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Abstract— This paper reports upon two adaptive approaches
for deriving words in an artificial language simulation. The
efficacy of a Particle Swarm Optimization (PSO) method versus an
Artificial Evolution (AE) method was examined for the purpose
of adapting communication between agents. The objective of the
study was for agents to derive a common (shared) lexicon for
talking about food resources in the simulation environment. In
the simulation, communication was essential for agent survival
and as such facilitated lexicon adaptation. Results indicated that
PSO was effective at adapting agents to quickly converge to a
common lexicon, where, on average, one word for each food type
was derived. AE required more method iterations to converge
to a common lexicon that contained, on average, multiple words
for each food type. However, there was greater word diversity in
the lexicon converged upon by AE evolved agents, compared to
that converged upon by PSO adapted agents.

Index Terms— Artificial Language, Particle Swarm Optimiza-
tion, Evolutionary Algorithm, Artificial Life.

I. INTRODUCTION

Artificial Life research has often applied biological prin-
ciples and the methodology of building artificial systems
to understand the origins and evolution of communication
[17], [10], [3]. In such research, language is viewed as a
complex adaptive system which emerges, and self-organizes
in a bottom-up means from the local interactions between
agents. Research in artificial language evolution thus applies
adaptive processes in order to explore language as it could
be, in much the same way as artificial life explores life as it
could be [9]. The use of a synthetic methodology has been
applied to model the evolution of communication in computer
simulation [16], [11], [21], [15], as well as using situated and
embodied robotic agents operating in real world environments
[1], [18], [20], [19]. Synthetic methodologies used to study
the origins and evolution of language include Evolutionary
Algorithms (EAs) [6], Artificial Neural Networks (ANNs)
[14], and rule-based agents [15]. Such bottom-up synthetic
simulations are indispensable since they allow researchers
to readily study language evolution, and formulate and test
hypotheses. Without bottom-up simulations, the study of the
emergence of language has been problematic since language
is a complex, nonlinear, and analytically intractable system.

There are numerous examples of synthetic bottom-up agent
based simulations that investigate language evolution. In the
Talking Heads simulation, a common (shared) lexicon was
derived between robots with rule-based controllers. The robots
played a series of naming games [16] in simulated and

physical environments [18]. An iterative process facilitated
the emergence of a common lexicon with positive feedback
loops, where words used by multiple robots were reinforced,
and propagated through successive generations. Similarly, in
the research of de Boer [4], rule-based agents interacted in
the context of iterative imitation games in order to derive a
common lexicon. Results supported related work [16], and
indicated that a common lexicon of vowels emerged in an
agent group as a consequence of local interactions between
agents. Cangelosi and Parisi [2] simulated a population of
agents with evolving ANN controllers, for the purpose of
deriving a common lexicon that aided agent survival. The
objective was for agents to evolve signals to help other
agents identify edible versus poisonous mushrooms in the
environment. Results demonstrated that agent communication
evolved as a product ancillary to the need for agents to evolve
categorizations for mushrooms.

The application of Particle Swarm Optimization (PSO) to
adapt agents within artificial language evolution simulations
has, however, received relatively little research attention. Fur-
thermore, there has been a lack of research that compares PSO
and EA methods for adapting agent behaviors, where agents
must derive a common lexicon in order to communicate.

This paper’s research applied PSO and EA methods for
agent adaptation in a talking game task. This task required that
agents communicate (adaptively derive a common lexicon) in
order to consume food, survive, and procreate in an artificial
environment. In this study common lexicon refers to one word
(or a set of similar words1) used by at least two agents to
describe a given food type. Section II describes these elements
of the talking game task and the talking game process.

PSO and EA were selected as the comparative methods
since both approaches have been successfully applied as
adaptation methods in agent-based simulations [7].

To the best of the authors’ knowledge, there has not yet been
any research that compares the efficacy of a PSO versus an EA
method for agent adaptation in artificial language evolution
simulations. This paper addresses the general research goal
of ascertaining which adaptive methods, implemented in the
context of an agent-based simulation, are most appropriate for
studying the origins and emergence of communication.

Using artificial language simulations to study the emergence

1In this study, a set of similar words for a given food type (word similarity
is defined in section II) is analogous to one word for the food given type.



of communication is important not only to linguistics, but for
numerous engineering disciplines. That is, understanding the
fundamental mechanisms that lead to new forms of commu-
nication, may allow such mechanisms to be applied to the
behavioral design of agents (simulated) or robots (physical)
that must interact with each other in order to accomplish a
task. This notion is supported by the successful development
and application of various forms of biologically inspired
computation such as neural networks, genetic algorithms and
swarm intelligence algorithms [23].

A. Research Goal and Hypotheses

• Research Goal: To conduct a comparative study that
evaluates a PSO versus an EA method for adapting
agents such that they derive a common lexicon.

• Hypothesis 1: The PSO, comparative to the EA method,
will yield a statistically significant higher average
fitness2. This hypothesis is supported by related research
[5], [22], [12] reporting that PSO, comparative to EAs,
often facilitates (for small population sizes), convergence
to optimal regions of the search space.

• Hypothesis 2: The PSO method is appropriate for adapt-
ing agents to converge to a common lexicon with, on
average, one word for each food type. Whereas, the EA
will evolve agents that converge to a common lexicon
containing multiple words for each food type. This hy-
pothesis is supported by related research that found that
PSO, compared to EAs, often converges upon less diverse
(genetic and behavioral) solutions [5], [22], [12].

II. TASK: THE TALKING GAME

The talking game task places N agents, and X red, Y
green, and Z blue food units, at random locations on a two
dimensional grid of 10 × 10 cells. Each agent’s genotype is
a character set which represents the agent’s word word3 for
one food type (food types are: red, green, and blue). Common
lexicon refers to the case where at least two agents share one,
or a set of similar words, for one of the food types. Hence,
an example of a common lexicon is if three sub-groups n0,
n1, and n2 (where, n0, n1, and n2 constitute the N agents of
the group), each share one word for red, green, and blue food
types, respectively.

Measuring word similarity is discussed in section II-A. A
PSO or EA method was used to adapt agents to accomplish
the talking game task. This task was accomplished when all
agents converged upon a common lexicon.

In each simulation, agents began with zero fitness, no
preferred food type, and a word for its preferred food type
(initially a random character set). Preferred food type refers
to a food type that an agent will attempt to talk about (and
thus consume). When an agent first encounters a food unit, the
food’s type (red, green, or blue) becomes its preferred food

2Fitness and energy are the same, and the terms are used interchangeably.
3Genotype and word are the same and used interchangeably.

type. Thereafter, when an agent moves to a cell adjacent to
its preferred food type, it will try to begin a talking game.
In the talking game, an agent’s genotype and its word for its
preferred food type are identical. There cannot be more than
one food unit at a given location, and agents cannot occupy
the same location as a food unit. Agents encounter food units
when they move to a grid cell adjacent to a food unit cell.

A. Talking Game Procedure

1) Agents move: All agents move concurrently in a random
direction to adjacent grid cells (north, south, east, west,
north-east, north-west, south-east, or south-west).
Conflicts between m agents moving to the same cell
are resolved by m-1 agents randomly moving to other
cells, and doing so until all conflicts are resolved.

2) If two agents occupy grid cells adjacent to a food unit
cell, then a talking game will start. These two agents
become talking agents. Go to step 4.

3) If more than two agents occupy grid cells adjacent to a
food unit cell, then the two agents with the most similar
genotypes (step 3(a)) start a talking game (step 4). These
two most similar agents become talking agents.

a) Genotype Similarity: An edit distance metric [13]
measures the similarity between two agent geno-
types a and b. Similarity is the number of genes
(characters) a and b have in common divided by
genotype length (all genotypes have equal length).
If the similarity between a and b is greater than
a given similarity threshold, a and b are consid-
ered similar. For example, given a 0.7 similarity
threshold, the similarity between a = mouse, and
b = house is 0.8, since 4 out of 5 characters are
the same. Hence, a and b are considered similar.
A similarity measure of 1.0 indicated that two
genotypes were most similar, and 0.0 indicated that
two genotypes were most dissimilar.

4) Talking Game: One agent is randomly selected as the
speaker, and the other agent is the listener.

a) If the speaker’s preferred food type is the same
as the food type in the food cell adjacent to the
talking agents, then go to step 4(e).

b) If a speaker does not yet have a preferred food
type yet, then the type of the food unit to which
the talking agents are adjacent becomes the
speaker’s preferred food type. Go to step 4(e).

c) If the speaker’s preferred food type is different
from the food type in the food cell adjacent to
the talking agents, the agents switch speaker and
listener roles. If speaker and listener roles have
already been switched, then go to step 4(i).



d) If the speaker’s (previously the listener) preferred
food type is the food type in the food cell adjacent
to the talking agents, then go to step 4(e).

e) Speaker talks: The word spoken to listener is the
speaker’s word for its preferred food type.

f) Listener guesses: The listener guesses to which
food type the speaker’s word refers. If the speaker
and listener genotypes are similar (step 3(a)), then
the listener will guess its own preferred food type.
Otherwise, the the listener will guess a random
food type. For example, assume the talking agents
are adjacent to food cell containing a red food
type. The word of speaker a for its preferred food
type (red) is aka. The word of listener b for its
preferred food type (green) is aki. Assume that
aka and aki are calculated as similar. Listener b
will guess food type green. In this case, agents a
and b had similar genotypes, however, they could
not agree on the food type in the cell, and would
not be rewarded. This is an example of two agents
adopting similar words for different food types.

g) If the listener’s guess is the same as the speaker’s
preferred food type, both agents consume the food
and receive a fitness reward equal to one. The
food unit is then removed from the grid.

h) If listener’s guess is not the speaker’s preferred
food type, and speaker and listener roles have not
been reversed, then agents switch speaker and
listener roles, and the talking game is restarted.
Go to step 4(d).

i) Talking game ends.

5) If the agent group’s (N agents) lifetime (a total of 200
talking games) has transpired, then apply either the EA
(section III-B) or PSO method (section III-A) to adapt
agents. If it is the end of an agent group’s lifetime, a
new set of food units and agents are initialized in random
locations in the environment. Otherwise, go to step 1.

Hence, over the course of one EA generation or PSO method
iteration (an agent’s lifetime), agents adopt preferred food
types (red, green, or blue), and words to label these preferred
food types. Agents with the most similar genotypes will be
those selected to talk (assuming more than two agents are
adjacent to a food cell at a given iteration). Given that a
speaker has the same preferred food type as the food cell to
which it is adjacent, then the listener (with the most similar
genotype) will guess its preferred food type.

However, if the listener does not have a preferred food
type it will select and guess the food type in the food cell
to which it is adjacent. This facilitates the adoption of similar
words (or one word) for a given food type. If agents with
similar genotypes cannot talk (and consume food) due to both
having different preferred food types, then these agents will,

on average, be less fit at the end of their lifetimes. As a result,
such agents will have less chance of being selected at the
end of an EA generation (or PSO iteration) and having their
genotypes propagated.

That is, agents with similar genotypes suggests that these
agents are successful at consuming food, which is a result of
the agents with similar genotypes having the same preferred
food type. The genotypes of the fittest agents (with the same
preferred food types) will then be adapted by the EA and
PSO methods and be propagated such that agents converge to
similar words (or the same word) for a given food type. The
highest task performance is attained when all agents converge
to the same word for a given food type.

B. Task Performance Evaluation

1) Average Fitness: An agent was rewarded one unit of
fitness for each food unit consumed. Each agent’s
fitness was recorded at the end of each simulation (n
EA generations, or PSO iterations), and an average
fitness was calculated for N agents in the group.

2) Size of Common Lexicon: This is the sum of the average
number of words derived by the agents (adapted with the
EA or PSO method) for each food type. A given food
unit can only be consumed if two agents agree upon the
food type of the food unit that is to be consumed. Agents
maximized their food consumption if all agents used
a common lexicon (containing one word, or multiple
similar words for each food type). The case where all
agents use the same word for a given food type is
an example of the most effective (smallest) common
lexicon. When all agents use a different word for a given
food type, this is an example of the most ineffective
(largest and non-shared) lexicon. In this case, agents
would be unable to communicate and consume food.

The size of a common lexicon is the number of dissimilar
of words derived by agents for each food type. That is, the
effectiveness of convergence upon a common lexicon was
simply indicated by the number of words derived for each food
type. If agents derived u0, u1 and u2 words for red, green,
and blue food types, respectively, and the words within the
sets u0, u1 and u2, were calculated as being similar, then the
agents were considered to have derived one word for each food
type. This is an example of the most effective convergence to
a common lexicon. However, consider that the agents derived
u0, u1 and u2 words for the red, green, and blue food types,
respectively, and at least two words in the word sets u0, u1

and u2, were calculated as being dissimilar. In this case agents
were considered to have have been less effective at converging
upon a common lexicon. Section II-A describes methods to
measure word similarity.

III. METHODS

The efficacy of an EA [6] and PSO [7] method for adapting
agents was tested in the talking game task (section II).



A. PSO: Particle Swarm Optimization
PSO methods model a set of potential solutions as a swarm

of particles that move about in a virtual search space. Each
particle has a position and a velocity vector that is updated at
each algorithm iteration [7]. A velocity update consists of:

1) A cognitive component (c1), which uses each particle’s
personal best (pbest) solution.

2) A social component (c2), which uses a neighborhood
best solution (nbest).

3) An inertia coefficient (ϕ), which slows particle velocity
over time to facilitate swarm convergence.

The influence of the c1, c2, and ϕ components on the
adaptive process of many PSO methods, including the PSO
method used in this study, is discussed in Engelbrecht [7].

PSO Type: This PSO method uses a global best (gbest)
neighborhood structure for the social component of the
velocity update [7]. Hence, the entire swarm constitutes
the neighborhood of the particles. The social information
is the global best, that is, the current best position found
by the entire swarm. At each iteration of the PSO method,
a particle’s velocity is added to its current position, and
particles are evaluated using the talking game (section II).

Particles: The PSO method implements one particle for
each agent in the simulation. The position vector of each
particle represents each agent’s word for its preferred food
type. Each position vector element is a character in a five
character set (table I). Each element in the position vector is
randomly initialized within the range: a to z. This character
range is converted to ASCII values (97 to 122). Since the
PSO method operates using floating point numbers, the
adapted elements in a position vector were rounded to the
nearest integer so that distinct characters could be represented
as agent words. The inertia weight w was implemented to
linearly decrease from 0.3 to 0.01, as a function of the PSO
method iterations. A linearly decreasing w was selected based
on the success of such an approach in related research [7].

Particle Evaluation: At each PSO method iteration, 200
talking games (section II-A) were played. These games eval-
uated agent words (particles), assigning each a fitness. The
assignment of fitness to all agents constituted one iteration in
the PSO method. All particle positions were updated at the
end of each PSO iteration.

B. EA: Evolutionary Algorithm
The EA method used was adapted from the evolutionary

algorithm described by Eiben and Smith [6].

Genotypes: The N agents were represented by N genotypes
in the EA population. Each genotype was encoded as a string
of n integer values representing the characters in each agent’s
word for its preferred food type.

Selection and Recombination: Tournament selection [6]
was used, such that the fittest genotype was selected from
a tournament size of 0.3 (that is, 30% of genotypes).
Parent genotypes were randomly selected, where each pair
produced one child genotype, until there were enough child
genotypes to completely replace the previous generation
(parent population). One-point crossover [6] was used to
recombine the genotypes of agent pairs at each generation.

Mutation: After recombination, mutation was applied with
a given probability to each character in a given genotype. A
mutated character was changed to another random character
in the range [a, z] (that is, ASCII values in the range: [97,
122]). The mutation rate (applied per gene), linearly decreased
from 0.09 to 0.001, as a function of generations. This approach
was selected given the success of linearly decreasing mutation
reported upon in related research [7].

IV. EXPERIMENTS

Experiments applied the PSO and EA methods for adapting
agent behaviors. Each experiment executed the PSO or EA
method for 1000 iterations (generations). Each method itera-
tion consisted of 200 talking games. These 200 talking games
represented an agent lifetime. At each agent lifetime iteration,
each agent either moved about the grid, or engaged in a talking
game with another agent. At the end of each lifetime, each
agent’s performance was evaluated and a fitness assigned. An
averages fitness and number of words derived for each food
type was calculated for all agents, over all PSO and EA method
iterations and for 30 (PSO and EA) simulation runs.

Table I presents the simulation, EA, and PSO parameter
settings used to attain the results presented in section V.
Experiments used to derive these parameter values used the
same experimental setup as PSO and EA method comparison
experiments (section IV-C), except that the affect of varying
individual parameter values was observed (sections IV-A and
IV-B). Statistical significance of difference between parameter
tuning results were calculated using an independent t test [8].

A. Parameter Tuning in the PSO Method

For the PSO method’s cognitive (c1) and social (c2)
terms, and the inertia weight (ϕ), 10 values were tested in
increments of 0.1 in the range [0.1, 1.0].

Cognitive Term (c1): Exploratory experiments indicated that
setting c1 to 0.1 resulted in agents with a high average
fitness. Increasing c1 towards 1.0 resulted in agents yielding
a comparatively low average fitness. Setting c1 to 1.0 resulted
in poor convergence upon a common lexicon (a high average
number of words was derived for each food type). Decreasing
the value of c1 towards 0.1, adapted agents such that they
converged to a common lexicon with, on average, few words
for each food type.

Social Term (c2): Setting c2 to 1.0, resulted in agents
yielding a higher average fitness comparative to when c2
was set to lower values. Setting c2 to 1.0 resulted in agents
deriving a common lexicon containing few words for each



food type. As the c2 value was decreased towards 0.1, less
convergence towards a common lexicon was observed.

Inertia Weight (ϕ): Exploratory experiments indicated that
there was no statistically significant difference between the
average fitness of agents adapted using each of the ϕ values
tested. Hence a ϕ value that linearly decreases as a function
of PSO method iterations was selected. The ϕ value decreased
from 1.0 (by a value of 0.1) every 100 PSO iterations.

In parameter tuning experiments, c1 and c2 values equal to
0.5, together with a linearly decreasing ϕ value, were found
to adapt agents that yielded the highest fitness.

B. Parameter Tuning in the EA Method

For the EA method parameters, tournament size and
mutation rate, 10 values were tested in 0.1 increments in the
range [0.1, 1.0]. Exploratory experiments also tested the EA
method without crossover and without mutation.

Tournament Size: Results indicated that for all tournament
sizes tested, there was no statistically significant difference
in the evolved agents’ average fitness, and number of words
derived for each food type. A tournament size of 0.3 was
selected since this value provided (for all numbers of agents
and food units tested) a good balance between the EA’s
exploration versus exploitation of the search space.

Mutation Rates: Results indicated that, for all mutation
rates tested, there was no statistically significant difference
in the evolved agents’ average fitness and number of words
derived for each food type. Based on related research [7],
a mutation rate that linearly decreased as a function of
generations was used. The mutation rate decreased from 0.09
to 0.001, by a value of 0.001 every 100 generations.

Mutation and No Crossover: Results of testing the EA with
mutation and without crossover indicated that evolved agents
yielded a relatively high average fitness (comparative to the
EA method using crossover and no mutation). However, in this
case, evolved agents were less effective at converging upon a
common lexicon. That is, EA evolved agents converged to an
average of: [10.06 (2.43), 8.37 (1.92), 6.57 (2.01)] words for
red, green, and blue food types, respectively. Values given in
parentheses are standard deviations.

Crossover and No Mutation: Results of testing the EA
method with crossover and without mutation indicated that
evolved agents yielded a low average fitness (comparative to
the EA method using mutation and no crossover).

The mechanisms causing the EA method, with mutation
only, to evolve agents with a high average fitness, and to derive
a common lexicon, containing on average one word for each
food type, is the subject of ongoing research. Similarly, the
result of the EA, with crossover only, evolving agents with a
high average fitness that also derive a common lexicon, is also
the subject of current research. These results are not examined

TABLE I
PSO, EA, AND SIMULATION PARAMETERS.

PSO Parameters
Swarm Size 25
Number of PSO iterations 1000
Inertia Weight Operator Linearly decreasing
Inertia Weight (ϕ) [0.01, 0.30]
Cognitive Term (c1) 0.5
Social Term (c2) 0.5
Velocity Max (VMax)/Initialization 4 / 0
Neighborhood topology gbest

Neighborhood size Swarm

EA Parameters
Population size 25
Number of EA generations 1000
Mutation operator Linearly decreasing
Mutation rate per gene (σ) [0.001, 0.09]
Selection operator Tournament
Tournament Size 0.3
Gene value initialization [97, 122]
Recombination operator One-point crossover

Talking Game Simulation Parameters
Iterations per talking game 1
Agent lifetime 200 talking games
Talking games per simulation 200000
Simulation runs per experiment 30
Environment width/length 10 x 10
Initial agent positions Random
Initial agent fitness 0
Edit distance similarity threshold 0.7
Genotype (Word) character set [a, z]
Genotype (Word) size 5 Characters
Food Distribution 1

3
Red, 1

3
Green, 1

3
Blue

Fitness yield per food unit 1
Number of agents/food units 25 / 30

here, since the impact of mutation and crossover in the given
EA are not the focus of this study.

C. Task Performance Comparisons

Task performance is the average fitness and average
number of words derived for each food type. These averages
were calculated, for all agents, at the end of a PSO or
EA process (1000 iterations or generations), and over 30
simulation runs. PSO and EA method task performance was
compared for varying numbers of agents and food units
(tested at increment values of 5, in the range [5, 50]). For
all experiments, methods were compared for a distribution of
equal portions of the red, green, and blue food types (table I).

Experimental Objective: To ascertain which method
maximizes average fitness, and minimizes the average
number of words that are derived for each food type, for all
numbers of agents and food units tested.



• Average Fitness: This task performance measure tested
hypothesis 1 (section I-A). That is, whether the PSO,
comparative to the EA method, will yield a statistically
significant higher average fitness.

• Lexicon Convergence: The average number of words
derived for each food type, was used to test hypothesis
2 (section I-A). It is hypothesized that the PSO, versus
the EA method, is more appropriate for adapting agents
that converge to a common lexicon with few words
for each food type, and the EA will adapt agents with
comparatively poor converge. That is, EA evolved agents
will be less effective at converging to a common lexicon,
on average deriving, more words per food type. The word
similarity measure is described in section II-A.

V. RESULTS

This section presents task performance results for agents
adapted by the EA and PSO methods. That is, average fitness
and average number of words for each food type (common
lexicon convergence) results (sections V-A and V-B, respec-
tively) for a range of agent group sizes and food unit numbers.

To gauge task performance results of the comparative meth-
ods, statistical tests were applied to the PSO and EA result
data. The Kolmogorov-Smirnov test [8] confirmed that the
PSO and EA result data conformed to normal distributions.
In order to determine if there was a statistically significant
difference between the task performances of PSO and EA
adapted agents, an independent t test [8] was applied. A
statistical significance of 0.05 was selected, and the null
hypothesis stated as the data sets not significantly differing.

A. Average Agent Fitness

Figure 1 (left and right) presents the average fitness for the
PSO and EA methods, graphed for varying numbers of food
units and agent group sizes, respectively. These average fitness
results are graphed for increments of five in numbers of food
units and group sizes, in the range [5, 50].

Statistical tests indicated that, for all numbers of food
units tested, that PSO adapted agents yielded a statistically
significant higher average fitness, comparative to that yielded
by EA adapted agents, except for environments with five food
units (figure 1, left). This statistical significance of difference
in average fitness also held for all agent group sizes tested.

These results indicate that the PSO method, comparative
to the EA, was effective at adapting agents such that they
converged to a common lexicon containing, on average, one
word for each food type. This enabled PSO adapted agents to
successfully participate in a greater number of talking games,
and thus consume more food and receive more fitness. These
results support hypothesis 1 (section I-A). That is, the PSO,
compared to the EA method, is more appropriate for adapting
agents that yield a higher average fitness (for all numbers of
food units and agents tested).

Contributing to this result, was that the PSO method con-
verged to fit solutions (as a consequence of convergence to
a common lexicon containing one word for each food type)

with greater rapidity, comparative to the EA method. This is
supported by related research [12], [5], [22], that demonstrates
that PSO often has the advantage of converging, faster than
EAs, to optimal regions of the search space. In this study,
quick convergence to a common lexicon (section V-B), was
beneficial for PSO adapted agents, in that the few words
derived for each food type allowed many agents to successfully
participate in talking games, consume food, and increase their
fitness. This was not the case in EA adapted agents, since such
agents could not participate in talking games with the same
degree of success (given the greater number of words used for
each food type), and thus could not consume as much food
and increase their fitness by as much. Results for the average
number of words derived for each food type by PSO adapted
agents (section V-B), supports this statement.

B. Lexicon Convergence

Figures 2, 3, and 4 present, for the EA and PSO methods,
the average number of words derived for each food type. In
figures 2, and 4 (right), the average number of words, for
red, green, and blue food types, respectively, is given for
increments of five in agent group sizes in the range [5, 50].
Similarly, for figures 3, and 4 (left), the average number of
words derived for red, green, and blue food types, respectively,
is given for increments of five food units in the range [5, 50].
In figures 2 to 4, words used to calculate the average number
of words graphed were defined as being dissimilar according
to the word similarity measure defined in section II-A.

A statistical comparison of the average number of words
derived, by PSO adapted versus EA evolved agents indicated
that PSO adapted agents converged upon a common lexicon
containing a statistically significant lower average number of
words, comparative to that converged upon by EA evolved
agents. This statistical significance of difference between the
average number of words derived held true for all numbers
of agents and food units tested. Exceptions were observed in
environments containing 5 agents for the red (figure 2, left)
and blue food types (figure 4, right).

C. Results Discussion

These results indicate that, for all food types, the average
number of words derived by EA evolved and PSO adapted
agent groups increased with agent group size. Furthermore,
for all food types, PSO adapted agents were effective and
efficient at converging upon a common lexicon. That is, for
all agent group sizes and numbers of food units tested, within
400 method iterations, PSO adapted agents converged to an
average of 1.20 , 1.10, and 1.0 words for red, green and
blue food types, respectively. This result was observed for
all PSO method simulations. In contrast, EA evolved agents
were not as effective or efficient at converging upon a common
lexicon. Rather, EA evolved agents derived a common lexicon
containing a higher average number of words per food type
for all numbers of agents (figures 2, and 4, right) and food
units (figures 3, and 4, left) tested. The exception was for the
average number of words derived for red (figure 2, left) and
blue (figure 4, right) food types for groups of 5 agents.



Fig. 1. EA/PSO: Average fitness calculated for varying numbers of food units and 25 agents (left), varying agent group sizes and 30 food units (right).

Fig. 2. EA/PSO: Average number of words derived for red (left) and green (right) food versus agent group size and 30 food units.

Fig. 3. EA/PSO: Average number of words derived for red (left) and green (right) food versus number of food units and 25 agents.

Fig. 4. EA/PSO: Average number of words for blue food versus number of food units and 25 agents (left), agent group size and 30 food units (right).



Furthermore, for each food type, PSO adapted agents
derived words with greater similarity, comparative to those
derived by EA adapted agents. That is, over all PSO adapted
processes (30 simulation runs), average word similarity (sec-
tion II-A) for red, green, and blue food types was calculated
as: 0.10, 0.03, and 0.0, respectively. Comparatively, over all
EA adaptation processes (30 simulation runs), average word
similarity for red, green, and blue food types was calcu-
lated as: 0.37, 0.97, and 0.27, respectively. These average
word similarity results, and the statistically significant higher
average fitness of PSO adapted agents, comparative to EA
evolved agents supports the hypothesis that PSO is more
appropriate for facilitating convergence of an agent group to
a common lexicon (hypothesis 2 in section I-A). That is,
having (on average) one word per food type in the common
lexicon, allowed more PSO adapted agents to successfully
engage in talking games and thus consume more food and
increase average fitness. A detailed analysis of the underlying
mechanisms responsible for the statistically significant higher
average fitness and convergence to a common lexicon by PSO
adapted agents is currently work in progress.

These lexicon convergence results are also supported by
related research that has demonstrated that PSO is often
more effective, comparative to EAs, for rapidly converging
to beneficial regions of search space. This has especially been
the case for PSO and EA method comparisons that use small
population sizes [5], [22], [12]. In this study, the PSO and EA
methods used 25 particles or genotypes (table I).

VI. CONCLUSIONS

This research compared the efficacy of a PSO versus an
EA method for deriving and adapting communication in a
simulation where agents played talking games. A talking game
required that agents communicate in order to consume red,
green, and blue food types and thus survive in the simulation
environment. The task performances of the PSO and EA
methods were comparatively evaluated according to the criteria
of average fitness and convergence upon a common lexicon.
Average fitness was equated with the average amount of food
consumed over the course of a PSO or EA adaptive process.
Lexicon convergence was measured by the average number of
words derived by the agents for each food type.

Results indicated that PSO adapted agents, for all numbers
of agents and food units (environments) tested, yielded a
higher statistically significant fitness comparative to the EA
adapted agents. Furthermore, PSO adapted agents were effec-
tive and efficient (taking, on average, less than 400 method
iterations) at converging to a common lexicon (comprising,
on average, one word for each food type). Whereas, the EA
method evolved agents that were less efficient and effective at
converging upon a common lexicon.

Future research will investigate the impact of other adaptive
methods as well as larger agent groups upon average fitness
and convergence to a common lexicon. Also, the impact
of more complex task and environment constraints will be
investigated. For example, agent survival, and emergent social
phenomena such as cooperation and competition, potentially

depend upon agents deriving different words for actions suited
to different situations. Deriving words that mean help, go
away, and lets eat may facilitate the emergence of cooperation
within linguistic similar agent groups and competition between
linguistic dissimilar agent groups. This will contribute to the
general research goal of ascertaining the types of adaptive
methods (and simulation environments) that are most appro-
priate for investigating the origins and emergence of natural
and artificial forms of communication.
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