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Abstract— This paper evaluates two Neuro-Evolution (NE)
methods to adapt controllers in simulated robot teams. The
first method evolves controllers with fixed topologies and adapts
team size as a function of task complexity. The second method
evolves controller topology as a function of task complexity, but
keeps team sizes constant. These methods are: Collective Neuro-
Evolution 2 (CONE-2), and Neuro-Evolution for Augmenting
Topologies (NEAT). CONE-2 and NEAT are comparatively
tested in a collective construction task. The goal is to ascertain
the most appropriate controller evolution method for adapting
teams to solve a collective construction task, with varying co-
operative behavior requirements. Results indicate that CONE-2
is most effective at adapting controllers as the complexity of
the task increases. In environments where multiple forms of
cooperative behavior are required, CONE-2 evolves teams with
a higher average task performance. CONE-2 is demonstrated
as being effective at evolving behavioral heterogeneity in teams,
which results in a higher team fitness, comparative to NEAT
evolved teams, in environments that require cooperation.

I. INTRODUCTION

In fields of research such as multi-robot systems [20], one
objective is to replicate desirable collective behaviors exhib-
ited in biological systems, and the underlying mechanisms
responsible for such collective behaviors. Such underlying
mechanisms include emergent behavioral specialization and
cooperation. Collective behavior refers to group behaviors
that emerge from the local interaction of many individuals.
For example, group behaviors in social insect colonies [2],
multi-cellular organisms [9], and economies of a nation [18].

Previous research on the adaptation of simulated robot
team behaviors has demonstrated that the interactions of
complementary specialized behaviors results in the formation
of effective collective behaviors (for example, multi-robot
coordination and cooperation), which in turn increases team
task performance [17], [11] [14], [15].

In the study of controller evolution methods, the most ap-
propriate adaptation method for a given task and environment
is often unclear. This study applies CONE-2, an extension
of Collective Neuro-Evolution [13] (CONE), using Neuro-
Evolution (NE) [26] to evolve simulated robot teams to solve
a collective construction task. CONE is a NE [6] controller
design method that uses cooperative co-evolution [16] to
adapt teams of Artificial Neural Network (ANN) controllers
to solve collective behavior tasks. The key contribution of
CONE is its use of emergent behavioral specialization as a
problem solving mechanism. This allows CONE to increase
task performance or attain collective behavior solutions that
could not otherwise be attained (without specialization).

The key contribution of CONE-2 is its adaptation of team
size (in this study, the number of robots) as a function of
task complexity (in this study, a collective construction task).
CONE-2 is comparatively tested with the Neuro-Evolution
of Augmenting Topologies (NEAT) method [23]. Where as,
CONE-2 uses cooperative co-evolution to adapt teams of
ANN controllers, NEAT uses competitive co-evolution [19].
CONE-2 uses controllers with fixed topologies (evolving
connection weights) and adapts team size, where as NEAT
adapts controller topology (as a function of task complexity),
and keeps team size fixed. Both NEAT and CONE (with
which CONE-2 shares many similarities) have been applied
to various complex, continuous, and noisy tasks [24], [25],
[22], [14], [15]. However, CONE is most appropriate for
solving collective behavior tasks that require controllers to
adopt complementary specialized behaviors (that is, behav-
iorally heterogenous teams). CONE-2 and NEAT efficacy for
evolving teams is tested in a range of collective construction
task environments, where behavioral specialization is bene-
ficial and varying degrees of cooperation are required.

The objective of this study is to gain an initial insight into
the adaptive method types that are advantageous for con-
troller evolution in teams operating in environments where
behavioral specialization and cooperation are beneficial.
Both behavioral specialization and cooperation are included
as design aspects of this study’s experiments, since previous
work has demonstrated that the interactions of multiple
complementary behavioral specializations facilitate emergent
cooperative team behaviors [17], [11], [14], [15].

A. Research Goal, Hypothesis, and Task

The research goal is to demonstrate that CONE-2 evolves
teams with behavioral heterogeneity that solve the collective
construction task. Behavioral heterogeneity is defined as dif-
ferent robots in a team adopting complementary behavioral
specializations. Previous research indicated that behavioral
heterogeneity emerges in response to task and environment
constraints mandating specialization [11].

The research hypothesis is that such behavioral hetero-
geneity facilitates cooperation, which results in higher team
fitness (compared to NEAT evolved teams) in the collective
construction task. This hypothesis was formulated given
previous research results [14], [15].

This task requires a simulated robot team to gather blocks
and cooperatively build a structure from gathered blocks in
a construction zone. The complexity of this task is equated



with the degree of cooperation (number of robots required) to
connect one block to another in the construction zone. Blocks
are of types A, B, or C, where construction rules dictate
how different block types connect together in a construction
sequence. Task performance (team fitness) is the number of
blocks correctly connected during a team’s lifetime.

II. COLLECTIVE NEURO-EVOLUTION (VERSION 2)

Collective Neuro-Evolution - version 2 (CONE-2) is a
cooperative co-evolution NE method, that extends CONE
[13]. CONE-2’s contribution is that it increases the number
of genotype populations (from which controllers are evolved)
as a function of task complexity. Thus, CONE-2 increases the
number of controllers until a team size appropriate for task
accomplishment is found. One controller (fully connected
feed-forward ANN with a fixed topology) is evolved from
each population. CONE-2 evolves hidden layer neuron con-
nection weights from multiple sub-populations and combines
these neurons into complete controllers.

CONE-2 starts with one population (P0), segregated into
u sub-populations, from which u hidden layer neurons are
evolved. Each genotype in each sub-population encodes the
connection weights of one hidden layer neuron. Each gene
in each genotype is initialized to a random value in a
given range. The single population (P0) controller evolution
process is the same as Enforced Sub-Populations (ESP) [8].

As CONE-2 initializes and adds new populations, N
(where, N ≥ 2) controllers are cooperatively co-adapted
based on how well controllers cooperatively solve a task. An
example of CONE-2 using three controllers (populations),
and creating a new population is presented in figure 1
(left). CONE-2’s process for constructing and evaluating N
controllers evolved from N populations, is the same as used
for Multi-Agent ESP [27] and CONE [13]. CONE-2 uses the
following heuristics to adapt team size.

1) Adding Population Pn+1 (n ≥ 0): If fitness of the
current team {ANN0 . . . ANNn}, evolved from popu-
lations {P0 . . . Pn} has not increased in Z generations
(table III), a new population Pn+1 is created. A new
controller ANNn+1 is then evolved from Pn+1.

2) Initializing Population Pn+1: Pn+1 is created with
u sub-populations. Each sub-population is initialized
with o genotypes (hidden layer neurons). For each new
population: Pn+1, u and o are the same as for Pn. In
order that Pn+1 is able to evolve a controller from
a beneficial part of the solution space, the genotypes
of Pn+1 are initialized based on one of the existing
populations {P0 . . . Pn} (selected randomly). Each of
the genotypes in Pn+1 is initialized with the genotypes
of an existing population. However, burst mutation
with a Cauchy distribution [8] is applied to each gene
of each genotype in Pn+1 with a given probability.
This Pn+1 initialization procedure ensures that the new
controller ANNn+1 is not be too dissimilar to the
current team of N controllers. Also, the time taken for
ANNn+1 to adapt to a beneficial behavioral role in

the team is minimized since its behavior is based on
an already functional controller behavior.

A. CONE-2 Genetic Operators

Unlike CONE (using inter-population recombination), in
CONE-2 recombination only occurs within populations.

• Recombination: After all genotypes (in all populations)
have been assigned a fitness and ranked, genotypes are
recombined. For a given sub-population (in a given
population), each genotype in the sub-population’s elite
portion (table III) is systematically selected and paired
with another genotype (randomly selected from the elite
portion). One-point crossover [4] is applied to each of
these parent pairs. Enough child genotypes are produced
to completely replace the current sub-population. This
recombination and replacement procedure is repeated
for every sub-population of every population.

• Mutation: After recombination, burst mutation [8] is
applied to each genotype’s gene with a given probability.

III. NEAT: NEURO-EVOLUTION OF AUGMENTED
TOPOLOGIES

NEAT is a competitive co-evolution NE method that uses
mechanisms for historical gene marking, speciation, and
complexification [23], [24], [21] in its adaptation process.

Complexification is the incremental growth from minimal
ANN controller topology. NEAT begins with a homogenous
population of simple controllers (with no hidden nodes) and
adapts connection weights and topology as a function of task
complexity. Thus, NEAT biases the search towards minimal
dimensional spaces and only increases search space dimen-
sionality (adding controller structure) if the task requires it.

Speciation in NEAT calculates if two controllers will be in
the same or a new species (according to a genotype compat-
ibility threshold) after controllers have been recombined and
mutated every generation. Speciating the population means
controllers will only compete within their given species. This
protects new innovations in controller topology adaptation.

Historical gene markings allow NEAT to add new structure
and recombine controllers with differing topologies, since
gene markings are evidence of controller homology.

NEAT has been successfully applied to various control
tasks including double pole balancing [23], automobile con-
trol [22], and playing Go [24]. However, with the exception
of NEAT extensions such as HyperNEAT, applied to certain
multi-agent tasks [3], NEAT has not been applied to col-
lective behavior tasks. In this study’s collective construction
task, NEAT uses homogenous fixed sized robot teams. That
is, the current fittest controller is used for each robot.

A. NEAT: Genetic Operators

• Mutation: NEAT mutation adapts both connection
weights and controller topology. To adapt controller
weights, this application of NEAT uses burst mutation
[8] to change each gene in each genotype with a given
probability. NEAT controller topology adaptation is
the basis of complexification and works via adding
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Fig. 1. CONE-2 Example (Left): CONE-2 adds population (Pn) / controllers (ANNn) as a function of task complexity. Here, P4 is initialized using
mutated genotypes from P3. Collective Construction Task Example (Right): Six of 12 blocks have been connected in the correct sequence (defined by the
construction schema). Three robots are cooperatively connecting a type C block to the partially built object in the construction zone (not to scale).

genes to genotypes. New genes are new connections
or controller nodes represented by a mutated genotype.
These mutations are simultaneously applied to each
genotype with a given probability. Added connection
weights connect two previously unconnected nodes in
a mutated controller. When a new node c is added,
the existing connection between two existing nodes a
and b is disabled. A new connection between nodes
a and c (weight value = 1) is initialized. A second
connection is initialized between node c and b, with
the same weight value that previously connected nodes
a and b. When a new gene is added, the new gene is
assigned an incremented global innovation number.

• Recombination: Since NEAT tracks the historical origin
of all genes using innovation numbers, this means that
only homologous genes in two given controllers will be
recombined. That is, NEAT only recombines genotypes
(controllers) with ancestral genes in common. Match-
ing genes are randomly selected for child genotypes.
Disjoint and excess genes are inherited from the fitter
parent, or at random in the case of equal fitness.

IV. COLLECTIVE CONSTRUCTION TASK AND
EXPERIMENTS

Experiments test n robots in a bounded two dimensional
continuous environment containing a distribution of type A,
B, and C blocks. For CONE-2, n = 1 (initially), with a
maximum of n = 10, and for NEAT, n = 10 (table III).
The environment also contains a construction zone, where
N gathered blocks are delivered and connected into a single
object. Figure 1 (right) illustrates an example environment,
containing three robots and 12 blocks. How different block
types are connected is dictated by construction rules (table
II), and the sequence in which different block types must be
connected is defined by a construction schema (table I).

The construction rules regulate the difficulty of the con-
struction process via requiring varying degrees of coopera-
tion to make specific block connections. For example, the
construction schema in figure 1 (right) mandates that the
middle type C block be connected to a type B on either side.
Making these connections requires two robots to cooperate
(table II). In the collective construction task, cooperation
refers to at least two robots simultaneously gripping and
pushing a block to another block, to which it must connect.
Cooperation is not required for robots to gather blocks. Thus,
blocks are delivered to the construction zone by individual
robots, but cooperation is often required for construction.

Previous research indicates that block type distributions
affect emergent specialization during controller evolution
[15], [12]. For example, in environment 9 (table I), block
type B is particularly plentiful and block type C scarce. An
effective collective construction behavior would be for most
robots to grip type B blocks (after transporting them to the
construction zone), and for few to grip type C blocks. Such
a collective behavior would help minimize the time taken to
connect all blocks in the construction zone. Related work
[15], [12] indicated that such behavioral specialization is
effective for increasing team task performance in collective
construction tasks such as this.

The construction schemas (table I) were selected to ad-
dress this study’s research goal and hypothesis (section I-
A). That is, to investigate the efficacy of CONE-2 versus
NEAT for evolving behavioral specialization and cooperation
that results from specialization. For example, environment
1 (table I) is not intended to encourage specialization, and
no cooperation is needed to connect block types. However,
for environments [2, 10], progressively more cooperation is
needed to complete construction. For example, in environ-
ment 2, at the end of the construction process two robots
are required to cooperate (to connect type C and B blocks).
Where as, in environment 10, three robots must cooperate to



TABLE I
BLOCK DISTRIBUTION AND SCHEMA: FOR ALL COLLECTIVE

CONSTRUCTION TASK ENVIRONMENTS. ENV: ENVIRONMENT.

Block Type Distribution and Construction Schema
ENV Type A

Blocks
Type B
Blocks

Type C
Blocks

Construction Schema

1 5 5 0 A B A B A B A B A B
2 4 5 1 A B A B A B A B C B
3 3 5 2 A B A B A B C B C B
4 2 5 3 A B A B C B C B C B
5 1 5 4 A B C B C B C B C B
6 0 5 5 C B C B C B C B C B
7 0 6 4 C B C B C B C B B B
8 0 7 3 C B C B C B B B B B
9 0 8 2 C B C B B B B B B B
10 0 9 1 C B B B B B B B B B

TABLE II
CONSTRUCTION RULES: FOR BLOCK CONNECTION IN ALL COLLECTIVE

CONSTRUCTION TASK ENVIRONMENTS.

Construction Rules
Environment A Connects: B Connects: B Connects:
[1, 10] B C B
Robots Required 1 2 3

make all but the first connection. That is, only two robots
are required to connect the first two blocks.

A. Experiment Design

Collective construction experiments measure the impact
of the adaptation of robot team behavior by CONE-2 and
NEAT on the number of blocks connected (team fitness) for
a given simulation environment. An environment is defined
as a distribution of block types, construction schema and
rules. The objective was to ascertain the efficacy of CONE-
2 versus NEAT for evolving specialized behaviors, where
specialization enables cooperation and increases team fitness.

B. Fitness Evaluation

A robot’s fitness is calculated based on the time taken (T)
for it to move block i of a given type (BTi) from an initial
position in the environment, and to connect it to other blocks
in the construction zone.

Block types A, B, and C yield different fitness values (table
III) for being moved and connected in the construction zone.
The varying fitness rewards for different block types reflect
the degree of difficulty (cooperation) to connect given block
types. Thus, a robot’s fitness function (gη) is the sum of Vη

taken over all simulation iterations comprising the lifetime
(table III) of robot η (equation 1).

gη =
∑
t

∑
i

VBTi,η,t (1)

Where, VBTi,η,t is the fitness gained by robot η after it
connects block BTi at simulation time t. If more than one
robot connects block BTi to other blocks in the construction
zone, then equal fitness is given to each robot that cooperated
to connect block BTi.

G (equation 2) is team fitness, simply calculated as the
sum of all fitness values for all n robots.

G =
∑
n

gη (2)

The team’s goal is to maximize G. However, robots do
not maximize G directly, instead each robot η attempts to
maximize its own fitness function (gη), where gη guides
controller evolution. At the end of each robot’s lifetime, gη
and G are normalized to the range: [0.0, 1.0].

C. Simulation

An experiment applies CONE-2 or NEAT to evolve team
behavior for 500 generations. A generation comprises three
epochs. One epoch is 3000 simulation iterations, representing
a task scenario that tests different robot starting positions,
orientations, and block locations in an environment.

CONE-2 begins with one genotype population, from which
one robot controller is evolved. However, CONE-2 incre-
ments the number of populations (controllers), up to a team
of 10 robots. NEAT evolves a fixed team size of 10 robots,
where the current fittest controller is used for each robot
in the team. Given the adaptation of team size by CONE-2
and controller topology by NEAT, both CONE-2 and NEAT
experiments use the same number of genotype evaluations
(for each experiment) to ensure a fair comparison. The fitness
of CONE-2 and NEAT teams is an average calculated over 20
simulation runs of a given experiment. Table III presents the
simulation, CONE-2 and NEAT parameter settings. These
parameter values were determined experimentally. Minor
changes to these values produced similar results for both
CONE-2 and NEAT evolved teams.

D. Behavioral Specialization

The degree of behavioral specialization (S) exhibited by
a controller is defined by the frequency with which the
controller switches between executing distinct actions during
its lifetime. The S metric used is an extension of that defined
by Gautrais et al. [7], and was selected given its success is
previous work [14], [15]. Equation 3 specifies the calculation
of S, which is the frequency with which a controller switches
between each of its actions during its lifetime. In equation
3, A is the number of times the controller switches between
different actions, and N is the total number of possible action
switches. Equation 3 assumes at least two controller actions.

S =
A

N
(3)

An S value close to zero indicates a high degree of spe-
cialization, where a controller specializes to primarily one
action, and switches between this and other actions with a
low frequency. An S value close to one indicates a low degree
of specialization, where a controller switches between some
or all of its actions with a high frequency. A perfect specialist
(S = 0), is a controller that executes the same action for
the duration of its lifetime (A = 0). An example of a non-
specialist (S = 0.5) is where a controller spends half of



TABLE III
SIMULATION AND NEURO-EVOLUTION PARAMETERS: FOR THE COLLECTIVE CONSTRUCTION TASK.

Simulation and Neuro-Evolution Parameters
Simulation runs 20 (CONE-2 / NEAT)
Initial number of robots (Genotype populations) 1 (CONE-2 / NEAT)
Block / Robot detection sensor range 0.04
Robot size (diameter) 0.02
Maximum robot grip range 0.003
Maximum robot movement (dmax) 0.04
Behavioral specialization threshold 0.5
Initial robot positions Random (Excluding construction zone)
Simulation environment Continuous
Environment width / height 1.0
Construction zone size (Diameter) 0.08
Block size (Width / Height) 0.01 (Type A / B / C)
Block Type A / B / C Fitness reward 2 / 5 / 10
Generations / Epochs 500 / 3 (CONE-2 / NEAT)
Iterations per epoch (Robot lifetime) 3000
Mutation (per gene) probability / Mutation range 0.05 / [-1.0, +1.0]
Population (sub-population) elite portion 20%
Weight (gene) range [-1.0, +1.0]
Genotype length (Connection weights) 25 (CONE-2) / Variable (NEAT)
Genotypes per population 200 (CONE-2) / 600 (NEAT)
Initial number of populations 1 (CONE-2 / NEAT)
Maximum number of Populations (Robots) 10 (CONE-2)
Fitness Stagnation Period (Z generations) 5 (CONE-2)
Genotypes per sub-population 20 (CONE-2)
Sub-Populations (Hidden layer neurons) 10 (CONE-2)
Sensory Input Nodes 22 (CONE-2 / Maximum for NEAT)
Motor Output Nodes 3 (CONE-2 / Maximum for NEAT)
Initial Sensory Input Nodes 4 (NEAT)
Initial Motor Output Nodes 3 (NEAT)
Survival threshold 20% (NEAT)
Add node mutation probability 20% (NEAT)
Add sensor mutation probability 20% (NEAT)
Disjoint Coefficient 2.0 (NEAT)
Excess Coefficient 2.0 (NEAT)
Weight Difference Coefficient 1.0 (NEAT)
Compatibility Threshold 6.0 (NEAT)
Compatibility Modifier 0.3 (NEAT)
Interspecies mutation rate 5% (NEAT)
Mate multi-point probability 20% (NEAT)
Recurrent link probability 5% (NEAT)
Drop off age 15 generations (NEAT)

its lifetime switching between two actions. For example, if
A = 3, N = 6, the controller switches between each of
its actions every second iteration. Controllers are labeled as
specialized if S is less than a given behavioral specialization
threshold (for this study a 0.5 threshold was selected, table
III). Otherwise, controllers are labeled as non-specialized.

V. ROBOT CONTROLLER

CONE-2 and NEAT evolved robots use the following
sensory inputs and motor outputs in robot controllers.

A. Detection Sensors

Using CONE-2, a robot has 12 block detection ([SI-
0, SI-11] in figure 2), three block demand ([S-12, S-14]),
and four robot detection ([S-15, SI-16, S-17] in figure 2)
sensors. A robot’s sensory field of view is split into north,
south, east and west sensor quadrants (SQ-0, SQ-1, SQ-2,

and SQ-3, respectively, in figure 3). NEAT evolves differing
combinations and numbers of sensor types (section V-E). All
sensor values are normalized to the range [0.0, 1.0].

1) Block Detection Sensors: Block detection sensors are
constantly active for the duration of a robot’s lifetime. Sensor
q returns the closest block type in quadrant q, divided by the
squared distance to this robot.

2) Robot Detection Sensors: Robot detection sensors
prevent collisions between robots and enable cooperation.
Sensor q returns the closest robot in sensor quadrant q,
divided by the squared distance to this robot.

3) Block Demand Sensors: These sensors are constantly
active. At each simulation iteration the construction zone
broadcasts a signal that is received by each robot’s block
demand sensors. This signal indicates the block type with the
highest demand (next required in the construction sequence)
at a given iteration. A sensor value of 1.0 indicates the
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Fig. 3. Left: Robot sensor quadrants: SQ-1, SQ-2, SQ-3, SQ-4. Block
demand sensors: SI-12, SI-13, SI-14 are not depicted since they work in all
four quadrants. Right: Example sensory-motor setup. SQ: Sensor quadrant.

highest demand, 0.5 indicates second highest demand, and
0.0 indicates no demand. For example, block demand sensor
S-12 will receive a demand signal equal to 1.0 if block type A
is the next type required in the construction sequence. Sensor
S-13 will receive a demand signal value of 0.5 if a type B
block is the next type required after block type A. Sensor
S-14 will receive a signal of 0.0 if a type C block is no
longer required. If block types B and C are both required
after type A (for example, where the type B and C blocks
can be connected to either side of the type A block), then
sensors S-13 and S-14 will each receive a 0.5 signal value.

B. Movement Actuators:

Two wheel motors control a robot’s heading at constant
speed. Wheel motors (MO-0 and MO-1 in figure 2) need
to be explicitly activated. Movement is calculated in terms
of real valued vectors (dx and dy). A robot’s heading is
determined by normalizing and scaling its motor output
values by the maximum distance a robot can traverse [1] in
one iteration (dmax in table III). That is:

dx = dmax(o1 − 0.5)

dy = dmax(o2 − 0.5)

Where, o1 and o2 are MO-0 and MO-1 output values, re-
spectively. To calculate the distance between this robot, other
robots and blocks in the environment, the squared Euclidean
norm, bounded by a minimum observation distance is used.

C. Block Gripper:

Each robot is equipped with a gripper to transport blocks
to the construction zone. The gripper is explicitly activated.
If no block is held, the robot grips the closest block within
gripper range (table III). If the robot is gripping a block,
then the block is released. Gripper output is normalized in
the range [0.0, 1.0]. For the collective construction task,
gripping different block types are considered different actions
for controller specialization (section IV-D).

TABLE IV
CONE-2 EVOLVED TEAMS: BEHAVIORAL COMPOSITION. ROBOTS IN A

TEAM WERE CALCULATED AS NON-SPECIALIZED, OR SPECIALIZED TO

GRIPPING TYPE A, B, OR C BLOCKS. NEAT IS NOT INCLUDED SINCE

THE FITTEST NEAT EVOLVED TEAMS WERE BEHAVIORALLY

HOMOGENOUS (NON-SPECIALIZED) FOR ALL ENVIRONMENTS.

CONE-2 Evolved Teams: Behavioral Composition
Environment A Block

Specialist
B Block
Specialist

C Block
Specialist

Non-
Specialist

1 0 0 0 3
2 4 4 2 0
3 4 4 2 0
4 3 4 3 0
5 1 4 5 0
6 0 5 5 0
7 0 5 5 0
8 0 6 4 0
9 0 6 4 0
10 0 8 2 0

D. ANN Controller (CONE-2)

CONE-2 evolved robots use a recurrent ANN controller
[5], fully connecting 22 sensory input neurons to 10 hidden
layer neurons to three motor output neurons (figure 2, left).
Hidden and output neurons are sigmoidal [10] units. Sensory
input neurons [SI-19, SI-21] have recurrent connections that
accept the previous activation state of the output layer. At
each simulation iteration of the robot’s lifetime the motor
output with the highest value is the action executed.

1) MO-0, MO-1: Calculate direction of movement from
motor outputs MO-0 (dx) and MO-1 (dy).

2) MO-2: Activate gripper.

E. NEAT: Initial ANN Controller

NEAT evolved robots begin with a simple ANN controller
(figure 2, right, presents an example), that is subject to
complexification during NEAT adaptation. To ensure that
NEAT controllers execute actions and accomplish the collec-
tive construction task with some degree of success, NEAT
controller motor outputs are kept the same as the CONE-
2 controller (figure 2, left). The example initial controller
presented in figure 2 (right) uses four sensory input neurons
fully connected to motor outputs. In this example, sensor
inputs are, one block type A detection sensor (SI-0) using
the robot’s north sensor quadrant (SQ-0), one block type A
demand sensor (SI-1) using all four sensor quadrants ([SQ-0,
SQ-3]), one robot detection sensor (SI-2) using the robot’s
north sensor quadrant (SQ-0), and one bias node (SI-3). The
bias node uses a constant weight value of 1.0. However,
NEAT controllers are randomly initialized with three sensor
inputs and a bias node connected to motor outputs.

VI. RESULTS AND DISCUSSION

Figure 4 presents the average team fitness (section IV-
B) for CONE-2 and NEAT teams evolved in each environ-
ment. Statistical comparisons (independent t-tests) indicate
that CONE-2 evolved teams yield a significantly higher
average team fitness, compared to NEAT evolved teams,
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Fig. 4. Average Team Fitness: CONE-2, NEAT and Homogenous teams (the latter establish behavioral heterogeneity benefits. See text for details).

for environments [2, 10]. Thus, CONE-2 evolved teams
achieved a higher average team fitness (compared to NEAT
evolved teams), in environments requiring cooperation be-
tween at least two robots. These results partially support this
study’s hypothesis (section I-A). In environment 1, where no
cooperation was required for task accomplishment, NEAT
evolved teams yielded a higher average task performance
(with statistical significance). In figure 4, the average team
fitness has been normalized to the range: [0.0, 1.0]. This
was done in order that team fitness’s be readily comparable
as portions of maximum task performance.

Table IV presents the behavioral composition of the fittest
teams, evolved by CONE-2, in each environment. Each of
the fittest CONE-2 evolved teams, except that evolved in en-
vironment 1, were behaviorally heterogeneous. In this study,
behavioral heterogeneity is when a team contains at least two
behavioral specializations. Behavioral specializations were
calculated based on the time for which robots gripped type
A, B and C blocks during their lifetimes. That is, a robot

was defined as specialized to gripping block type x, if the
robot switched between gripping block type x and other block
types with low frequency during its lifetime (section IV-D).
Movement was not considered by the specialization metric
since a robot’s move action did not directly contribute to
block construction. Table IV does not include the behavioral
composition of the fittest NEAT evolved teams, since these
teams were behaviorally homogenous for all environments.
That is, all robots in the fittest NEAT evolved teams adopted
the same (non-specialized) behavior.

These results indicate the higher the degree of cooperation
required for task accomplishment (one versus two or three
robots to connect given block types), the more behavioral
heterogeneity in CONE-2 evolved teams. That is, depending
on the degree of cooperation required to connect blocks,
CONE-2 evolved teams that contained varying complements
of behavioral specializations. Such behavioral heterogeneity
enabled cooperation and the comparatively high average team
fitness of CONE-2 evolved teams.



Table IV also indicates that for all environments (except
environment 1), CONE-2 evolved the maximum team size
of 10 robots. For environment 1, CONE-2 evolved a 3 robot
team, since no cooperation was required to connect blocks
(tables I and II). After CONE-2 had increased the team size
to three robots, there was no further fitness stagnation, and
thus no incentive for adding populations (controllers).

Figure 4 also presents results from re-running the fittest
CONE-2 evolved teams as behaviorally homogenous teams.
This was done via randomly selecting one controller in
the fittest CONE-2 evolved team (for each environment),
and using this as the controller for all robots in a team.
The same team sizes as evolved by CONE-2, for each
environment, were used. These homogenous teams were
run in all environments, for 20 runs of one robot lifetime
(table III), and an average team fitness calculated. These
homogenous team experiments did not apply any form of
adaptation. A statistical comparison indicated that the av-
erage team fitness of homogenous teams was comparable
to NEAT evolved teams, but lower than CONE-2 evolved
teams, for all environments. The exception was environment
1, where homogenous teams yielded an average team fitness
comparable to CONE-2 evolved teams.

This result fully supports the hypothesis (section I-A) that
CONE-2 is appropriate for evolving teams with behavioral
heterogeneity which in turn leads to a higher average team
fitness (compared to NEAT evolved teams) in environments
where cooperation is required. However, for environment 1,
CONE-2 evolved teams yielded a lower average fitness (with
statistical significance), compared to NEAT evolved teams
(figure 4). This was a result of NEAT using a fixed team
size of 10 robots, and CONE-2 using only three robots.
More robots in NEAT evolved teams, and the lack of any
cooperation requirements in environment 1 resulted in a
higher average task performance for NEAT evolved teams.

VII. CONCLUSIONS

This paper described a study that applied CONE-2 and
NEAT as controller evolution methods in simulated robot
teams that must solve a collective construction task. The
study’s goal was to elucidate the most appropriate method
for encouraging behavioral specialization (during controller
evolution), where such specialization enables cooperation.
The collective construction task often required cooperation
to connect blocks and to achieve the highest team fitness.

Results indicated that CONE-2 evolved teams achieved
a higher average team fitness (compared to NEAT evolved
teams) in 90% of environments tested. Team fitness was
defined as the number of blocks connected together, in
a construction zone, in the correct sequence. Also, these
results supported a hypothesis that behavioral heterogeneity
(complementary behavioral specializations) in teams facil-
itate cooperation, which in turn leads to higher average
team fitness in this collective construction task. However,
the casual mechanisms and relationships between behavioral
heterogeneity, cooperation and collective behavior task per-
formance is the subject of ongoing research.
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