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Abstract—This research falls within evolutionary robotics
and the larger taxonomy of cooperative multi-robot systems.
A study of comparative methods to adapt the behaviors and
morphologies of simulated robot teams that must solve a collective
construction task is presented. Multiple versions of an indirect
encoding (developmental) method for the artificial evolution of
team behaviors and morphologies were tested. Results indicated
the developmental method was able to evolve effective robot team
morphologies in a collective construction task, where evolved
teams yielded a task performance comparable to optimal team
morphologies manually designed specifically for the collective
construction task. Results also indicated that the developmental
method was appropriate for evolving controllers that were able
to generalize to a range of different team morphologies that also
solved the collective construction task with a high degree of task
performance.

I. INTRODUCTION

An open problem in cooperative multi-robot systems [1]
is determining a priori the most appropriate sensory-motor
configurations (morphologies) for individual robots such that
robots best collectively solve cooperative tasks.

Many approaches for co-evolving robot behaviors and
morphologies have successfully derived behavior-morphology
couplings [2] specifically suited to accomplishing a range of
tasks [3], [4], [5], [6], [7], [8], [9] using various direct encoding
approaches in a range of artificial evolution methods. Indirect
encoding (developmental) approaches have also been demon-
strated as effective in many behavior-morphology adaptation
studies using single (simulated) robots that must accomplish
relatively simple tasks (that is, those not requiring cooperation)
[10], [11], [12], [13], [14], [15].

However, research that applies developmental methods to
evolve behavior and morphology in robot teams that must
accomplish collective behavior tasks remains relatively scarce
[16] and usually focuses on controller evolution for fixed
morphology teams [17], [18], [19]. Work on the co-evolution of
behavior and morphology has typically focused on single robot
tasks due to the added complexity of co-evolving behavior-
morphology couplings for multiple robots that must coopera-
tively interact. This is especially the case for behaviorally and
morphologically heterogenous teams.

This study extends previous work [20] testing controller
evolution in fixed morphology teams, where a team’s mor-

phology was pre-determined using morphological parame-
ter tuning experiments that tested a diverse yet functional
range of robot morphologies. The focus of this study is
on behavior-morphology evolution in homogenous teams to
reduce the computational complexity required to evolve
behavior-morphology couplings that effectively solve collec-
tive behavior tasks. Thus, the morphology of each robot is
adapted in company with its controller over the course of an
artificial evolution process. At the end of the evolutionary
process each robot in the team is given the same (fittest)
behavior-morphology coupling. That is, the evolved behavior
and accompanying morphology that best solves the given
collective behavior task. As such, this study excludes the
definition of adaptive behavior and morphology used by self
assembling multi-robot systems [21], [22].

This study contributes to an open objective in collective
and swarm robotics, which is to devise computational methods
that automate the behavior-morphology design of robot teams.
The future applications such as methods is that they automate
the design of robot teams to be designed (artificially evolved),
tested and verified in simulation for a given collective behavior
task (for example, cooperative search of remote environments
such as distant planets [23], search and rescue [24], and
construction and repair [25]) before being built (for example
with rapid prototyping and three-dimensional printing technol-
ogy [26], [5]) and deployed to solve counter-part real-world
collective behavior tasks.

This study tests two research goals given behavior-
morphology adaptation in homogenous teams that must ac-
complish a collective construction task.

The first goal is to demonstrate that for the given collective
construction task, co-adapting behavior and morphology pro-
duces teams that out-perform teams using controller evolution
(behavioral adaptation) only. In this case, the latter teams used
a fixed morphology determined by previous work [20]. To
address this objective, various developmental approaches for
evolving team behaviors and morphologies are comparatively
tested against the fixed morphology team in the collective
construction task.

The second goal is to demonstrate that a developmental
encoding of controllers and morphologies in homogenous
teams is appropriate for evolving (collective) behaviors that
are robust to variations of the morphologies with which they
were co-adapted. The motivation for this objective was that978-1-4799-7560-0/15/$31 c©2015 IEEE
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Fig. 1. ANN Topology as it relates to robot morphology: Sensory input layer (left), hidden layer (center) and motor output layer (right). Output nodes R and
S determine a robot’s rotation and speed, respectively. Arrows indicate the direction the agent is facing.

in future applications that use rapid prototyping or three-
dimensional printing technologies to build physical versions
[27] of robot teams designed in simulation, not all the required
resources, materials and hardware components will necessarily
be available. Hence, controllers evolved for a given team
morphology would have to be sufficiently robust so as to
function in varied but similar team morphologies. Also, robots
may be damaged as they interact with their environment [28],
[29], in which case evolved behaviors must continue to operate
in modified robot bodies (morphologies).

To address this second objective, the controller (substrate
[17]) is taken from the fittest behavior-morphology coupling
evolved for the collective construction task, and this controller
is copied to each robot in a team with a varied morphology. The
controller coupled with this varied topology is then tested on
the same collective construction task to ascertain its behavioral
robustness to morphological change.

The Collective construction task [30] was selected since it
is a variation of the well studied collective gathering task [31]
and has pertinence to future multi-robot applications. The task
was for robots to search for randomly distributed resources
(blocks) in the environment and then push them such that they
connected to other blocks. The goal was for all blocks to be
connected during the robots’ lifetime. One block type required
cooperation (two or more robots) to move, while another block
type could be moved by individual robots.

Robots were unable to explicitly detect or identify each
other, and as such all cooperative interactions were stigmergic
[32], taking place via multiple robots concurrently moving
towards blocks and pushing them together into a built structure.

This task is solvable by homogenous teams given that
no behavioral or morphological specialization is required for
optimal solutions [33]. This task is an abstraction of real
world multi-robot collective construction tasks where func-
tional structures such as human habitats must be built from pre-
fabricated modules [34], [35], [25]. The collective construction
task used in this case study is a simplified version of a more
complex construction task that requires robots to collectively
build structures via connecting resources in specific ways such
that a target structure is built [36].

II. METHODS

A. Evolving Controllers and Morphologies

All robots in a team used the same Artificial Neural
Network (ANN) controller, where each controller had N sen-
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Fig. 2. A graphical overview of the HyperNEAT process.

sory input nodes (determined in various ways depending on
the adaptive morphology method used), that mapped sensory
inputs, via a hidden layer, to two motor outputs (figure 1) using
Hypercube-based Neuro-Evolution of Augmented Topologies
(HyperNEAT) [37]. HyperNEAT (figure 2) was selected as
it is a generative encoding method that produces regular and
modular ANNs with increased learning capacities [38], and has
been demonstrated as exploiting regularity and modularity in
multi-agent tasks to evolve solutions that could not otherwise
be evolved [39]. In the collective construction task, Hyper-
NEAT is potentially beneficial as structures to be built are
modular (comprised of a set of blocks), and regular (the same
sequence of blocks can be repeated). Another reason for using
HyperNEAT is its successful application to evolving team
(collective) behaviors for various multi-agent tasks including
RoboCup Soccer [40] and Pursuit-Evasion [39].

Robot controllers were not directly evolved, but generated
using an evolved CPPN (Compositional Pattern Producing
Network) [41]. HyperNEAT was used to adapt the ANN con-
nection weights and inter-layer connectivity, as well as robot
morphology (which was simplified to only the number of sen-
sors given results of previous work [20]). Thus, HyperNEAT
evolved the connection weights and the connectivity between a
fixed sensory input layer, hidden layer and motor output layer,
and a sensor count, N. Teams were behaviorally homogenous in
that the current fittest ANN controller was copied P times for
P robots in a team. Teams were morphologically homogenous
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Fig. 3. Example robot sensory configurations (Left: 8 sensors, Right: 10 sensors). The sensory slices of N sensors comprise a 360 degree sensory field of view.

since each robot used the same sensory-motor configuration.

Figure 1 presents an example ANN configuration for num-
ber of sensors (N) = 6. The ANN uses a three dimensional
coordinate system for processing x, y, z positions in the CPPN
in order to generate weight values, connectivity and bias.
The CPPN indirect encoding of HyperNEAT allows evolved
controllers to exploit the geometry of the task and the envi-
ronment. In the collective construction task, such geometric
feature include the relative positions of other robots, blocks,
and the direction robots and blocks are facing. HyperNEAT
exploits the configuration of nodes in the ANN controller.
Thus, controllers are evolved to exploit the position, number,
and direction each sensory input faces as well as motor output
nodes on a robot’s body. In this study, a robot’s motor outputs
and the positions and direction of each sensor remains fixed,
and only the number of sensors is adapted.

The input layer of the ANN controller is represented as a
circle of N evenly distributed nodes. Each node is a sensor,
where the sensory Field of View (FOV) of all sensors forms
a complete 360 degree FOV (figure 3). The rotation output
node is in the center to preserve the angle between sensory
input nodes. The speed motor output node (S in figure 3) is
offset in the direction the robot is facing to signify forward
movement at a given speed. The intermediate hidden layer
reflects the configuration of the input layer, in order to preserve
the geometry of the sensory input layer, that is the direction
of each sensor’s FOV (figure 1). The ANN is initialized with
full connectivity between adjacent layers. However, partial
connectivity is evolvable via the CPPN generating a zero
weight value for a given connection. During the artificial
evolution process, the CPPN is developed via having nodes
and connections added and removed, as well as connection
weight values mutated [37]. Neuro-Evolution (NE) parameters
used are given in table II and were determined in previous
work [20].

Robot morphology (number of sensors, N) was encoded in
the same genotype as the robot’s ANN controller in order that
behavior and morphology could be co-adapted with variations
of HyperNEAT. To constrain the morphological search space
and reduce computation time, robots were permitted to have
[3, 16] sensors of a given type (section II-B1). The following
variations of HyperNEAT were tested to evolve behavior-
morphology couplings in teams.

1) Approach 1: Fixed Morphology: Team morphology, de-
termined by previous research [20], was fixed for the adaptive
process and HyperNEAT was used to evolve ANN controller
connections and connection weights to adapt team behavior.

2) Approach 2: Behavior-Morphology Coupling: A robot’s
morphology was encoded on the same genotype as its ANN

controller and team behavior and morphology was evolved
with HyperNEAT. For adapting morphology, only mutation
(table II) was applied to a morphology gene (appended to the
end of the genes encoding ANN controller connectivity and
weight values). The parameters for mutating the morphology
gene in a robot’s genotype is specified in table II.

3) Approach 3: Morphological Boosting: This approach
evolved controllers for a fixed morphology, however, an extra
step was included at each generation that allowed for morpho-
logical adaptation during the evolutionary process. The fittest
genotype from each generation was re-evaluated on M different
morphologies (table II). Re-evaluation was equivalent to one
generation, that is, X team lifetimes (evaluations per genotype
in table I). After re-evaluation of the fittest genotype on the
M different morphologies, a fitness was assigned to each of
these M morphologies and weighted random selection was
used to select one of these morphologies in all genotypes of
the next generation. That is, morphologies with higher fitness
have a higher degree of probability of being selected for use in
the next generation. This approach took advantage of Hyper-
NEAT’s capability to encode modular and regular connectivity
patterns rather than a direct encoding of connections between
layers of nodes. This indirect encoding allowed one evolved
CPPN to generate ANN controllers that functioned together
with a range of morphologies. Thus, this approach allowed
HyperNEAT to ascertain if the given morphology was sub-
optimal, to adapt morphologies across generations, and to
evolve controllers that were robust to functioning in multiple
morphologies.

4) Approach 4: Behavior-Morphology Coupling and Boost-
ing: This approach was a combination of behavior-
morphology coupling and morphological boosting. That is, a
robot’s behavior and morphology was encoded in the same
genotype but also included the morphological re-evaluation
step at each generation (that is, approach 3). Hence, after
re-evaluation of the fittest genotype, a new morphology was
probabilistically selected in proportion to the fitness of the re-
evaluated morphologies, then the fittest genotype was adapted
to include this new morphology. This was done via updating
the number of sensors encoded by the genotype to that used
by the new morphology.

B. Controller Sensors and Actuators

1) Block Detection Sensors: Robots had N block detection
sensors each with a range of r set as portion of the environ-
ment’s length (table I). N was the subject of the experimental
comparisons (section III), and thus either fixed (section II-A1)
or evolved as part of team morphology (sections II-A2, II-A3,
II-A4). Sensor range r was preset to a value determined by

1041



TABLE I. EXPERIMENT PARAMETERS

Generations 250

Sensors per robot (Fixed / Adaptive Morphology) [3, 16] / 3

Sensor ranges 50

Evaluations per genotype 3

Experiment runs 30

Environment length, width 100

MaxDistance 1

Team size 30

Team Lifetime (Task scenario length) 120

Type A blocks (1 robot to push) 10

Type B blocks (2 robots to push) 10

previous research [20]. A robot’s 360 degree sensory FOV
was split into N sensor quadrants (figure 3). Block detection
sensors were constantly active for the duration of a robot’s
lifetime. Sensor q returned either 0 (no blocks detected) or 1
(one or more blocks detected) in sensor quadrant q.

These sensors were an abstract representation within the
task being modeled. For example, in the physical counter-
part of the collective construction task, sensors could be
a combination of directional Radio Frequency Identification
(RFID) sensors, where different blocks types are identified
with specific radio frequencies output by embedded RFID
chips, to enable their location and identification by robots
[42]. In such a task, RFID tagging would be viable as the
blocks represent prefabricated components of a structure. For
the purposes of keeping robot sensory configurations minimal
in this simulation, robots were only able to detect blocks, and
collision detection behavior was pre-specified. As such, robots
were circular and given minimal friction, so that unless robots
were moving in precisely opposite directions they would push
past each other with minimal changes to their trajectories. Such
collisions were modeled in the simulator1, and despite robot
collisions, the team was on average able to accomplish its task.

2) Movement Actuators: Two wheel motors controlled a
robot’s heading (rotation) and speed (R and S in figure 1).
Values for these wheel motors were normalized within the
range [-1.0, 1.0], where R = 0.0 corresponded to no change in
heading, R = -1.0 to maximum speed clockwise rotation, and
R = 1.0 corresponded to maximum anti-clockwise rotation.
Similarly, S = 0.0 corresponded to no movement and S = 1.0
to movement in the robot’s current heading at maximum speed.
A robot’s maximum speed was the maximum distance it could
traverse in one simulation iteration (MaxDistance in table I).

III. EXPERIMENTS

Experiments tested n robots in a bounded two dimensional
continuous environment (100 x 100 units) containing a random
distribution of type A and B blocks (table I). Robots were
initialized with random orientations within an area at the
environment’s center. Blocks were randomly placed throughout
the entire environment, so that although the robots’ initial
positions were fixed, the relative difference in positions be-
tween robots and blocks was randomized. In previous research,
a construction schema dictated the sequence of block types
that must be connected together in order for a structure to

1The multi-robot simulator we developed for the experiments in this study
(and source code) can be found at: https://github.com/james-za/necc

TABLE II. NEURO-EVOLUTION PARAMETERS

Mutation rate

Add neuron 0.25

Add connection 0.8

Remove connection 0.02

Weight 0.1

Sensor count 0.25

Mutation type Gaussian

Total Morphologies 14

Sensor count (All morphologies) [3, 16]

Population size 100

Survival rate 0.3

Crossover proportion 0.4

Elitism proportion 0.1

CPPN topology Feed-forward

CPPN inputs Position, delta, angle

be built [43]. However, to first demonstrate that the proposed
approaches worked with a simple collective construction task,
blocks could be connected in any sequence.

A. Collective Construction Task:

This task required a simulated robot team to gather blocks
and cooperatively build a structure from gathered blocks
in a bounded continuous environment. Task complexity was
equated with the degree of cooperation (number of robots
required) to collectively transport blocks and connect them
together with other blocks in order to build a structure. The
final structure resulted from connecting all blocks in the
environment. Team task performance (fitness) was the number
of blocks connected during a team’s lifetime (equation 1).

The fitness function (equation 1) used in team evaluation
was a weighted sum that included, the number of times a robot
successfully found blocks (a in equation 1), the number of
times type A blocks were pushed by one robot and connected
with a built structure, and the number of times type B blocks
were pushed by two robots and connected with a built structure
(b in equation 1).

Parameter tuning experiments found that setting the
weights (reward values ra and rb in equation 1) both to
1.0 resulted in functional controller evolution. Fitness was
normalized to the range [0.0, 1.0] using the number of blocks
and robots required to move a given block (si).

f =
raa+ rbb

rbn+ ra
n∑

i=1

si

(1)

Task difficulty is regulated via requiring varying degrees of
cooperation to make specific block connections. Cooperation
was when at least two robots simultaneously pushed a block
to touch another block (blocks were automatically connected
in this manner). One robot only was required to push type A
blocks and two robots were needed to push type B blocks.
Hence, the more robots required to push a given block type,
the more difficult the task. Task difficulty could further be
increased via increasing the portion of blocks (of all blocks in
the environment) that must be cooperatively moved.
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TABLE III. ONE-WAY ANOVA TO TEST THE IMPACT OF ADAPTIVE

MORPHOLOGY METHOD ON GENERATIONS TAKEN TO ACHIEVE MAXIMUM

COLLECTIVE CONSTRUCTION TASK PERFORMANCE.

One-way analysis of means (not assuming equal variances)

F Num. Df Denom. Df p-value

1.4732 3.000 61.314 0.2306

B. Experiment Design and Objectives

Experiments compared various adaptive morphology meth-
ods and controller evolution in a fixed team morphology,
measuring the impact of each on the collective behavior of a
homogenous robot team evolved for the collective construction
task (section III-A). In order to address this study’s research
objectives (section I), experiments were designed to ascertain
the most appropriate approach for evolving team behavior and
morphology such that team task performance was maximized.
Previous research [20] guided the choice of a fixed morphology
to use as a baseline. This was compared to three adaptive
morphology approaches (sections II-A2, II-A3, II-A4).

Each of four experiments tested one approach for a team
size of 30 robots, where each experiment applied HyperNEAT
(for fixed morphology teams with controller evolution) or
a HyperNEAT variation (adaptive morphology teams with
controller evolution) for 150 generations. Previous experiments
found 150 generations to be sufficient to observe convergence
to an optimal collective behavior for a range of team mor-
phologies [20]. One generation comprised three team lifetimes
(simulation task scenarios), where one team lifetime was 240
simulation iterations. This represented a task scenario that
tested different robot starting orientations and block locations
in the environment. For a given experiment, the number of
generations taken to achieve maximum (optimal) team task
performance (fitness) was recorded. An average of generation
counts was calculated over 30 runs for each experiment.

Experiment and NE parameters are given in tables I and
II, respectively. In table II, the CPPN inputs which affected
the weight or bias of a given node were the x, y, z position
of connecting nodes, the difference between their positions
(delta), and the angle between them. These parameter values
were determined experimentally and minor value changes
produced similar results. Except those parameters given in
table II, other NE parameters were set to values previously
used for HyperNEAT [39].

IV. RESULTS AND DISCUSSION

Figure 4 presents box plots of the average number of
generations (efficiency) with variances and outliers taken to
achieve maximum fitness, by teams using each of the four
approaches (section II-A). Efficiency refers to the number of
generations taken for the evolutionary process to reach optimal
task performance, where 150 generations was the maximum
taken by any approach. In figure 4 fitness is normalized to the
range: [0.0, 1.0].

Figure 4 indicates that while some approaches converge on
maximum fitness slightly earlier (Approach 2 for example), all
approaches tested achieved optimal task performance within
150 generations. No statistically significant difference was
found in a comparison (F = 1.4732, p = 0.2306, table III) be-
tween the three adaptive morphology approaches (approaches

TABLE IV. ONE-WAY ANOVA TEST TO GAUGE THE ROBUSTNESS OF

THE FITTEST CONTROLLERS RE-EVALUATED IN A RANGE OF VARIED TEAM

MORPHOLOGIES.

One-way analysis of means (not assuming equal variances)

F Num. Df Denom. Df p-value

10.056 3.000 61.024 1.779× 10−05

2, 3, and 4 in figure 4) and the fixed morphology approach
(approach 1 in figure 4) using a one-way analysis of variance
(ANOVA). The results of these statistical tests are summarized
in table III. This result confirms that the adaptive morphology
approaches tested have a comparable average efficiency for the
collective construction task.

Similarly, a comparison between the average team fitness
(equation 1) of the fixed and adaptive morphology approaches
yielded no statistical difference2. Also, this result is inline with
previous research [20] indicating that careful tuning of a team’s
morphology is effective for evolving teams with a high task
performance, given that the experimenter has some a priori
knowledge of the task.

Given these results, a set of morphological re-evaluation
experiments were performed. Hence, for each approach (figure
4), the controller of fittest team evolved after 30 runs was
taken and placed in a new team morphology. That is, the fittest
controller (substrate) evolved for each approach (experiment)
was re-evaluated on 14 morphologies (corresponding to robots
with between [3, 16] sensors, table II). This re-evaluation
did not run neuro-evolution and as such did not adapt team
controllers or morphologies any further. Instead each team
was executed for 50 epochs (team lifetimes) and collective
construction task performance evaluated. This was done in
order to rigorously test the fittest controllers in their new
morphologies. These re-evaluation experiments used the same
collective construction task and simulation setup as previous
experiments (section III).

As per the research goals of this study (section I), the
intent of these morphological re-evaluation experiments was
to test how robust the fittest evolved controllers were to
variations in a team’s morphology. The idea being that testing
these controllers on a range of other morphologies emulates
loss of sensors due to damage, or resource constraints when
manufacturing physical robots.

Figure 5 presents the average team task performance for
each approach calculated over the 14 morphologies tested and
30 runs. Average task performance is normalized to the range:
[0.0, 1.0] in order to equate to a portion of maximum fitness
achievable (equation 1).

Results indicate that approaches 2, 3 and 4 (sections
II-A2, II-A3 and II-A4) perform significantly better, compared
to approach 1 (section II-A1) when re-evaluated across all
morphologies. The statistical significance of these results was
confirmed with a one-way ANOVA test conducted for all
approaches. The ANOVA test results indicating a statistically
significant difference between approach 1 and approaches 2,

2An average fitness graph was not presented here due to space constraints,
but is available as an online appendix (along with an analysis of the evolved
CPPNs): http://people.cs.uct.ac.za/˜gnitschke/SSCI2015/necc-ssci-extra.html
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Fig. 4. Average efficiency (generations taken to attain optimal fitness)
for each approach (average calculated over 30 runs). The efficiency scale
is normalized to be a portion of the maximum number of generations
(150) taken for any approach to evolve an optimal collective behavior.
Approach 1: Fixed Morphology. Approach 2: Behavior-Morphology Cou-
pling. Approach 3: Morphological Re-evaluation. Approach 4: Behavior-
Morphology Coupling and Re-evaluation.
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Fig. 5. Average fitness for morphology re-evaluation experiments (aver-
age calculated over 30 runs). The fittest team evolved for each approach
(figure 4) was taken and re-evaluated in all 14 morphologies (table II).
Approach 1: Fixed Morphology. Approach 2: Behavior-Morphology Cou-
pling. Approach 3: Morphological Re-evaluation. Approach 4: Behavior-
Morphology Coupling and Re-evaluation.

3 and 4 is presented in table IV (F = 10.056, p = 1.779 ×
10−05).

This result indicates that the adaptive morphology ap-
proaches are more suitable for evolving controllers that are
robust to morphological variation in homogenous robot teams.
This is theorized to be a result of the indirect encoding
property of HyperNEAT that naturally encodes connectivity
patterns [44], coupled with the mechanisms used to adapt team
morphology in the adaptive morphology approaches.

That is, HyperNEAT is able to evolve CPPNs that represent
large-scale ANN controllers with their own symmetries and
regularities, which exploit the sensory-motor geometry [37]
of robots, which in turn significantly impacts evolved team
behavior. Thus, we hypothesize that adapting controllers in
company with the number of sensors allows for the encoding of
controllers that do not exploit specific configurations of blocks
and robots in the task environment or sensory-motor mappings
in controllers. This allows HyperNEAT to evolve connectivity
patterns that are broadly applicable to a range of teams (that
is, the fittest evolved controllers function with varied team
morphologies). This is supported by related research that
similarly demonstrates the robustness of HyperNEAT evolved
controllers for a range of quadruped robot morphologies [45].

Also, this robustness of controllers evolved under the
adaptive morphology approaches was likely enabled by the
use of homogenous teams. That is, all robots had the same
multi-agent policy geometry [17] (relationship between robot
starting positions of robots and their behaviors) for any given
robot position and orientation in the environment.

To better elucidate this result, the average efficiency of
each approach for all re-evaluated team morphologies was
plotted. Figure 6 presents the average team task performance
for each approach, when the fittest controller evolved by the
given approach was re-evaluated on all 14 morphologies. Task
performance was averaged over 30 runs and normalized to be
a portion of maximum fitness attainable (equation 1).

Given that fixed morphology teams (approach 1) were
evolved using only three sensors, approach 1 yielded a compa-
rable average team task performance (fitness) for teams using
four sensors, however, team fitness decreases proportionately
as the sensor count increases.

Figure 6 also indicates that for teams where robots used
three or four sensors, approach 2 yielded a lower team fitness
and a comparable team fitness for five and six sensors. For
seven and 16 sensors, average team fitness was higher than the
fixed morphology approach but lower than adaptive morphol-
ogy approaches 3 and 4. This indicates that approach 2 was not
beneficial in the given collective construction task when robots
had too few or too many sensors. Prior to the morphological re-
evaluation experiments, the fittest team evolved by approach
2 used robots with on average (calculated over 30 runs) 11
sensors. Some reliance of approach 2 on the team morphology
with which it was evolved can be observed in figure 6. That is,
approach 2 achieved the highest team fitness in the morpholog-
ical re-evaluation experiments for sensor counts observed to be
in the range: [9, 12], close to the original evolved morphology.

Hence, the fittest controllers evolved by approaches 1 and 2
were not robust to variations in team morphology. Approach 1
delivered an average team fitness of approximately 40% for all
14 team morphologies with a high variance when robots used
fewer than 10 sensors. Approach 2 delivered an average team
fitness of approximately 50% for all morphologies, and average
team fitness was significantly lower, compared to approaches 3
and 4, when robots were re-evaluated with robots using seven
or fewer sensors.

However, approach 3 (including an extra step for adapting
team morphology) and approach 4 (combining approaches 3
and 4) were able to a deliver consistently high average team
fitness, with relatively little variance, for all 14 morphologies.
This result is supported by the one-way ANOVA test indicating
a statistically significant difference between approach 1 and
approaches 2, 3, and 4 in these morphological re-evaluation
experiments (table IV). This indicates that approaches 3 and 4
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Fig. 6. Re-evaluated average team task performance (averaged over 30 runs) for each approach, when the fittest controller evolved by a given approach was
re-evaluated on the complete range of 14 morphologies (number of sensors per robot in the range: [3, 16]). Note that task performance is normalized so as to
equate to a portion of maximum fitness achievable (equation 1).

for adapting behavior and morphology were especially suited
for evolving controllers that were robust to a range of variation
in team morphology. The morphologies of the fittest teams
evolved by approaches 3 and 4, prior to the morphological
re-evaluation experiments, used robots with on average (cal-
culated over 30 runs) three sensors. Observing figure 6, these
fittest controllers performed with consistent team fitness when
tested in robots with between three and 16 sensors, attaining
an average team fitness of approximately 70%.

This result supports the hypothesis that the mechanisms
used to adapt team morphologies in approaches 3 and 4
worked well in company with the adaptive process of Hy-
perNEAT, facilitating the evolution of connectivity patterns
that are sufficiently generalized, in that they do not exploit
specific sensory-motor mappings derived from specific task
environment instances. This enabled these fittest controllers to
function with a relatively high team fitness in a range of team
morphologies. However, the exact evolutionary and environ-
mental mechanisms underlying observed controller robustness
to morphological variation as evolved by the adaptive mor-
phology approaches remains the subject of ongoing research.

V. CONCLUSIONS AND FUTURE WORK

This research presented a study on the effectiveness of
various adaptive morphology methods applied to evolving col-
lective behaviors in a robot team. The team had to accomplish
a collective construction task where cooperation was required
for optimal solutions. This study demonstrated the efficacy of
indirect encoding approaches for evolving connectivity patterns
(controllers) that are able to function in homogenous teams
with varied morphologies.

Results indicated that such developmental approaches were
robust to morphological change, where as controllers evolved
with a fixed team morphology were not. This has important
implications for future evolutionary and collective robotics
applications, where rapid prototyping technologies are used to
manufacture and deploy robot teams evolved in simulation, but

where robotic hardware may be limited or robots are damaged
causing morphological change.

Future work will focus on testing these adaptive behavior-
morphology and other developmental approaches on mor-
phologically and behaviorally heterogenous teams for other
collective behavior tasks with varying task complexity.
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