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Abstract—This paper presents a simulation of predator (pur-
suer) and prey (evader) agents operating within a competitive
co-evolution process. The aim of the study was to investigate
the effects of different resource (food for the prey) distributions
and amounts on the adaptation of predator (pursuit) and prey
(evasion) behaviors. Predator and prey use Artificial Neural
Network (ANN) controllers to simulate behavior, where behav-
iors are adapted by Neuro-Evolution. The research objectives
were two-fold. First, to test the capability of NE for evolving
predator and prey behaviors that are effective in environments
other than that in which they were evolved. Second, to test
the efficacy of NE as a behavioral modeling method for co-
evolutionary predator-prey simulations. Results indicated that
NE was effective at evolving predator and prey behaviors
that also performed well in other environments. Also, NE
was successful at deriving behaviors that maintained specific
similarities with those reported upon in related predator-prey
studies. A key goal of this research was to use a synthetic
approach to elucidate behavioral evolution in nature.

I. INTRODUCTION

The use of competitive co-evolution to facilitate emergent

behavior [1], [2] via harnessing arms race dynamics [3], [4]

is a well explored research area in pursuit-evasion tasks [5],

[6], [7] and related predator-prey simulations [8], [9], [10].

However, the robustness of co-evolved behaviors in terms of

task performance when transferred to other environments has

received relatively less research attention.

Also, in both biological and agent-based research, there

have been few studies that examine the co-adaptation of

predator and prey behaviors with respect to resources in

the environment [11]. Consequently little is known about

how predators and prey concurrently behave in competition

with one another, and in response to resources in their

environment. According to ethological models, a predator

is expected to spend a greater portion of its lifetime in

resource patches where the prey spends a significant portion

of its lifetime [12]. A prey must adapt its behavior in

order to balance space use with the risk of predation and

the benefits of foraging [13]. Generally prey are expected

to favor resource rich patches and avoid areas with high

predation risk. Hence, a predator should try to match the time

spent by the prey in resource rich patches in order maximize

the chances of prey capture [14]. This dynamic between

resource patch selection makes it critical to study predator

and prey space use concurrently, rather than studying either

in isolation [11].

Agent-based models, characterized by synthetic method-

ologies (understanding via building) are becoming increas-
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ingly popular in animal behavior research [15]. Combining

Artificial Neural Networks (ANNs) and genetic algorithms

(Neuro-Evolution (NE) [16]) for evolving agent behaviors

has been well researched [17], [18], [19]. Such models

are analogical systems that aid ethologists in constructing

novel hypotheses for biology. As in such research, we adopt

the supposition that agent simulations implicitly represent

hypotheses about, and should be evaluated in comparison

to, biological systems [20]. Also, agent simulations allow

biologists to test hypotheses and to investigate biological

phenomena in the context of experiments that cannot be

conducted in nature.

This paper investigates simulated predator and prey be-

haviors, and relates them to behaviors derived by theoretical

biological models. Specifically, the time predator and prey

agents spend on food patches is measured. We use a com-

petitive co-evolution process as a means of progressively im-

proving and adapting predator and prey agent behaviors. We

co-evolved the behaviors of one predator and one prey agent.

Only two agents were simulated in order to simplify the

analysis of emergent pursuit-evasion behaviors. Within the

competitive co-evolution process, NE was used to adapt agent

ANN controllers. Previous research [21] demonstrated the

efficacy of NE as a controller design method in competitive

co-evolution process. In this study, behaviors adapted by NE

(in different environments) were compared according to two

measures. First, the number of pursuit-evasion games won by

the predator and prey, in environments containing different

resource distributions and amounts. Second, the time spent

by agents on resource patches in environments with different

resource distributions.

In terms of the overall objective, this research aimed to

combine NE with an agent-based simulation in order to

address two goals pertinent to biologically inspired com-

puting. First, to demonstrate that NE is suitable for agent

controller design within a competitive co-evolution pursuit-

evasion task. Second, to test the efficacy of NE as a method

for modeling biological phenomena in agent based simula-

tions, where such simulations test biological hypotheses, and

elucidate how behaviors emerged in nature.

A. Research Objectives

1) Determine the efficacy of the given NE method for

co-evolving controllers that are effective (in terms of

number of pursuit-evasion games won) when tested

in other environments (defined by varying resource

distributions and amounts).



2) Ascertain the appropriateness of NE as a predator-prey

behavioral modeling method via comparing co-evolved

behaviors observed in the agent-based simulation with

those observed in related predator-prey studies.

B. Research Hypotheses

1) Given previous research results [21], NE co-evolved

predator and prey controllers will perform comparably

well (in terms of the number of pursuit-evasion games

won) when tested in other environments (defined by

varying resource distributions and amounts).

2) Given related predator-prey behavioral models [22],

for all environments, the prey will spend a portion of

its lifetime on each food patch, proportional to food

amounts in those patches. Predators will approximately

match prey spatial distribution behavior.

II. METHODS

In this study, the competitive co-evolution process uses two

populations of individuals (ANN controllers) that compete

against each other, where each population aims to evolve

the fittest behavior. One population adapts behaviors for

predator agents, and the other adapts behaviors for prey.

Within each population, behaviors compete for the role of

the fittest behavior. The fittest behaviors then compete against

each other in the context of the pursuit-evasion task. Each

behavior is represented by a genotype, which is a vector of

floating point connection weights values of a controller.

A. Neuro-Evolution (NE)

A competitive co-evolution version of Conventional

Neuro-Evolution (CNE), based on that proposed by [23], was

used. This method directly encoded and evolved complete

controllers. That is, one genotype encodes all the parameters

(input and output connection weights) of an ANN controller.

After all controllers in each population have been evaluated,

recombination occurs. During recombination, each controller

is systematically selected from an elite portion (table I) of

each population and recombined with a partner controller

(randomly selected from the same population). Enough child

controllers are produced in order to completely replace each

population. A child genotype is produced via recombining

two parent genotypes using single point crossover [24], and

mutation with a Gaussian distribution. The mutation operator

changes each gene (connection weight) by a random value

in a given range with a fixed degree of probability (table I).

B. Predator and Prey Genotypes

The term genotype refers to a string of floating point

values (a) that represents the connection weight values of a

predator or prey ANN controller. Where, a directly encodes

a controller, and is a string of 148 (predators) and 222 (prey)

floating point values. Predator controllers consist of weights

fully connecting 13 sensory input neurons to eight hidden

layer to four motor output neurons (figure 1: left). Prey

controllers consist of weights fully connecting 17 sensory

input neurons to nine layer neurons to six motor output

neurons (figure 1: right). Also, there is one bias neuron for

the input and hidden layers for predator and prey controllers

(not illustrated in figure 1). Each connection weight is

initialized to a value in a fixed range (table I), and can change

to any value during the adaptation process.

C. Genotype Evaluation

Each controller in a given population is systematically

evaluated against 20 randomly selected opponent controllers.

Opponents are selected from: (1) The opposing population,

or (2) A Hall of Fame [2]. For each pairing of controllers,

six pursuit-evasion games are played. The evaluation and

assignment of fitness to all controllers in both populations

constitutes one iteration in the NE competitive co-evolution

process. The fitness functions used in this study is reported

upon in related research [21].

III. PURSUIT-EVASION TASK

The pursuit-evasion task requires one predator agent to

capture one prey agent. Prey capture occurs when a predator

occupies the same grid cell as the prey. One predator and

one prey agent are initialized to random positions in the

environment, at a minimum Euclidean distance of two, and

a maximum distance of 16 grid cells.

A. Pursuit-Evasion Simulation

The simulation uses a tritrophic [11] one predator versus

one prey model. That is, the predator pursues the prey, and

the prey evades the predator and forages resource patches

for food to consume. The environment is a bounded two

dimensional grid of 25 x 25 cells. One predator, one prey and

any number of food units can occupy any x, y position. At

each iteration of a pursuit-evasion game, agents can move in

one of eight directions. Predators and prey can opt to move

one grid cell per game iteration, or to stand still. To give

the prey an advantage, it is also able to jump a distance of

two cells per game iteration. Dissimilar to related research

[14], we assume metabolic (energy) costs for the predator

and prey, and resource patches offer the prey no protection

from predation. Three simulation environments, containing

different distributions of 70, 40 or 10 food units, were tested.

• Corner Environment: Spreads all food units across four

patches (one in each corner). Each patch covers a 5

x 5 grid cell area. Given that 70 and 10 food amounts

cannot be divided equally, left over food units are placed

in the top and bottom left corner food patches. Figure

2 presents the corner distribution with 10 food units.

• Clustered Environment: Spreads 70% of food units over

one big patch (7 x 7 grid cells) and 30% of food units

over three smaller patches (of 3 x 3 cell areas). Patches

are in fixed locations and do not overlap. Figure 4

presents the clustered distribution with 10 food units.

• 2-patch Environment: Spreads 80% of food units over

one big patch (8 x 8 grid cells) and 20% of food units

over one small patch (of 4 x 4 cell areas). Figure 6

presents the 2-patch distribution with 10 food units.



Neuro-Evolution (NE) Parameters

Population size / Elite portion 32 / 0.5

Number of NE generations 1500

Mutation probability / rate per gene (σ) 0.05 / 1

Gene (weight) value initialization [-1.0, 1.0]

ANN sensory input neurons (Predator / Prey) 13 / 17

ANN hidden layer neurons (Predator / Prey) 8 / 9

ANN motor output neurons (Predator / Prey) 4 / 6

TABLE I

NE PARAMETERS.

Simulation Parameters

Iterations per pursuit-evasion game 70

Simulation runs / Games per evaluation 20 / 120

Environment width / length 25

Number of food units 70 / 40

Energy per food unit 6

Initial agent positions / energy Random / 70

Prey jump cost / distance 4 / 2

Predator / Prey movement cost 1 / 2

Predator / Prey movement distance 1 / 2

Sensor noise (σ) 0.1

Food distribution Corner / Clustered

Hall of Fame size / update (iterations) 15 / 50

TABLE II

SIMULATION PARAMETERS.

Tables II and I present the NE and simulation parameter

settings, respectively. Parameter values were derived experi-

mentally. Minor changes to these parameter values produced

similar results (not presented here due to space limitations).

IV. PREDATOR AND PREY

A. Detection Sensors

Four food detection and four opponent detection sensors

cover four sensor quadrants. This provides an agent with a

360 degree field of view. Each sensor quadrant is positioned

at the front, back, left and right of an agent. A sensor

quadrant’s maximum length and width are defined as one

third of the environment’s width. Detection sensors are

always active, and sensor values are equal to the Euclidean

distance to the closest food unit or opponent.

Each food detection sensor q, returns the distance between

this agent (v) and the location of the closest food unit in the

quadrant of sensor q. If no food units are detected by q then

the sensor value is equal to the maximum range of q.

Each opponent detection sensor p, returns the distance

between v and the location of the closest opponent in the

quadrant of sensor p. If no opponents are detected by p then

the sensor value is equal to the maximum range of p.

B. Artificial Neural Network (ANN) Controller

A recurrent ANN [25] controller maps sensory inputs to

motor outputs for predator and prey agents. The controller

for the predator (figure 1: left), fully connects 13 sensory

input neurons ([SI-0, SI-12]) to eight hidden layer neurons,

to four motor outputs ([MO-0, MO-3]). The controller for

the prey (figure 1: right), fully connects 17 sensory input

neurons ([SI-0, SI-16]) to nine hidden layer neurons, to six

motor outputs ([MO-0, MO-5]). For both controllers, input

neurons [SI-0, SI-3] accept inputs from four food detection

sensors. Input neurons [SI-4, SI-7] accept inputs from four

agent detection sensors. Sensory input neuron SI-8 accepts

the opponent’s last position (one of eight directions) as input.

For the predator, input neurons [SI-9, SI-12] accept motor

output layer neuron activation values from the previous game

iteration. For the prey, sensory input SI-9 indicates if the prey

is situated on a food cell. Input SI-10 indicates the current

energy of the agent, and input neurons [SI-11, SI-16] accept

motor output layer neuron activation values from the previous

game iteration. For both the predator and prey, hidden and

output neurons are hyperbolic tangent units [26]. The number

of hidden layer neurons was determined experimentally, and

found to enable the evolution of effective pursuit-evasion

behaviors. All sensor input values are normalized to the

active range of the hyperbolic function [-1.5, 1.5]. Output

values are in the range [-1.0, 1.0]. After sensory input

normalization, Gaussian noise (table II) was applied to each

input to simulate sensor noise.

C. Action Selection

At each game iteration, agents can move in one of eight

directions. Predator agents are able to move one grid cell

per game iteration at a cost of one energy unit. Prey agents

can move one grid cell per game iteration at a cost of two

energy units, or jump a distance of two at a cost of four

energy units. At each game iteration, agents may also opt

to stand still, which uses no energy. An agent’s direction of

movement is calculated from the controller’s Motor Outputs

(MO-0, MO-1, MO-2, and MO-3 in figure 1), as follows.

• MO-0, MO-1:

– If MO-0 > 0.0, and MO-1 < 0.0: Move backwards.

– If MO-0 > 0.0, and MO-1 > 0.0: Move forward.

– If MO-0 ≤ 0.0: Stand still.

• MO-2, MO-3:

– If MO-2 > 0.0, and MO-3 < 0.0: Move to the left.

– If MO-2 > 0.0, and MO-3 > 0.0: Move to the right.

– If MO-2 ≤ 0.0: Stand still.

The prey uses two other MO nodes that operate as follows.

• If MO-4 > 0.0: If the prey is on a food cell, then the

prey eats and does not move.

• If MO-5 > 0.2: The prey jumps.

D. Task Performance Evaluation

As a qualitative measure for NE evolved behaviors, we

used the number of pursuit-evasion games won. A predator

won a pursuit-evasion game if it captured the prey during the

game, or if the prey depleted all energy before the game’s

end. A prey won a game if it was not captured and survived

the maximum number of game iterations (table II).

The number of games won was calculated according to

the following post-hoc process. After the completion of 20



Fig. 1. Predator (left) and Prey (right) ANN controllers. SI: Sensory Input, MO: Motor Output.

runs of the NE process, the fittest predator was selected from

each run. Each of these fittest predators was paired with

and played against the 20 fittest NE evolved prey, selected

from the same 20 NE runs. Each predator and prey pairing

was executed for 100 pursuit-evasion games. No controller

adaptation occurred during these games. The number of

games won by the predator and prey were then calculated as

a percentage of these 100 games. This process was repeated

for each of the fittest 20 predators and prey.

We also measured the time spent on food patches by the

fittest predators and prey. For each environment and food

amount, the same post-hoc process was used to derive the

time spent on food patches. We used this non-qualitative

behavioral measure in order to relate evolved behaviors to

results yielded by previous predator-prey models.

V. EXPERIMENTS

Experiments were implemented using the Computational

Intelligence Library (CIlib)1. Each experiment executed the

NE method for 20 simulation runs. A run was 1500 gen-

erations. One iteration consisted of a given controller be-

ing evaluated in 120 pursuit-evasion games against every

controller in the opponent population. Each evaluation con-

sisted of one agent lifetime (maximum game duration of

70 iterations, in table II). Experiments applied NE for co-

evolving behaviors in environments containing three different

food distributions. These distributions (environments) were

named: corner, clustered, or 2-patch, and contained either

70, 40 or 10 food units. In order to ascertain if there is

a statistically significant difference between two data sets,

we used an independent t-test [27]. Statistical significance

was 0.05. The null hypothesis was that data sets do not

significantly differ.

1CIlib details can be found at http://www.cilib.net/.

ENV: Corner (Evolved) / Clustered (Tested) / 2-Patch (Tested)

Predator Prey

70 Food Units

GW 43 / 82 / 80 (%) 57 / 18 / 21 (%)

FP 0.2 (0.2) / 0.1 (0.2) / 0.15 (0.18) 0.6 (0.1) / 0.3 (0.3) / 0.3 (0.3)

40 Food Units

GW 72 / 90 / 88 (%) 28 / 9 / 12 (%)

FP 0.1 (0.1) / 0.1 (0.2) / 0.1 (0.2) 0.6 (0.1) / 0.3 (0.3) / 0.3 (0.3)

10 Food Units

GW 98 / 94 / 92 (%) 2 / 6 / 1 (%)

FP 0.1 (0.1) / 0.1 (0.1) / 0.1 (0.1) 0.3 (0.2) / 0.1 (0.2) / 0.2 (0.2)

ENV: Clustered (Evolved) / Corner (Tested) / 2-Patch (Tested)

Predator Prey

70 Food Units

GW 65 / 54 / 73 (%) 35 / 46 / 27 (%)

FP 0.3 (0.2) / 0.4 (0.3) / 0.34 (0.22) 0.5 (0.2) / 0.6 (0.2) / 0.4 (0.2)

40 Food Units

GW 83 / 76 / 82 (%) 17 / 25 / 18 (%)

FP 0.3 (0.2) / 0.3 (0.3) / 0.3 (0.2) 0.4 (0.2) / 0.6 (0.2) / 0.4 (0.2)

10 Food Units

GW 99 / 98 / 99 (%) 1 / 2 / 1 (%)

FP 0.1 (0.1) / 0.1 (0.2) / 0.1 (0.1) 0.3 (0.2) / 0.3 (0.2) / 0.3 (0.2)

ENV: 2-Patch (Evolved) / Clustered (Tested) / Corner (Tested)

Predator Prey

70 Food Units

GW 64 / 83 / 60 (%) 36 / 18 / 40 (%)

FP 0.4 (0.2) / 0.3 (0.3) / 0.4 (0.3) 0.5 (0.2) / 0.4 (0.2) / 0.6 (0.2)

40 Food Units

GW 86 / 89 / 88 (%) 14 / 12 / 12 (%)

FP 0.3 (0.2) / 0.2 (0.2) / 0.3 (0.2) 0.5 (0.2) / 0.4 (0.2) / 0.6 (0.2)

10 Food Units

GW 99 / 99 / 99 (%) 1 / 1 / 1 (%)

FP 0.1 (0.1) / 0.1 (0.1) / 0.1 (0.2) 0.4 (0.1) / 0.3 (0.2) / 0.3 (0.2)

TABLE III

GAMES WON AND AVERAGE PORTION OF LIFETIME SPENT ON

ANY FOOD PATCH. GW : PERCENTAGE OF GAMES WON. FP:

PORTION OF LIFETIME ON ANY FOOD PATCH. ENV: FOOD

DISTRIBUTION. NA: NOT APPLICABLE.



A. Results: Environment Comparison

1) Number of Games Won.: Table III presents the per-

centage of pursuit-evasion games won by predators and prey

in the corner, clustered, and 2-patch environments (for 70,

40 and 10 food units). For each environment that an agent

was evolved in, the agent was then tested in the two other

environments (for 70, 40 and 10 food units). The games won

results were derived in post-hoc experiments (section IV-D).

2) Test environments.: Corner evolved agents: Were

found to be robust (in terms of the number of games won)

when tested in the clustered and 2-patch environments.

Predators evolved in the corner environment won a greater

number of games in the test environments. Expectedly, the

opposite was the case for the prey. The exception was for

predators evolved in the corner environment with 10 food

units. These predators won approximately the same number

of games (98 %) as when tested in the clustered (94%) and

2-patch (92%) environments. Conversely, prey evolved in the

corner environment won less games when tested in the other

environments. The exception was for prey evolved in the

corner environment with 10 food units (won 2% of games),

and tested in the clustered environment (won 6% of games)

with 10 food units (table III).

2-patch evolved agents: Were similarly robust when tested

in the corner and clustered environments. Predators evolved

in the 2-patch environment won more or the same number

of games in the test environments. The opposite case held

for the prey. The exception was for predators evolved in

the 2-patch environment with 70 food units (won 64% of

games), and tested in the corner (won 60% of games)

environment (table III). Otherwise, prey evolved in the 2-

patch environment, won less or the same number of games

in the test environments. The exception was for prey evolved

in the 2-patch environment with 70 food units (won 36% of

games) and tested in the corner environment with 70 food

units (won 40% of games).

Clustered evolved agents: Tested in the corner and 2-patch

environments won less or the same number of games in the

test environments. This indicates that predators evolved in

the clustered environment were not robust when transferred

to the test environments. The opposite was true for prey

evolved in the clustered environment. Table III presents the

exception. Predators evolved in the clustered environment

with 70 food units (won 65% of games), and tested in the 2-

patch environment with 70 food units (won 73% of games).

Opposingly, prey evolved in the clustered environment and

tested in the other environments won more or the same

number of games. The exception was for prey evolved in

the clustered environment with 70 food units (won 35% of

games) and tested in the 2-patch environment with 70 food

units (won 27% of games).

3) Spatial Distribution Behaviors.: The average move-

ments of the fittest predators and prey in relation to food

patches in the corner, clustered and 2-patch are illustrated

in figures 2, 3, 4, 5, 6, and 7. These figures present (for 10

food units) the most traversed grid cells for agents evolved

in a given environment, and then tested in the other two

environments. Figures 2 - 7 were drawn from fittest agent

movements derived in non-adaptive post-hoc experiments

(section IV-D) . A light colored cell (approaching a value

of 1.0 on the legend) indicates the most traversed grid cell,

where as, a darker cell (approaching a value of 0.0 on the

legend) indicates that the grid cell is never traversed. A white

cross on grid cell intersections indicates a food unit.

We chose to present environments containing only 10

food units, since agent movements were the clearest in

these environments, and agent movements in environments

containing 40 and 70 food units were remarkably similar.

Also, figures 2 - 7, present average movements when agent

were within sensor range of each other. We opted to present

in sensor range agent movements, in order to ascertain if

evolved behaviors were similar to those reported upon in

related predator-prey studies [22].

4) Time Spent on Food Patches: Table III presents the av-

erage time spent by the fittest predator and prey (as a portion

of their lifetimes) on any food patch when in opponent sensor

range. Results are reported for the corner, clustered and 2-

patch environments, containing 70, 40 and 10 food units.

These results were derived in post-hoc experiments (section

IV-D). The high standard deviations reported in table III (for

all environments) are a result of agents spending most of

their lifetime moving between food patches.

Statistical tests indicated that there was no significant

difference between the average time spent (by predators

versus prey), on any of the food patches when agents were

evolved in any environment. Also, there was no significant

difference between the time spent (by predators versus prey),

when evolved in one environment and tested in another. For

example, when agents were evolved in the corner and tested

in the clustered and 2-patch environments (table III). Ob-

served spatial distribution behaviors indicated that the prey

spent a portion of their lifetime on food patches proportional

to the amount of food in the patches. Co-evolved predators

approximately matched this behavior.

These results indicate the NE method was able to co-

evolve predator and prey agents that yielded comparable

behaviors (in terms of their spatial distribution) when tested

in other environments. This is supported by figures 2 - 7,

which illustrate prey movements as being concentrated on

and around food patches and direct paths between different

food patches. For example, prey evolved in the corner

environment moved directly between the four food patches

and about the environment’s edges (the faint diagonal lines

depicted in figure 3). As a pursuit strategy, this prey behavior

was mimicked by predators via traversing the same grid cells,

but with a greater frequency. This is evidenced by the boxed

”X” pattern of movement illustrated in figure 2.

Prey evolved in corner environments: Spent (on average)

25% of their lifetime distributed equally over the four food

patches, and the rest of their lifetime evading the predator

(figure 3). Predators roughly matched prey behavior, equally

distributing, on average 12% of their lifetime over the four

food patches, and the rest in pursuit of the prey (figure 2).

Prey evolved in clustered environments: Spent (on average)



25% of their lifetime on the large food patch, 9% distributed

equally over the three small food patches, and the rest of

their lifetime evading predators (figure 5). Predators approxi-

mately matched this prey behavior, spending on average 23%

of their lifetime on the large food patch, 6% split equally over

the three small food patches, and the rest of their lifetime

pursuing the prey (figure 4).

Prey evolved in 2-patch environments: Spent (on average)

14% of their lifetime on the large food patch, 3% on the

small patch, and the remainder of its lifetime evading the

predator (figure 7). Predators roughly matched prey behavior,

spending on average 17% of its lifetime on the large food

patch, 3% on the small patch, and the rest of its lifetime

pursuing the prey (figure 6).

Time on food in test environments: There was no sig-

nificant difference between the time spent (by predators

and prey) on any given food patch in the environment in

which they were evolved, versus the environment in which

they were tested. This held true for all environments and

food amounts. For example, prey evolved in the corner and

tested in the 2-patch environment (for 10 food units), spent

approximately 7% of their lifetimes on the large food patch

and the 1% on the small food patch. The co-evolved predator

in this case spent approximately 8% of its lifetime on the

large food patch, and 2% on the small food patch.

Figures 3 - 7 present movements, when agents in a given

environment were tested in the other two environments.

Figures 3 - 7 indicate that predator and prey movements in

the test environments were similar to those observed for the

environments in which the agents were evolved in. For ex-

ample, agent movements evolved in the corner environment

and then tested in the clustered and 2-patch environments

(figures 3 and 2), were very similar to behaviors observed

when agents were evolved in the clustered (figures 5 and 4)

and 2-patch (figures 7 and 6) environments.

However, dissimilar behaviors were observed for agents

evolved and tested in the corner environment. Figures 3

and 2 present an example of this for prey and predators

(respectively) evolved in the corner environment with 10

food units. Figures 5 and 6 present examples for prey and

predators tested in other environments with 10 food units.

VI. DISCUSSION

In terms of the number of pursuit-evasion games won, NE

evolved controllers that yielded a performance in the test

environments, comparable, to the environments they were

evolved in (table III). Statistical tests indicated that, for all

environments and food amounts, there was no significant

difference in terms of the number of games won between en-

vironments in which agents were evolved, and environments

in which agents were tested. This result supports hypothesis

1 (section I-B), and is supported by previous research [21].

Canonical spatial game models described in biological

literature qualitatively predict that if there is a high predation

risk (where the prey can sense the predator), then predators

will tend to spend a greater portion of their lifetimes,

comparative to the prey, on food patches [14], [11], [12].

This study found that when predators and prey were in

each others sensor range, then pursuit-evasion behaviors

that evolved in each environment and observed in the test

environments, conformed to predictions made by canonical

spatial game models. That is, the prey favored patches rich in

food (clustered and 2-patch environments), and the predator

approximated this behavior, often spending a greater portion

of its lifetime on the food patches. In the corner environment,

the prey spent roughly equal portions of its lifetime in each

patch, and the predator matched this behavior. Also, when

agents evolved in these environments were tested in other

environments, there was no significant difference between the

time spent (by predators versus prey) on the food patches.

It is important to note that the time spent on food patches

(FP) result reported in table III, is the average (calculated

over a set of post-hoc experiments) portion of predator and

prey lifetimes spent on any food patch. The time spent on

individual food patches (by predators and prey) for each

environment is not reported here due to space constraints.

When agents were not in each others sensor range, then

different behaviors conforming to predictions made by sim-

ple distribution theory [28] emerged. Theory predicts that

when not sensed by predators, the prey will approximately

match the food distribution, favoring rich food patches, and

the predator will randomly distribute its movements [14].

Prey evolved in each environment spent a portion of their

lifetime on each food patch proportional to the food amounts

in the patches. Co-evolved predators weakly favored rich

food patches (for clustered and 2-patch environments), and

otherwise moved randomly about the environment. Also, sta-

tistical tests indicated that there was no significant difference

between the average time that agents spent on individual

food patches (when not in opponent sensor range), for

environments they were evolved in, versus environments they

were tested in. This held true for all environments and food

amounts (not reported here due to space constraints).

These results support hypothesis 2 (section I-B), and are

supported by predator and prey spatial distributions results

from related predator-prey research that studied Pacific tree

frog (Pseudacris regilla) tadpole prey and Aeshna palmata

[12] and Anax [22] dragonfly predators.

VII. CONCLUSIONS

This study investigated an NE method as a means of

behavioral modeling in a competitive co-evolution pursuit-

evasion simulation. The first research objective was to test

the effectiveness of co-evolved predator-prey behaviors, in

terms of how well they performed in environments (food

distributions) other than the environment in which they were

evolved. Task performance was measured in terms of the

number of pursuit-evasion games won by the predator versus

the prey. The second objective was to ascertain if the given

NE method was appropriate for evolving behaviors similar

to those reported upon in related predator-prey studies, and

for testing existing biological hypotheses.

Additionally, results indicated that NE was able to co-

evolve predator and prey behaviors that were comparably
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Fig. 2. Corner Environment Predator Movements: Evolved predator was tested in the clustered (middle) and 2-patch (right) distributions (10 food units).
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Fig. 3. Corner Environment Prey Movements: Evolved prey was tested in the clustered (middle) and 2-patch (right) distributions (10 food units).
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Fig. 4. Clustered Environment Predator Movements: Evolved predator was tested in the corner (middle) and 2-patch (right) distributions (10 food units).
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Fig. 5. Clustered Environment Prey Movements: Evolved prey was tested in the corner (middle) and 2-patch (right) distributions (10 food units).

effective in test environments and the environments in which

they were evolved. Also, NE evolved spatial distribution

behaviors that were supported by results reported upon in re-

lated predator-prey studies. Results of this study also support

the notion that agent-based simulations are an appropriate

tool for exploring general principles, providing existence

proofs, generating and testing novel hypotheses relevant

to biology and biologically inspired computing. Thus, this

study was an initial step towards using biologically inspired

methods to model and simulate natural predator and prey

behaviors and allow biologists to formulate new hypotheses.

Future work will implement multiple predators and prey,

in order to investigate the impact of collective behavior

dynamics on emergent behaviors within a competitive co-

evolution process. For example, the affects of competition

between prey for resources, and between predators for prey,

on the co-adaptation of collective behaviors has not been well

explored in agent-based biological modeling.
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Fig. 6. 2-Patch Environment Predator Movements: Evolved predator was tested in the corner (middle) and clustered (right) distributions (10 food units).
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Fig. 7. 2-Patch Environment Prey Movements: Evolved prey was tested in the corner (middle) and clustered (right) distributions (10 food units).
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