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Abstract— Crowd simulations are a set techniques used to
control groups of agents and are exemplified by scenes from
movies such as The Lord of the Rings and Inception. A problem
which all crowd simulation techniques suffer from is the balance
between control of the crowd behaviour and the autonomy of
the agents. One possible solution to this problem is to use
Neuro-Evolution (NE) to evolve the agent models so that the
agents behave realistically and the emergent crowd behaviour
is controllable. Since this is not an application area which has
been investigated much, it is unknown which NE parameters
and operators work well. This paper attempts to address this by
comparing the performance of a set of crossover operators with
a range of probabilities in three simulations: Car Racing, Mouse
Bridge Crossing, and a War-Robot Battle. Overall it was found
that Laplace crossover worked the best across all our simulations.

I. INTRODUCTION

ROWD SIMULATIONS are a set of techniques used to

simulate groups of agents within virtual environments.
One of their most well known applications is to the film The
Lord of the Rings, where battle scenes were created using
the crowd simulation software Massive'. Other application
areas for crowd simulations include the planning of evacuation
routes, architectural and urban design, and video games.

A considerable amount of research has been undertaken on
crowd simulations, giving rise to two paradigms: Microscopic
(bottom-up) [21], [12], [26] and Macroscopic [4], [25], [15]
(top-down). Microscopic techniques simulate the behaviours
of individual agents by providing them with local information
and rules, with the aim of creating emergent crowd behaviour.
Macroscopic techniques aim to control global characteristics
of a crowd and agents are updated in order to reflect such.

A requirement in industries such as film is that crowds be
both believable and controllable. Macroscopic approaches, de-
spite providing easier control over their Microscopic counter-
parts, are infeasible as the agents lack believability due to their
overly homogeneous behaviours. Microscopic approaches, on
the other hand, require users to perform the difficult and time-
consuming task of adjusting the local behaviours of agents
until the desired global behaviour emerges.

One possible solution is using an optimisation algorithm [8]
to find the ideal local models for the agents within a Micro-
scopic crowd. In this paper we investigate one such technique,
namely Neuro-Evolution (NE). NE is advantageous compared
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to other optimisation methods because one does not need to
define the initial behavioural models of the agents as Artificial
Neural-Networks (ANNs) replace them.

Operators and parameters used by genetic algorithms are of-
ten problem dependent. Since controlling emergent crowd be-
haviour using NE has, to our knowledge, not been thoroughly
explored before, it is important to determine which work well
within this new context. Since the scope of thoroughly investi-
gating all NE parameters is very large, we are, for the purposes
of this paper, narrowing our investigation to focus only on
crossover operators and probabilities. We achieve this by fixing
other operators and parameters to values predetermined during
preliminary tests. We use a testbed of three simulations (car
racing, mouse bridge crossing, war-robot battle) in conjunction
with a cooperative NE algorithm: Enforced Sub-populations
(ESP) [11], which was found to provide more task perfor-
mance scalability compared to non-cooperative approaches. It
was found that Laplace crossover [7] performed the best across
all simulations, with Unimodal Normal Distribution Crossover
(UNDX) [20] and Arithmetic crossover [19] performing the
worst.

The rest of the paper is structured as follows: Section 2
provides context and related works, Section 3 describes how
we use NE to control the crowds, as well as the various
agent and crowd simulation types used, Section 4 describes
our experimentation method, Section 5 presents our findings
as well as a brief discussion, Section 6 concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Crowd Simulations

Anderson et al. [2] propose a macroscopic technique which
allowed hard constraints on a bird flock’s agent positions at
specified time intervals whilst still allowing for seemingly
realistic behaviours. It achieves this by calculating the viable
paths of the constrained model, and then choosing the path
which most closely resembles an unconstrained model by
using a wander element. This technique is interesting in that
it allows for hard constraints on the crowd simulation while
the agents still appear to act autonomously. This approach
unfortunately only deals with the positioning and movement of
agents, and has only been tested with bird flocks. Whereas, we
are interested in controlling additional behaviours and agent
types.

The crowd simulation system Massive uses a fuzzy logic
system, where users are able to create fuzzy controllers in
order to define an agent’s behaviour. Jacka [16] extended
this by using a microscopic approach where he optimised
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the membership functions of the fuzzy nodes with Particle
Swarm Optimisation [17] in order for the crowd simulation to
reflect the desired behaviours. Jacka’s method of evaluating the
fitness of a crowd simulation is very similar to ours, where a
crowd simulation is run fully and its satisfaction of the various
desired behaviours is combined into a sum of weighted values.

Yong and Miikkulainen [29] propose an extension of ESP
termed Multi-Agent ESP in order to evolve multiple predator
agents to catch a single prey agent in a predator-prey en-
vironment. Using Multi-Agent ESP, they evaluate the level
of cooperation achieved between the predator agents given
various levels of communication. Although their approach is
similar to ours in that we also evolve and share fitness values
between multiple ANNS, it differs in that they use a distinct
ANN for each agent while we use a single ANN across a group
of agents. This allows our method to scale better to different
crowd sizes.

Schrum and Miikkulainen [22] evolved monsters in a multi-
objective landscape in order to train them to find a trade-off
between dealing maximal, and receiving minimal damage from
the player. Their approach of evaluating fitness differs from
ours in that we combine the multiple objectives into a single
weighted objective function whereas they used pareto-based
multi-objective optimisation. They show that using pareto-
based multi-objective optimisation leads to some interesting
and realistic agent behaviours and thus may be a future
direction for our research to take. They also borrow ideas
from NEAT [23] as they evolve both the structure and the
weights of the ANN which may be another direction which our
system may be extended in. They however did note that using
crossover and speciation resulted in an overly homogeneous
population.

Bryant and Miikkulainen [3] used NE to evolve heteroge-
neous behaviours for agents controlled by a single ANN in the
video game Legion-I. They showed that agents could learn to
perform different tasks under different conditions, as long as
it contributed to the overall goal. This is highly relevant to our
work as it shows that we are able to control a group of agents
with a single ANN while still achieving emergent behaviour.

B. Enforced Sub-populations (ESP)

ESP is a cooperative NE method proposed by Gomez and
Miikkulainen [11].

ESP differs from NE techniques which evolve full neural-
networks in that it recognises that an ANN can be separated
into its individual neurons. Therefore, instead of having a
population of neural-networks, it instead has n sub-populations
of neurons, where n is the amount of neurons within a single
neural-network. Each sub-population thus represents a single
neuron within the network and recombination is performed
only with other neurons in the same sub-population.

In order to evaluate a neuron’s fitness, neurons are randomly
selected from each sub-population and used to construct an
ANN, which is then evaluated by a fitness function in the
simulator. The fitness of this ANN is then shared across all
the participating neurons. Each neuron is evaluated multiple
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Fig. 1: The general idea of ESP (source [11]). The ANN is created
by selecting a random neuron from each sub-population which is
represented here by the clusters of circles. Evaluation is performed
on this ANN and the fitness is shared across the participating neurons.

times so that its fitness is less noisy, as a good neuron can be
assigned a poor fitness if other neurons within the ANN are
poor.

In order to maintain genetic diversity within the sub-
populations, delta-coding, proposed by Whitley er al. [27],
is used. Delta-coding searches for the best modifications of
the current best solution. It achieves this by using delta-
chromosomes, which contain values that represent differences
from the current best solution. These delta-chromosomes are
then evaluated by adding their values to the current best
solution, and are selected for reproduction if they improve
it. Although delta-coding is primarily used in the original
paper [11] to deal with incremental evolution, we have found
that it also improves the fitness values for our simulations. In
our system, we use delta-coding after the best solution has not
improved after a set number of generations.

C. Crossover Operators

Our chosen operators are described in this section. They
were selected because they are well established [13] and are
indicative of the various types of crossover operators used in
real-coded genetic algorithms. In the equations of the various
operators used, we use y to represent offspring and z to
represent parents, U(«,3) to represent a random number
sampled from a uniform distribution with the range [«; 3],
and Uint(c, B) to represent a random integer sampled from
a uniform distribution with the range [a; S].

Arithmetic crossover is a multi-parent crossover which
produces an offspring as the weighted average of n
parents [19]. An offspring is generated from n parents using:

n
Yij = Dk—1 WkTkj

where w; is a random number between O and 1 and
n
Z k=1 WE = 1.

Eshelman and Schaffer [10] propose the Blend crossover
(BLX-a) where an offspring is generated from two parents
using the equations:

Yis = (1 —wj)wr; + w;zy;

where w; = (1 + 2a)U(0,1) — a. Eshelman and schaffer
recommended that o = 0.5.
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The Heuristic crossover operator generates one offspring
from two parents using the equation [28]

yij = U(0,1)(z1; — m25) + 21

where the fitness of x;; is better or equal to the fitness
of Z2j.

Deep and Thakur [7] propose the Laplace crossover, a
parent-centric crossover operator where two offspring are
generated from two parents using the equations:

y1 =21 + Bl — 22|
Y2 = T2 + Bl — 29|

where

5= {a + b log(2u) if u<=0.5

a—>blog(2—2u) ifu>05

with v = U(0,1), a is a constant which determines
the location of the distribution, and b is a constant that

determines how close to the parents the offspring are
generated.

Uniform crossover [24] was originally used for reproduction
of discrete string representations. Given two parents, an
offspring is generated using the equation:

if ry = 0

if r; = 1

where r; = Uint(0,1) and is sampled for every index
of the chromosome

One-point crossover [14], used originally for discrete-coded
genetic algorithms, produces a single offspring from two
parents using the equation:

ifj<=r

ifj>r

where r = Uint(1l,n), with n being the dimensionality
of the search space

Two-point crossover [9] [5] is another operator for discrete-
coded genetic algorithms. A single offspring is produced
from two parents using the equation:

z1; ifj<=mr
Yij = qx2; ifj>riand j <=mr
x1; if j >
where 71 = Uint(1,n) and ro = Uint(l,n) with n

being the dimensionality of the search space and ro >= 1y

Deb and Agrawal [1] propose the simulated binary
crossover (SBX), which simulates the behaviour of one-point
crossover for bit string representations. Two offspring are
generated from two parents using the equations:

Y15 = 0.5((1 + wj)z1; + (1 — wj)az;) and

yo; = 0.5((1 — w;y)a1; + (1 + w;)aa;)

where
(2’/“7')”141r1 if Ty <= 0.5
w5 = ' 1,
(1/2(1 — Tj))"*l if Ty > 0.5
and r; = U(0,1) and n > 0 is the distribution index

and determines how close to the parents the offspring are
generated. Deb and Agrawal recommended n = 1 as a setting
that generally worked well.

Ono and Kobayashi [20] propose a three-parent center-
of-mass operator termed the Unimodal Normal Distribution
Crossover (UNDX). Offspring can be generated using the
equation:

yi = a? +&d+ D Y32 ke

where zP is the midpoint between z; and zo, d is the
difference vector x; — x2, n is the dimension of the search
space, and D is the distance from xz3 to its projection on d.
e; are the orthogonal basis vectors spanning the subspace
orthogonal to the vector space defined by d, £ = N (O,ag),
ni = N(0,07) with N(0,0%) being a random number
sampled from a gaussian distribution with a mean of 0 and a
variance of o2. Ono and Kobayashi suggested that oy = 073’5
and o¢ = %

Deb et al. [6] proposed the Parent Centric Crossover
(PCX), a multi-parent operator for real-coded genetic
algorithms which generates offspring around the parents.
Given p parents, offspring can be generated with the equation:

y=ap +weldP |+ DY, L wanee’

where z,, is a random parent (the female) chosen for
each offspring, d®) is the direction vector xp — g with g
being the mean vector of the p parents, D being the average
of distances of all the non-female parents onto d(P), e’ being
the p— 1 orthonormal bases that span the subspace orthogonal
to dP), we and w, being zero-mean Gaussian distributed
variables with variance of o7 and o respectively.

III. METHOD

There are generally two popular approaches for deploying
ANNs to agents in virtual environments. A homogeneous
approach where all the agents within the virtual environment
use a single ANN to determine their behaviour, and a het-
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Fig. 2: A crowd simulation where mice are tasked to escape war
robots. A solution for such a simulation will consist of two ANNS,
one controlling the mouse agents and another controlling the war
robot agents, as the mice and war robots have differing behaviours.

erogeneous approach where each agent has its own ANN
controller. The heterogeneous approach is infeasible in the
context of crowd simulations since there are often hundreds
if not thousands of agents within a crowd, which leads to
scalability problems. The homogeneous approach is, however,
also not desirable as often one wants agents to exhibit different
personalities and behaviours (for example, agents assaulting a
city in a battle simulation should exhibit much more aggressive
behaviours compared to the agents defending it). We thus
adopt a semi-homogeneous approach where a set of ANNs
are used by agents to determine their behaviour within a
simulation. Agents within the simulation are divided into
groups determined by their desired behaviours. Each group
is assigned an ANN which the agents in the group use in
order to determine their behaviour (as seen in figure 2).
We found that this approach provides a midpoint between
the scalability issues of the heterogeneous approach, and the
overly homogeneous agent behaviours of the homogeneous
approach.

Figure 3 shows a diagram of our method. Each sub-
population of neurons in ESP is assigned to evolve the weights
for a given neuron in a given ANN. After the ANNs are
constructed via selecting a neuron from each sub-population,
they are used as the agent controllers for a given simulation
task. The performance of the agents within this simulation is
then evaluated by the fitness function, and is then passed back
to the ESP algorithm where the fitness is propagated across all
involved neurons. Once the training algorithm has terminated,
the fittest set of ANNSs are rendered in the context of a given
simulation.

We implemented three simulations - Car Racing, Mouse
Bridge Crossing, and War-robot Battle - to test the 10 chosen
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Fig. 3: Our method. A solution is provided to a simulation which is
then run in order to obtain a fitness. The fitness is then propagated
back to the training algorithm. Once training has finished, the solu-
tion is given to the renderer, which then renders the corresponding
simulation with the given solution.

crossover operators. While these simulations are by no means
exhaustive of the different types of crowd simulations in use
in industry, they do provide a sufficiently diverse range of
environments and tasks for our tests.

A. Training

1) NE algorithm and parameters: The NE algorithm used
for our tests is ESP. We chose this algorithm over ap-
proaches which evolved entire networks because it allowed
for smaller population sizes caused by fewer dimensions
per sub-population. This is very important in the context of
controlling crowd simulations since fitness evaluations are
computationally expensive. An additional benefit to ESP is
that it allows for more scalability in terms of ANN structure
compared to full networks, as adding hidden nodes does not
increase the dimensionality of the chromosomes, allowing
for crossover parameters to remain the same. One should,
however, increase the number of evaluations per chromosome
when sub-populations are added as the fitness values obtained
become less accurate.

2) Fitness Evaluation: Control of the emergent crowd be-
haviours is achieved through fitness evaluation where the de-
sired behaviours and goals of the crowd are specified as a set of
weighted objectives, which are evaluated and combined after
a full run of the simulation. One problem with this approach
is that the weights strongly influence the quality of the final
scene, as poor weighting results in agents learning incorrect
behaviours. Although we obtained the weights through trial
and error for the purposes of this paper, it is desirable to either
develop a method which eliminates the need for these weights
or to use pareto-based multi-objective optimisation instead.

B. Simulations

All the agents used in our simulations are two dimensional
(only rotates around y-axis and moves only on the x-z plane).
Although one of the main contributions of ESP is that it allows
for evolution of Recurrent Neural-Networks, we decided to
use Feed Forward Neural Networks (FFNNs) instead as there
is no need for our agents to remember previously performed
actions. These FFNNs determine both the linear acceleration
and the torque of our agents. The ANN structure for the
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Fig. 4: An agent’s vision is simulated by casting rays, and then using
the distance to the closest intersected object. These distance values
are then passed through to an ANN in order to determine the agent’s
behaviour.

three types of agents are identical with the exception of the
input nodes. Preliminary tests suggested that six hidden nodes
worked relatively well.

One type of local information provided to our agents is
vision. The way we simulate vision is by casting rays, and
returning the distance to the closest obstacle which intersects
that ray as shown in figure 4.

1) Car Racing: In this simulation, four car agents are
tasked to reach the end of a racetrack before the end of the
simulation.

The car moves along its direction of orientation, with its
velocity and orientation determined by the ANN which applies
both torque and acceleration. The acceleration can be negative,
however the agent’s velocity cannot be less than zero. The
Car agent’s ANN structure uses fourteen inputs. These inputs
consist of the closest collision distances of rays cast in eight
directions distributed uniformly around the agent, the velocity
of the agent, the position of the agent’s current goal (as
way-points are used to help the agent navigate around the
racetrack), and the position of the current agent.

The aim is to emulate a race-like scenario where cars
have to navigate along a racetrack with multiple corners. The
objectives for the agents are to reach the end of the race-track
before the simulation ends, and to avoid collisions with other
agents. The fitness of a solution is calculated as c+2d where ¢
is the number of collisions between all the agents throughout
the simulation, and d is the distance of all the agents to the
final goal.

2) Mouse Bridge Crossing: Thirty mouse agents are tasked
to cross a bridge before the specified time limit in this
simulation.

The Mouse agent behaves very similarly to the car agent
in that it moves according to its orientation. It, however, has
an additional sensor that detects whether or not there is an
obstacle directly in front of it and this determines whether or
not it should stop. The Mouse agent provides 16 inputs to its
ANN. The inputs consist of the closest collision distances of 8
rays cast in a cone in front of the agent (rather than the radial
casting of both the car and war-robot agents), the position of
the agent, the velocity of the agent, and the two end-points of

the line-segment the agent has to cross.

This tests the ability of agents to learn to navigate through a
bottle-neck whilst maintaining a desirable pace. The objectives
provided to the agents are that they must cross the bridge and
avoid collisions with other agents. The fitness of a solution is
calculated as c+d where c is the number of collisions between
all the agents throughout the simulation, and d is the distance
of all the agents which have not crossed the bridge yet to the
end of the bridge.

3) War-robot Battle: In this simulation, two groups of forty
War-robot agents are initialised at opposing ends of a map.
One group is located behind a city, whereas the other group is
initialised in an open field. The two groups of agents, which
are controlled by different ANNSs, are then tasked to fight each
other with the aim being that there should be a specific amount
of agents left on both sides by the end of the simulation.

The War-robot agent’s motor skills are identical to the Car
agent in that it moves forwards with the ANN controlling both
the acceleration and torque of the agent. The War-robot agent
has the additional behaviour that it will shoot enemies in front
of it if they are within shooting range. There are 20 inputs
for the War-robot agent, consisting of the closest collision
distances as well as the closest collision type flags (-1 for
enemy, 0 for environment obstacle, 1 for ally) for rays shot in
8 directions uniformly around the agent, as well as the position
and velocity of the agent.

This simulation tests how well NE can control the outcomes
of battle-based crowd simulations. The objectives provided are
that the agents should avoid collisions with other agents, and
that there should be between 9 and 11 agents left on each side
after the simulation ends. The fitness of a solution is calculated
as ¢ + 20p where c is the number of collisions between the
agents, and p is the difference between the desired and actual
population sizes. An especially large weight was regarded for
p as the fitness contribution for p is typically very small with
the maximum amount being 58, thus if a small weight is used,
the agents would learn to stand still as that is the optimal
behaviour for avoiding collisions.

IV. EXPERIMENT

We ran 30 tests for each combination of the 10 crossover
operators and 5 crossover probabilities (0.2, 0.4, 0.6, 0.8, and
1) on each of the 3 simulations, with agents given random
starting positions at the start of each run. For the n-parent
crossover operators, the minimum number of parents was
chosen. The rest of the GA operators used for our training
are as follows:

o Gaussian mutation with 0.2 standard deviation and 0.02
probability

o Rank-based parent selection with linearly increasing
probabilities

« Elitism with 10% population size

o ESP sub-population size of 20

« 3 fitness evaluations per neuron

o Search space of [-1, 1] on all dimensions
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o Delta-coding used if the best solution has not improved
after 40 generations.

o Algorithm terminates after 200 generations, or if a so-
lution with O (we aim to minimize the fitness function)
fitness is found

In order to select the mutation and selection operators, we
compared some well known operators within the field and
selected the ones which appeared to perform the best. Elitism
is used as we found that the algorithm converges much more
slowly without it. We found that a 10% elitism allowed the
algorithm to converge faster but not prematurely most of
the times. The ESP sub-population size, fitness evaluations
per neuron, and the delta-coding interval were chosen to
provide an acceptable midpoint between execution speed and
performance. 200 generations was chosen as the stopping point
because we observed that the algorithm improved little after
this point. The search-space was limited to [-1, 1] because we
used the sigmoid activation function for our neurons.

The fitness functions for the various simulations can be
found in sections III-B.1, III-B.2, and III-B.3. The fitness
ranges for these simulations are as follows: Car Racing = [0,
2400]; Mouse Bridge Crossing = [0, 10500]; War-Robot Battle
= [0, 25160].

Although a fitness of 0 is desired, it is not always achievable
for simulations with a larger amount of agents. However, the
fitness does not have to be 0 in order for the crowd to behave
as expected. We found that as long as the fitness values are
below the following amounts that the crowd will most likely
behave desirably: Car Racing = 10; Mouse Bridge Crossing =
300; War Robot Battle = 100.

The system was implemented in C++ and compiled using
the MSVC9 compiler. Ogre 1.8.1% was used for the rendering
of the simulations. Bullet 2.813 was used for the ray-casting
and the collision detection. PugiXML* was used for the
loading and saving of the neural-networks to XML files. The
boost 1.51° MT19937 implementation of the Mersenne Twister
was used for random number generation. The source code and
the full results can be found at an online repository®.

V. RESULTS AND DISCUSSION

In order to compare the performance of the various
crossover operators and probabilities, we compare the mean
fitness values achieved by each combination of crossover
operator and probability, and perform the Mann-Whitney U
test [18] between these and the operator which achieved the
best mean fitness for each simulation (for example, each oper-
ator was compared to UNDX 0.4 in the car-racing simulation).
We view a p-value of under 0.05 with a confidence interval
of 95% as being statistically significant.

Figure 5 shows the mean fitness values obtained by each op-
erator in the car racing simulation at 200 generations. Overall

Zhttp://www.ogre3d.org/
3http://bulletphysics.org/wordpress/
“https://code.google.com/p/pugixml/

5 http://www.boost.org/users/history/version_1_51_0.html
Ohttps://bitbucket.org/igorawratu/neuroevolution-crowdsim

Simulation | Operator Mean o p-value
Car race UNDX 0.4 4971 5.151 N/A

Car race Laplace 0.6 5.54355 | 8.127547612 | 0.888
Car race BLX-a 1 0.6 6.811 7.038 0.425
Car race Onepoint 0.8 40.521 97.389 0.105
Car race BLX-a 0.8 32.253 82.412 0.009
Car race Onepoint 0.6 28.667 79.339 0.145
MBC Laplace 0.8 184.094 | 75.263 N/A
MBC BLX-a 0.8 190.667 | 77.784 0.906
MBC Laplace 1 203.361 | 93.849 0.549
MBC UNDX 0.8 490.845 | 171.194 2.05E-10
MBC UNDX 1 478.228 | 255.056 2.1E-08
MBC Heuristic 1 413.984 | 61.722 1.15E-10
WRB Laplace 0.6 17.366 12.516 N/A
WRB BLX-a 0.6 19.566 13.783 0.589
WRB BLX-a 0.4 20 19.874 0.882
WRB Arithmetic 0.8 | 80.066 95.282 1.58E-05
WRB UNDX 0.8 82.8667 | 109.375 4.27E-06
WRB Arithmetic 1 79.067 98.424 2.132E-05

TABLE I: The mean, standard deviations, and p-values for some of
the best and worst operators in each simulation. War-Robot Battle
is abbreviated to WRB and Mouse Bridge Crossing is abbreviated to
MBC. Statistical tests compared (for a given simulation) each oper-
ator with the operator yielding the highest mean task performance
(N/A in p-value column).

UNDX 0.4 achieved the lowest mean. Despite this, UNDX 0.4
is only statistically significantly better than about a fifth of the
other operators. As seen in table I, it is not significantly better
than the worst performing operator (Onepoint 0.8). The reason
for this is that many of the operators achieved poor mean
fitness values for this simulation caused by being stuck in
local minima with fitness values which deviate greatly from the
fitness values usually achieved. Overall it would appear that
most operators were comparable for this particular simulation.

The mean fitness values obtained by each operator within
the mouse bridge crossing simulation at 200 generations are
shown in figure 6. Laplace 0.8 achieved the best mean, and
also performed significantly better than most of the other
operators. Heuristic 0.4 and BLX-« 0.8 also seemed to work
very well for this simulation. However, Heuristic crossover’s
performance deteriorated rapidly as the crossover probabili-
ties were increased. A point to note is that despite UNDX
achieving the best mean fitness in the car racing simulation,
it performs the worst in both the mouse bridge crossing
simulation and the war-robot simulation. This shows that the
performance of UNDX deteriorates when dealing with larger
groups of agents which in turn increases the difficulty of
achieving a high task performance. An explanation for this
deterioration is that we are using only the minimum number
of parents, and using an optimal amount of parents may lead
to better performance.

In figure 7 for the war-robot battle, Laplace 0.6 achieved
the best mean fitness, whereas UNDX 0.8 achieved the worst.
Despite Laplace crossover consistently achieving very good
mean fitness values for all simulations, it should however be
noted that BLX-«o shows comparable results.

Another observation garnered from our results is that
crossover operators originally intended for discrete-coded
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Car Racing Mean Fitness after 200 Generations
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Fig. 5: Average fitness values over 30 runs obtained by the operators and crossover probabilities in the car racing simulation at 200
generations
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Fig. 7: Average fitness values over 30 runs obtained by the operators and crossover probabilities in the war robot battle simulation at 200

generations

genetic algorithms such as Uniform, One-point, and Two-
point crossover all performed respectably across all three
simulations. It would also appear that n-parent crossover
operators such as Arithmetic crossover, PCX, and UNDX
performed relatively poorly. As mentioned, this may be due to
us using only the minimum number of parents needed for these
crossover operators. However, Laplace crossover is shown to
perform the best overall.

It was observed from our results that parent-centric oper-
ators performed better than center-of-mass operators, fixed
parent number operators outperformed n-parent operators,
and operators which combined parental information in a
component-wise manner performed better than ones which use
a mixture of parental information. These are possible reasons
as to why Laplace crossover performs the best, however
the simulation environment and task attributes are still being

investigated. The results obtained are also specific to the ESP
algorithm, and further investigation is required in order to
generalise them to other NE algorithms.

Table I shows some of the best and worst results obtained
from our tests. We interpret p-values of less than 0.05 as being
statistically significant. The performance of operators can
vary greatly given slight changes in the crossover probability
and thus the results compared in the table should not be
generalised to the rest of the crossover probabilities of that
specific operator. An example of this is the Onepoint crossover
in the car-racing simulation, where a crossover probability
of 0.8 generates very poor performance while a crossover
probability of 1 is one of the best performing operators. We
refer the reader to an online appendix’ for the complete results.

7https://bitbucket.org/igorawratu/neuroevolution-crowdsim

2304



Videos of our crowd simulations can be found on our youtube
channel®.

VI. CONCLUSIONS AND FUTURE WORK

This study evaluated various crossover operators with a
range of crossover probabilities when applied to agent con-
troller adaptation using ESP in three different crowd simula-
tion environments. Our research objective was to find out what
operators perform well within these scenarios when used in
conjunction with the ESP algorithm, and forms part of a larger
goal to find what types of NE are beneficial to controlling
emergent behaviours within crowd simulations. Overall we
found that Laplace crossover performed the best throughout
the various simulations. From our data, we infer that this is
possibly due to its parent-centric, fixed parent number, and
component-wise nature.

Extensions to this work include investigating the optimal
number of parents for the n-parent operators, a comprehensive
analysis detailing the evolutionary computation mechanisms
that lead to the higher task performance of the Laplace
crossover, testing the crossover operators with other NE al-
gorithms in order to see how general the results are, studying
which mutation and selection operators work well, evolving
both the ANN structure and weights with an algorithm such
as NEAT, investigating the feasibility of pareto-based multi-
objective optimisation, and implementing a GPU version of the
simulation in order to improve the fitness evaluation times.
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