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ABSTRACT

Recently there has been increased research interest in devel-
oping autonomous, adaptive control systems of self-driving
vehicles. However, there has been little work on synthe-
sizing collective behaviours for autonomous vehicles that
must safely interact and coordinate so as traffic throughput
on any given road network is maximized. This work uses
neuro-evolution to automate car controller design, testing
various vehicle sensor configurations and collective driving
behaviours resulting from car interactions on roads without
constraints of traffic lights, stop signals at intersections or
lanes that vehicles must adhere to and thus simulates poten-
tial future scenarios where vehicles must drive autonomously
without special road infrastructure constraints. Results in-
dicate that neuro-evolution is an effective method for auto-
matically synthesizing collective driving behaviours that are
behaviourally robust across a range of vehicle sensor config-
urations and generalize to different task environments.
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Neuro-Evolution (NE) for Collective Driving

Recent research has focused on producing heuristic adap-
tive control systems for autonomous vehicles that coordi-
nate their interactions in order to avoid collisions and safely
navigate intersections without traffic lights or stop signs [4].

Another approach is to automate the synthesis of vehi-
cle controllers so when vehicles interact a desired collective
behavior emerges for any given (road) environment. We
present the synthesis of collective driving behaviours us-
ing neuro-evolution. Task performance is measured by the
total vehicle throughput between transit points on given
roads. We also investigate the impact of vehicle morpho-
logical complexity [1] (sensory configuration) on task perfor-
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mance. Neuro-Evolution for Augmenting Topologies (NEAT)
[5] is used for controller evolution as it has been applied in
similar studies [2]. Controllers were evolved to maximise the
average distance traversed on tracks with obstacles and on-
coming traffic, whilst minimising collisions. Sensory input
and motor output layers were fixed during evolution and
NEAT adapted the number of hidden layer nodes and con-
nectivity between inputs and outputs (figure 1). Controller
evolution used one of four pre-determined sensor configura-
tions (figure 1) each increasing in number of sensors (mor-
phological complexity). Vehicles used heuristic driving be-
haviours (via check-points) but if imminent collisions were
detected NEAT evolved behavior overrode the heuristics.

Experiments

An extension of UnityNEAT based on SharpNEAT was used
to simulate physically realistic 3D vehicles, sensors and roads.
Homogenous vehicle groups (each vehicle had the same con-
troller and morphology) were evolved to avoid collisions with
obstacles, road-side barriers and other vehicles, while travers-
ing the road as quickly as possible. Controllers were awarded
fitness equalling the portion covered of the track’s length
(via check-points) over 150 simulation (task trial) iterations
(equation 1), where cppassed is the number of check-points
vehicles successfully pass, cptotal is the total number of check-
points and coll is the number of collisions.
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One generation comprised the evaluation of all controllers
on a track and there was one simulation task trial (for each
controller) per generation. Each generation, 12 vehicles were
initialized at given starting points on a track. Four sen-
sory configurations (morphologies) were tested, ranging from
simple to complex (figure 1). Each sensor was a simulated
radar with a pyramidal sensory Field of View (FOV), de-
tecting the closest object to the vehicle. The symmetrical
sensory configuration was selected given similar designs in
previous research [2].

Two tracks representing realistic driving environments were
used in these experiments. Track 1 was a straight road of
varying width and elevation, with two starting points where
six vehicles initialised at each end. Track 2 was a four-way
intersection where vehicles had to converge from four start-
ing points at differing elevations. Three vehicle were initial-
ized at each starting point and followed different routes to
various destinations so vehicles had to coordinate to safely



Figure 1: LEFT: Example Evolved Controller: Top three nodes represent bias and sensors [1, 2] inputs
respectively. Bottom nodes represent steering and Braking overrides. NEAT adapts connections (links and
weights) and hidden layers. RIGHT: Vehicle Sensory Configurations. From left to right, numbers of sensors
increase and thus increase controller input node complexity. Sensors facing the direction of travel have a
100m range and 40◦ FOV, whilst side sensors have a 50m range a FOV of 20◦.

Figure 2: Average task performance (normalized in the range: [0, 1]) of collective driving behaviors evolved
for each sensory configuration on track 1 (left) and track 2 (right). On track 1, Mann-Whitney U, p ≤
0.05 statistical tests indicated statistical difference between configurations [1, 2] and [3, 4]. On track 2,
Mann-Whitney U, p ≤ 0.05 statistical tests indicated no statistical difference between all configurations.

pass through the intersection [4]. On both tracks 1, obstacles
appeared at preset points at a distance of approximately half
of a vehicle’s sensor range. This was to simulate the sudden
crossing of pedestrians.

Results and Discussion

Task performance results support this study’s first objective
of demonstrating the efficacy of NE to synthesize collective
self-driving controllers (figure 2). For all sensor configura-
tions on both tracks, evolved collective driving behaviour
achieved above median task performance. To address the
second objective (to ascertain the impact of morphological
complexity on evolved collective driving), we gauged relative
task performances of behaviours evolved for each sensory
configuration. Pair-wise statistical tests (Mann-Whitney, p
≤ 0.05, [3]) indicated a significant difference in task per-
formance between configurations [1, 2] and [3, 4]. Also, to
test how well evolved controllers generalized to other tracks,
we evaluated track 1 evolved controllers on track 2 and vice-
versa. Results indicated that for sensor configurations [1, 2, 3],
controllers evolved on both tracks traversed either track with
comparable task performance. Future research will evolve
controllers on one track and evaluating it on multiple new
tracks to more rigorously test an evolved controller’s capa-
bility to generalize to new task environments.

1https://people.cs.uct.ac.za/~chuang/aamas2017
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