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Abstract—This study evaluates objective versus non-objective-
based evolutionary search methods for behavior evolution in robot
teams. The goal is to evaluate the morphological robustness of
evolved controllers, where controllers are evolved for specific
robot sensory-motor configurations (morphologies) but must
continue to function as these morphologies degrade. Robots use
artificial neural network controllers where behavior evolution is
directed by developmental neuro-evolution. Guiding evolutionary
controller design we use objective (fitness function) versus non-
objective (novelty) search. The former optimizes for behavioral
fitness and the latter for behavioral novelty. These methods are
evaluated across varying robot morphologies and increasing task
complexity. Results indicate that novelty search yields no benefits
over objective search, in terms of evolving morphologically robust
controllers. That is, both novelty and objective search evolve
team controllers that are morphologically robust given varying
robot morphologies and increasing task complexity. Results thus
suggest behavioral diversity methods such as novelty search mat
not be suitable for generating robot behaviors that can continue
functioning given changing robot morphologies, for example, due
to damaged or disabled sensors and actuators.

[. INTRODUCTION

Autonomous robots are increasingly being applied to re-
mote and hazardous environments [1], [2], where in such
environments, damage to sensory-actuator systems (morpholo-
gies [3]) cannot be easily repaired if damaged. An unsolved
problem in the controller design for such autonomous robots
is having controllers continue to effectively function given
unexpected changes, such as damage, to robot morphology.

Currently, robotic systems recover from damage via self-
diagnosis and selection from pre-designed contingency plans
in order to continue functioning [4], [5], [6]. However, robots
using such self-diagnosis and recovery systems are problematic
as such systems are expensive, require sophisticated monitor-
ing sensors and are difficult to design since one must have a
priori knowledge of all necessary contingency plans [7].

Addressing this, recent work in Evolutionary Robotics
(ER) [8] elucidated the efficacy of population based stochastic
trial and error methods for online damage recovery in au-
tonomous robots operating in physical environments [7]. This
was demonstrated as being akin to self-adaptation and injury
recovery of animals observed in nature.

This study further contributes to this research area, focus-
ing on evolutionary controller design [9] within the broader
context of collective [10] and swarm [2] robotics. That is,
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evolutionary controller design for robot groups that must
continue to accomplish tasks given that damage is sustained
to the morphologies of some or all of the robots in the group.

Recent work in evolutionary controller design for ER
systems indicated that maintaining phenotypic (behavioral)
diversity in populations of potential solutions improves the
quality (task performance) of evolved robot behaviors [11],
[12], [13], [7]. For example, replacing objective search (fitness
functions) with the search for behavioral diversity in controller
evolution [14], [15], [16] has boosted evolved behavior quality
across a range of simulated [17], [11], [13] and physical [7],
[12] tasks.

Related research also indicated that non-objective based
search methods such as novelty search [17], applied to direct
evolutionary search [11], out-perform objective-based search in
various robotic control tasks defined by complex, high dimen-
sional and deceptive fitness landscapes [7], [12], [13]. While
the benefits of non-objective based evolutionary search has
been demonstrated for increasing evolved behavioral quality in
various tasks [11], the morphological robustness of controllers
evolved with such search methods remains unknown. This
is especially the case for controller evolution in groups of
robots that must accomplish collective behavior tasks [18].
Morphological robustness refers to the capacity for evolved
controllers to continue to effectively function, despite robot
degradation, such as loss of, or damage to sensors.

In this study, the evolutionary controller design method
is Hyper-Neuro-Evolution for Augmenting Topologies (Hy-
perNEAT) [19], the task is collective construction [20], and
objective versus Novelty Search (NS) [17] is applied to direct
collective behavior evolution in robot groups. HyperNEAT
was selected as it is a neuro-evolution method that has been
effectively applied for controller evolution to solve various
collective behavior tasks [21], [22], and has demonstrated
benefits such as exploiting task geometry and regularity that
boosts task performance.

Collective construction was selected as it is a task that
benefits from autonomous robot groups that must exhibit robust
collective behavior behavior in dynamic, noisy environments
[23]. Also, the collective construction task includes the notion
of morphological damage to robots that may impede group
task accomplishment. The collective construction task requires
robots to search the environment for building-blocks that are
collectively transported and connected to other blocks in con-
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struction zones [18]. Collective construction task complexity
was equated to the number of robots (degree of cooperation)
needed to connect blocks together.

A. Research Objectives

This study’s research objectives were formulated given
results of the following previous related work. First, that
non-objective based controller evolution has been effectively
demonstrated in collective robotics [24], [25], [16]. Second,
that NS has been demonstrated as suitable for evolving con-
trollers (behaviors) that effectively operate across a range of
robot morphologies [26], [27], [28]. The research objectives
of this study are thus as follows:

1) Demonstrate the efficacy of NS (compared to
objective-based search) for evolving morphologically
robust controllers over increasingly task complexity.

2) Demonstrate the efficacy of NS evolved behaviors
versus those evolved by objective-based search in
terms of average task performance (behavior quality)
over increasingly task complexity.

To test these objectives, experiments evaluated various
robot morphologies in an increasing complex collective con-
struction task. That is, morphological robustness of evolved
controllers was evaluated in terms of a controller’s task per-
formance when coupled with alternate robot morphologies.

This study’s contribution was thus to elucidate the impact
of specific objective versus non-objective search methods on
the evolution of morphologically robust controllers in collec-
tive robotic systems. To date, the morphological robustness of
such controller evolution approaches has not been compara-
tively evaluated, especially in the context of collective robotics.
Specifically, collective robotic systems that must effectively
adapt to unforseen morphological change, such as the loss or
damage of sensors on one or more robots without significant
task performance degradation [6], [7].

II. METHODS

HyperNEAT [19] was applied to evolve robot team (col-
lective) behaviors, where teams were behaviorally and mor-
phologically homogenous teams meaning all robots in a given
team used the same controller and sensory configuration.
HyperNEAT extends NEAT (Neuro-Evolution of Augmented
Topologies) [29], where Artificial Neural Network (ANN) con-
trollers were indirectly encoded using a CPPN (Compositional
Pattern Producing Network) [30]. HyperNEAT was selected
in this study for team controller evolution since it has nu-
merous benefits demonstrated in previous multi-agent (robot)
research [22], [31]. This includes HyperNEAT’s capacity to
evolve controllers that compactly encode and exploit geometric
features such as symmetry, regularity and modularity in robot
morphologies and the task environment, which in turn results
in increased task performance.

HyperNEAT evolved a CPPN that encoded connection
weight values between each robot’s sensory input layer, hidden
layer and motor output layer. Connections from pairs of nodes
in the substrate network were sampled and the coordinates
passed as inputs to the CPPN, which then output the synaptic
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weight of each sampled connection (Figure 1). Connection
weights between the substrate input, hidden and output layers
were encoded by the evolved CPPN.

A. Team Controller

Each robot’s ANN controller comprised N sensory input
and hidden nodes, connected hidden layer to two motor outputs
(controlling the robot’s left and right wheels, Figure 1, right).
Nodes were arranged as a substrate (Figure 1, left) where the
number of input and hidden nodes was determined by a given
robot morphology (Figure 2). Each substrate node was placed
at specific (x, y) locations in the substrate’s two-dimensional
geometric space (x, y axes in the range: [-1.0, 1.0]). Sensor
nodes of the substrate approximated up to a 360° degree
sensory Field of View (FOV), where the FOV was dependent
upon the morphology used. For example, morphology 3 (figure
2, right) used one proximity and one ranged color sensor and
one low-resolution camera (table I). Hence, the sensory FOV
for morphology 3 was 3.0 radians (proximity color sensor) plus
1.5 radians (ranged color sensor) plus 1.5 radians (camera),
which approximated a 340° FOV about the sensors on the
robot’s periphery (figure 2, right).

Figure 1 presents the team ANN for N = 11 (morphology
1, Figure 2, Table I), the associated substrate and an example
CPPN. The intermediate ANN hidden layer reflects the input
layer geometry and thus the direction of each sensor’s FOV
(Figure 1). The ANN was initialized with random weights in
the range [-1.0, 1.0], with full connectivity between adjacent
layers, however, partial connectivity was evolvable via the
CPPN generating a zero weight.

Connection weights were evolved via querying the CPPN
for the weight of any connection between two points (x1,
y1) and (z2, y2) by inputting (z;, yi, %2, y2) into the
CPPN, which subsequently output the associated weight. A
CPPN was evolved via having nodes and connections added
and removed, as well as connection weight values mutated
(Table II) during HyperNEAT evolution. The CPPN evolved
connectivity patterns across ANN geometry via querying all
potential connections for their weights. This connectivity pat-
tern was a function of task and ANN geometry, which enabled
HyperNEAT to exploit task structure (regularity, repetition and
symmetry) and robot morphology.

For example, there was symmetry and regularity in robot
morphology in terms of sensor positions, and repetition of
sensors about each robot’s periphery (Figure 1), as well as
regularity and repetition in the collective construction task
(section III), in terms of repeating blocks comprising regular
structures in construction zones. Table II presents the simu-
lation, experiment and HyperNEAT parameters used in this
study, where delta was the angle between (x1, Y1, T2, Y2)
positions of nodes in the substrate. Parameter values were
determined experimentally, where HyperNEAT parameters not
listed in Table II, were set as in previous work [32].

B. Sensors

Each robot was equipped with various sensor types, where
the exact sensor complement, including relative position and
direction depended on the morphology being evaluated (Figure
2, Table I). Table II presents the different sensor types, where
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Left: ANN Topology and robot morphology 1: 11 Sensory inputs [SO, S10]. Sensory inputs connect to a hidden layer (11 corresponding grey dots

depicted). Center: Connection weight values between two nodes (x1, y1, T2, y2) are evolved by querying the CPPN with x, y values in the range [-1.0, 1.0].
The hidden layer is fully connected to all inputs and outputs (connectivity not depicted). Right: Motor outputs L and R determine the speed of the left and right

wheels, respectively, and thus a robot’s speed and direction.
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Fig. 2. Robot morphologies 1, 2, 3, from left to right. Table I details the sensory configuration (number and type of sensors) for each morphology.

TABLE 1. SENSORY CONFIGURATION (NUMBER AND TYPE OF SENSOR) FOR EACH ROBOT MORPHOLOGY.
Morphology ID | Proximity | Ultrasonic | Color Ranged | Low-Resolution | Construction Zone
Sensors Sensors Sensors Camera Sensors
1 5 3 1 1 1
2 3 2 1 1 1
3 1 0 1 1 1

the functional properties of each sensor (range and FOV) were
abstractions of physical sensors used on Khepera III robots
[33]. Range values are defined in relation to the environment
size (20x20) and sensor FOV values are in radians.

Each robot had N sensors corresponding to N ANN sensory
inputs (Figure 1), each with a range of r (portion of the
environment’s size). A robot’s sensory FOV was split into N
sensor quadrants, where all sensors were constantly active for
the duration of the robot’s lifetime. The nth sensor returned a
value in the range [0.0, 1.0] in the corresponding nth sensor
quadrant. A 0.0 value indicated that no objects were detected
and a 1.0 value indicated that an object was detected at the
closest possible distance to the given sensor. Thus, the func-
tional capacity for a robot to operate in its environment and
accomplish its task was dependent the number and composition
of sensors used for its given morphology. Figure 2 depicts
the three robot morphologies and Table I specifies the sensory
configuration of each morphology.

Each morphology also included a special construction zone
detection sensor that was constantly activated with a value
in the range: [0.0, 1.0], to enable collective construction. The
construction zone sensor calculated the squared Euclidean
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norm, bounded by a minimum observation distance, as an in-
versely proportional distance between this robot and the closest
construction zone. A 1.0 value indicated a robot (pushing a
block) was in contact with a construction zone and a 0.0 value
indicated the robot was the maximum possible distance from
the closest construction zone (section III-A).

Robots were unable to detect each other, rather robots
interacted via cooperatively pushing blocks into a construction
zone. Once at least two blocks had been connected together
this formed a construction zone (section III-A), that was then
visible to each robot’s construction zone sensor.

C. Actuators

Two wheel motors controlled each robot’s heading at a
constant speed. Movement was calculated in terms of real
valued vectors (dx and dy), where varying sensory inputs
and sensor configurations (morphologies) resulted in various
Braitenberg dynamics [34]. Wheel motors (L and R in Figure
1) were explicitly activated by the ANN, where a robot’s
heading was determined by normalizing and scaling its motor
output values by the maximum distance it could traverse in
one simulation iteration (Table II). Specifically:
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Where, 0; and oy were motor output values, corresponding
to the left and right wheels, respectively, producing an output
in the range: [-1.0, 1.0]. These output values indicate how
fast each respective wheel must turn. Equal output equated
to straight forward motion and unequal output resulted in the
robot rotating about its own axis. The d,,, value indicates
the maximum distance a robot can move in one simulation
iteration (Table II).

D. Objective-based Search (Fitness Function)

Equation 1 presents the fitness function (objective-based
search) used to direct team controller evolution by Hyper-
NEAT. This fitness function was simply the total number of
type A blocks pushed and connected (to any other block type)
by one robot (a in Equation 1) and the number of type B
blocks pushed and connected (to any other block type) by
three robots (b in Equation 1). Fitness was normalized to the
range [0.0,1.0] using the maximum possible fitness yielded
from all blocks being connected.

f=a+b (1)

E. Novelty Search

In novelty search [17], the search for novel robot behaviors
replaced the fitness function. In this study, behavioral novelty
was characterized with three task specific behavioral charac-
terization components, calculated at end of a team’s lifetime
and over all experiment runs (Table II):

I Average squared Euclidian distance between each
robot’s position.

O: Average squared Euclidian distance between po-
sitions of joined (construction zone) blocks.

= Average sum of differences in cooperation used

(to connect each block in construction zones).

These behavior component values were normalized to the
range: [0.0, 1.0] and used in behavioral distance calculations
(Equation 2). This behavioral characterization was selected
given previous work [16], and team behavior observations
indicating the value of measuring robot, connected block
positions and cooperation required, where these components
played an important role in the evolution of novel collective
construction behaviors.

Behavioral distance was computed using Equation 2,
where, z; and y;; were (normalized) behavioral characteri-
zation vectors of two genotypes. The novelty of genotype x,
with respect to all other genotypes in the archive (Table II),
was then quantified by Equation 3.

8i(z,y) = llzs — yus | 2

Where, 0, was the behavioral distance between genotypes
x and y (Equation 2), and x; was the jth behavior component
(I', © or E) of genotype x, and y;; was the jth behavior
component of the ith nearest neighbor of genotype x.
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Equation 3 replaces the fitness function (section II-D),
where the nov, was derived as the mean behavioral distance
of a genotype with its k nearest neighbors. The parameter k
represented the number of nearest neighbors, where & = 15
was selected as this setting has been widely used in related
work [16]. The novelty of newly generated genotypes was then
calculated with respect to previously novel behaviors stored in
the novelty archive, where archived behaviors were ranked by
diversity. In this study the maximum archive size was 100,
where a maximum of 10 novel behaviors were added to the
archive each generation (Table II).

III. EXPERIMENTS

Experiments' tested and evaluated 15 robots in a bounded
two dimensional continuous simulation environment (20 x 20
units) with randomly distributed type A and B blocks (Table II).
Robots and blocks were initialized with random orientations
and positions throughout the environment. The experimental
objective was to evaluate the morphological robustness of
HyperNEAT evolved controllers for robot teams given col-
lective construction tasks (section III-A). We measured the
average task performance of controllers evolved for three team
morphologies (Table I) and two levels of task complexity
(Table III). Each experiment comprised a team controller
evolution and re-evaluation stage, where the latter was the
morphological robustness test.

In the controller evolution stage, each experiment applied
HyperNEAT, where evolutionary search (to evolve team be-
havior) was directed by either objective-based (section II-D)
or novelty search (section II-E), running for 100 generations.
Each generation comprised three team lifetimes (1000 simula-
tion iterations), where each team lifetime tested different robot
starting positions, orientations, and building-block locations in
the simulation environment.

Teams that achieved an average task performance that was
not significantly lower across all re-evaluated morphologies
were considered to be morphologically robust. Specifically, the
fittest controller evolved for a given morphology and level of
task complexity was re-evaluated in the other morphologies
for the same level of task complexity. For example, the
fittest controller evolved for morphology 1 was re-evaluated
in morphologies 2 and 3 and the average task performance
calculated across all re-evaluation runs.

Re-evaluation runs were non-evolutionary, meaning con-
trollers were not further evolved, and each re-evaluation was
equivalent to one team lifetime (Table II). There were 20
re-evaluation runs for each morphology (Figure 2), in order
to account for random variations in robot and block starting
positions and orientations, where an average task performance
was computed for all re-evaluated morphologies.

!'Simulator screen-shots and source code for all experiments is online: https:
//github.com/not-my-name/SSCI2018_Appendix
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TABLE I

EXPERIMENT, HYPERNEAT, NOVELTY SEARCH AND ROBOT SENSOR PARAMETERS

Generations / Team lifetimes per generation 100/ 5

Sensors per robot

Evaluations per genotype 3
Experiment runs (evolution & re-evaluation) 20
Environment length, width 20.0 x 20.0
Max robot movement per iteration 1.0

Team size / Team Lifetime (Simulation iterations) 15 / 1000
Type A / B blocks 15/15

Task performance / complexity

Figure 2, Table 1

Blocks connected in construction zones / Table IIT

Add neuron 0.25
. Add connection 0.008
Mutation rates .
Remove connection 0.002
Weight 0.1
Population size / Survival rate 150/0.3
Crossover / Elitism proportion 0570.1
Connection weight range [-1.0, 1.0]

CPPN topology
CPPN inputs

Novelty Search (NS) nearest neighbor k 15
NS Maximum archive size / Behaviors added

Feed-forward
Position, delta, angle

100 / 10 (per generation)

NS Compatibility / Behavioral threshold 3/0.03

Robot Sensor Range Field of View (FOV)
Proximity Sensor 1.0 0.2 Radians
Ultrasonic Sensor 4.0 1.2 Radians
Ranged Colour Sensor 3.0 1.5 Radians
Low-Res Camera 3.0 1.5 Radians
Colour Proximity Sensor 3.0 3.0 Radians

TABLE III. COLLECTIVE CONSTRUCTION TASK COMPLEXITY:
NUMBER OF ROBOTS NEEDED TO PUSH GIVEN BLOCK TYPES.

Construction Task Complexity Level 1 Level 2
Type A blocks (1 robot to push) 15 0
Type B blocks (3 robots to push) 0 15

A. Collective Construction Task

This study’s research objective was to evaluate the mor-
phological robustness of team controllers evolved with non-
objective versus objective-based evolutionary search coupled
with HyperNEAT. Collective construction tasks required robots
to search the environment for building blocks and coopera-
tively push the blocks together into a structure. Task complex-
ity was gauged according to the level of cooperation required
to optimally solve the task, that is, connect all the blocks in
construction zones (Table III).

For task complexity levels 1 and 2, there were 15 type A
and B blocks, respectively. In the case of level 1, a single
robot could push each block, but in the case of level 2,
three robots were required to cooperatively push and connect
blocks (Table III). In this collective construction task it is
assumed that type B blocks were significantly larger than
type A blocks, and thus required three robots to cooperatively
push and move. A construction zone was formed via at least
two blocks being pushed together thus forming a structure.
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Once a construction zone was created, all blocks attached
to it were fixed in position and could not be disconnected.
The task used a maximum of three construction zones and
unconnected blocks had to be pushed and connected to one of
these construction zones.

Team task performance was calculated as the number of
blocks connected in construction zones during a team’s lifetime
(Equation 1), where average task performance was the highest
performance at the end of each run (100 generations), averaged
over 20 runs (Table II). HyperNEAT was applied to evolve
team controllers given evolutionary search was directed by
either objective (section II-D) or novelty search (section II-E),
where such search methods directed behavior evolution to
optimize this task performance metric.

IV. RESULTS AND DISCUSSION

To address the research objectives (section I-A), we com-
pared the average task performance results of team behavior
evolution directed by objective (section II-D) versus novelty
search (NS, section II-E). For each experiment, task perfor-
mance was the number of blocks connected in construction
zones over a team’s lifetime (section III-A), where the max-
imum task performance was taken at each run’s end and an
average task performance calculated over 20 runs (Table II).

Figures 3 and 4, present the average task performance (nor-
malized to the range: [0.0, 1.0]) of team controller evolution
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Morphological Robustness of Objective Search: Average task performance of fittest team controller evolved for morphology 1 (left-most box-plot in

each Figure) and re-evaluated in morphologies 2 (center plot), 3 (right-most plot). Left and right-hand figures: Task complexity levels 1 and 2 (respectively).
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Fig. 4. Morphological Robustness of Novelty Search: Average task performance of fittest team controller evolved for morphology 1 (left-most box-plot in each
figure) and re-evaluated in morphologies 2 (center plot), 3 (right-most plot). Left and right-hand figures: Task complexity levels 1 and 2 (respectively).

TABLE IV.

P-VALUE STATISTICAL RESULTS COMPARING AVERAGE TASK PERFORMANCE OF NOVELTY-SEARCH (TOP TWO ROWS) AND

OBJECTIVE-SEARCH (BOTTOM TWO ROWS) EVOLVED TEAM BEHAVIORS (FOR A GIVEN MORPHOLOGY) VERSUS TASK PERFORMANCE WHEN THE FITTEST

CONTROLLER WAS RE-EVALUATED IN OTHER MORPHOLOGIES. BOLD: STATISTICALLY SIGNIFICANT DIFFERENCE.

Novelty search

Task Complexity: Level 1

Re-evaluated in

Morphology 1

Re-evaluated in

Morphology 2

Re-evaluated in

Morphology 3

Morphology 1 (Fittest controller selected)
Morphology 2 (Fittest controller selected)
Morphology 3 (Fittest controller selected)

0.50
0.18

0.12

0.17

< 0.05
0.50

Novelty search

Re-evaluated in

Re-evaluated in

Re-evaluated in

Task Complexity: Level 2 Morphology 1 Morphology 2 Morphology 3
Morphology 1 (Fittest controller selected) — 0.31 0.50
Morphology 2 (Fittest controller selected) 0.50 — 0.50
Morphology 3 (Fittest controller selected) 0.17 0.40 -

Objective search

Task Complexity: Level 1

Re-evaluated in

Morphology 1

Re-evaluated in

Morphology 2

Re-evaluated in

Morphology 3

Morphology 1 (Fittest controller selected)
Morphology 2 (Fittest controller selected)
Morphology 3 (Fittest controller selected)

0.50
0.42

0.46

0.29

0.22
0.5

Objective search

Re-evaluated in

Re-evaluated in

Re-evaluated in

Task Complexity: Level 2 Morphology 1 Morphology 2 Morphology 3
Morphology 1 (Fittest controller selected) - 0.35 < 0.05
Morphology 2 (Fittest controller selected) 0.35 — 0.38
Morphology 3 (Fittest controller selected) 0.32 0.43 —

(directed by objective and NS) and morphological robustness
experiments given increasing collective construction task com-
plexity (Table III). For example, Morphology 1 in the left-
hand plot of Figure 3 presents the average task performance of
controller evolution with objective-based search in morphology
1. The labels Morphology 2 and 3 in this left-hand plot (of
Figure 3) indicate average task performance results of re-
evaluating the fittest controller evolved for morphology 1 in
morphologies 2 and 3 (Figure 2).

Note that we only presents graphed results for controllers
evolved by objective-based (Figure 3) versus NS directed
HyperNEAT (Figure 4) in morphology 1 and re-evaluated in
morphologies 2 and 3. Task performance results for objective
and NS controller evolution in morphologies 2 and 3 and
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re-evaluation in other morphologies (1 and 3, and 1 and 2,
respectively) were similar to those presented in Figures 3 and
4 and are thus not presented here, but are available online?.

In order to ascertain if the fittest objective (Figure 3) versus
NS (Figure 4) evolved controllers were morphologically robust
we applied statistical tests between average task performance
results for controller evolution (evaluation) in each morphology
(for example, morphology 1) and average task performances
for re-evaluation in other morphologies (for example, 2 and 3).
Evolved controllers were considered morphologically robust if
there was no significant statistical difference between average
task performance results yielded for controller evolution and
re-evaluation experiments (section III).

2https://github.com/not-my-name/SSCI2018_Appendix
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Specifically, statistical ¢-tests (p < 0.05) [35] were applied
in pair-wise comparisons between average task performance
results for objective versus NS in each morphology and
average re-evaluation task performance results (of the fittest
objective and NS evolved controller) in each other morphology.

Statistical tests indicated that, for both objective and NS,
and increasing task complexity, there was no significant sta-
tistical difference in average task performance between con-
trollers evolved in any morphology and re-evaluated in any
other morphology. However, Table IV presents two exceptions
to this result. First, NS applied in task complexity 1 to evolve
controllers in morphology 1. In this case, the fittest NS evolved
controller re-evaluated in morphology 3 yielded a significantly
lower average task performance (top, Table IV). Second,
objective search in task complexity 2 to evolve controllers in
morphology 1. The fittest controller evolved in morphology
1 and re-evaluated in morphology 3 had a significantly lower
average task performance (bottom, Table IV).

In both of these cases, one may observe that morphology
1 uses 11 sensors where as morphology 3 uses only four
sensors (Figure 2). This indicates that controllers evolved
for the high sensor complement (and thus functionality) of
morphology 1, are not readily transferable to a simpler sensory
configuration (and simpler functionality). However, this was
not the case for NS applied in task level 2 or objective-based
search applied in task complexity level 1 (Table IV). That is,
NS evolved controllers (given morphology 1) were found to
be morphologically robust for task complexity level 2, where
as controllers evolved with objective search were not. This
suggests that NS may be suitable for evolving morphologically
robust controllers for some specific types of tasks. However,
this is a topic of ongoing research.

The key results of this study were thus two-fold. First,
results indicated that for all morphologies and task com-
plexity levels (with two previously discussed exceptions),
both objective and NS were comparably effective at evolving
morphologically robust controllers (Table IV). Specifically, for
any given morphology, there was no significant difference in
average task performance between the fittest NS evolved team
controllers and re-evaluation of these controllers in the other
morphologies. The same result was observed for the fittest
controllers evolved by objective-based search.

This first result addresses this study’s first objective (Sec-
tion I-A) and indicates that while NS yields advantages over
objective search in terms of evolving high quality behaviors,
it yields no benefits over objective-based search for evolving
morphologically robust controllers in the collective construc-
tion task for the given robot morphologies. Thus, for the
given task and morphologies, objective-based search direct-
ing HyperNEAT controller evolution was sufficient to evolve
morphological robust controllers and NS evolved controllers
added no benefits in this respect (objective 1, Section I-A).

The lack of any difference between objective and NS in
these morphological robustness experiments is theorized to be
a result of the indirect (developmental) controller encoding of
HyperNEAT [19]. Similar results have been previously demon-
strated and explained by HyperNEAT’s capacity to compactly
encode complex behaviors with evolved CPPN connectivity
patterns [36]. This in turn facilitated the transfer of evolved
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controllers (and behaviors) across different tasks [21] and robot
morphologies of varying complexity [26], [28].

This result is also hypothesized to be consequent of the
behaviorally and morphologically homogenous teams used in
the collective construction task. That is, each robot in the
team used the same controller and morphology, meaning that
HyperNEAT was readily able to evolve team behaviors with a
multi-agent policy geometry [22] that was transferable across
teams with different morphologies. As in previous work [21],
[22], such multi-agent (collective behavior) policy geometries
are represented by evolved CPPNs. Previous work found that
CPPNs encode geometric relationships between robot and
block starting positions and orientations and sensory-motor
activation values. Such sensory-motor activations were corre-
lated with cooperative robot behaviors that suitably connected
blocks and thus accomplished given tasks [28], [37].

Second, collective construction behaviors evolved by NS,
for all morphologies (Figure 2) and task complexity levels
(Table III), significantly out-performed (pair-wise t-tests, p
< 0.05) team behaviors evolved with objective-based search.
This result is supported by previous work [25], [24], [16],
similarly demonstrating that NS evolved collective behaviors
out-perform those evolved by objective-based search in col-
lective behavior tasks of varying complexity. This was found
to be a result of the explorative capacity of NS [38], [39]
which enables a broad search of the behavior space and thus
discovery of high quality (task performance) solutions that
could not be discovered by objective-based search given the
same evolutionary parameter constraints. These results thus
address the second objective of this study (Section I-A).

As this was a preliminary study investigating the morpho-
logical robustness of controllers adapted with varying evo-
lutionary search methods, an extensive comparison between
objective and novelty search was beyond this study’s purview.
However, in order to elucidate the impact of HyperNEAT’s
developmental encoding versus the evolutionary search method
on morphological robustness, current work is investigating
coupling varying evolutionary search methods (including nov-
elty and objective search) with other (for example, direct
encoding) controller evolution methods.

V. CONCLUSIONS

This study evaluated the efficacy of objective (fitness
function) versus non-objective (NS: Novelty Search) based evo-
lution of morphologically robust controllers in robot groups.
Morphological robustness was the capacity for evolved con-
trollers to effectively operate in alternate morphologies (sen-
sory configurations of the robot group). Controllers were
evolved for collective construction tasks of varying complexity,
where the fittest controllers were evaluated on the same task
but in differing morphologies.

The main research objective was to evaluate the efficacy
of NS versus objective-based evolutionary search, coupled
with HyperNEAT, for evolving controllers that were robust
to morphological change. That is, controllers unaffected by
morphological change such as sensor loss, damage or changes
to sensory systems mandated by changing task constraints.

Results indicated that NS yielded no benefits over
objective-based search for evolving morphologically robust
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controllers across increasingly complex tasks. That is, both
NS and objective-based search were found to achieve the
same degree of morphological robustness across all tasks, as
neither objective or NS evolved controllers resulted in signif-
icantly lower task performances when re-evaluated in other
morphologies. Results did however support the efficacy of NS
for evolving high quality group (collective) behaviors [11].

This

secondary result contributed further empirical evidence

to highlighting the benefits of non-objective-based search for
group controller evolution given increasingly complex collec-
tive behavior tasks [24], [25], [16], [40].

(10]
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