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Abstract—This research compares the efficacy of novelty
versus objective based search for producing evolvable populations
in the maze solving task. Populations of maze solving simulated
robot controllers were evolved to solve a variety of different,
relatively easy, mazes. This evolution took place using either
novelty or objective-based search. Once a solution was found, the
simulation environment was changed to one of a variety of more
complex mazes. Here the population was evolved to find a solution
to the new maze, once again with either novelty or objective based
search. It was found that, regardless of whether the search in the
second maze was directed by novelty or fitness, populations that
had been evolved under a fitness paradigm in the first maze were
more likely to find a solution to the second. These results suggest
that populations of controllers adapted under novelty search are
less evolvable compared to objective based search in the maze
solving task.

I. INTRODUCTION

Novelty search (NS) [1] is an adaptive search based
approach, that replaces the traditional fitness function [2]
of Evolutionary Algorithms (EAs). That is, NS replaces the
notion of fitness, which rewards solutions based on how close
they are to an objective, with one which rewards solutions
based on their behavioral novelty. This approach was initially
tested in a robot maze navigation task [3], where it evolved
successful behaviors using fewer evaluations than a fitness
based approach.

Subsequently, further research has been conducted using
NS via applying it to Artificial Neural Network (ANN) con-
trollers in simulated evolutionary robotics tasks. It was found
that in the biped locomotion task domain that NS was able
to outperform evolving gaits using objective based search [1].
However, it has been found by other authors that in other task
domains the most effective approach is to use a combination
of novelty and fitness incentives [4], [5].

For either natural or digital organisms, one can question
the future potential and benefits of them deriving adaptable,
robust, novel, or complex behaviors. This loose collection
of concepts can be thought of as evolvability. Lehman and
Stanley [6] studied this idea within the context of NS and
investigated whether explicitly rewarding novelty would im-
prove the evolvability of digital organisms in maze navigation
and bipedal gait robot control tasks. In these experiments they
were using the phenotypic diversity of offspring as the measure
of evolvability. They found that organisms evolved under NS
produced offspring with greater phenotypic diversity, so long
as the task was not fragile. In these fragile tasks they found that
self-adaptation of mutation parameters increased evolvability

under novelty-based search. Subsequently, Lehman and Stan-
ley examined the emergence of evolvability, under the same
definition, in abstract genetic drift models [7] and concluded
that evolvability emerges in the absence of adaptive pressure.

These results are to be expected, given that if organ-
isms are rewarded purely based on their phenotypic novelty
then lineages which produce novelty will become dominant.
However, this emphasis on the production of phenotypically
varied offspring must be carefully evaluated. The conditions
supporting this definition of evolvability are significant in the
context of EC, given that an organism’s ability to produce a
phenotypically diverse range of offspring is not beneficial if
all offspring are not suited to solve their given task.

Kirschner and Gerhardt [8], proponents of the evolvability
is variability paradigm in biology, place emphasis on the fact
that an important component of this type of evolvability is
a reduction in potentially deleterious mutations. A problem
in using variability as a definition for evolvability in EAs, is
that the designers of experiments play a key role in defining
detrimental mutations. For example, should a mutation which
causes a maze navigating robot to scurry off to a corner and
hide there be considered a deleterious or novel variation? In
their seminal paper, Wagner and Altenberg [9], also proponents
of the study of variability, go even further in emphasizing the
importance of the nature of variation in offspring.

“Evolvability is the genome’s ability to produce
adaptive variants when acted upon by the genetic
system... The situation is analogous to obtaining a
verse of Shakespeare from monkeys banging away
on typewriters. Typewriters make this far more likely
than if the monkeys had pencil and paper. The
typewriters at least constrain them to produce strings
of letters. Similarly, the genotype-phenotype map
constrains the directions of phenotypic change re-
sulting from genetic variation.” [9]

Much research in biology has centered around how the
genotype-phenotype map is able to facilitate the emergence
of adaptive phenotypes. Notable themes in this research are
robustness, the ability of the phenotype to remain unchanged
despite changes to the genotype [10], as well as modularity,
or the independence of phenotypic traits [11].

There exists a multitude of definitions of evolvability
in biological literature. The reader is referred to Pigliucci
[11] for an overview of evolvability in nature. Within EC, a
number of different definitions and associated metrics have
been proposed, including those that focus exclusively on the



fitness of offspring [12], [13], [14]. Tarapore and Mouret [15]
developed a metric which incorporated both the fitness and
diversity of offspring. One metric, which excludes discussions
of fitness and novelty, is that of Reisinger and Miikkulainen
[16], which measured evolvability as the ability of organisms
to detect deeper patterns in a dynamic fitness function.

In this research, an organism’s evolvability is defined as
the likelihood of its descendants solving sets of experimenter
defined tasks. That is, evolvability is tantamount to an organ-
ism’s adaptability. Clearly, factors such as phenotypic diversity
and fitness of offspring are correlated with such a measure.
However, instead of imposing a set of features that will in-
crease the likelihood of individual genotypes producing useful
phenotypes (behaviors), this definition defers to an organism’s
capability to adapt and thus survive in its given environment.
It also has precedent within biological literature, although in
nature it relates to whether descendants of organisms can adapt
to changing environments or respond to selective pressure [11],
[17]. Furthermore, it has been used as a metric for evolvability
in simulations of gene regulatory networks [18].

This research tests NS using this definition of evolvability
by evolving populations in one simulation environment, before
transferring solutions to another environment and observing if
a new solution can be found. Specifically, controller popula-
tions are evolved on a variety of mazes, using either objective
or novelty based search. Once a maze solving controller has
been found for a given maze, that controller is then placed in
a different, more complex maze, and either objective (fitness)
or novelty based search is once again used to adapt controller
behavior. This process is similar to incremental evolution [19]
and the transfer of solution representations to new learning en-
vironments in transfer learning [20]. In this context, however,
it is used as an experimental technique rather than a learning
mechanism. Such experimental techniques increases the rele-
vance of the evolvability as adaptability metric, and elucidate
which types of search are best at producing phenotypes able
to adapt to changing environments.

Results of this study indicate that, regardless of whether fu-
ture controller adaptation takes place using objective or novelty
based search, populations evolved using a fitness function are
more likely to find a solution to the maze to which they are
transferred. This result was anticipated given that populations
adapted under NS will contain a larger variety of behaviors,
though not necessarily more beneficial behaviors. Although
such novelty is useful in finding the stepping stones for certain
types of highly deceptive tasks [1], for less deceptive tasks
populations converging about global fitness peaks are more
likely to produce useful offspring and thus task solutions.

II. METHODS

A. Novelty Search (NS)

It is widely accepted that EAs and more broadly, automated
problem solving methods constructed within the purview of
artificial intelligence, traditionally have an associated objective
which algorithms are trying to attain [2]. Metrics are intro-
duced for the purpose of describing how far a given solution
is from an objective. However, the notion that natural evolution
is not guided by objectives [21], has lead to the synthesis of
EAs which are motivated not by how far the solutions are

from a desired objective, but rather how novel they are. This
NS approach can, in principle, replace the fitness function of
any EA, or even act as the guiding adaptive mechanism in
other types of search methods.

A criticism of NS is that it is merely a random search
[22]. However, given that simple behaviors emerge early in the
search process, then these behaviors will be used as stepping
stones for the discovery of more complex and beneficial
behaviors. Ultimately, the desirable outcome is for the NS
process to discover a behavior that is an optimal or near
optimal solution. The theoretical advantage of NS is that it
rewards a greater variety of behaviors than objective based
search. This aids in the emergence of the stepping stones which
might be necessary to achieve the desired solution [1].

Any implementation of NS requires a representation of
behavioral solutions and an associated metric which assigns
these behaviors a novelty score based on previously observed
behaviors. The originally proposed and much used metric is
that of sparseness, shown in equation 1 [1].

ρ(x) =
1

k

k∑
i=0

dist(µi) (1)

Here the µi are the k nearest neighbors of x and dist is a
distance measure. A common and intuitive way of representing
a solution’s behavior is to use a vector of numbers. For
example, in the maze navigation domain this vector could be
the position of the robot at certain sampled points in time.
If a vector of numbers is used then the distance metric is
either the Euclidean distance between vectors or the average
difference between their components. Currently, all research
in the maze solving domain uses the average distance between
components [1], [22]. Additionally, NS requires the use of an
archive of previously observed behaviors, so that for every
individual tested, there is a record of the area of the search
space which it explored.

B. Neuro-Evolution of Augmenting Topologies (NEAT)

The underlying EA used in these experiments is Neuro-
Evolution of Augmenting Topologies (NEAT) [23]. This
method has been demonstrated as a powerful problem solver
in a broad range of tasks [24], [23], [25], [26], and is typically
used as the underlying adaptive method when NS is applied
to solve evolutionary robotics tasks. For example, NEAT and
NS have been applied to the maze solving domain [22], [1],
and NEAT was also the method used in previous research on
NS and evolvability [6].

NEAT evolves both the topology and the weights of ANNs,
using the evolution of topology to increase controller perfor-
mance, and as such falls into the category of Topology and
Weight Evolving Artificial Neural Networks (TWEANNs) [27].
NEAT uses a complexification process, where evolutionary
search begins with a population of simple ANN controllers
which, over successive generations, become as topologically
complex as they need to be to solve a given task.

The complexification process ensures that only topolog-
ical innovations which are useful are preserved so as the
dimensionality of the search space is minimized. Given that
new topological mutations will normally be detrimental to the
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Fig. 1: (a) ANN controller used in the experiments. (b) Sensory configuration of robots in the simulated maze task. Both figures
adapted from [1]

Fig. 2: Three sample mazes from set A. The navigator starts at the point marked X and its goal is to reach the point marked O

Fig. 3: Three sample mazes from set B. The navigator starts at the point marked X and its goal is to reach the point marked O



Search
Combination Evolution on Mazes in Set A Evolution on Mazes in Set B

Population Transfer
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(iv) Novelty SearchNovelty Search

Fig. 4: The combinations of search strategies used in the experiments.

fitness of evolving ANNs, novel topologies are protected in
niches, where they only compete with similarly novel con-
troller topologies. This innovation protection mechanism gives
novel ANN controllers time to optimize within their niche and
thus become competitive with ANN controller topologies in
other niches, thus improving overall solution quality.

Furthermore, NEAT partially solves the competing con-
ventions problem in neuro-evolution [28], where ANNs which
are structurally diverse can be functionally identical, compli-
cating the development of effective crossover operators. To
circumvent this, NEAT uses historical markings on genes so
that crossover between ANNs can occur on the parts of their
genotype encoding which are derived from common ancestors.

C. Maze Navigation Controllers

As in related research [1], the ANN controllers of simulated
maze navigating robots are adapted using either objective or
novelty based search applied to NEAT. The inputs to the ANN
controller consist of six rangefinder sensors as well as four
radar sensors. The rangefinder sensors indicate the distance to
the closest obstacle in their direction. The radar sensors each
correspond to a sensory quadrant which covers a quarter of the
space radiating outwards from the robot. Each sensor indicates
whether the goal falls within its quadrant. This sensory setup
is displayed in figure 1 and further detailed elsewhere [1].

III. EXPERIMENTS

A. Maze Set Construction

An important goal in the design of experiments was to
choose two sets of mazes, A and B such that, once a population
had found a solution to a maze in set A, it would not contain

a solution to the maze in set B which it was transferred to.
This is because, already having a solution to the target maze
is a sign of population variability and capability to generalize,
not evolvability.

The mazes used in these experiments were generated using
the Daedalus software of Walter Pullen [30]. The generation
algorithms used by this program operate on a grid. All cells are
initially impassable. Cells are incrementally cleared to become
passable. The boundaries between cleared and uncleared cells
then become the walls of the maze. Two types of mazes were
generated. Mazes in set A were perfect. In these mazes every
cell has a unique path to every other cell. This implies that the
maze has no cycles and also that there is a unique path through
the maze itself [31]. Mazes in set B were braid mazes. This
class of maze can contain cycles but, unlike perfect mazes,
they contain no dead ends [31]. Figures 2 and 3 show examples
from these maze sets.

The reason for using these two different classes of mazes
is that they require different strategies. A perfect maze can
be solved easily using the left-hand rule [31]. In this strategy
a human navigator would merely place their left hand on a
wall and keep moving forward without removing this hand.
In a maze with cycles, which some braid mazes have, wall
following will fail if it is started on a wall which is not
connected to one of the outer walls. Using sets of mazes which
require different solution strategies decreases the likelihood
that once the population is transferred it will contain a solution
to the new environment. In keeping with this trend, mazes in
set B were made to be harder than those in set A by making
them larger. Mazes in set A were constructed over a 7x7 grid,
whereas a 13x13 grid was used for those in set B. See table
I for a summary of the maze specifications.



(a) Novelty Search (b) Objective Search

Fig. 5: The distribution of the number of populations which produced solutions for each maze in set B. To improve the scale,
the incidence of zero solving populations is not displayed. Figure (a) displays runs where novelty search was used in the second
maze and (b) displays runs where fitness search was used. The black bars represent objective based search in the preceding
mazes and the grey bars represent novelty search. Note that the highest number of solution producing populations that any maze
in maze set B could have was 35. This was the number of mazes in set A and thus the number of populations applied to solve
each maze in set B for a given and preceding search method.

TABLE I: Parameters describing the two maze sets

Set Name Number of Mazes Maze Type Grid Dimensions
A 35 Perfect 7x7

B 200 Braid 13x13

TABLE II: Average number of populations which were able to solve each maze in set B after 160 generations for populations
previously evolved using novelty or objective based search. Standard deviations are in parentheses. The differences in averages
between (i) and (ii) as well as between (i) and (iv) are statistically significant (p < 0.05, Wilcoxon signed-rank test [29]). The
other differences are not statistically significant.

Combination Preceding Search Method
(Maze Set A)

Utilized Search Method
(Maze Set B)

Average Number of Populations
(Maze Solving Behaviors)

(i) Objective Objective 3.55 (7.14)

(ii) Novelty Objective 3.28 (6.93)

(iii) Objective Novelty 3.19 (6.45)

(iv) Novelty Novelty 3.02 (6.25)

B. Experimental Runs

As in experiments of related research [6] these experiments
applied either objective or novelty based NEAT to adapt the
ANN controllers of maze navigating robots. Other than the
population size and the number of simulation iterations, all
parameters were identical to those used in related work [6] and
included in the novelty search C++ package1. The population
size was set to 25 in order to reduce the probability of an
evolved population containing a solution to the second maze.
The number of iterations per maze navigating simulation was

1Available from http://eplex.cs.ucf.edu/noveltysearch/userspage/

set to 600, since sufficient navigation time for some of the
more difficult mazes was required. The novelty metric used
was the ending position of the robot after a simulation, where
novelty was calculated as the average difference between the
x and y coordinates of two positions.

In the experiments, four combinations of search types were
tested (figure 4). In combination (i), the adaptation of maze
solving behaviors in both sets A and B occurred using a fitness
metric. In combination (ii), adaptation in set A occurred using
a novelty metric, whereas in set B a fitness metric was used.
Combination (iii) differed by using a fitness metric in set A,
but used a novelty metric in set B. Combination (iv) used a



novelty metric in sets A and B.

The purpose of these combinations was to ascertain the
impact of novelty or objective based search on the evolvability
of populations. Also, four combinations allowed determination
of whether, in the maze navigation task, evolvability was
a general mechanism, or something specific to the type of
objective used by a succeeding search process.

For each of the four search process combinations, and every
pair of mazes (a, b), where a is a maze from A and b is a maze
from B, populations were randomly initialized and adapted to
solve maze a. Once a solution had been found to maze a,
the maze was changed and the evolved population used as a
starting point for the adaptation of maze solving behaviors for
maze b. There were 35 mazes in maze set A and 200 mazes
in maze set B (table I). Thus, there were 7000 pairs of mazes
(a, b) and so, over the four combinations, a total of 28 000
population transfers took place. Moreover, for each of the four
combinations, each maze in set B received 35 populations.
(equivalent to 35 runs for each combination).

For the evolution of behaviors on maze a, the search
process was restarted after 4000 new genotypes had been
generated, where each new genotype always replaced the
least fit genotype. Thus, given a population size of 25, many
generations passed before the search process was restarted.
This was done since preliminary testing indicated that if a
solution had not been found after the production of 4000 new
genotypes, it was likely that evolution was stuck in a sub-
optimal part of the search space and would take prohibitively
long to find a solution. On maze b, objective or novelty based
search were run for 160 generations, and whether a maze b
solving behavior was found or not, was recorded.

Despite the use of methods described in section III-A,
constructing maze sets a priori such that solutions evolved
for set A never contained solutions for set B was found to
be non-trivial. To address this, if for any run, a transferred
population contained a solution to a maze b, then all runs on
this maze were ignored. In total, 37 of the 200 mazes in set
B were removed this way.

IV. RESULTS AND DISCUSSION

Results indicated that, on average, for any given maze
b in maze set B, more populations adapted with objective
based search on maze set A evolved solutions to maze b
compared to populations adapted using NS on set A. This held
regardless of whether maze b solving behaviors were adapted
with objective or novelty based search. However, the difference
between such maze set B solving populations was only found
to be statistically significant (p < 0.05, Wilcoxon signed-rank
test [29]) in the case that objective search was used on set
B. In the case that NS was used on set B, significance was
only achieved at a lower significance level (p < 0.1, Wilcoxon
signed-rank test [29]). These results are summarized in table
II and figure 5.

One may note that in table II the standard deviations are
relatively high compared to the average values. This results
from the disparity in problem solving difficulty for different
mazes. Hence there is an equal level of disparity between
the number of populations that can and cannot evolve maze

solving behaviors. Thus, pairwise statistical tests were applied
to compare the number of times objective versus novelty based
search solves a given maze in set B, where the population had
previously been evolved for mazes in set A, using objective or
novelty based search.

Figure 5 illustrates a distribution of the number of popu-
lations that evolved maze solving behaviors for each maze in
set B. Figure 5 (a), left hand side, displays the results of the
35 runs, given either novelty or objective based search as the
preceding method, where NS was applied to maze set B. Here
the black bars represent objective search in set A (combination
(iii)) and the grey bars represent NS in set A (combination
(iv)). Figure 5 (b), right hand side, displays the results of the
35 runs, given either novelty or objective based search as the
preceding search method, where objective based search was
applied to maze set B. Here the black bars represent objective
search in set A (combination (i)) and the grey bars represent
NS in set A (combination (ii)). The vertical frequency axis of
figure 5 indicates the number of mazes in set B for which
a given number of populations (horizontal axis) was able to
evolve a solution.

So, for example, in figure 5 (b), the right most black and
grey bars (representing objective and novelty based search,
respectively), indicate that only one maze in set B had 29
populations produce a solution, where these populations were
previously adapted with NS in maze set A. Also, only two
mazes in set B had 29 populations produce a solution, and
these populations were previously adapted with objective based
search in maze set A. However, in the left-most side of figure
5 (b), the black and grey bars indicate that 20 mazes in set
B had only one population produce a solution, where these
populations were previously adapted with NS in maze set A.
Also, 11 mazes in set B had only one population produce
a solution, where these populations were previously adapted
with objective based search in maze set A.

Results also indicated that many populations performed
poorly when transferred from maze set A to B. That is, for
each of the combinations of preceding and subsequent search
methods (figure II), all 35 populations transferred to a given
maze in set B failed to find maze solving behaviors within
the given generation limit, for an average of 97 mazes. This
was found to be a result of maze construction, given that
mazes in set B were chosen to be very different from those
in set A. Set B mazes were constructed to be larger and to
contain fundamentally different structural features. Preliminary
testing showed that this reduced the incidence of transferred
populations already containing solutions to mazes in set B.

This result also indicates the importance of the tasks
between which evolved populations are transferred being suf-
ficiently similar, lest poor results be yielded after an evolved
population is transferred. As elucidated in related research
[32], [33], if the nature of solution search space is sufficiently
different between tasks then transferred populations will most
likely fail to evolve useful behaviors unless special genotype
encoding [32] or shaping approaches [33] are used.

The results presented in figure 5 and table II do not refute
NS as a valuable complement to current evolutionary adapta-
tion approaches and its potential as a controller (behavioral)
design method. Rather these results suggest that for certain



types of tasks and environments, such as the mazes demon-
strated in section III, NS produces populations of solutions
that are not as evolvable as objective based search. That
is, removing objectives from an evolutionary search process
allows for the development of potentially useful stepping
stones to desirable behaviors. However, such non-objective
search processes operate at the cost of creating incentives
for the development of undesirable behaviors, which may be
unnecessarily propagated according to task and environment
constraints.

It is worthwhile to briefly discuss the possible reasons
for NS yielding a lower evolvability in these experiments.
The first point that deserves attention is that NS encourages
diversity within the population being evolved [34]. It is thus
intuitively likely that, at the point at which a successful maze-
solving individual emerges, the population will contain a large
number of individuals whose maze-solving ability is rather
poor. When this population is transferred to the subsequent
maze, it is unlikely that these individuals will perform well.
On the other hand, at the point at which a successful maze-
solving individual emerges during fitness-based evolution, it
is more likely that the population will be more converged
around this successful individual. It is hypothesized that such a
population will perform better upon transfer to a similar maze-
solving environment as there is a greater chance that it will
contain behaviours that perform well in this new environment.
Subsequent evolution should occur more rapidly as it is being
presented with a higher performing population with which to
begin. Other underlying mechanisms which are, in part or
whole, responsible for the presented results are currently being
investigated.

It is important to discuss these results within the context of
the related work of Velez and Clune [22]. These authors stud-
ied the adaptability of agents which had previously undergone
evolution under either a novelty or fitness regime. However,
in their study, subsequent evolution was only performed with
NS. Their results correspond fairly closely to those presented
here in that they found no statistically significant difference
between the adaptability of agents previously evolved under
either of the two approaches, whereas the results of this study
only found a statistically significant difference at the lower
significance level of p < 0.1 . Moreover, differences exist in
the experimental methods of the two studies. Most notably,
Velez and Clune transferred only the genotype which solved
the first maze and started subsequent evolution on a population
of clones of this genotype. This is contrasted with the approach
used here, where, at the point of the emergence of the first
solving genotype of the first maze, the entire population is
transferred. Thus, small differences in the results of these
experiments are to be expected.

Furthermore, the definition of evolvability in this research
was tantamount to behavioral adaptability, which differed from
the definition used by related research [6]. Ascertaining the
computational mechanisms that consistently produce evolvable
populations is essential for the progress of neuro-evolution [7],
and more generally EC research [9]. As such, this research
contributes to the open research question that aims to address
the full scope of NS limitations, including the evolvability of
populations produced by NS for a broad range of tasks. Future
work will evaluate other evolvability metrics suggested for EAs

[12], [13], [14], [15], [16] in the context of maze navigation
as well as other tasks.

V. CONCLUSION

This research investigated the evolvability of objective
versus novelty based methods for adapting ANN controllers of
simulated robots that must successfully navigate sets of mazes.
In this study, evolvability was equated with the adaptability of
controller populations from which maze navigating behaviors
were evolved. Evolvability was measured as the number of
mazes solved on a large set of complex mazes, once solutions
had been evolved for a relatively small set of simple mazes.
Results indicated that when objective based search was applied
to solve the first small simple maze set, and the population
was transferred to the larger more complex maze set, then
a significantly higher number of mazes could be solved,
compared to the case where NS was applied to solve the first
maze set. These results suggest that for certain types of tasks,
NS produces less evolvable populations compared to objective
based search. However, the evolutionary, task, and environ-
mental conditions necessary for novelty versus objective based
search to consistently produce beneficial phenotypes (problem
solving behaviors) over evolutionary time is the subject of
ongoing research.
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