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Abstract—This paper describes user-supervised Evolutionary
Algorithm (EA) experiments that investigate the evolution of a
sensible fictional dialogue. A user-supervised EA was used given
the difficulty of defining a fitness function for evolving art tasks.
Two EAs were tested for the task of evolving dialogue given an
English word population. The EAs required user-assigned fitness
values to be given as input with varying degrees of frequency
during the evolutionary process. The success of the EAs were
comparatively evaluated with respect to two-point recombination
and a novel complement gene scan operator. Task performance
was evaluated according to average fitness, word and genotype
diversity, and the number of words used in the fittest evolved
dialogue. Results indicated that for both EAs, complement gene
scan was more effective for evolving complex, sensible and
grammatically correct dialogue, comparative to sentences evolved
by the EAs using two-point recombination.

Index Terms—Evolutionary Algorithm, Aesthetic Selection.

I. INTRODUCTION

This paper investigates the evolution of fictional dialogue1

using evolutionary algorithms combined with human and com-

putational aesthetic selection (user-supervised and automated

fitness functions, respectively). Artificial language evolution

using computer simulation [21], [16] is positioned within the

larger field of linguistic theory [12]. The general research goal

of such studies is to understand and to explain the ability of a

speaker to form and understand new sentences, and to reject

grammatically incorrect sentences.

There have been many research endeavors that apply

bottom-up Evolutionary Algorithm (EA) based simulations to

model artificial language evolution [2], and more generally

to the task of evolving art. Such synthetic simulations allow

the study of language and art as a complex, nonlinear, and

analytically intractable system [3]. For example, evolutionary-

based methods have been applied to evolve artistic forms such

as music [23], [17] and images [7]. Bentley and Corne [1],

and Romero and Machado [18] describe overviews of various

artificial evolution methods used in the field of evolving art.

In evolutionary art simulations, the evolution of a fictional

dialogue tantamount to that observed in theater and film, is

an especially difficult task. That is, it is problematic to define

unsupervised computational aesthetics fitness functions [11],

[13] that evaluate subjective character dialogue, and direct the

evolution of sensible and grammatically correct dialogue.

This research evolves fictional dialogue via combining aes-

thetic selection based EAs [9], and Backus Naur Form (BNF)

rules [14]. Aesthetic selection refers to a user’s judgement

1Dialogue and sentences are used interchangeably throughout the paper.

of how much sense and how grammatically correct a given

evolved sentence was at given intervals during an EA process.

That is, at given intervals of an EA adaptation process, a fitness

value that reflected a user’s evaluation was assigned in order

to direct sentence evolution.

This research studied two EAs (EA1 and EA2). EA1

required user-assigned fitness at every generation of the EA

process. EA2 accepted user-assigned fitness only at every tenth

generation of the EA process. At other generations, EA2’s

fitness function used a grammar checker that automatically

assigned a fitness, based on the grammatical evaluation of a

sentence’s correctness and how much sense a sentence made

based on a given rule set. BNF rules were used to map

genotypes to sentences at each generation of EA1 and EA2.

Aesthetic selection was chosen to guide EA fitness func-

tions, given the difficulty of designing completely automated

computational aesthetics [11], [13] (that is, fitness functions

that automatically evaluate an evolved sentence, based on

metrics of sense and grammatically correctness). In this study,

EA2 was partially guided by an automated grammar checker.

Aesthetic selection has been successfully implemented to-

gether with evolutionary methods in many evolutionary art

experiments [20], [22], [5]. BNF rules were selected as the

mechanism to map genotypes to dialogue since previous

research has successfully applied BNF to map simple geno-

types to relatively complex phenotypes such as programming

language source code [19].

This study’s goal was to ascertain the most appropriate

aesthetic selection based EA for evolving sensible and gram-

matical correct dialogue in an evolutionary art simulation.

A. Research Goal and Hypotheses

• Research Goal: Conduct a study that comparatively

evaluates two EAs (EA1, EA2). EA1 and EA2 accepted

user-assigned fitness at every generation and every

tenth generation, respectively. The goal was to ascertain

which EA was more appropriate for evolving sensible

and grammatically correct sentences, with respect to

two-point [9] or the proposed complement gene scan

recombination (extending uniform gene scan [6]).

• Hypothesis 1: EA2 will evolve sentences (for both

recombination operators) with a statistically significant

higher fitness, compared to EA1. This hypothesis was

formulated based on related evolutionary art research

that combines EAs with aesthetic selection [4]. Heijer



and Eiben [4] demonstrated that it is often difficult

for automated computational aesthetics methods to

appropriately judge aesthetic features of evolved art.

• Hypothesis 2: The fittest sentences evolved by EA1 and

EA2, using complement gene scan recombination, will

contain a statistically significant higher genotype and

word diversity, and more words, compared to EA1 and

EA2 using two-point recombination. This hypothesis was

formulated based on research on the related uniform

scanning recombination operator [8], and is based on the

notion that sentences with more diversity in words are

more akin to natural speech. The research of Eiben et al.

[8] indicated that uniform scanning recombination was

effective for searching optimal or near optimal regions

of many fitness landscapes. As an extension, comple-

ment gene scan recombination was hypothesized to be

similarly effective for the task of evolving sensible and

grammatical correct fictional dialogue.

B. Evaluation of Evolved Sentences

1) Average Fitness: For each EA, fitness was assigned by

a user to an evolved sentence at a given generation.

For EA2, an automated grammar checker also assigned

fitness. Average fitness was calculated for each EA run

(n generations), and over N simulation runs.

2) Genotype and Word Diversity: During an EA process,

the diversity between genotypes and the words in

sentences they represent, was measured. Genotype and

word diversity was measured as an average Euclidean

distance between real value and integer sets representing

genotypes and words, respectively. Genotype diversity

progression indicated how quickly an EA converged to

a specific region of the search space. Word diversity

indicated the complexity of evolved sentences. For

example, low genotype diversity indicated that an EA

was operating in a specific search space region, and

was likely to evolve sentences of a limited complexity.

3) Word Use in Fittest Sentences: The average number of

different words used in the fittest evolved sentence at

each generation of an EA, provided a second indication

of sentence complexity. During an EA process, word use

in the fittest sentences invariably decreased as a result

of an EA converging to one region of the search space.

II. METHODS

This section describes the EA and BNF approaches that

were combined to evolve sentences. In this study, only English

grammar and words were used.

A. EA: Evolutionary Algorithm

Two versions of an EA (herein referred to EA1 and

EA2) were used in this study. EA1 and EA2 used the

same experimental configuration, and differed only in the

frequency with which user-assigned fitness evaluations were

accepted. EA1 and EA2 accepted user-assigned fitness at

every generation and every tenth generation, respectively.

1) Genotypes: All genotypes were of equal length, where

each genotype was represented as set of six genes. Each gene

was initialized to a random real value in the range [0, 299].
Each genotype in the population had a fitness in the range

[0, 10], and was assigned an initial fitness value equal to 10.
In the case of EA1, genotype fitness was adjusted at every

generation by user-assigned fitness (section III-B). In the case

of EA2, genotype fitness was adjusted at every generation

by a grammar checker, and at every tenth generation by a

user-assigned fitness (section III-A.2).

2) Selection Operator: Experiments used roulette selection

[9]. At each generation, three parent genotypes were selected

with a degree of probability proportional to the genotype’s

fitness. The roulette operator was applied three times in order

that three parents were selected. The probability of selection

was 1.0 for a fitness of 10, and 0.0 for a fitness equal to

0. After genotypes were selected for recombination, three

parent recombination was applied using either two-point [9],

or complement gene scan recombination (section II-A.3).

3) Recombination Operators: The two-point and

complement gene scan operators produced one and three child

genotypes, respectively. An operator was applied until enough

children were produced to completely replace the parent

population. If a recombination operator was not applied, then

recombination did not occur at the given generation, and the

mutation operator was applied to all genotypes.

Two-Point: This operator randomly selected two points

in three parent genotypes. Each of the three gene segments

were swapped between two (randomly selected) of the three

parent genotypes. Each gene segment was swapped between

two selected parents with a 0.8 probability. For example, if

three genotypes a, b, and c were selected for recombination,

then two points would be randomly selected in a, b, and c,

dividing each genotype into three gene segments A0, B1, C2

for a, D0, E1, F2 for b, and G0, H1, I2 for c. Assume that a

was selected to potentially have its gene segments swapped.

If a was selected to have its first gene segment swapped with

that of b, then gene segment A0 would be swapped with

D0 with 0.8 probability. Second, if c was selected to have

its second gene segment swapped with a, then B1 would be

swapped with H1 with a 0.8 probability. Finally, if b was

selected to have its third gene segment swapped with a, then

C2 would be swapped with F2 with 0.8 probability.

Complement Gene Scan: This operator is a novel extension

of uniform scanning recombination [8]. Each generation, the

complement gene scan operator was applied with a 0.8 prob-

ability to produce three child genotypes from three parents.

A marker of a value in the range [1, 3] (randomly selected)

was assigned to each gene in a child genotype with (initially)

no gene values. Each marker value indicated which parent



genotype (1, 2, or 3) would pass the value of its corresponding

gene to a given child genotype. After markers had been

assigned to each gene in a child genotype, the child’s genes

were given values from at least one of the parent genotypes.

To illustrate complement gene scan, consider the following

example. Assuming three child genotypes (A, B and C) each

comprising three genes, the operator initializes each genotype

with a null value. Each gene in each child genotype is

then randomly initialized with a marker that refers to the

corresponding gene in a given parent genotype. Consider

the following gene marker assignment to child genotype A

(specifying parent gene values to be inherited):

A = {[2], [1], [3]} (1)

That is, the values [2, 1, 3] are markers that refer to the

corresponding gene values in parent genotypes 2, 1, and 3,

respectively. The complement child genotypes are initialized

with marker values via adding a value of one to the gene

marker value in the previous complement child genotype.

Child genotypes B and C are thus initialized as follows:

B = {[3], [2], [4]} (2)

C = {[4], [3], [5]} (3)

To encourage complementary inheritance of gene values

from parent genotypes, a MOD operator is used for gene

marker values greater than three. The three example child

genotypes A, B, and C are now:

A = {[2], [1], [3]} (4)

B = {[3], [2], [1]} (5)

C = {[1], [3], [2]} (6)

One of these three child genotypes (A, B, or C) is then

randomly selected to be propagated into the next generation.

4) Mutation operator: After recombination, the mutation

operator was applied to each gene in each genotype with a 0.05
degree of probability. Mutation was implemented by adding a

random real value to a gene in the range [0, 9].

B. Genotype to Sentence Mapping: Backus Naur Form (BNF)

The Natural Language Processor (NLP)2 was used to load

text files containing dialogue into a vocabulary used by the

EAs. When the dialogue was read in by the NLP, a hash

map was constructed. Each key in the hash map was a Part

Of Speech (POS) descriptive tag that was assigned to sets

of words. This hash map represented the vocabulary used

by an EA. In constructing the vocabulary, a Penn Treebank

POS tagger [15] was used to assign descriptive tags to words

in the input dialogue. These tags indicated the word type

based upon the part of speech that each word corresponded

to, and the relationship of each word to adjacent words in

2The Natural Language Processor framework OpenNLP v1.4.3 is an open
source project available at: http://sourceforge.net/projects/opennlp

a sentence. For terminal word sets in the dialogue, the POS

tagger selected either pre-modifier, determiner or head as the

most appropriate tag. For non-terminal word sets the POS

tagger selected either verb phrase or noun phrase as the most

appropriate tag. At each EA generation, when a genotype was

mapped to a sentence, the following parse tree (in the form

of a BNF rule set) was applied to the vocabulary. BNF is a

notation that expresses the grammar of a language in terms

of production rules [14]. BNF was found to be effective for

performing genotype to sentence mappings in this study. The

following parse tree was used in all experiments.

〈sentence〉→ 〈clause〉 〈punctuation〉
〈clause〉→ 〈noun phrase〉 〈verb phrase〉 |
〈noun phrase〉 〈verb phrase〉 〈noun phrase〉 |
〈interjection〉
〈noun phrase〉→ 〈determiner〉 〈premodifier〉 〈head〉
| 〈determiner〉 〈head〉
〈verb phrase〉→ 〈modal〉 〈base verb〉 | 〈verb〉
〈participle〉
〈determiner〉→ 〈article〉 | 〈pronoun〉
〈premodifier〉→ 〈participle〉 〈adjective〉 〈noun〉 |
〈noun〉|
〈adjective〉 〈noun〉 | 〈participle〉 〈noun〉
〈head〉→ 〈noun〉 | 〈adjective〉 〈noun〉

A genotype to sentence mapping then worked as follows.

1) For each gene in a given genotype, the gene value

modulo the number of mapping choices (defined by

the BNF grammar) was calculated. The gene value was

the dividend, and the number of choices was the divisor.

2) The result of applying the modulo operator (producing

the remainder after division) indicated the phrase, word

or punctuation mapped from the given gene value.

After a genotype was mapped to a word set, the word set

was assembled, according to English grammar rules, into a

sentence. Such sentences were then evaluated by the user

(user fitness assignments only occurred at specific generation

intervals), or by an automated grammar checker (section III).

BNF rules consisted of a set of terminals and non-terminals.

The terminals were the subject, verb, object, adverb and

punctuation in a sentence. Nonterminals were described by

expressions, where an expression was comprised of sets of

possible nonterminals and terminals. Each nonterminal was

substituted with a word or form of punctuation (selected from

the vocabulary). To demonstrate the genotype to sentence

mapping process, consider the simplified example BNF rule A:

〈sentence〉→ 〈subject〉 〈predicate〉 〈punctuation〉
〈predicate〉→ 〈verb〉 | 〈verb〉 〈object〉 | 〈verb〉
〈adverb〉
〈subject〉→ Sally | I | Her
〈verb〉→ did | sings | dance | ate
〈object〉→ a box | the night

〈adverb〉→ well | quietly
〈punctuation〉→ ! | .



In each genotype, gene values control genotype to sentence

mapping. Consider the following example genotype D:

D = {213, 7, 45, 11, 2} (7)

Given the BNF rule A, and the genotype D, then D would be

mapped to its sentence as follows:

1) The first gene of D is 213. Since, in the BNF rule

A, there are no alternate choices for the structure of

the nonterminal sentence, the first choice is made for

the nonterminal subject, which can be one of three

possible terminals. The subject Sally is selected, since

213 modulo 3 is 0. In this example, 0 denotes that the

first choice of subject be selected.

2) Next, a choice is made for the predicate nonterminal in

the sentence. The predicate nonterminal is mapped to

one of three nonterminal possibilities. The next gene is

7, and 7 modulo 3 is 1, so the predicate construct with

a verb and object is selected.

3) The next gene in D is 45, and 45 modulo 4 is 1,

meaning the verb sings is selected.

4) The next gene in D is 11, and 11 modulo 2 is 1,

meaning the object the night is selected.

5) Finally, a choice is made for the punctuation nonterminal

in the sentence. The next gene in D is 2, and 2 modulo

2 is 0, meaning the terminal punctuation ! is selected.

Hence, in this example, the genotype D is mapped to the

sentence Sally sings the night!.

III. EVALUATION METRICS

This section describes the evaluation metrics used by the

EAs. Namely, the fitness function, the word and genotype

diversity, and a measure of word use in an evolved dialogue.

A. Fitness Functions

EA1 implemented a user-supervised fitness function, and

EA2 combined user assigned fitness with fitness automatically

assigned by a grammar checker.

1) User-Assigned Fitness: During either EA process,

fitness was assigned by the user at a given generation interval,

or by an automated grammar checker at every generation.

The fitness value assigned was based on a user’s evaluation of

how grammatically correct and sensible an evolved sentence

was at generation i of an EA process. User-assigned fitness

values were always in the range [0, 10]. In general, an evolved

sentence that contained many grammatical errors and was

nonsense was assigned a fitness value of 0. Evolved sentences

that contained no grammatical errors and made sense, were

assigned a fitness value of 10. Since each genotype in an EA

population had an initial fitness value of 10, user-assigned
fitness f was calculated as a penalty −(10 − f) applied to a

given genotype’s fitness value.

2) Grammar Checker: The grammar checker comple-

mented user-assigned fitness for EA2. The grammar checker

JLanguageTool3, was integrated into the EA2 fitness function

to automatically evaluated evolved sentences. The JLanguage-

Tool used 475 English language grammar rules that identified

formatting and punctuation errors, including common mistakes

such as confusing the use of you’re and your. At each EA2

generation, sentences with grammatical errors detected by

JLanguageTool, applied a fitness penalty of −x, where x

denoted the number of detected grammatical errors.

B. Average Word and Genotype Diversity

The diversity between words in sentences (mapped from

genotypes), and between individual genotypes was measured

over the course of the n generations of a given EA.

The diversity of words was calculated in terms of the

average Euclidean distance between words that comprised

the fittest evolved sentence (at generation i). In order to

measure word diversity, words used in evolved sentences had

their constituent characters converted to ASCII values. That

is, characters in the range [a, z] were converted to their

corresponding ASCII values in the range [97, 122] so as the

Euclidean distance metric (equation 8) could be applied. An

average Euclidean distance was calculated over all distances

measured between all possible pairs of words in the fittest

evolved sentence. A Euclidean distance metric was applied as

a simple means of ascertaining the average difference between

the characters that comprised words used in evolved sentences.

Given an average Euclidean distance calculated between the

words comprising two fittest evolved sentences, the relative

average diversity of words used in each could be judged.

Average genotype diversity was similarly calculated via

applying the Euclidean distance metric to all possible pairs

of real value sets representing genotypes in an EA population,

and then calculating an average Euclidean distance. The dis-

tance between two individuals (words or genotypes), x1 and

x2, of length m was calculated as:

d(x1, x2) =

√

√

√

√

m
∑

i=1

(x1i − x2i)2 (8)

C. Word Use in Evolved Dialogue

Each EA used a vocabulary of 500 English words and forms

of punctuation (table I). At each generation, genotypes were

mapped to sets of words that were then assembled as sen-

tences. During an EA process, as a user or grammar checker

(or both) assigned fitness to genotypes, words in sentences

mapped from the fittest genotypes became the most frequently

used words. Similarly, words in the sentences mapped from

less fit genotypes became less frequently used during an EA

process. At each generation, N sentences were mapped from

a population of N genotypes, and assigned a fitness. Word

frequency for the words that appeared in the fittest sentence

was then incremented.

3JLanguageTool v1.0.0 can be found at: www.languagetool.org/



TABLE I

EA1 / EA2 AND SIMULATION PARAMETERS.

EA1 / EA2 and Simulation Parameters

Population size 15

Number of EA generations 50

Mutation operator Add integer in range [0, 9]

Mutation rate per gene (σ) 0.05

Selection operator Roulette

Gene value initialization Random integer in range [0, 299]

Recombination operator Two-point / Complement gene scan

Parents per recombination 3

Genotype String: 18 Integers

Genotype length 40

Grammar checker JLanguageTool v1.0.0

Fitness function User / grammar checker assigned

Fitness range [0, 10]

User-assigned fitness Every 1 (EA1) / 10 (EA2) generations

Simulation runs per experiment 20

Words in initial vocabulary 500

IV. EXPERIMENTS

Each experiment applied EA1 or EA2 with a population

of 15 genotypes, using either two-point or complement gene

scan recombination. An experiment was executed for 50

generations, and 20 simulation runs. For each EA, average

values for fitness, genotype and word diversity, and the

number of words used in evolved dialogue (section III)

were calculated at the end of the EA process, and over 20

simulation runs of a given experiment. When the average

word diversity and number of words were calculated, only

the fittest evolved sentence (at the final generation of a given

EA’s simulation run) was used. At each generation of EA1,

the user was presented with 15 sentences, where one sentence

was mapped from each genotype in the population. The user

then assigned each sentence a fitness rating in the range [0,

10]. EA2 used the same procedure for fitness assignment,

except that fitness was assigned once every 10 generations.

Also, at every generation a grammar checker automatically

assigned a fitness value. Table I presents the parameter values

used in this study. These parameter values were derived in

exploratory experiments that determined the parameter values

were near optimal.

An EA’s task performance was average fitness, genotype

and word diversity, and the number of words in evolved

sentences. Experiments compared EA1 and EA2 with respect

to two-point and complement gene scan recombination. Seven

users4 participated in running experiments using EA1 or EA2.

Experimental Objective: The objective was to ascertain

if either EA (with two-point or complement gene scan

recombination) maximized any task performance measure.

Average Fitness: This task performance measure tested

hypothesis 1 (section I-A). That is, that EA2 will evolve

4Thanks are extended to the following people for their assistance in running
experiments: Nikitah Bobhate, Gordon Wells, Waldo Delport and Ivan Sharpe.

dialogue (for both recombination operators) that yields a

statistically significant higher fitness, comparative to EA1.

Average Genotype and Word Diversity: Diversity in

the fittest evolved sentences partially tested hypothesis 2

(section I-A). That is, the EAs using complement gene

scan recombination, will evolve dialogue with a statistically

significant higher average word and genotype diversity,

compared to the EAs using two-point recombination.

Hypothesis 2 is based on related research on uniform

scanning recombination [8], and the notion that sentences

with more diversity in words are more akin to natural speech.

Average Number of Words in Fittest Dialogue: This measure

partially tested hypothesis 2 (section I-A). That is, the fittest

dialogue evolved by the EAs using complement gene scan

recombination will contain a statistically significant greater

number of words, compared to two-point recombination.

V. RESULTS

This section presents task performance results for dialogue

evolved by EA1 and EA2 using each recombination operator.

To gauge comparative task performance results, statistical

tests were applied to EA1 and EA2 result data, for each

recombination operator. The Kolmogorov-Smirnov test [10]

confirmed that EA1 and EA2 result data conformed to normal

distributions. In order to determine if there was a statistically

significant difference between the task performances of EA1

and EA2, an independent t test [10] was applied. A statistical

significance of 0.05 was selected, and the null hypothesis

stated as the data sets not differing significantly.

A. Average Fitness

The average fitness and standard deviation (in parentheses)

of EA1 was 1.32 (0.65), and 5.16 (1.29), using two-point

and complement gene scan recombination, respectively. The

average fitness and standard deviation of EA2 was 8.10 (1.30),
and 8.70 (1.05) using two-point and complement gene scan

recombination, respectively.

Statistical t tests indicated that, for both recombination

operators, EA2 yields a significantly higher average fitness,

comparative to EA1. These results indicate that when the user-

assigned fitness at every generation of an evolutionary process

(as in the case of EA1), evolved sentences will have a lower

fitness, on average. This was the case since users often judged

evolved sentences as not making sense and containing many

grammatical errors. However, when a user-assigned fitness at

every tenth generation (as in the case of EA2), then user input

to direct sentence evolution was comparatively infrequent. At

other generations, grammatical errors and nonsensical con-

structs were evaluated by the grammar checker. Given that

not all mistakes were detected by the grammar checker, this

resulted in sentences evolved by EA2 having a higher average

fitness, compared to EA1. This result supports hypothesis 1

(section I-A). That is, that EA2 will evolve sentences, for both

recombination operators, that yield a statistically significant

higher fitness, compared to EA1.



B. Average Genotype Difference

Figure 1 (sub-figure a and b) presents the average Euclidean

distance calculated between genotypes in EA populations,

using two-point or complement gene scan recombination,

respectively. The average genotype distance range presented in

figure 1 has been normalized in the range [0.0, 1.0], where 0.0

indicates no difference between genotypes and 1.0 indicates

the maximum difference between genotypes.

The average Euclidean distance (standard deviation given in

parentheses) between genotypes in the EA1 and EA2 popula-

tions, using two-point recombination, was 0.47 (0.24) and 0.47

(0.27), respectively. The average Euclidean distance between

genotypes in the EA1 and EA2 populations, using complement

gene scan recombination, was 0.48 (0.23) and 0.44 (0.30),

respectively. A statistical t test comparison indicated that

there was no statistically significant difference between EA1

and EA2 using either two-point or complement gene scan

recombination.

This result partially refutes hypothesis 2 (section I-A).

That is, both EA1 and EA2, using complement gene scan

recombination, will evolve sentences that contain more words

and yield a statistically significant higher average word and

genotype diversity, compared to two-point recombination.

C. Average Word Difference

Figure 2 (sub-figure a and b) presents the average Euclidean

distance between words used in the fittest evolved sentences (at

each generation), for EAs using two-point or complement gene

scan recombination respectively. The average word distance

was normalized in the range [0.0, 1.0]. A value of 0.0 indicated

no difference between words in an evolved sentence. That is,

where only one word was used. A value of 1.0 indicated the

maximum possible difference between words used. That is,

where very different types of words are used.

The average word difference (standard deviations are given

in parentheses) in sentences evolved by EA1 and EA2, using

complement gene scan recombination, was 0.45 (0.01) and

0.47 (0.01), respectively. The average word distance in sen-

tences evolved by EA1 and EA2, using two-point recombina-

tion, was 0.37 (0.02) and 0.35 (0.04), respectively.

A statistical t test comparison of the average word distance

in the fittest sentences evolved by EA1 and EA2, indicated

that complement gene scan recombination resulted in a sta-

tistically significant higher word diversity, compared to the

fittest sentences evolved using two-point recombination. This

result partially supports hypothesis 2 (section I-A). That is,

that either EA, using complement gene scan recombination

will evolve sentences that contain more words and a higher

word and genotype diversity, compared to sentences evolved

by either EA using two-point recombination.

D. Average Number of Words Used in Evolved Sentences

Figure 3 (sub-figure a and b) presents the average

number of words used in the fittest sentences evolved by

EA1 or EA2 using two-point or complement gene scan

recombination, respectively. A statistical comparison of the

average number of words used in the fittest sentences (at

the final generation of an EA process) evolved by EA1 and

EA2, indicated that complement gene scan recombination

resulted in sentences containing a statistically significant

higher number of words, compared to sentences evolved

using two-point recombination. The average number of

words (standard deviation given in parentheses) in sentences

evolved EA1 and EA2, using two-point recombination, was

64.06 (8.66) and 63.04 (8.75), respectively. The average

number of words in sentences evolved by EA1 and EA2,

using complement gene scan recombination, was 78.82 (5.12)

and 80.50 (5.52), respectively. This result partially supports

hypothesis 2 (section I-A). That is, both EA1 and EA2, using

complement gene scan recombination, will evolve sentences

that contain more words and yield a statistically significant

higher average word and genotype diversity, compared to

two-point recombination.

The results for average word diversity, and the number of

words used in evolved sentences demonstrate that complement

gene scan recombination is more effective, compared to two-

point recombination. That is, complement gene scan recom-

bination used with EA1 or EA2, facilitates the evolution of

sentences that contain a greater number of words and greater

diversity in words. However, there was no statistically sig-

nificant difference in the average distance between genotypes

in EA1 and EA2 using either recombination operator. Thus,

even though both EA1 and EA2, using either recombination

operator resulted in decreasing genotype diversity (figure 1),

complement gene scan recombination facilitated the evolution

of sentences containing more words and greater word diversity.

The supposition supporting this result is that the markers

used by the complement gene scan operator allowed individual

genes from multiple parents to be combined and propagated

to child genotypes. This mechanism was appropriate for either

EA1 or EA2 to evolve sentences that contained more words

and greater word diversity, compared to sentences evolved

using two-point recombination. However, this hypothesis is

currently the subject of ongoing research.

The statistically higher average fitness of EA2, compared to

EA1, is attributed to the stringent evaluation of user-assigned

fitness at each generation of EA1. The automated grammar

checker applied at every generation (of EA2) was not able

to as effectively evaluate how much sense a sentence made,

and was not as effective at detecting grammatical errors as a

human evaluator. Furthermore, the fitness assigned by a user at

every tenth generation of EA2 had little impact upon directing

sentence evolution. That is, the fittest sentences evolved by

EA2 were regarded by human users as conveying little sense,

as well as containing grammatical errors.

E. Evolved Sentences

This section presents samples of the fittest sentences (dia-

logue) evolved for two characters: Luanne and Mark. Each

sample was the fittest selected from one the 20 runs (50

generations each) of EA1 and EA2, that applied either two-

point or complement gene scan recombination (section IV).
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Fig. 1. Average normalized Euclidean distance between genotypes when EAs used two-point (sub-figure a) and complement gene scan
(sub-figure b) recombination. Sub-figures a and b are presented on the left and right hand sides, respectively.
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EA1 / EA2: Average Word Difference in Evolved 


Dialogue (Complement Gene Scan)
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Fig. 2. Average normalized Euclidean word distance in fittest sentence (at each generation) with two-point (sub-figure a) and complement
gene scan (sub-figure b) recombination. Sub-figures a and b are presented on the left and right hand sides, respectively.
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EA1 / EA2: Average Number of Words in  


Fittest Sentences (Complement Gene Scan)
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Fig. 3. Average number of words used in fittest evolved sentence (at each generation) with two-point (sub-figure a) and complement gene
scan (sub-figure b) recombination. Sub-figures a and b are presented on the left and right hand sides, respectively.



1) EA1: Two-point recombination:

Luanne: Little Mark will look only!

Mark: Quiet Mark might look not.

Luanne: Heavier looking pie Luanne will eat again.

Mark: Your thinking slow Luanne would stay not?

Luanne: I little Mark will live alright!

Mark: My cousin can love back!

2) EA1: Complement gene scan recombination:

Luanne: Another great school Maye can go always!

Mark: My lot might go so...?

Luanne: My application won’t go too!

Mark: All old school Mom got thinking.

Luanne: Another great looking pie Maye can eat lately?

Mark: A lot might stay back.

3) EA2: Two-point recombination:

Luanne: Another old picture little change was thinking?

Mark: I old Luanne will start later!

Luanne: Me thin cousin quiet day might happen so...!

Mark: His slow ideas did getting?

Luanne: My thin cousin whole look will find alright!

Mark: My old months made feeling.

4) EA2: Complement gene scan recombination:

Luanne: That heart might do really!

Mark: A quiet good night will happen always.

Luanne: That scholarship might do later!

Mark: Some quiet day was done?

Luanne: Your man was biding.

Mark: Some day old Ohio was coming.

VI. CONCLUSIONS

This research compared the efficacy of two Evolutionary

Algorithms (EA1 and EA2) for the task of evolving gram-

matically correct and sensible fictional dialogue from an

initial English vocabulary. Both EA1 and EA2 used fitness

functions that worked with user-supervised fitness. EA1 and

EA2 accepted user-assigned fitness at every and every tenth

generation, respectively. For EA2, an automated grammar

checker also modified fitness at every generation. Fitness was

assigned based on how sensible and grammatically correct a

user judged an evolved sentence to be. For both EA1 and

EA2, experiments compared the effect of using two-point and

complement gene scan recombination, upon the evolution of

dialogue. For both EA1 and EA2, using complement gene scan

recombination, the fittest evolved sentences contained more

words, and a greater diversity in words, compared to sentences

evolved using two-point recombination. However, there was no

significant difference in the average genotype diversity in both

EA1 or EA2 population when complement gene scan or two-

point recombination was used. That is, decreasing diversity

in an EA genotype population did not impact upon the

capability of complement gene scan recombination to evolve

more complex sentences, compared to sentences evolved by

the EAs using two-point recombination.

Future work will investigate the mechanisms responsible

for the evolution of greater sentence complexity by EAs

using complement gene scan recombination. Furthermore, the

complement gene scan operator will be tested in comparison

to additional recombination operators using varying numbers

of parent genotypes, for the task of evolving sensible and

grammatically correct fictional dialogue.
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