
Automated Network Application Classification: A
Competitive Learning Approach

R. G. Goss
Department of Computer Science

University of Cape Town

Cape Town, South Africa

ryan@goss.co.za

G. S. Nitschke
Department of Computer Science

University of Cape Town

Cape Town, South Africa

gnitschke@cs.uct.ac.za

Abstract—The design of a sustainable application level classi-
fication system has, over the past few years, been the subject of
much research by academics and industry alike. The methodolo-
gies proposed rely predominantly on predefined signatures for
each protocol, applied to each passing flow in order to classify
them. These signatures are often static, resulting in inaccuracies
during the classification process. This problem is compounded
by delays in signature update releases. This paper presents
an approach toward automated signature generation, mitigating
classification problems experienced with existing systems. A
hierarchical system is proposed, where signatures are developed
and deployed in real-time. The ideas set forth in this research
are evaluated by experimentation in a live network environment.
Discriminators of both encrypted and plain-text application
protocol samples were recorded and automatically annotated
by a Hierarchical Self-Organizing Map (HSOM). The clusters
identified by the HSOM were used in a supervised training
process that correctly identified protocols with an almost perfect
(99% percent) success rate.

Index Terms—Application Protocols, Network Flow Classifica-
tion, Deep Packet Inspection, Self Organizing Maps

I. INTRODUCTION

Networks have grown substantially in recent years, due in

part to the increase in global reach of the Internet, network

access speeds and available content. This growth spurred the

introduction of unique application protocols, built on both

client-server and peer-to-peer communication technologies.

Although the former are easier to identify and manage, the

latter present a great challenge to network administrators. Peer-

to-peer application protocols operate in a decentralized man-

ner, dynamically selecting the ports and protocols on which

they communicate [1]. This dynamic nature complicates their

classification and management, mitigating chances of accurate

identification by standard protocol and port rules. Instead,

vendors provide mechanisms for the identification of these

protocols using Deep Packet Inspection (DPI) and statistical

analysis. DPI has become an essential tool for network engi-

neers, enabling them to search both packet header and payload

(content) for predefined application protocol signatures [2].

These signature matches are often performed using regular

expressions in software, or through the use of specialized

hardware, such as a Field Programmable Gate Array (FPGA)

[2]. DPI may yield excellent results in identifying plain-

text flows, however encryption renders the content of packets

opaque and thus the use of DPI inept.

Statistical analysis addresses the problem of opaque, en-

crypted flows, by inferring the application (see Gebski et al.

[3]) or application class (see Auld et al. [1], Li et al. [4],

Moore and Papagiannaki [5]) of network traffic flows through

the examination of their flow information. The attributes

considered by such methods are well researched in [1], [4],

[6], [7]. The advantage of statistical analysis is that regardless

of how applications attempt to disguise themselves, through

encryption or port randomization, the statistical characteristics

exhibited over their packet exchanges remain intact.

To identify an application protocol, a unique signature is

required, provided by the vendor of the traffic management

device in one or more signature packs. These signature packs

need to be updated regularly to cater to advances in application

protocol development. Each vendor is responsible for the

creation of their own proprietary signature packs, compati-

ble with their systems. The discriminators extracted and the

mechanism employed by vendors is often a closely guarded

secret. Hence, accuracy and performance variances between

vendor equipment, such as the Cisco Service Control Engine
(SCE) and the Allot NetEnforcer, can be substantial.

This process of creating and deploying signatures is sub-

optimal, as the development of new application protocols far

exceeds signature production by vendors. This results in a

significant amount of network traffic remaining unclassified

or inaccurately classified until an update is released.

A communication session established between two hosts

on a network is known as a flow, described by a quintuple

consisting of a source and destination address, source and

destination ports and protocol [8], [9]. In order to successfully

manage network flows, decisions need to be made as early

as possible concerning their underlying application protocol.

A significant amount of research has been conducted in

academia and industry alike in the field of application protocol

recognition [1], [3], [4], [5], [6], [7]. The majority of these

studies concentrate on identifying discriminators and methods

for use in distinguishing such protocols from one another. A

vector of discriminators describing a flow is referred to by this

research as a flow sample.

Whilst most other research proposes a method for manual

signature creation, this paper introduces a methodology for

45978-1-4673-5903-0/13/$31.00 c©2013 IEEE

automated signature creation using a select set of flow dis-

criminators, unsupervised and supervised learning techniques.

A Hierarchical Self Organizing Map (HSOM) is used for

automatically grouping similar flow samples into annotated

data sets. These data sets are then used to train classifiers in

the identification of the underlying application protocol.

The use of a HSOM to accomplish automated data set

clustering is not the only clustering method available. Other

implementations include the use of a Self Organizing Map
(SOM) for the first level of abstraction, followed by a second

level using k-means to cluster the SOM data [10]. Vesanto and

Alhoniemi [10] recommend the clustering of the SOM, rather

than the initial data set, using the k-means algorithm. K-means

is an example of crisp clustering, which relies on k clusters

being known a priori. As the number of distinct application

protocols within a recorded data set is not known a priori, the

k-means clustering algorithm is not applicable.

A. Related Work

Statistical analysis and DPI are considered as suitable

methodologies for distinguishing the underlying application

protocol of a flow early in it’s existence. For example,

Bernaille et al. [11] describes a statistical method of grouping

Transport Control Protocol (TCP) flows which exhibit similar

behavior, using k-means, gaussian mixture model and spectral

on hidden Markov model techniques. According to Bernaille et
al. [11], the size information obtained from the first few packet

exchanges of a flow serve as a good metric for identifying

the underlying application protocol. Gargiulo [12] asserts that

significant accuracy can be achieved in identifying a flow’s

application protocol by examining the direction of the first

four packets along with the payload sizes of each. Moore

and Papagiannaki [5] argue that in some cases, the amount

of information read from the first payload-bearing packet is

enough to identify the protocol, whilst in others up to 1

Kbyte of payload needs to be examined before a decision is

made. Various statistics including the minimum, average and

maximum packet lengths derived from a flow are described

by Alshammari and Zincir-Heywood [13] as being capable

of identifying the underlying application protocol of a flow.

Finally, Goss and Botha [14] implement the ideas set forth by

[5], [11], [12] and [13], building a single classifier incorporat-

ing both statistical information and deep packet inspection.

Goss and Botha [14] relied on a manually annotated training

set being supplied by an expert for each protocol. This training

set was then used to train a feed forward Artificial Neural
Network (ANN) to derive a classifier.

The discriminator sets constructed by Goss and Botha [14]

include the direction of flow for each of the first four payload-

bearing packets, with directionality identified by observing the

direction of the initial synchronize (SYN) packet. The reliance

on observation of the SYN packet limits identification to

protocols using the TCP protocol. The experiments conducted

within this paper therefore include only TCP based flow sets.

In addition to the directionality of flow, packet sizes of the

first four payload-bearing packets were recorded and added

to the discriminator set. The American Standard Code for In-

formation Interchange (ASCII) integer values representing the

first few characters of the first payload-bearing packet in each

direction of the flow were also included in the discriminator

set. The combination of these elements, according to Goss

and Botha [14], provides enough granularity to distinguish one

application protocol from another. Whilst the results obtained

by Goss and Botha [14] indicate a high degree of accuracy

in discriminating between various application protocols, the

dependency on manually annotated data sets inhibits fully

automated classification.

This research extends that of Goss and Botha [14] with a

novel method to automate the annotation process.

B. Research Problem

The Internet has, since its inception as a public access

communications enabler, become the universal communica-

tions infrastructure in business [8]. As such, the accurate

identification of application protocols is essential in order

for network traffic to be managed [14]. The identification

and categorization of network traffic flows allows network

administrators to quickly diagnose problems, plan network

capacity and identify misuse of provisioned resources [1], [12],

[15], [16]. A considerable amount of research was identified

in the area of signature creation, most requiring a significant

amount of manual discriminator annotation for each protocol.

This research tests a novel approach for automating such

tasks, using supervised and unsupervised learning techniques

to address the following hypotheses:

• Distinct protocols are identifiable via unsupervised com-

petitive learning using a shared, static discriminator set.

• Accurate classifiers can be constructed to identify future

instances of identified protocols [14].

By addressing these hypotheses, this research proposes to

elucidate whether an automated classification system, suitable

for identifying application protocol flows, is feasible.

C. Research Objective

The primary objective of this work is to produce a method

for automating the manual annotation and protocol data set

grouping process described in Goss and Botha [14]. These

automatically constructed protocol data sets are then used

to produce a classifier designed to identify flows exhibiting

similar properties on a live network environment.

The remainder of this paper is divided into 3 sections.

The first section introduces the method for testing the first

hypothesis posed by this research. The second section de-

scribes an experiment which tests the chosen technologies for

suitability for automated data set annotation. An experiment

is also setup to test the newly derived classifiers against real-

world network traffic. The third section discusses the results

of the experiments, comparing them to the those obtained by

Goss and Botha [14] for the same protocols.

46 2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms)

II. METHODS

A. Data Sets for Experimentation

A flow inspector application was developed by the authors

to extract discriminators from flows observed on a network.

For the purposes of this research, the authors connected a flow

inspector to a 1 Gbit/s full-duplex interface on an enterprise

network, setting it to record flow information over a period of

24 hours on a normal week day. The information recorded for

each TCP flow, according to Goss and Botha [14], caters to a

number of classification problems experienced when describ-

ing network traffic. These problems include applications which

exhibit multiple behavior patterns over the same protocol and

protocols which closely resemble one another [15].

A total of 1973 TCP flow samples were recorded during

the observation window, consisting of a number of application

protocols, including Hyper-Text Transfer Protocol (HTTP), Se-

cure Shell (SSH), Post Office Protocol 3 (POP3), Simple Mail

Transfer Protocol (SMTP) and Bittorrent. These recordings

form the static test data set used throughout this research.

B. Automating Protocol Data Set Identification

Automatically distinguishing between a set of seemingly

unrelated, unstructured data is a task appropriate for

unsupervised learning algorithms. Competitive learning is a

type of unsupervised learning used in ANNs where neurons

compete for the right to respond to particular subsets of

input data [17]. A winning neuron, or node, is one whose

weight vector most closely matches the input. The winner

subsequently updates its weights to more closely resemble

the input, drawing it closer. This process results in cluster

formation, describing the input vectors parsed through the

learning algorithm over numerous iterations. An example of

a competitive learning algorithm, adapted from Rojas [17],

is: Let X = {x1, x2, ..., xl}, a set of normalized input vectors

in n-dimensional space, to be classified in k clusters. The

number of neurons in the ANN, and the number of clusters k
are equal. Each neuron has a weight vector with a magnitude

of n. The algorithm uses the following process:

• Start: Randomly initialize normalized weight vectors

w1, ..., wk

• Test: Select a random input vector, x, such that x ∈ X .

Compute x · wi, for i = 1, ..., k. Select wm such that

wm · x ≥ wi · x for i = 1, ..., k
• Update: Substitute wm with wm + x and normalize.

Repeat Test until exit condition met

The exit condition for the algorithm is usually for it to

run for a predetermined number of iterations. This is due to

the difficulty experienced in providing a definite measure of

convergence for certain data distributions [17].

There are two distinct methods available for clustering data,

hierarchical and partitive approaches. Hierarchical approaches

can be further divided into agglomerative and divisive algo-

rithms, with the former following a bottom-up approach and

the latter a top-down approach [10]. Agglomerative approaches

start by considering each sample as a singleton cluster, which

merge (or agglomerate) pairs of these clusters until a single

cluster is formed. For divisive algorithms, a single cluster is

split into various clusters over a number of iterations.
The data sets used for experimentation in this paper consist

of a number of flow samples which need to be clustered,

forming distinct groups describing various application pro-

tocols. Such method requires a bottom-up approach, where

each sample is treated as a singleton cluster at the outset,

merging them (agglomerating) with closely related samples to

form clusters. Bottom-up hierarchical clustering is therefore

referred to as Hierarchical Agglomerative Clustering (HAC)

[18, p. 378]. Conversely, a top-down approach would require a

method for splitting a cluster into multi clusters over a number

of iterations until the end samples are derived [18, p. 378]. This

research uses independent samples which require clustering

and therefore calls for a HAC approach to clustering.
A number of works describe the incorporation of a SOM in

order to fulfil their HAC requirements, such as that of Abdi et
al. [19]. This research therefore tests the SOM as a suitable

mechanism for grouping the recorded flow samples into their

respective application clusters.

C. Self Organizing Map (SOM)

The SOM is a competitive learning algorithm [20], compris-

ing a number of neurons, positioned on a lattice, each with an

associated weight vector W such that |W | = |i|, where i is

an element of the input data set. The weights of each neuron

are initialized by assigning a random value, ensuring diversity

within the neurons of the SOM.
An initialized SOM is trained, or tuned, by supplying it a set

of input vectors to parse. Each input vector is checked against

all nodes of the SOM, in search of the closest or Best Matching
Unit (BMU). Although there are a number of algorithms

available to calculate such distances, the authors opted to

use the Euclidean distance algorithm for such determination.

During each iteration, the distance between each input and

each of the nodes is measured, thereafter the closest node for

each named the BMU. This winning node is then adjusted to

more closely resemble the input vector by adjusting the value

of its weights. Neighboring nodes are also moved closer to the

BMU by adjusting their weights to more closely correspond to

it. This process is used for nodes within a given radius, where

nodes positioned closer to the BMU having a higher rate of

influence imposed upon them than those further out.
The SOM competitive learning algorithm [21] steps are:

1) Randomly initialize the weight vectors for each node.

2) Repeat Steps 3 and 4 for x iterations.

3) Select each input from the data set randomly and identify

the BMU.

4) Adjust the weight vectors of the BMU and nodes in the

neighborhood.

The SOM uses unsupervised learning, and as such has

no target vector, making it difficult to realize convergence.

Instead, the stopping criterion is generally the maximum

2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms) 47

number of tuning iterations the user elects during the training

process. Supervised neural networks rely on a cost function,

calculating the delta between the target vector and current

result in order to measure convergence. As a cost function is

not possible to implement with a SOM, this research measures

convergence by the shift in weight measurements, plotted

linearly with respect to time. The SOM is said to be near

convergence once the “knee” of the graph has been observed.

The weight update rule is as follows.

For each node within the neighborhood of the BMU:

wj = wj + (l ∗ exp(−(d)/(2 ∗ n2)))

Where, j ≤ |W |, l is the learning rate, d is the distance

between the node and the BMU squared and n is neighborhood

radius. After each epoch, the learning rate is decreased:

l = r ∗ exp(−i/m)

Where, r is a predefined constant learning rate, i is the

current iteration (or epoch) and m the max training iterations

permitted. The learning rate is directly proportional to the

significance of the weight adjustments. As such, the higher

the learning rate, the more significant the adjustments imposed

on each weight. The result of grouping neighbors produces

clusters which describe the input vectors. The SOM is thus

able to learn and group inputs by their features, without aid

of the correct answer or a predefined number of clusters.

A cluster, or feature group, is defined by Jain [22] as high

density regions in feature space, separated by low density

regions. The benefit of the SOM is thus the identification

of feature clusters, describing distinct application protocols,

based solely on discriminators inferred from network traffic.

Using a single layer SOM, the input data set forms one com-

plex shape which follows the data distributions in the space,

such that regions of the map can be interpreted as prototype

clusters [21]. A second-layer SOM can take the outputs of the

first SOM, causing them to divide and split into distinct cluster

representations [21]. This multi-layer configuration is known

to as a Hierarchical SOM (HSOM). In a HSOM, the BMUs

from the first layer SOM form the input data set for the second.

As the distance relations of the data samples are preserved on

the map, the node indexes of these BMUs can be used as

a measure of distance of the original data samples, instead

of the node’s weight vectors [21]. The HSOM thus allows

each high dimensional input data vector to be mapped to a

low dimensional, discrete value (the index of it’s BMU), such

that the comparison of these values implicitly allows for the

comparison of the original distances [21]. The BMUs resulting

from the tuning of the second layer represent the actual clusters

present in the data and subsequently the distinct application

protocols present within the original data set (figure 1).

Members of the initial data set can subsequently be mapped

directly to a particular cluster in abstraction level 2, providing

an automatically annotated data set describing each cluster

and therefore application protocol. These data sets can then

be used to train a supervised neural network classifier [14].

The approach uses a SOM to produce a large set of

Fig. 1. Two level data abstraction approach to clustering

prototype clusters, much larger than the expected number of

actual clusters present within the original data set. Each entry

in the original data set belongs to the same final cluster as its

nearest prototype [10]. Vesanto and Alhoniemi [10] cite the

reduction of computational cost as the main motivation for a

hierarchical approach.

The advantage of the HSOM is the adaptive distance mea-

sure the SOM offers over classical clustering methods, such as

k-means [21]. Furthermore, the Iso data type family of cluster-

ing, which includes k-means, can only make convex clusters

due to the nearest-neighbor clustering rule [21]. The process of

automatically annotating application flow sets within a mixed

data set and classifier creation based on such annotations is

tested in a set of experiments.

III. EXPERIMENTS

Three experiments are used to test the HSOM approach of

automating classifier generation. The first tests an automated

mechanism for application protocol data set annotation. The

second tests the creation of static classifiers, trained to identify

each of the protocols discovered in experiment 1. The third

experiment verifies the process where classifiers are tested

using a data set derived from a real world network.

A. Automated Annotation of Application Protocol Data Sets

A 20 x 20 neuron SOM lattice was constructed as the initial

abstraction layer, designed to parse the data set captured by

the flow inspector application. The lattice size was selected

in accordance with Kohonen [20], where the largest SOM

deployed for practical applications was 1000 nodes. The

maximum number of clusters present within the recorded data

set was estimated to be less than 100, therefore a 20 x 20

SOM was deemed suitable.

Each node was initialized by assigning it a random value,

in accordance with Kohonen [20]. The number of iterations

was determined by tuning the SOM over numerous iterations

and observing the location of the “knee” on the graph when

plotting the average distance variance noted after each training

iteration. This graph is shown in figure 2, indicating that the

SOM is close to convergence after iteration 300.

A learning, or influence, rate of 0.0001 was used during

the tuning process to adjust the neuron weights. This rate

was determined by examining the average distance between

a variety of samples within the initial data set. An influence

rate of 0.0001 was decided upon to ensure gradual shifts in

weights, rather than excessive adjustments after each iteration.

Once the tuning of the first level SOM had completed,

the average distances between each node and it’s immediate

48 2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms)

Fig. 2. Average Distance Between Sample and Associated BMU

neighbors was calculated and recorded. These values allow

a graphical representation of the SOM to be displayed on

a 2-dimensional image for easy visual evaluation as a U-

Matrix. The U-Matrix representation of the first level SOM,

highlighting the top scoring BMUs produced during the tuning

process is displayed in figure 3.

Fig. 3. U-Matrix Representation of Abstraction Level 1

Figure 3 demonstrates the separation of the data set into

a number of prototype clusters. The level of illumination at

each neuron indicates the average distance from its nearest

neighbor, with the greater illumination indicating a closer

proximity. The darker regions mark the edges of each cluster,

defining the borders between one another. The x markers

indicate the highest scoring BMUs after the final tuning

iteration.

A second level SOM lattice was constructed using a 10

x 10 neuron configuration. The lattice size was reduced due

to the inputs being index values of the level 1 SOM, a lower

dimension than the original data set. The index values for each

BMU node noted during the final phase of the level 1 SOM

tuning were normalized and parsed through the second level

SOM with a learning rate of 0.000001 over 100 iterations. The

lower learning rate is attributed to the lower range of input

values presented for clustering by the first layer. At this level

of abstraction, only minor influence application is required in

order to merge neighboring indexes, forming final clusters. The

resulting BMUs observed after the tuning process completed

are marked in figure 4 by an x. Each x on the image represents

a unique cluster, or application protocol, to which members of

the original data set are mapped.

Fig. 4. Graphical Representation of Abstraction Level 2 Cluster Identification

The resulting data sets constructed by mapping each input

to a particular cluster are shown in table I.

BMU Index (Cluster ID) Samples

8 125

21 56

32 378

41 72

47 1

50 22

57 125

63 5

80 68

81 205

87 454

93 137

94 4

98 321

TABLE I
RESULTING ANNOTATED DATA SETS

The smaller protocol data sets were discarded due to the

lack of sufficient samples. The lack of sufficient samples

of a particular protocol is attributed to the relatively small

observation window used to sample flows. Training an artificial

neural network using limited samples could lead to an overly

specific classifier (over-fitting), described by Cho and Cha

[23]. For this reason, the authors decided to discard clusters

2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms) 49

47, 63 and 94. The samples mapped to discarded clusters in

a real-world application would remain in the training data set

for future iterations, where additional samples of the same

protocol would be captured over time.

The remaining 11 data sets were carried forward into the

second part of the experiment, the training of classifiers to

identify future versions of the protocol, as described by Goss

and Botha [14].

B. Application Protocol Classifier Generation

A model for the training of supervised classifiers for the

identification of application protocols was described by Goss

and Botha [14]. The research by Goss and Botha [14] describes

the requirements for achieving a high level of accuracy in

the identification of application protocols at an early stage of

their existence, using trained artificial neural network classi-

fiers. These classifiers were trained using data sets manually

annotated by experts. This research aims to extend the work

of Goss and Botha in [14], by using the HSOM clustered

data sets to train classifiers in the same manner. Removing the

dependence on manually annotated data sets allows for new

applications traversing a network to be identified and future

occurrences classified automatically.

The original data set samples which were mapped to a single

cluster collectively describe unique protocols and, as such,

a new classifier is required in order to identify each. The

structure of the classifier in each instance is in accordance

with Goss and Botha [14], depicted in figure 5.

Fig. 5. Structure of each ANN classifier

Each classifier includes 3 layers. First, an input layer

connects directly to the second, hidden layer. The hidden layer

is directly connected to the final output layer. The output layer

consists of a single neuron, the result of which representing

the probability that a successful match was made for an input

vector. The number of neurons in both the input and hidden

layer are equal to the magnitude of the samples in the original

data set. The flow inspector recorded 11 distinct discriminators

per flow in accordance with the research of Goss and Botha

[14], therefore the input layer comprises 11 neurons. The

experiments of Goss and Botha [14] implemented a single

hidden layer, with the number of neurons equal to that of

the input layer. As such, the number of hidden layer neurons

present the the classifier was configured as 11. The overall size

of the network is purposefully kept small, both to conform

with the design in Goss and Botha [14], as well as to avoid

overfitting and improve generalization issues [23].

The training set for each classifier is constructed by marking

all samples mapped to the specific cluster with a “1” and the

others with a “0”. Each classifier was trained by passing its

respective training set over a period of 1000 iterations. The

number of iterations are the same as that used by Goss and

Botha [14]. The graph representing the average delta between

the expected output the actual output, with respect to each

iteration is shown in figure 6.

Fig. 6. Average Delta - Expected vs Actual Classifier Output

In figure 6, the “knee” of the graph is realized at approxi-

mately 50 iterations. Even so, 1000 iterations was maintained

in order to more accurately compare this research with that of

Goss and Botha [14]. Once the training process had completed

for each classifier, the associated training set for each was

passed once more for evaluation. The results for each cluster

are displayed in table II.

Cluster ID Accuracy

8 99.63%

21 99.68%

32 99.86%

41 99.74%

50 99.22%

57 99.87%

80 99.75%

81 99.86%

87 99.62%

93 99.58%

98 99.48%

TABLE II
TRAINED CLASSIFIER ACCURACY

This accuracy is based on the average certainty reported

by the classifier for each sample tested. The results in table

50 2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms)

II show that a high degree of accuracy was achieved when

testing each classifier against its training set and evaluating

the actual output against the expected output. The high degree

of accuracy indicates the existence of a distinct pattern within

each the training set. This indicates little or no overlap between

training sets, validating the clustering process by the HSOM.

The classifier is also shown to successfully converge during

the training process, further attesting the distinction between

the training data set and those samples external to the set.

Although the accuracy achieved by the classifiers parsing

their original data set is important, they need to be able to

identify these applications in real-world, live network traffic.

The following section describes an experiment where these

classifiers were tested against real-world network traffic.

The flow inspector software (FlowInspector v0.1)1 used to

generate the original data set was modified to not only extract

discriminators for each flow observed, but also run these

discriminators through each classifier trained in the previous

section. The flow inspector was connected to the same network

segment from which the original data set was derived.

The authors observed the actions of a number of users on

the segment and determined a basic set of the most popular

application protocols expected to be observed on the segment.

These protocols are listed in table III.

Application Protocol Model Encrypted

POP3 Client-Server No

SMTP Client-Server No

IMAP Client-Server No

HTTP Client-Server No

HTTPS Client-Server Yes

Soul-Seek Peer-to-Peer Yes

Bittorrent Peer-to-Peer No

TABLE III
EXPECTED APPLICATION PROTOCOLS

A number of flow samples were recorded, after which they

were manually annotated by an expert by their respective

application protocol. From these new data sets, five randomly

selected samples for each were passed through the various

classifiers and the average output scores recorded. The result-

ing scores for each identified protocol are shown alongside the

results obtained by Goss and Botha [14] for the same protocol

in table IV.

IV. RESULTS AND DISCUSSION

The results in table IV indicate a high level of accuracy

in identifying the samples selected in each case. The POP3

samples scored the highest average accuracy on classifier 21,

whilst SMTP by classifier 8. These results demonstrate that

even though POP3 and SMTP exhibit similar characteristics

relating to directional and packet size statistics, the SOM

1Available at: http://goo.gl/80BQE

Data Set Best Match Certainty Goss and
Botha [14]

POP3 21 99.88% 99.06%

SMTP 8 99.86% 96.92%

IMAP 57 99.77% N/A

HTTP 80 69.60% 99.93%

HTTPS 98 99.35% 99.95%

Soul-Seek 81 99.83% N/A

Bittorrent 93 99.70% N/A

TABLE IV
PROTOCOL CLASSIFICATION ACCURACY VERSUS GOSS AND BOTHA [14]

mapping clearly distinguished them from one another. The

IMAP protocol scored the highest on classifier 57, whilst the

HTTP samples received the best score from classifier 80, a

dismal 69.60%. HTTPS scored highest on classifier 98, with

99.83% average accuracy experienced.

The two peer-to-peer protocols, one encrypted and the other

plain-text, were also easily identified by the system. The Soul-

seek protocol scored highest on classifier 81, whilst Bittorrent

on classifier 93.

The average score received for the HTTP protocol con-

cerned the authors and warranted further investigation. The

first step was to delve into the data set used to train classifier

80. These samples were compared to the samples annotated by

the expert for the HTTP protocol and the problem was imme-

diately apparent. The manually annotated data set contained

samples which closely resembled those in the training set

for classifier 80, however there were a substantial number of

samples whose packet flow directionality discriminators were

completely different. The remaining discriminators were, as

expected, remarkably similar. The samples from the manually

annotated data set which did not match those in classifier

80 were found to match samples in the data sets used to

train classifiers 32, 41, 50 and 87. The HTTP protocol was,

therefore, identifiable via classifiers 32, 41, 50, 80 and 87.

The reason for the directional discriminator variance

amongst the HTTP protocol samples was due to the presence

of HTTP pipelining. HTTP pipelining is a method whereby

multiple HTTP requests can be sent through a single flow

in succession. Whilst this improves the browsing experience

for users on high latency links, it causes the directionality

discriminators for HTTP flows to vary from a single client

request packet to multiple, successive client packets. In the

data set, the directional discriminators for each sample was

represented as either a 1 for client to server packet, or 0 for

server to client. The fact that 4 out of the 11 discriminators

for each sample were the packet directionality indicators with

such variance, led the SOM to identify multiple clusters. The

remaining 7 discriminators were similar enough to have all

samples join the same cluster, however the variance between

the directional indicators was too extensive.

2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms) 51

V. CONCLUSION

The research presented in this paper is an extension of the

work of Goss and Botha [14]. Whilst Goss and Botha [14]

made use of manually annotated training set data, this research

showed it possible to remove the dependency on manually

annotated data sets using competitive learning to perform

such annotation automatically. The results obtained through

the experiments in this paper show a high degree of accuracy

is achievable using automatically generated classifiers. In the

cases where the same protocol was trained in this research and

by Goss and Botha [14], only one protocol scored significantly

lower accuracy using methods described by this research. In

the case of the POP3 and SMTP protocol, the results achieved

in this research were slightly improved when compared with

the results of Goss and Botha [14], whilst HTTPS scored

marginally less. The HTTP protocol scored significantly less

using the methods described in this research compared with

using manually annotated data sets in [14].

An issue was subsequently discovered whereby the HTTP

protocol exhibited multiple directionality properties and, even

though the remaining discriminators were similar, multiple

clusters were formed. The HTTP flow samples annotated by

experts in this research therefore comprised of samples which

spanned a number of clusters, causing low average certainty

scores during the test. Goss and Botha [14] trained their HTTP

classifier using flow samples which described the various

directional properties HTTP may exhibit and, when exposed

to the training set, achieved a high degree of average certainty.

The problem of adapting the weights of the first layer SOM to

mitigate this problem and the impact of such changes is still

a topic of current research.

The results achieved in this research indicate a significant

improvement in task performance, compared to the require-

ment for manual annotation described in [14]. Although a high

accuracy was shown to be achievable, the authors advocate

the use of the proposed method as a mechanism for hinting

toward the underlying application protocol of a flow, early

in it’s existence, rather than a definitive assessment. Further

analysis of the flow is required over a sustained duration in

order to increase certainty of classification. This along with

methods for weight adaption within the first layer SOM are

still a work in progress.

REFERENCES

[1] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for
internet traffic classification,” IEEE Transactions on Neural Networks,
vol. 18, no. 1, January 2007.

[2] K. Huang and D. Zhang, “A byte-filtered string matching algorithm for
fast deep packet inspection,” in The 9th International Conference for
Young Computer Scientists. The IEEE Computer Society, 2008, pp.
2073 – 2078.

[3] M. Gebski, A. Penev, and R. K. Wong, “Protocol identification of
encrypted network traffic,” in Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence. IEEE Computer Society,
2006, pp. 957–960.

[4] Z. Li, R. Yuan, and X. Guan, “Traffic classification - towards accurate
real time network applications,” in Proceedings of the 12th international
conference on Human-computer interaction: applications and services,
ser. HCI’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 67–76.

[5] A. W. Moore and K. Papagiannaki, “Toward the accurate identification
of network applications,” in In PAM, 2005, pp. 41–54.

[6] A. Moore, M. Crogan, A. W. Moore, Q. Mary, D. Zuev, D. Zuev, and
M. L. Crogan, “Discriminators for use in flow-based classification,”
Tech. Rep., 2005.

[7] A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using
machine learning techniques,” in In PAM, 2004, pp. 205–214.

[8] Y. Zhang, Z. Li, S. Mei, and C. Fu, “Session-based tunnel scheduling
model in multi-link aggregate IPSec VPN,” in Third International
Conference on Multimedia and Ubiquitous Engineering, 2009.

[9] R. Alshammari, A. N. Zincir-Heywood, and A. A. Farrag, “Performance
comparison of four rule sets: An example for encrypted traffic classifica-
tion,” in World Congress on Privacy, Security, Trust and the Management
of e-Business. The IEEE Computer Society, 2009, pp. 21–28.

[10] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
in IEEE Transactions on Neural Networks, vol. 11, no. 3, May 2000.

[11] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-
fication,” in Proceedings of the 2006 ACM CoNEXT conference, 2006.

[12] F. Gargiulo, L. Kuncheva, and C. Sansone, “Network protocol verifica-
tion by a classifier selection ensemble,” in Proceedings of MCS, 2009,
pp. 314–323.

[13] R. Alshammari and A. N. Zincir-Heywood, “A flow based approach
for ssh traffic detection,” in Proceedings of the IEEE International
Conference on System, Man and Cybernetics. The IEEE Computer
Society, 2007, pp. 296–301.

[14] R. Goss and R. Botha, “Establishing discernible flow characteristics for
accurate, real-time network protocol identification,” in Proceedings of
the 2012 International Network Conference (INC2012), 2012.

[15] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” Journal of Machine
Learning Research, vol. 7, pp. 2745–2769, 2006.

[16] G. Szab, I. Szabo, and D. Orincsay, “Accurate traffic classification,”
in IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, June 2007.

[17] R. Rojas, Neural Networks: A Systematic Introduction. Springer-Verlag,
Berlin, 1996.

[18] C. D. Manning, P. Raghavan, and H. Schutze, An Introduction to Infor-
mation Retrieval (Online Edition). Cambridge, England: Cambridge
University Press, April 2009.

[19] A. Abdi and H. Szu, “Independent component analysis(ica) and self-
organizing map(som) approach to multidetection system for network
intruders,” in Proceedings of SPIE, vol. 5102, 2003, pp. 348–353.

[20] T. Kohonen, “The self-organizing map,” in Proceedings of the IEEE,
vol. 78, 1990, pp. 1464–1480.

[21] J. Lampinen and E. Oja, “Clustering properties of hierachical self-
organizing maps,” Mathematical Imaging and Vision, vol. 2, pp. 261–
272, 1992.

[22] A. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogni-
tion Lett., 2009.

[23] S. Cho and K. Cha, “Evolution of neural network training set through
addition of virtual samples,” in in Proc. 1996 IEEE Int. Conf. Evolu-
tionary Computation,ICEC96. IEEE Press, 1996, pp. 685–688.

52 2013 IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

