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1 INTRODUCTION
Policy (behavior) transfer is a method to speed-up and improve
learning by leveraging knowledge from learning in related but
simpler tasks. That is, learned information is reused and shared
between a source and target tasks, where target tasks were used as a
starting point for continuing learning [16]. Policy transfer has been
widely studied in the context of Reinforcement Learning (RL) meth-
ods [21], where various studies have consistently demonstrated
that transferring knowledge learned on a source task accelerates
learning and increases solution quality in target tasks by exploiting
relevant prior knowledge [22].

Policy transfer used in company with various RL methods has
boosted solution quality in various single-agent tasks including
pole-balancing [1], game-playing [17], robot navigation as well
as multi-agent tasks including predator-prey [2]. For such single
and multi-agent tasks, policy transfer is typically done within the
same task domain for varying task complexity [25]. Recently, policy
transfer has been used in company with Evolutionary Algorithms
(EAs) [6] to boost evolved solution quality of evolved genotypes
with various representations across various tasks. For example,
extracting behavioral features to shape rewards in evolving robot
neural controllers for increasingly complex ball collecting tasks [5],
and evolving groups of robot neural controllers for navigation tasks
that were then used as evolutionary starting points for adaptation
in other navigation tasks with different objectives [13]. However,
Neuro-Evolution (NE) [7] for adapting multi-agent behaviors given
policy transfer has received little attention with a few exceptions
[26], [4], [15].
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Previous work on evolutionary policy transfer has only used
fitness functions [6] (objective-based search) to direct multi-agent
behavior evolution. Thus, the impact of non-objective search meth-
ods such as behavioral diversity maintenance [14] used in company
with policy transfer remains unknown. That is, previous work has
only tested single agent tasks such as robot navigation [13] and
object collection [5] and simple multi-agent tasks using few agents
[24], [26], where non-objective evolutionary search methods were
not considered. Furthermore, there has been little research that
compares the efficacy of NE versus RL for multi-agent behavior
adaptation coupled with policy transfer for boosting solution multi-
agent behavior quality across increasingly complex tasks [20], [28].

Non-objective search methods [14] such as novelty search [12],
out-perform objective based search in various control tasks defined
by complex, high dimensional and deceptive fitness landscapes [3],
[10]. However, recent results suggest that neither objective or non-
objective based search perform optimally when applied to evolve
controllers to solve complex multi-agent tasks [4]. Rather, hybridiz-
ing objective and non-objective search facilitates the evolution of
high quality behaviors [11], [8], [9].

This study investigates multi-agent policy transfer coupled with
behavior adaptation by objective and non-objective search variants
of HyperNEAT [18] in RoboCup keep-away [23]. For comparison,
evolved behaviors were compared to those adapted by RL methods:
SARSA [21] andQ-Learning [27], coupled with policy transfer. Keep-
away was selected as it is an established multi-agent experimental
platform [23]. Similarly, the SARSA and Q-Learning methods were
selected as both have been demonstrated for boosting behavior
quality with policy transfer [22]. Keep-away behaviors were gauged
in terms of effectiveness and efficiency. Effectiveness was average
task performance given policy transfer, where task performance
was average ball control time by the keeper team. Efficiency was
average number of evaluations taken to reach a minimum task
performance threshold given policy transfer.

Research objectives were derived given previous policy transfer
research [15][20, 23, 28] .

(1) Demonstrate that keep-away behaviors evolved using hy-
bridized novelty and objective-based search, consistently
boosts evolved behavior quality and efficiency, compared to
pure novelty or objective-based search.

(2) Demonstrate that such keep-away behaviors evolved us-
ing hybridized evolutionary search and policy transfer out-
perform RL methods in terms of quality and efficiency.

This study’s contribution was to elucidate that hybrid evolution-
ary search out-performs RL methods that have traditionally been
task performance benchmarks for policy transfer.
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2 METHODS
Keep-away behaviors were adapted using NE or RL. That is, Hyper-
NEAT [18], SARSA [21] or Q-Learning [27]. Keep-away behavior
was first adapted in the source task (3vs2 keep-away) and then trans-
ferred to more complex target tasks (4vs3, 5vs4, 6vs5 keep-away)
for further adaptation, where KvsT was the number of keeper (K)
versus taker (T ) agents, respectively. These methods were selected
to elucidate how policy transfer impacts HyperNEAT compared to
the RL methods, in terms of average adaptation efficiency and task
performance. HyperNEAT-BEV [26] was used to facilitate policy
transfer as it has been demonstrated as an effective method for
evolved keep-away (multi-agent) policy transfer [15].

Given previous work [19, 20, 23], SARSA [21] and Q-Learning
[27] were applied for learning keep-away policies, where the learn-
ing goal was for homogeneous keeper teams to select action se-
quences maximizing total long term reward and thus episode length
[28]. To facilitate RLmulti-agent policy transfer from the source to a
target task a vector of weights, associated with each feature set was
periodically stored in memory at 150 episode intervals (equivalent
to one NE run). The RL policy transfer function extended Transfer
via Inter-Task Mapping [23], where weights for source task features
from the final episode of source task learning were extracted for
transfer to a target task.

3 EXPERIMENTS AND RESULTS
In the HyperNEAT experiments, keep-away policies were evolved
for 30 generations in the source task, transferred to a target task and
further evolved for another 70 generations. Each generation was
30 episodes and each episode comprised 4500 iterations and tested
random initial keeper and taker positions. For comparison, keep-
away behavior was also evolved from scratch for 100 generations.
In RL experiments, keep-away policies were learned over 4500
episodes (equivalent to 30 generations and population size of 150 in
HyperNEAT) in the source task. Policies were then transferred to a
target task and further adapted for 10500 episodes (70 generations
and population size of 150 in HyperNEAT). For comparison, non-
policy transfer RL experiments were also run (15000 episodes).

For all tasks, hybrid evolutionary search coupled with policy
transfer yielded significantly higher average task performances
compared to objective and novelty search variants and RL methods.
The overall effectiveness of the hybrid search was consequent of
beneficial interactions between behavioral diversity maintenance
and objective based evolutionary search [15]. That is, behavioral di-
versity maintenance first covered large behavior space regions and
then in such diverse behavior regions objective-based search was
a fine tuning mechanism, following fitness gradients to propagate
the fittest keep-away behaviors overall [15].

Thus, results supported the efficacy of hybrid novelty-objective
based search for evolving effective behaviors (compared to other Hy-
perNEAT search variants and RL methods) across increasingly com-
plex keep-away tasks when coupled with policy transfer. However,
RL methods yielded significantly higher efficiency when coupled
with policy transfer but yielded significantly lower effectiveness
compared to all tested HyperNEAT search variants.

This study’s contribution was to support the benefits of hybrid
objective-novelty HyperNEAT search when coupled with policy

transfer for boosting the effectiveness of evolved multi-agent be-
haviors given increasing task complexity. Also, results contributed
to increasing empirical evidence supporting the effectiveness of
hybridized evolutionary search in complex tasks [14], [9].
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