experiments. To evaluate the impact of a cost
of complexity on behavior-morphology evolution, experiment
set 1 evaluated NEAT-M-MODS for all three environments
(table II). For comparison, experiment set 2 evaluated NEAT-
M to evaluate behavior-morphology evolution without a cost
on complexity for the same task environments.

Only homogenous teams were tested, meaning that at
each NEAT-M and NEAT-M-MODS generation, the selected
genotype was copied 20 times (to represent the robot group
size of 20). In all experiments, groups were behaviorally and
morphologically homogenous, meaning that the same evolved
behavior-morphology couplings were applied to each robot.

A. Fitness Function

In experiment set 1, task performance was maximized
and morphological complexity minimized, where this second
objective placed additional selection pressure towards lower
morphological complexity, thereby imposing a fitness cost
on morphological complexity. In experiment set 2, only task
performance was maximized, thereby only placing selection
pressure on the evolution of effective collective behaviours.

Task performance was the average number of blocks



Fig. 1. LEFT: Initial robot ANN controller connecting 5 sensors to 2 actuators. CENTER-LEFT: Robots were initialized with one ultrasonic, infrared proximity,
color, gathering zone detector (bottom proximity) sensor and one low-resolution camera. Wheel motors were fixed throughout behavior-morphology evolution.
CENTER-RIGHT: Example robot with one sensor. Position determines sensor location on the robot’s chassis with respect to the robot’s heading. Orientation
then determines the direction the sensor faces with respect to this position. By default, a robot’s heading is forward facing (parallel to its wheels). RIGHT:
Example simulation environment containing 20 robots and a distribution of different block types. The gathering zone containing gathered blocks (blue squares)
is highlighted at the bottom. Varying sensory parameters (sensor type, position, orientation, field of view and range) are highlighted as shaded semi-circles.

pushed into the gathering zone by robots over five simulated
task trials (lifetimes) in a given generation (table I). We defined
vc as total value of resources in the gathering zone, vt as
total value of all resources in the environment, se as the
number of simulation time-steps in the robots’ lifetime and
st as number of trial evaluations per genotype (representing
a given behavior-morphology configuration). As such, task
performance T was maximised according to equation (2):

T = 100× vc
vt

+ 20× (1.0− se
st
) (2)

In equation (2), 100 was the maximum number of blocks
that could be gathered during an experiment run, and 20 was
an experimentally determined weighting (boosting fitness for
efficient individual and cooperative gatherers).

Each experiment applied NEAT-M or NEAT-M-MODS to
evolve collective gathering behavior for 250 generations. A
generation comprised five robot lifetimes, where each lifetime
was 10000 simulation iterations. Each lifetime was a simulated
collective gathering task scenario that tested different robot
starting positions, orientations, and block locations in either
a simple, medium or difficult environment (table II). Average
collective gathering task performance was calculated at the
end of each run and averaged over 20 runs. Tables I and II
present (experimentally determined) evolution and simulation
parameters used for all experiments. All other parameters used
the same settings as in previous work [31], [20], [14].

V. RESULTS & DISCUSSION

Experiments (section IV) evaluated the impact of a mor-
phological complexity cost versus no complexity cost (NEAT-
M-MODS, NEAT-M, section II) in groups of robots for
controllers (behaviors) and morphologies were co-adapted.
Evolved robots were evaluated in increasing difficult task envi-
ronments: simple, medium and difficult, in terms of collective
gathering task performance (section III) and morphological
complexity (evolved sensor-configurations, section II-C).

Figure 2 presents average morphological complexity and
task performance results, and figure 3 presents Pareto-front

and evolutionary progression of morphological complexity.
All results compare NEAT-M-MODS and NEAT-M for evolv-
ing robot behavior-morphology couplings across increasingly
difficult tasks and averages were calculated (for respective
environments) over 20 evolutionary runs for each method.

Figure 2 (left) presents results of average morphologi-
cal complexity4 evolved by NEAT-M and NEAT-M-MODS.
Behavior-morphology evolution in NEAT-M had a Single Ob-
jective (SO) of maximizing task performance, whereas, NEAT-
M-MODS had the Multiple Objectives (MO) of maximizing
task performance and minimizing morphological complexity.

In figure 2, a complexity value of 1.0 indicates the simplest
possible morphology (one sensor) and a value of 0.0 indicates
the most complex morphology (10 sensors, table II). Figure
2 (right) presents average maximum task performance results
yielded by NEAT-M (SO) versus NEAT-M-MODS (MO point
with highest task performance overall) in each environment.

Figure 3 (left) presents the best three knee-points for each
Pareto front, where a knee-point has the highest value for both
objectives (closest to the utopia point of the most effective
controllers coupled with the simplest morphology5. For com-
parison, the best single-objective points (average maximum
task performance and corresponding morphological simplicity)
yielded by NEAT-M in each environment are also presented.

Figure 3 (right) presents the evolutionary progression of
morphological simplicity for the NEAT-M-MODS and NEAT-
M methods applied in each environment. Values close to 1.0 in-
dicate low morphological complexity (few sensors), and values
close to 0.0 indicate relatively high complexity (many sensors).
Figure 3 (right) clearly illustrates, for all environments, that
NEAT-M-MODS evolved morphologies were on average, half
as complex as NEAT-M evolved morphologies.

For each environment, results data-set normality was con-
firmed using the Shapiro-Wilk test [32], and independent two-
tailed t-tests [32] (p < 0.05) applied to test for significant

4Simplicity in figure 2 for clarity and consistency with previous work [7].
5The automated evolution of such robot behavior-morphology configura-

tions is an end-goal in evolutionary robotics [26].



Fig. 2. LEFT: Average maximum morphological simplicity for Single Objective (SO): NEAT-M, and Multi Objective (MO): NEAT-M-MODS, knee-points for
simple, medium and difficult environments, respectively. RIGHT: Average maximum task performance of the SO: NEAT-M versus MO points: NEAT-M-MODS
with highest task performance overall. Morphological simplicity values close to 1.0 indicate low morphological complexity.

Fig. 3. LEFT: Multi-Objective (MO, NEAT-M-MODS) Pareto front and Single Objective (SO, NEAT-M) scores, where the SO point for each environment
corresponds to the maximum task performance and corresponding morphological simplicity score (averaged across all experiment repetitions). RIGHT: Progression
of average morphological simplicity for MO and SO over evolutionary time in each environment.

differences in average task performance. Specifically, between
NEAT-M (SO) and NEAT-M-MODS (MO) evolved robots,
where for the latter we used the average of maximum task
performance knee-points from each evolved Pareto front.

These comparisons (table III) indicated that for simple and
medium environments (section III), NEAT-M evolved robots
yielded comparable average task performances to NEAT-M-
MODS evolved robots, where the best three knee-points (figure
3) for NEAT-M-MODS were compared to the average best
NEAT-M task performance. However, in the difficult envi-
ronment (section III), NEAT-M-MODS yielded a significantly
higher average task performance, exceeding NEAT-M evolved
robot task performance by approximately 15%.

These results partially contribute to this study’s research
objective (section I), in demonstrating that as task complex-
ity (difficulty) increases, imposing a cost on morphological

complexity during behavior-morphology evolution (NEAT-M-
MODS), results in evolved behavior-morphology couplings
that more effectively accomplish difficult tasks.

Also, in the difficult environment, on average NEAT-M
and NEAT-M-MODS evolved morphologies were comparably
complex (table III and figure 2, left). However, some mor-
phologies of the fittest (highest task performance) NEAT-M-
MODS evolved robots comprised approximately 40% fewer
sensors than the fittest NEAT-M evolved robots (figure 3, left).

This trend is more salient in behavior-morphology cou-
plings evolved in simple and medium environments, where
average morphological complexity of the fittest NEAT-M-
MODS robots was approximately 60% and 25% simpler,
respectively (with statistical significance, table III), than the
fittest NEAT-M robots evolved in the same environments.



TABLE III. STATISTICAL TASK PERFORMANCE AND MORPHOLOGY COMPARISONS OF BEST EVOLVED NEAT-M (SO: HIGHEST TASK PERFORMANCE)
AND NEAT-M-MODS (MO: 3 KNEE-POINTS ON PARETO-FRONT, FIGURE 3) ROBOTS. == : STATISTICALLY COMPARABLE. MORPHOLOGICAL SIMPLICITY

(COMPLEXITY) IS DEFINED IN SECTION II-C.

Task Performance Morphological Simplicity
Simple Environment MO == SO MO >SO (simpler by approx. 60%)
Medium Environment MO == SO MO >SO (simpler by approx. 25%)
Difficult Environment MO >SO (approx. 15%) MO == SO

This result further contributes to the research objective
(section I), via elucidating that a morphological complexity
cost imposed in less difficult task environments enables the
evolution of simpler morphologies (fewer sensors) and effec-
tive controllers (behaviors). That is, for simple and medium
environments, the corresponding average task performance
of NEAT-M-MODS evolved robots is comparable to that of
NEAT-M evolved robots (table III). Thus, a complexity cost
imposed during behavior-morphology evolution in increasingly
difficult tasks, results in the selection of simpler morphologies
coupled with effective controllers.

Figures 2 and 3 present complementary results providing
further insights on the impact of a morphological complexity
cost on behavior-morphology evolution across increasingly
complex environments. Figure 3 (left) illustrates the result
that a complexity cost, defined as an objective of NEAT-M-
MODS behavior-morphology evolution, enables the evolution
of comparable or significantly simpler robot morphologies
when compared to behavior-morphology evolution with no
complexity cost (NEAT-M by comparison, table III).

This result was especially salient in the case of evolution
in the simple and medium environments where this complexity
cost resulted in, on average, all evolved morphologies being
60% and 25% simpler, respectively (given the robot morphol-
ogy definition, section II-C), though with comparable task
performances when compared to robots that evolved relatively
more complex morphologies (SO in figures 2 and 3: left).
In the case of behavior-morphology evolution in the difficult
environment, a complexity cost resulted in evolved robots
with comparably simple morphologies (figure 2 left), but with
behavioral couplings that achieved a significantly higher task
performance (figure 2, right), when compared to behavior-
morphology evolution without a complexity cost (table III).

As further evidence that a complexity cost enables evo-
lutionary selection of simpler morphologies, figure 3 (right)
presents the evolutionary progression of average morphological
complexity given the application of NEAT-M-MODS and
NEAT-M in each environment. These results indicate that for
all environments, whilst initially all morphologies were rela-
tively simple, those evolved by NEAT-M became increasingly
complex over evolutionary time.

Thus, on average over all environments, robot morpholo-
gies evolved with a complexity cost (NEAT-M-MODS) were
approximately 60% simpler (figure 2, left, and figure 3, right),
given our morphology definition (section II-C), when com-
pared to those evolved without a complexity cost (NEAT-M).

These results are consistent with related work [12], [13],
[17], similarly demonstrating that increased morphological
(sensor configuration) complexity does not necessarily evolve
in response to increased task complexity. However, such
simpler morphologies are often a sufficient substrate for the

evolution of effective controllers, resulting in evolved robots
yielding increased task performance.

Overall, and inline with related work [33], [7], [14] these
results (table III and figures 2, 3) indicate that the evolution
of robots comprising effective behaviors coupled with sim-
ple morphologies, is strongly impacted by the definition of
morphology. For example, Auerbach and Bongard [33] found
that given a mechanical complexity definition of evolved robot
morphology, which was a function of the mechanical degrees
of freedom of robot joints and actuators, then over the course of
behavior-morphology evolution in increasingly difficult tasks,
increasingly simpler morphologies were selected for.

This mechanical complexity definition of morphology was
orthogonal to that defined in subsequent work [7], where
morphological complexity was defined as a function of the
curvature of an evolved robot’s exterior (Shannon diversity
[34]). In this later work, a complexity cost resulted in the
evolutionary selection of increasingly complex morphologies
in increasingly complex task environments.

In the case of this study, morphology was defined as
a function of the number, type and properties of sensors
(section II-C), where this definition of morphology supported
previous work [33], [14], that similarly found that increas-
ingly simple robot morphologies were selected for during
behavior-morphology evolution across increasingly difficult
task environments. However, this studies novel contribution
was that a morphological complexity cost similarly results in
the evolution of simple-morphologies coupled with effective
behaviors. This contradicts the key result of previous work
that similarly imposed a morphological complexity cost [7],
though as also hypothesized in this related work, this is due
to differing definitions of morphology and the nature of the
evolutionary process and task environments.

Thus in summation, this study’s results contribute to such
previous work [33], [7], [14] providing additional insight into
the relationship between task environment complexity, the
definition of morphology and the impact of a complexity cost
on the evolution of behavior-morphology couplings.

VI. CONCLUSION

This study investigated how imposing fitness costs on
morphological complexity (sensory configuration evolution)
impacts the evolution of robot behaviors and morphologies.
Experiments evaluated collective gathering task performance
and morphological complexity of robot behavior-morphology
couplings evolved in increasingly complex task environments.
Evaluation of evolved robot behaviors and morphologies was
with respect to an imposed cost on morphological complexity
versus no cost during behavior-morphology evolution.



Results indicated that imposing a morphological complex-
ity cost enables the evolution of simpler morphologies (sensory
configurations) coupled with effective controllers, when com-
pared to behavior-morphology evolution with no complexity
cost. This result held for evolution across increasingly complex
(difficult) task environments. This suggests that, contrary to
intuitive hypotheses on the evolution of complexity [35],
increased morphological complexity is not necessarily required
for evolving effective behaviors as task complexity increases.
This result is supported by related work similarly indicating
that increased environment complexity does not necessarily
facilitate increased morphological complexity [17].

However, this study’s key contribution was that a com-
plexity cost enables the evolution of simpler morphologies that
retain the capacity to support effective behavior couplings. This
result was contrary to previous research [7], though this is
hypothesized to be due to the differing definitions of morphol-
ogy, task environments and the behavior-morphology evolution
process used in this work. Hence, elucidating the relation-
ships between complexity evolution given varying definitions
of morphological complexity, environments and evolutionary
processes remains the topic of ongoing research.
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