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1 EXTENDED ABSTRACT
Recently there has been increasing research a�ention focused on
producing adaptive control systems for autonomous vehicles. To
accommodate such autonomous vehicles there have been proposals
that current road and highway infrastructure undergo signi�cant
changes. For example, replacing tra�c lights and stop signs and
allowing autonomous vehicles to coordinate their interactions so as
to avoid collisions and safely navigate through intersections [8]. In
the context of Intelligent Transportation Systems, Dresner and Stone
[4] proposed a new automated intersection management system
called Autonomous Intersection Management (AIM) for autonomous
vehicles. AIM used a First Come, First Served (FCFS) policy for di-
recting vehicles through intersections. Intersection management
simulations demonstrated AIM as out-performing current inter-
section control including tra�c lights and stop signs, in terms of
increased tra�c throughput and decreased delays.

A key limitation of AIM and the FCFS protocol, is that perfect
tra�c �ow conditions and vehicle sensory information is assumed.
AIM does not generally account for uncertain and unpredictable
tra�c conditions or dynamic obstacles [5], such as pedestrians.
Such unpredictable behavior, incomplete information and noisy sen-
sory environments must be appropriately handled if autonomous
vehicles are to be successfully implemented.

Another approach to automated intersection management that
potentially handles such problems is to use decentralized control
where each vehicle’s controller automatically adapts as vehicles
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interact with their environment. �at is, to automate the synthesis
of vehicle controllers such that when vehicles interact a desired
collective behavior emerges for any given road environment.

Neuro-Evolution (NE) [6] has been used to evolve controllers
in land-based vehicles that accomplish various tasks [3], [9], [11].
However, there has been li�le work on evolving coordinated move-
ment for maximizing tra�c �ow through intersections.

�is study used NE to synthesize collective driving behaviors for
given road networks (interconnected intersections), where there
were no tra�c signals to assist with vehicle coordination and nav-
igation. Rather, NE automates controller design where collective
driving behavior emerges in response to the task of maximizing
tra�c throughput and minimizing delays at intersections.

�e �rst research objective was to demonstrate the e�cacy of NE
for collective driving behavior synthesis, where task performance
is average vehicle throughput and idle time on road networks of
interconnected intersections. �e second objective evaluated the ef-
�cacy of NE versus centralized heuristic controllers for autonomous
intersection management.

Neuro-Evolution of Augmenting Topologies (NEAT) [10] was used
for controller evolution. Groups of vehicles were behaviorally and
morphologically homogenous in that one evolved ANN controller
and one sensor con�guration was used by all vehicles.

As a benchmark for the intersection management task, a modi-
�ed version of AIM and the FCFS protocol [4] was comparatively
tested and evaluated on the same road networks. Vehicles followed
pre-planned routes through intersections, where vehicles continu-
ously circled a given road network1 and average vehicle throughput,
speed and idle time was calculated.

Experiments tested 48 autonomous vehicles in 3D simulations2

of tra�c passing through 10 road networks of interconnected inter-
sections (modeled a�er real tra�c intersections major metropolitan
areas). NEAT and AIM were evaluated on increasingly di�cult
road networks. Task di�culty was equated with the number of
start and end points, the number of lanes per road and hence the
number of vehicles that could concurrently enter an intersection.
For each road network, the task was to automate the coordination
of N vehicles, each following their own preset path through a road
network. �e goal of NEAT and AIM was to maximize average
vehicle throughput and thus minimize average vehicle idle time.

Methods for automated intersection management were evaluated
and compared as follows. �e AIM controller was run on each of
the 10 road networks and an average vehicle throughput (over 20
runs) calculated. For NEAT, the ��est controller was selected from

1h�ps://people.cs.uct.ac.za/˜gnitschke/AIM/
2Simulations used the Unity game engine: h�ps://unity3d.com/
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Figure 1: Vehicle throughput evaluation on each road network: Average portion of vehicles that arrived at their destination.

20 evolutionary runs and set as the vehicles’ controller on each of
the 10 tracks, where the same evaluation procedure was used.

Figure 1 presents average (normalized) vehicle throughput across
all road networks tested. Overall results indicate that AIM using
the FCFS protocol for intersection tra�c management yields a high
average vehicle throughput. However, NEAT out-performed AIM
on speci�c types of road networks and otherwise yielded compa-
rable vehicle throughput. Statistical tests indicated that the ��est
NEAT evolved controllers yielded a signi�cantly higher average
vehicle throughput on road networks 3 (tra�c-circle), 6 (eight-way
intersection) and 10 (double lane merge and one-way intersection
exits)1. �us, AIM did not always produce optimal vehicle through-
put. Average vehicle throughput results (�gure 1) indicate that AIM
(using the FCFS protocol) is not as well suited to handling networks
of intersections that include road features such as in road networks
3, 6 and 10. Such road networks are conducive to high tra�c �ow
meaning that vehicles entering intersections will on average wait
for longer periods before there is a clear path.

In the case of intersections in seven of tested road networks,
NEAT evolved controllers yielded no advantage over the centralized
controller of AIM. However in the case of intersections with many
entry and exit points and connecting one-way roads, the NEAT
evolved controller was be�er able to handle increased tra�c �ow
and tra�c congestion in the intersections. �at is, NEAT controllers
evolved sensory-motor correlations such that all vehicles moved
collectively and in close proximity to each other when passing
through intersections. In these simulations, NEAT was able to
leverage few of the bene�ts associated with using NE to adapt
vehicle controllers. �at is, NE is best suited to evolve controllers to
adapt to dynamic, noisy task environments, where controllers must
process incomplete sensory information [6], into appropriate motor
outputs. Importantly, such conditions were not present in the task
environments (road networks) tested in this study. �at is, the
intersection management task assumed that there was no vehicle
sensor noise or sensor failures, no uncertainty in vehicle operations
(such as mechanical failures [1]), and no unpredictability in tra�c
conditions (such as pedestrians). Intersection management tasks
with these types of conditions favor an AIM controller.

�is study’s results corroborate the bene�ts of using AIM with
the FCFS protocol for speci�c types of intersections [4], [7], [2], but
also demonstrate the e�cacy of using NE to automate intersection
management. NEAT evolved controllers yielded signi�cantly higher

average vehicle speed for nine of ten tested road networks, higher
vehicle throughput on three road networks, and comparable vehicle
throughput on other road networks.

To the best of the authors’ knowledge this is the �rst study that
has compared AIM (with the FCFS protocol) as a centralized heuris-
tic based approach, with NE evolved controllers, as a decentralized
evolutionary approach. An important caveat to this study was
that it assumed the vehicles operated in perfect tra�c conditions.
Current work on this topic is investigating the e�cacy of NE for
evolving controllers given increasing levels of unpredictable behav-
ior on road networks. For example, uncertainty will be introduced
as sensor noise, pedestrians crossing roads and intersections at
random locations as well as obstacles appearing on the roads.
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