
Multi-Agent Behavior-Based Policy Transfer

Sabre Didi and Geoff Nitschke

Department of Computer Science, University of Cape Town,
7700 Rondebosch, Cape Town, South Africa

sabredd0@gmail.com,gnitschke@cs.uct.ac.za

Abstract. A key objective of transfer learning is to improve and speed-
up learning on a target task after training on a different, but related,
source task. This study presents a neuro-evolution method that transfers
evolved policies within multi-agent tasks of varying degrees of complex-
ity. The method incorporates behavioral diversity (novelty) search as a
means to boost the task performance of transferred policies (multi-agent
behaviors). Results indicate that transferred evolved multi-agent behav-
iors are significantly improved in more complex tasks when adapted using
behavioral diversity. Comparatively, behaviors that do not use behav-
ioral diversity to further adapt transferred behaviors, perform relatively
poorly in terms of adaptation times and quality of solutions in target
tasks. Also, in support of previous work, both policy transfer methods
(with and without behavioral diversity adaptation), out-perform behav-
iors evolved in target tasks without transfer learning.
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1 Introduction

Transfer learning1 is a technique that attempts to improve learning a task by
leveraging knowledge from learning a related but simpler task [1]. Specifically,
transfer learning is the process of reusing learned information across tasks, where
information is shared between a source and target task. Transferring knowledge
that is learned on a source task accelerates learning and increases solution quality
in target tasks by exploiting relevant prior knowledge.

Transfer learning has been widely studied in the context of Reinforcement
Learning (RL) [2], for various single-agent tasks including pole-balancing [3],
game-playing [4], robot navigation as well as multi-agent tasks including predator-
prey [5]. For such single and multi-agent tasks, policy (behavior) transfer is
typically done within the same task domain for varying task complexity [2].
To facilitate the learning of generalized problem solving behavior various agent
(controller) representations have been used including Decision Trees [4], Ar-
tificial Neural Networks (ANNs), Cerebellar Model Arithmetic Computer, and
Radial Basis Functions [6]. Such representations are typically selected as they
are amenable to decomposition for transfer of partial policies between source

1 Transfer learning and policy transfer are used interchangeably in this paper.



and target tasks as well as further adaptation in target tasks [4]. In multi-agent
transfer learning, policies learned in source tasks are often shared between agents
and used as a starting point for learning new policies in target tasks [5]. A pop-
ular multi-agent test-bed is RoboCup Keep-Away Soccer [7], which has received
significant attention in multi-agent transfer learning research [6].

Recently, in addition to RL, there has been an increasing amount of work
on transfer learning using evolutionary algorithms to adapt policies with various
representations. For example, Doncieux [8] used neuro-evolution [9] to search for
effective ANN controllers in a simulated robot ball collecting task, and inves-
tigated methods for extracting behavioral features shared between versions of
the task. These extracted features were then used as stepping stones to shape
rewards in the evolution of controllers transferred to more complex versions of
the ball collecting task.

In related research, Moshaiov et al. [10] used Multi-Objective Evolutionary
Algorithms [11] to devise a Family Bootstrapping method that evolved groups
of complementary ANN controllers to robot navigation tasks. These controllers
were then used as an evolutionary starting point for controller evolution in robot
navigation tasks with different objectives. Taylor et al. [12] used the NEAT
neuro-evolution method [13] to further evolve a population of ANN controllers
already evolved for a source keep-away soccer task. The authors demonstrated
that biasing and further evolving a fittest population of controllers for more
complex versions of keep-away significantly decreased evolution time.

Verbancsics et al. [14] used an indirect encoding neuro-evolution method
(HyperNEAT [15]) to facilitate evolved solutions encoding the geometry of the
keep-away soccer task. HyperNEAT facilitated the transfer of evolved multi-
agent behaviors between source and target tasks with varying numbers of agents
and soccer field sizes, without the need for any further adaptation. The authors
also used HyperNEAT to demonstrate successful transfer of multi-agent behav-
iors between the Knight’s Joust (a multi-agent predator-prey task variant) [6]
and keep-away soccer tasks. The efficacy of this approach was further supported
by improved task performance on target tasks after further neuro-evolution and
evolved behaviors that were comparable to RL derived policies [16], [17]. In
support of this approach, related work [18], [14] has also highlighted the ef-
fectiveness of indirectly coded representations for facilitating transfer learning
between multi-agent task variants as well as between different multi-agent tasks.

A key challenge in transfer learning is to ensure that a policy, learned in a
source task can be meaningfully transferred to a policy in a target task, with a
typically more complex representation [6]. Hence a mapping function is required
in order that learned policies are transferable between tasks with different num-
bers of state and action variables. For example, tasks of increasing complexity
or different but related tasks such as keep-away soccer [7] and Knight’s Joust
[6]. To address this, Taylor et al. [6], devised a inter-task mappings for policy
search method to transfer a population of control policies (ANN controllers)
between keep-away soccer, knight’s joust and Server Job Scheduling tasks [17].
This method was successfully applied with full (hand-coded) inter-task mapping



functions, where inter-task mapping functions were only partially available or
where inter-task mapping functions had to be learned prior to policy transfer.

This study combines and extends previous work on inter-task mappings for
policy search [6] and facilitating transfer learning with HyperNEAT [14]. Specif-
ically, we investigate the adaptation of multi-agent behaviors in the keep-away
soccer task domain with the Novelty Search [19] behavioral diversity mechanism.
Whilst many studies support the efficacy of objective-based (fitness function)
search approaches in transfer learning [17], [6], [18], [14], the impact of behav-
ioral diversity maintenance on transfer learning remains unexplored. This study
also investigates the benefits of behavioral diversity and objective based search
with policy transfer using direct (NEAT) and indirect encoding (HyperNEAT)
methods to evolve behaviors in target keep-away tasks.

First, we hypothesize that if behavioral diversity maintenance is used in
multi-agent behavior evolution, this will yield a higher task performance than
objective-based evolution in all tasks tested. Second, we hypothesize that NEAT
and HyperNEAT are appropriate policy (multi-agent behavior) search methods
for enabling policy transfer where transferred behaviors yield a higher task per-
formance and efficiency compared to those without policy transfer. Efficiency
refers to the average number of generations until the average maximum fitness
(for the given method) was attained.

These hypotheses were devised given related research results [20], [21], [22],
and were tested by a comparison of keep-away behaviors evolved with NEAT
and HyperNEAT (using either objective-based search or behavioral diversity
maintenance) in keep-away target tasks with and without policy transfer.

2 Methods
2.1 NEAT: Neuro-Evolution of Augmenting Topologies
This research uses Neuro-Evolution of Augmenting Topologies (NEAT) [13] as
the direct encoding policy search method. NEAT evolves both connection weights
and ANN topologies, and applies three key techniques to maintain a balance be-
tween performance and diversity of solutions. First, it assigns a unique historical
marking to every new gene so as crossover can only be performed between pairs of
matching genes. Second, NEAT speciates the population so as ANNs (genotypes)
compete primarily within their own niches (identified by historical markings) in-
stead of competing with the population at large. Third, NEAT begins evolution
with a population of simple ANNs with no hidden nodes but gradually adds
new topological structure (nodes and connections) using two special mutation
operators called add hidden node and add link.

NEAT was selected as this study’s direct encoding method as it has been
successfully used for a broad range of multi-agent control tasks [12], [2], [23],
[24], [10]. However, there has been relatively little research as to efficacy of
NEAT as a policy search method for multi-agent transfer learning [12].

2.2 HyperNEAT: Hypercube-based NEAT
Hypercube-based NEAT (HyperNEAT) [15] is an indirect (generative) encoding
neuro-evolution method that extends NEAT and uses two networks, a Composite



Pattern Producing Network (CPPN) [25] and a substrate (ANN). The CPPN
is the generative encoding mechanism that indirectly maps evolved genotypes
to ANNs and encodes pattern regularities, symmetries and smoothness of the
geometry of a given task in the form of the substrate. This mapping functions
via having coordinates of each pair of nodes connected in the substrate fed to the
CPPN as inputs. The CPPN outputs a value assigned as the synaptic weight of
that connection and a value indicating whether that connection can be expressed
or not. HyperNEAT uses the evolutionary process of NEAT to evolve the CPPN
and determine ANN fitness values. The main benefit of HyperNEAT is scalability
as it exploits task geometry and thus effectively represents complex solutions
with minimal genotype structure [15]. This makes HyperNEAT an appropriate
choice for evolving complex multi-agent solutions [14], [26].

HyperNEAT was selected as this study’s indirect encoding neuro-evolution
method since previous research indicated that transferring the connectivity pat-
terns [27] of evolved behaviors is an effective way for facilitating transfer learning
in multi-agent tasks [18], [14]. HyperNEAT’s capability to evolve controllers that
account for task geometry also makes HyperNEAT appropriate for deriving con-
trollers that elicit behaviors robust to variations in state and action spaces [28]
as well as noisy, partially observable environments of multi-agent tasks. Also,
it has been demonstrated that HyperNEAT evolved multi-agent policies can
be effectively transferred to increasingly complex versions of keep-away soccer
[7] without further adaptation [14] and that transferred behaviors often yield
comparable task performance to specially designed learning algorithms [16].

2.3 Behavioral Diversity

Encouraging behavioral diversity is a well studied concept in neuro-evolution
and has been used to discover novel solutions, increase solution performance in
a wide range of tasks as well as out-perform controller evolution approaches that
encourage genotypic diversity [20], [29], [30], [31],

One such approach is Novelty search (NS) [19], that is not driven by a fitness
(objective) function but rather rewards evolved phenotypes (behaviors) based on
their novelty. Thus, a genotype is more likely to be selected for reproduction if its
encoded behavior is sufficiently different from all other behaviors produced thus
far in an evolutionary run. Recent results indicate that controllers evolved with
a NS metric attained some degree of generality. For example, in a maze solving
task, controllers evolved to solve one maze were successfully transferred to solve
different mazes [32]. Also, NS has been demonstrated as yielding solutions that
out-perform objective based search in various tasks [20], [22] including complex
multi-agent tasks with large numbers of agents [21]. Hence, NS was selected as
the behavioral diversity mechanism to be applied to our selected policy search
methods (NEAT and HyperNEAT).

In this study, the function of NS is to consistently generate novel team (keep-
away) behaviors. Hence, we define team behavior in terms of properties that
potentially influence team behavior but are not directly used for task perfor-
mance evaluation. For the keep-away task, the behavioral properties we use are



the average number of passes, average dispersion of team members, and average
distance of the ball to the center of the field.

In line with previous research on hybrid NS and fitness metrics supporting
performance gains in various tasks [33], including multi-agent tasks [34], we use
a behavioral diversity metric that linearly combines NS with objective-based
search (NEAT and HyperNEAT), in order to improve keep-away policy search.

Several hybrid metrics have been proposed including fitness sharing and lin-
ear combination [21], restarting converged evolutionary runs using NS [33], a
minimal criteria NS (for genotype survival and reproduction) [35], and a pro-
gressive minimal criteria (incrementing reproduction requirements throughout
evolution) [34]. Here we use a linear combination [21] (Equation 1):

scorei = ρ · fiti + (1− ρ) · novi (1)

Where, fiti and novi are normalized fitness and novelty of ith genotype
respectively. Then ρ ∈ [0, 1] is a parameter selected by the experimenter (ρ = 0.4,
in this study) to control the relative contribution of each metric to the selection
pressure. To measure novelty we use normalized task specific behavioral vectors:
Average number of passes, Mean team mates dispersion, and Average distance
of ball to the center of the field.

This team level behavioral characterization has been used previously [21] and
out-performs individual behavioral characterizations and fitness based search.
Behavioral distance is computed as a Euclidean distance (Equation 2):

δ(x, y) = ‖xi − yi‖ (2)

Where, xi and yi are normalized behavioral characterization vectors of geno-
type x and y. The novelty is then quantified by equation 3:

novx =
1

3k

k∑
i=1

3∑
j=1

δ(xj , yij) (3)

Where, xj is the jth behavioral property of genotype x, yij is the jth behav-
ioral property of the ith nearest neighbour of genotype x and δ is the behavioral
distance between two genotypes x and y computed in equation 2 which is based
on the behavioral characterization vector. The novx is then derived from the
mean of behavioral distance of an individual with k nearest neighbors. The pa-
rameter k is specified by the experimenter to represent the number of nearest
neighbors, where k = 15 has been widely used in NS experiments [22]. A few
researchers have used k = 20 [36], [22] and k in the range of [3, 10] though it is
unclear if such k values were derived experimentally. Gomes et al. [22] discovered
that the choice of k value heavily depended on the type of novelty archive used
and that k = 15 yielded relatively good performance across all tested archive
types. Hence in this study we use k = 15.



2.4 Policy Transfer Method

For both NEAT and HyperNEAT, and their non-objective (novelty) and objec-
tive based search variants, we tested three policy transfer approaches. First, the
entire evolved population was transferred from the source task (at the final gen-
eration of neuro-evolution) and set as the initial population for neuro-evolution
in the target task. Second, target population was seeded with the fittest genotype
in the source task and used as a bias for initialising the remainder of the target
population. Third, the fittest 50% of the population evolved for the source task
was selected to seed and bias initialization of the rest of the starting population
in the target task. The first approach was found to be the most effective for all
methods and tasks tested in this case study and was thus used in company with
the selected mapping function for policy transfer (Algorithm 1). Algorithm 1 is
a transfer mapping function that is an extension of that proposed by Taylor et
al. [6] and used is used in this study’s keep-away policy transfer experiments.

Algorithm 1: Transfer Mapping Function

Generate a network with same number of inputs and outputs as in the Πsource

Add the same number of hidden nodes to Πtarget as in Πsource

Repeat
For each pair of nodes (ni,nj) in Πtarget do

If ∃ link Li,j ∈ Πsource then
add link Li,j to Πtarget with wt

i,j = ws
i,j in Πsource

Else
If 6 ∃ nodes(ni,nj) ∈ Πsource

add link Li,j to Πtarget with wt
i,j = random weights

Until all pairs of nodes are visited

3 Experiments

Experiments test this study’s research objectives (Section 1). First, to test the
impact of using a non-objective (behavioral diversity) versus objective (fitness)
based search approach for two given policy search methods (NEAT and Hyper-
NEAT). Second, to test the efficacy of NEAT and HyperNEAT as appropriate
methods for yielding task performance and efficiency boosts after policy transfer.

Experiments are run in a source keep-away task (using NEAT or Hyper-
NEAT to evolve multi-agent keep-away behavior), where populations evolved
after 20 generations, are transferred to a target task, and evolved for a further
50 generations (Table 2). Results are compared to those where no policy transfer
takes place, that is where NEAT and HyperNEAT are used to evolve keep-away
behaviors from scratch in the target tasks. For both NEAT and HyperNEAT
experiments, each genotype (agent team) is evaluated over 30 task trials per
generation, where each task trial tests different (random) agent positions. The
ball always starts in the possession of a (randomly selected) keeper. Average fit-
ness (task performance) per genotype is computed over these 30 task trials. Table
2 specifies the neuro-evolution and simulation parameters for these experiments.



Sensory Inputs Description

dist(Kb, C), dist(Kt1, C), dist(Kt2, C) Distance of each keeper to field center

dist(T1, C), dist(T2, C) Distance of each taker to field center

dist(Kb,Kt1), dist(Kb,Kt2) Distance of each taker to keeper 1

dist(Kb, T1), dist(Kb, T2) Distance of each taker to keeper 1

minj∈1,2dist(Kt1, Tj), minj∈1,2dist(Kt2, Tj) Distance of closest taker to keeper 1

minj∈1,2angle(Kt1, Tj), minj∈1,2angle(Kt1, Tj) Angle of closest keeper, taker, keeper 1

Motor Outputs

Hold Do not pass ball
Pass to Kt1, Pass to Kt2 Pass to keeper 2, keeper 3

Table 1. Sensory inputs (13 input nodes) and motor outputs (three outputs) for a
team’s ANN controller in the 3vs2 keep-away task. Keeper 1 is the agent with the ball.

The efficacy of policy transfer was evaluated in terms of time (genotype eval-
uations) taken to attain a policy transfer threshold, with and without policy
transfer. The threshold was the average maximum fitness attained after apply-
ing NEAT and HyperNEAT to evolve behaviors from scratch in each target task.
Policy transfer occurs between source and incrementally complex target tasks.
That is, first we evolve keep-away behavior for three keepers versus two tak-
ers (denoted as 3vs2 ) in a 20 x 20 virtual field2 (Table 2). Evolved behaviors
(policies) are then transferred (and neuro-evolution continued) in one of three
keep-away target tasks, four keepers versus three takers (4vs3 ), five keepers ver-
sus three takers (5vs3 ) or six keepers versus four takers (6vs4 ).

3.1 NEAT Experiments

Table 1 describes the 13 sensory input nodes in a team’s ANN controller for the
3vs2 keep-away task. The output nodes represent an agent’s decision to hold the
ball, pass to keeper 2 or pass to keeper 3, where keeper 1 has the ball. At any
task trial iteration, the output with the highest activation is the action selected.

NEAT is direct encoding method, so the genotype representation (encoding
sensory-motor elements of a keep-away team’s controller) needs to change as
task complexity and the number of agents changes. For example, as task com-
plexity increases, from 3vs2 to 4vs3 keep-away, an ANN topology with 19 input
nodes and 4 output nodes is required. The additional output node represents
the decision of keeper 1 to pass to keeper 4. The extra six input nodes represent:
1) distance of keeper 4 from the field’s center, 2) distance of taker 3 from the
field’s center, 3) distance of keeper 1 from taker 3, 4) distance between keeper 4
and the closest taker, 5) angle formed between keeper 1 and the closest keeper
and taker, and 6) distance of keeper 1 to keeper 4. Similarly, for the 5vs3 task
an ANN with 27 inputs and six outputs is needed.

However, for all keep-away tasks tested (3vs2, 4vs3, and 5vs4 ) the ANN
sensory-motor layer topology was kept static (13 sensory inputs and three motor

2 All experiments were run in RoboCup Keep-Away version 6 [6]. Source code and
executables can be found at: http://people.cs.uct.ac.za/˜gnitschke/EvoStar2016/



NE / NS Parameters Setting

Population Size 150

Generations (Source task) 20

Generations (Target task) 50

Maximum number of species 10

Maximum species population 30

Weight mutation ±0.01

NEAT Weight value range [-5.0, 5.0]

HyperNEAT Weight value range [-5.0, 5.0]

Mutation rate 0.05

Survival threshold 0.2

NS nearest neighbor k 15

Maximum archive size 1000

Compatibility threshold 3

Behavioral threshold 0.03

HyperNEAT CPPN Functions

Identity x

Gaussian e−2.5x2

Bipolar Sigmoid 2
1+e−4.9x − 1

Absolute value |x|
Sine sine(x)

Simulation Parameters Setting

Number of Runs 20

Iterations per task trial 4500

Trials per generation 30

Agent positions Random

Environment size 20x20 grid

Agent speed (per iteration) 1 grid cell

Ball speed (per iteration) 2 grid cells

Table 2. Left: Neuro-Evolution (NE), Novelty Search (NS) parameters (final three
rows). Right: CPPN (HyperNEAT) activation Functions and simulation parameters.

Fig. 1. Left: Substrate encoding the virtual field (20 x 20 grid of inputs and outputs).
Connection values ([-1.0, 1.0]) between these input-output nodes represent positions of
agents relative to the keeper with the ball. Right: Connections from pairs of nodes in
the substrate are sampled and the coordinates passed as inputs to the CPPN, which
then outputs the synaptic weight of each sampled connection.

outputs) in order to facilitate transfer across tasks of increasing complexity.
Thus, as the number of agents increased with task complexity, a heuristic selected
which agents in the environment would be processed by the ANN’s 13 sensory
input nodes. At each sensory-motor cycle (task trial iteration), the heuristic
selected the closest two keeper and taker agents to be processed by the ANN,
but had the potential to process any agent as sensory input. In keep-away task
simulation this was tantamount to noise preventing the keeper with the ball from
processing agents too far away and thus accounting for them in action selection.



Experiment 4vs3 5vs3 6vs4
Keep-Away Keep-Away Keep-Away

No Policy Transfer
NEAT 0.438 (0.037) 0.473 (0.052) 0.419 (0.057)

HyperNEAT 0.587 (0.059) 0.765 (0.050) 0.533 (0.044)

Fitness-Based Policy Transfer
NEAT 0.482 (0.059) 0.580 (0.069) 0.464 (0.033)

HyperNEAT 0.729 (0.089) 0.873 (0.089) 0.632 (0.038)

Fitness + NS Policy Transfer
NEAT 0.545 (0.047) 0.638 (0.0048) 0.520 (0.036)

HyperNEAT 0.752 (0.054) 0.943 (0.029) 0.697 (0.032)

Table 3. Average normalized maximum fitness (over 20 runs) for the three experimen-
tal setups. Values are portions of the maximum possible hold time (possession of the
ball) for the team of keepers. Standard deviations are shown in parentheses.

3.2 HyperNEAT Experiments

HyperNEAT uses indirect encoding and can thus represent changes in task com-
plexity without changing genotype representation [14]. In this experiment Bird’s
Eye View (BEV) representation [14] is used to encode keep-away’s physical state
(layout of the field and locality of agents) and actions onto a substrate network.
The virtual keep-away soccer field is divided into a 20 x 20 grid world, where
each agent can occupy one grid cell per task trial iteration. The input and out-
put layers of the substrate network are two dimensional, with coordinates in
the x, y plane in the range of [−1.0, 1.0]. Each grid cell in the virtual space is
represented by a node in the substrate network layer, so the 20 x 20 grid world
is represented by 400 nodes in the substrate network. Hence, the layout of nodes
in the substrate network (network geometry) directly maps to the tasks geom-
etry and this enables HyperNEAT to exploit the task’s geometric regularities
and relationships. The position of each agent is marked on the substrate input
layer, where each position of the keeper is marked by a value 1.0, and takers by
−1.0. Physical paths between agents are drawn. Each direct path from a keeper
with a ball to another keeper is marked by a value 0.3 and to a taker by a value
−0.3. The region to pass the ball to is highlighted on the substrate output by
activating the node with the highest output.

The CPPN queries each connection between input and output layers of the
two dimensional substrate network taking coordinates (x1, y1) and (x2, y2) as
input. The CPPN output represents the weight of that connection and the con-
nection expression value. The connection weights are then produced as a function
of their endpoints. The functions used are listed in Table 2 (right).

4 Results and Discussion

Policy transfer was applied between the source 3vs2 keep-away task and incre-
mentally complex 4vs3, 5vs3 and 6vs4 keep-away tasks (section 3). Keep-away
behaviors were evolved for 20 generations with NEAT or HyperNEAT (using



either the novelty-objective hybrid or objective-based search) in the source task,
transferred to the target task and then further evolved for 50 generations. For
policy transfer, three population initialization methods in the target task were
tested (Section 2.4). However, the transfer of the entire population (from gener-
ation 20 in the source task) to target tasks best facilitated policy transfer. Hence
only results for this population initialization method are presented here.

Table 3 presents the average normalized maximum fitness (attained during
each run and averaged over 20 runs) for the three experimental setups. Experi-
ment 1 (No Policy Transfer) presents results from evolving keep-away behaviors
in each of the target tasks from scratch (without policy transfer). Experiment
2 (Fitness-Based Policy Transfer) presents results from evolving keep-away be-
haviors using objective (fitness) based NEAT and HyperNEAT in the source and
then in target tasks (after policy transfer). Experiment 3 (Fitness + NS Policy
Transfer) presents results from evolving keep-away behaviors with NEAT and
HyperNEAT using the novelty-objective hybrid based search. In experiments 2
and 3, NEAT or HyperNEAT is applied in the source task for 20 generations
and thereafter for 50 generations in the target task.

Results data was found to be non-parametric using the Kolmogorov-Smirnov
normality test with Lilliefors correction [37]. The Mann-Whitney U test [38]
was then applied in a series of pair-wise comparisons to gauge if there was a
statistically significant difference between corresponding result sets of the three
experiments (Table 3). Pair-wise comparisons were conducted between average
results data for NEAT or HyperNEAT (for a given experiment). The null hy-
pothesis stated that two comparative data sets were not significantly different,
and α = 0.05 was selected as the significance threshold.

4.1 Policy versus No-Policy Transfer: Performance Comparisons

First, statistical tests indicated that for all policy transfers (from 3vs2 to 4vs3,
5vs3 and 6vs4 ), there was a statistically significant difference (p-value < 0.05)
between the novelty-objective hybrid and objective-based NEAT. That is, NEAT
with behavioral diversity maintenance yielded a significantly higher average max-
imum task performance for all policy transfer cases (Table 3).

Second, statistical tests indicated that for all policy transfers transfer cases,
both NEAT and HyperNEAT using behavioral diversity maintenance yielded a
higher average maximum task performance compared to objective-based NEAT
and HyperNEAT (Table 3).

This result supports this study’s first hypothesis (Section 1), that encourag-
ing behavioral diversity facilitates the evolution of higher performance keep-away
behaviors in all tasks tested, compared to keep-away behavior adaptation with-
out behavioral diversity maintenance.

Statistical tests also indicated that NEAT (using either the novelty-objective
or objective-based search) yielded a higher average task performance (with sta-
tistical significance) for all policy transfers, compared to objective-based NEAT
without policy transfer. That is, where NEAT was applied to evolve keep-away
behavior (from scratch) in each of the target tasks (4vs3, 5vs3 and 6vs4 ). Simi-
larly, statistical tests indicated that HyperNEAT (with and without behavioral



diversity maintenance), yielded significantly higher task performances in all tar-
get tasks compared to HyperNEAT without policy transfer (Table 3).

These results partially support this study’s second hypothesis, that NEAT
and HyperNEAT are appropriate as policy search methods where policy transfer
enables the evolution of significantly higher performance keep-away behaviors in
all target tasks tested (compared to keep-away behaviors evolved from scratch).
These results are further supported by previous work demonstrating that transfer
learning enables multi-agent behavior adaptation with significantly higher task
performances compared to adaptation without transfer learning [12], [14], [5].

4.2 Policy versus No-Policy Transfer: Efficiency Comparisons

To further support this study’s second hypothesis, the efficiency of NEAT and
HyperNEAT (with and without behavioral diversity maintenance) is compared
in the target tasks where policy transfer was applied versus where keep-away
behaviors were evolved in the target tasks from scratch.

Results (performance threshold) of applying NEAT and HyperNEAT to adapt
keep-away behaviors from scratch (without policy transfer) in the target tasks
(4vs3, 5vs3 and 6vs4 ) were used as a benchmark for comparisons with the same
methods applied with policy transfer. This threshold was the average maximum
task performance of NEAT and HyperNEAT in the target tasks, where keep-
away behavior was evolved without policy transfer (Table 3).

First, for objective-based NEAT without policy transfer, an average maxi-
mum task performance of 0.443 (as a portion of maximum task performance)
for all three target tasks was attained after approximately 40 generations3. After
40 generations negligible task performance increases were observed. Additional
experiments that used relatively few runs, but 100 generations of evolution indi-
cated that objective-based NEAT, without policy transfer, gets stuck in a local
optima. However, this is not the case when policy transfer is used (for both
objective and hybrid objective-novelty based variants of NEAT).

Comparatively, results from objective-based NEAT with policy transfer in-
dicated efficiency gains for all target tasks. Objective-based NEAT with policy
transfer yielded an average maximum task performance of 0.482, 0.580 and 0.464
for the 4vs3, 5vs3 and 6vs4 keep-away tasks, respectively. These tasks perfor-
mances were attained after approximately 48 generations. However, additional
experiments using relatively few runs but 100 generations indicated that the task
performances yielded by objective-based NEAT with policy transfer continued
to increase. Also, all task performances yielded by objective-based NEAT with
policy transfer were significantly higher (Mann-Whitney test, p-value < 0.05)
compared to those yielded by NEAT without policy transfer in the same tasks.

Objective-based HyperNEAT with policy transfer also yielded greater effi-
ciency for all target tasks. That is, objective-based HyperNEAT with policy
transfer resulted in an an average maximum task performance of 0.632 for 6vs4
keep-away after 38 generations, with policy transfer. This was compared to the

3 NEAT and HyperNEAT average maximum task performance progression graphs can
be found at: http://people.cs.uct.ac.za/˜gnitschke/EvoStar2016/



significantly lower 0.533 (Mann-Whitney test, p-value < 0.05) average maxi-
mum performance after 49 generations, without policy transfer in the same 5vs3
keep-away task.

Task performance in 5vs3 keep-away steadily reached an average maximum
of 0.873 after 50 generations, with policy transfer. This was compared to the
significantly lower 0.765 (Mann-Whitney test, p-value < 0.05) average maximum
performance after 48 generations, without policy transfer in the same task.

Task performance in 4vs3 keep-away steadily reached an average maximum
of 0.729 after 47 generations, with policy transfer. This was compared to the
significantly lower 0.587 (Mann-Whitney test, p-value < 0.05) average maximum
performance after 45 generations, without policy transfer in the same task. Also,
additional experiments using relatively few runs but 100 generations indicated
that the task performances yielded by objective-based HyperNEAT with policy
transfer continued to increase.

Second, for novelty-objective based NEAT with policy transfer, average max-
imum task performances of 0.545, 0.638 and 0.520 were attained for tasks 4vs3,
5vs3 and 6vs4, after 48, 49 and 48 generations, respectively. This compared to
the significantly lower task performances (Mann-Whitney test, p-value < 0.05)
of novelty-objective based NEAT without policy transfer for the same tasks. That
is, 0.443, 0.473, and 0.473 for the 4vs3, 5vs3 and 6vs4 tasks, attained after 40,
37 and 43 generations respectively.

Also, novelty-objective based HyperNEAT with policy transfer yielded aver-
age maximum task performances of 0.752, 0.943 and 0.697 for tasks 4vs3, 5vs3
and 6vs4, after 45, 49 and 48 generations, respectively. This compared to the
significantly lower task performances (Mann-Whitney test, p-value < 0.05) of
objective based HyperNEAT without policy transfer for the same tasks (Table 3),
yielded in a comparable number of generations (45, 48 and 49 generations, for
the 4vs3, 5vs3 and 6vs4 tasks, respectively).

Hence, these results further support this study’s second hypothesis, that
NEAT and HyperNEAT are appropriate policy search methods, where policy
transfer enables a higher efficiency in the target tasks tested. Thus, NEAT and
HyperNEAT with policy transfer (using objective-based search or behavioral di-
versity maintenance) converge to a higher task performance faster compared to
the same methods without policy transfer.

4.3 Behavioral Diversity Maintenance and Policy Transfer

The results of this study have important implications for current policy transfer
research, specifically multi-agent policy transfer where neuro-evolution is used
for policy search (agent behavior adaptation).

First, the results indicated significant task performance and efficiency (speed-
up of evolution) benefits of policy transfer in a multi-agent task (Keep-away
RoboCup Soccer) where team behavior was evolved with NEAT or HyperNEAT
in a source task and then further evolved in more complex target tasks. This
was compared to the same methods for evolving keep-away behavior from scratch
in the target tasks. These results are also supported by related policy transfer
research that used neuro-evolution for policy search [12], [14], [8], [10].



Second, results indicated that HyperNEAT with behavioral diversity main-
tenance yielded the greatest benefits for policy transfer overall. These trans-
ferred behaviors leveraged the most benefits of behaviors evolved in the source
task such that further evolution in target tasks yielded the highest overall task
performances. This was compared to NEAT with behavioral diversity mainte-
nance, objective-based NEAT and HyperNEAT and the same methods without
policy transfer. Such benefits of behavioral diversity maintenance coupled with
objective-based search is supported by related work [35], [33], [34]. Also, advan-
tages of indirect encoding neuro-evolution methods such as HyperNEAT have
been highlighted in a broad range of task domains[15], [14], [26], [28].

However, a key contribution of this study is that this is the first time (to the
authors’ knowledge), the benefits of behavioral diversity maintenance coupled
with neuro-evolution, have been demonstrated in multi-agent policy transfer.

The significantly higher performance of HyperNEAT with behavioral diver-
sity maintenance across all tasks is theorized to be a result of beneficial interac-
tions between a more effective search for high performance behaviors (aided by
behavioral diversity maintenance) and HyperNEAT’s indirect encoding of agent
behaviors. Consider that in the source task the novelty-objective hybrid based
search employed by HyperNEAT facilitated an effective exploration versus ex-
ploitation trade-off in the search for high-performance keep-away behaviors. This
is supported by results from previous work [35], [34], [33], [21] that similarly re-
port the benefits of hybrid novelty-objective based search approaches (including
task performance advantages over objective based search approaches).

Also, when effective high-performance behaviors are discovered as solutions
to the source task (3vs2 keep-away), HyperNEAT’s indirect encoding of such
behaviors and the spatial geometry of the keep-away task facilitates more ef-
fective policy transfer to incrementally complex target tasks. That is, Hyper-
NEAT evolves CPPNs that are able to represent complex ANN controllers with
their own symmetries and regularities and exploit the sensory-motor geometry of
multi-agent tasks [15], [26]. This controller representation significantly impacted
the efficacy of evolved keep-away behavior across all tested target tasks.

Thus, we hypothesize that adapting controllers with HyperNEAT in company
with the aid of behavioral diversity maintenance allows first, for the discovery
of novel robust and effective multi-agent behaviors (that might not have oth-
erwise been discovered with pure objective-based search). Second, HyperNEAT
encodes team behaviors that do not rely upon specific sensory-motor mappings
in the agent team controller and thus set task environment configurations (such
as specific agent and ball positions and numbers of agents). That is, HyperNEAT
evolves connectivity patterns [27] that are broadly applicable to tasks of vary-
ing complexity (in keep-away, numbers of agents). This is supported by related
research that similarly demonstrates the robustness of HyperNEAT evolved con-
trollers in tasks of varying complexity [28].

The performance of HyperNEAT evolved teams was contrasted to the signif-
icantly lower task performance of NEAT (with and without behavioral diversity
maintenance). In NEAT, team behaviors were directly encoded with an ANN



with fixed sensory-motor layers (13 sensory inputs and three motor outputs),
where the number of hidden nodes and connections were evolved. This static
sensory-motor layer ANN topology prevented a smooth and effective transfer
from the source task to the more complex target tasks. However, behavioral
diversity maintenance did boost the task performance and efficiency of NEAT
evolved behaviors in all target tasks after policy transfer (Table 3).

The lower performance of both NEAT and HyperNEAT (with and without
behavioral diversity maintenance) in the 6vs4 target task (Table 3) remains the
subject of current research. Though this is hypothesized to be a result of the
increased complexity of four takers on the same sized virtual field, making taker
interception of ball passes more likely. Also this increases the required complexity
of evolved keep-away behaviors, meaning evolved behaviors must effectively scale
to coordinate larger numbers of keepers while accounting for more takers, but
with the same spatial constraints on the virtual field as the 4vs3 and 5vs3 tasks.

5 Conclusion

This study investigated methods for improving the current state of the art in
multi-agent transfer learning. That is, improving task performance and efficiency
(speed of adaptation) of Keep-away RoboCup Soccer behaviors evolved in a
source task but then further evolved on more complex versions of the same task.
Experiments compared two neuro-evolution methods, NEAT and HyperNEAT,
applying them to evolve keep-away behaviors. This study’s main contribution
was elucidating that behavioral diversity maintenance coupled with these meth-
ods yielded increased task performance in increasingly complex keep-away tasks.

Results indicated that behavioral diversity maintenance used in company
with NEAT and HyperNEAT is an appropriate approach for increasing task
performance and efficiency in keep-away tasks of increasing complexity. Using be-
havioral diversity maintenance enabled NEAT and HyperNEAT to out-perform
objective-based NEAT and HyperNEAT with and without policy transfer in all
tested target keep-away tasks. Also, results indicated that HyperNEAT using
behavioral diversity maintenance yielded the highest overall task performance
and efficiency. This was theorized to be a result of HyperNEAT’s indirect en-
coding of keep-away behaviors, facilitating effective transfer of evolved behaviors
between tasks of varying complexity.

Future work will further investigate the efficacy of indirect encoding methods
for facilitating effective policy transfer between similar but related multi-agent
tasks (for example, keep-away to multi-agent predator-prey [26]), thus address-
ing the larger goal of devising controller design methods capable of producing
generalized problem solving behaviors.
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