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Extended Abstract
In nature, animals rely upon migratory behaviors in order
to adapt to seasonal variations in their environment. How-
ever, the transmission of migratory behaviors within popula-
tions (either during lifetimes or throughout successive gen-
erations) is not well understood (Bauer et al., 2011). In
Artificial Life research, Agent Based Modeling (ABM) is a
bottom-up approach to study evolutionary conditions under
which adaptive group behavior emerges. ABM is charac-
terized by synthetic methods (understanding via building),
and is becoming increasingly popular in animal behavior re-
search (Sumida et al., 1990). Combining an Artificial Neu-
ral Network (ANN) and Evolutionary Algorithm (EA) for
adapting agent behavior (Yao, 1993) has received significant
research attention (Phelps and Ryan, 2001), (Lee, 2003).

ABM is an analogical system that aids ethologists in con-
structing novel hypotheses, and allow the investigation of
emergent phenomena in experiments that could not be con-
ducted in nature (Webb, 2009). Numerous studies in ethol-
ogy have formalized mathematical models of migratory pat-
terns in various species (Bauer et al., 2011). However, there
have been few studies that examine ontological and phy-
logenetic conditions requisite for emergent migratory be-
havior. ABM is advantageous (compared to formal math-
ematical models of migratory behavior), since various evo-
lutionary processes can be simulated, and variations in resul-
tant migratory behaviors examined. For example, ABM has
been used to predict the consequences of forced human mi-
grations (Edwards, 2009), and migratory behavior between
groups of Macaque monkeys (Hemelrijk, 2004).

In this research, ABM is used to investigate a hypothesis
posited in ethological literature: that migratory behavior is
adopted as an adaptive foraging behavior, where such behav-
ior is either genetically or culturally determined (Huse and
Giske, 1998). This study aims to investigate the evolution-
ary and cultural conditions that give rise to migratory behav-
iors and thus adaptive foraging. In cultural behavioral trans-
mission, ontogenetic transfer occurs between agents during
their lifetime. Alternatively, migratory behavior is phyloge-
netically transmitted through successive generations (Bauer

et al., 2011). A minimalist simulation model (distribution
of four food patches and 200 agents on a grid) demonstrates
the impact of ontogenetic versus phylogenetic transmission
of migratory behavior and thus agent group adaptivity.

Agents use an ANN controller (figure 1, left). ANN con-
nection weights are adapted with an EA. Agent fitness is the
food amount consumed during a lifetime (200 iterations).
The EA selects for effective foraging behaviors, which de-
pends upon agents periodically migrating to where food is
plentiful. Stimuli for migratory behavior take the form of
cyclic seasons in the environment and agents signaling their
movement direction to neighbors. When it is winter (food
is scarce) in one half of the environment, it is summer (food
is plentiful) in the other half, where each seasonal cycle (50
iterations) the winter and summer zones are switched.

Each iteration, agents receive the sensory inputs: signal
from the closest agent, their current fitness and recurrent
connections (activation value of the hidden layer in the pre-
vious iteration). Agent behavior is: move to an adjacent grid
square, mimic or mate with a neighboring agent. The output
with the highest activation is selected (figure 1, left). Each
iteration, agents also emits a signal (output not depicted in
figure 1), conveying the sender’s current direction of move-
ment and thus indicating migratory behavior.

Via choosing to mimic or mate, agents either imitate their
neighbor’s migratory behaviors or pass genetically encoded
migratory behaviors onto their offspring. If an agent mimics,
it copies the ANN connection weights of its closest neigh-
bor, thus mimicking its neighbors behavior, which includes
the direction signal sent each iteration. If an agent mates,
fitness proportionate selection (Eiben and Smith, 2003) is
used to select a mate from the agent population. Genotypes
(floating-point value strings) encoding the ANNs are recom-
bined using 2-point crossover (Eiben and Smith, 2003). Two
child ANNs are produced and replace the parents to keep the
population size constant. If an agent moves, then it moves
one grid cell north, south, east, or west (figure 1, left).

Figure 1 (center and right) illustrates agent adaptation oc-
curring over evolutionary time. Agents become effective
gatherers via learning a migration behavior allowing them



Figure 1: Left: Each agent is a recurrent feed-forward ANN. SI: Sensory Input. MO: Motor Output. HL: Hidden Layer. Center:
Average agent group fitness over 400 generations of neuro-evolution. Right: Average mimicry ratio over 400 generations.

to move about the environment in synchronization with the
seasons (moving to where food is plentiful). Figure 1 also
delineates a cyclic process in agent adaptive behavior, and
the relationship between fitness and behavioral mimicry.
Mimicry ratio indicates the average preference of an agent
to mimic over another behavior. Figure 1 (center) also in-
dicates agents periodically adapt to effective foraging be-
havior (indicated by fitness spikes). Fitness increases result
from agents adopting migratory behaviors to adapt to the en-
vironment’s seasonal variation, where such increases are en-
hanced by behavioral mimicking in preceding generations.

We hypothesize that subsequent periodic fitness drops,
and preceding mimicry ratio decreases (figure 1, right), re-
sult from the selection and propagation of fit yet non-robust
behaviors. Periodic fitness increases (figure 1, center) indi-
cate the agents converge towards an effective gathering be-
havior. However, concurrently, behavioral heterogeneity is
bred out of the population. Convergence results in a ho-
mogenous agent group that is unable to cope with seasonal
variation in the environment. This in turn causes the periodic
fitness crashes (figure 1, center), where most of the popula-
tion dies off, and only those agents with robust behaviors
(suited to seasonal variation) survive and are selected for.

Thus, behavioral takeover in the population (accelerated
by behavioral mimicry and fitness proportionate selection)
results in a largely homogenous population with low geno-
type and fitness diversity (Wineberg and Oppacher, 2003)
and non-robust behaviors. Subsequent fitness decreases re-
introduce behavioral heterogeneity (and fitness diversity)
into the population and allow agents to re-adapt to the en-
vironment’s seasonal variation via adopting a migratory be-
havior. Figure 1 (center and right) also indicates that vari-
ations in the mimicry rate impact the rate of agent adap-
tation and re-adaptation, as well as the duration of fitness
spikes. That is, fitness increases are correlated with high
mimicry ratios and fitness crashes cause behaviors contain-
ing the propensity to mimic to be periodically lost, and then
rediscovered in the subsequent re-adaptation phase.

Whilst preliminary results indicate the importance of be-
havioral mimicry and genetic transmission of migratory be-

haviors to a population’s overall adaptivity (supporting etho-
logical research), their contribution to adaptive behavior is
subject to ongoing research. Current investigation is of con-
ditions under which cultural versus genetic transmission of
migratory behaviors prevail, and the impact of lifetime du-
ration on cultural and genetic transmission of behaviors.
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