
Neuro-Evolution for a Gathering and Collective
Construction Task

D. W. F. van Krevelen, G.S. Nitschke
Department of Computer Science

Vrije Universiteit, Amsterdam
De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands

krevelen@cs.vu.nl, nitschke@cs.vu.nl

ABSTRACT
In this paper we apply three Neuro-Evolution (NE) methods
as controller design approaches in a collective behavior task.
These NE methods are Enforced Sub-Populations, Multi-
Agent Enforced Sub-Populations, and Collective Neuro- Evo-
lution. In the collective behavior task, teams of simulated
robots search an unexplored area for objects that are to
be used in a collective construction task. Results indicate
that the Collective Neuro-Evolution method, a cooperative
co-evolutionary approach that allows for regulated recom-
bination between genotype populations is appropriate for
deriving artificial neural network controllers in a set of in-
creasingly difficult collective behavior task scenarios.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Algorithms

Keywords
Neuro-Evolution, Collective Behavior, Specialization

1. INTRODUCTION
Social biological systems such as termite hills and bee

hives are well known for their success in accomplishing goals
that could not be achieved by individuals. Decomposing la-
bor into composite specializations and complementary be-
havioral roles increases global task performance in task en-
vironments such as collective gathering and construction [4].
Research in collective behavior systems (both simulated and
physical) often attempts to replicate this success, and ben-
efits of emergent specialization have been highlighted in ar-
tificial life [27], multi-agent computer games [23] and multi-
agent systems [9]. As a means of solving complex collec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

tive behavior tasks that require the evolution of comple-
mentary and often specialized behavioral roles, co-operative
co-evolution has achieved particular success [18], [20], [5].
Neuro-Evolution (NE) has been successfully applied to com-
plex collective behavior control tasks for which there is no
clear mapping between sensory inputs and motor outputs
and that neither pure evolutionary nor pure neural com-
putation methods address effectively [8]. In this research
we compare the task performance of three such approaches,
Enforced Sub-Populations (ESP) [8, 6], Multi-agent Enforced
Sub-Populations (MESP) [27] and Collective Neuro- Evolu-
tion (CONE) [17], in a collective behavior task where spe-
cialization is beneficial. In the Gathering and Collective
Construction (GACC) task, simulated robots search for, and
carry simple objects towards a drop zone located on a hill.
The task requires that (i) objects must be returned in a
particular sequence, that is, to construct one complex ob-
ject, and (ii) it takes at least two robots to transport ob-
jects uphill and deliver them to the drop-zone. The number
of objects delivered in correct sequence and the total dis-
tance that objects travel towards the drop zone determine
the team’s fitness. The main research objective of this paper
is to test the following hypotheses.

1.1 Research Hypotheses

1. Agent (controller) specialization improves collective be-
havior task performance in the GACC task.

2. CONE yields a higher collective behavior task perfor-
mance comparative to similar methods used for evolv-
ing controllers in to accomplish the GACC task.

1.2 Task Performance Measures
Besides looking at the best fitness and difficulty level achieved

during an evolutionary run, the number of neurons in the
networks and the number of burst mutations to handle stag-
nation, we also look at two derived values that measure spe-
cialization: Action Entropy and Degree of Specialization.

1.2.1 Action Entropy
To measure specialization, we apply the measure for infor-

mation entropy defined by [22]. The Action Entropy mea-
sure measures an agent’s specialization by means of the
(un)predictability of its actions during a lifetime. Low in-
formation entropy means an agent’s choice of action is very
predictable as it specializes in a particular action, whereas
agents choosing their actions equally often are highly unpre-
dictable (carrying more entropy) and thus not specialized.

Figure 1: Multi-agent Neuro-Evolution with Enforced Sub-Populations. The evolutionary process (left loop)
optimizes individual neurons hij within designated subpopulations Hij. Different neuron combinations form the
agents’ semi-recurrent controllers to perform in the task domain for q iterations (right loop) and so evaluate
their fitness to direct the search. Only CONE employs the Genetic Distance (GD) metric between subpopulations
for inter-population recombination.

Given a collection of robot controllers r ∈ R and a set of
(mutually exclusive) specialist actions a ∈ A, we define the
action entropy E averaged for a particular set of evaluations
v ∈ V as:

E =
1

|V|
1

|R|
∑
v∈V

∑
r∈R

−
∑
a∈A

pv,r,a · log|A| pv,r,a (1)

Action Entropy is averaged over all agents and all evalua-
tions per generation, so a drop in action entropy means that
all teams evaluated over several generations contained more
specialists overall.

1.2.2 Degree of Specialization
A bit more complex than Action Entropy is the Degree of

Specialization measure which focuses on the action an agent
performed most and divides its duration by the amount the
agent switched between actions. We define the degree of
specialization S as:

S =
1

|R|
∑
r∈R

maxm(tr,m)

max(1, sr,m)
(2)

where tr,m is the average frequency of the specialty action
that agent i performed most often in all evaluations of gen-
eration m and sr,m is the average number of times agent
r switched between specialty actions in all evaluations of
generation m. Intuitively, S ∈ [0, 1] denotes the degree of
specialization. If agents spend more time on particular spe-
cialist action without switching a lot, the S value is close
to one, whereas agents that share time between different ac-
tions and they regularly switch back and forth, the S value
is closer to zero.

2. CONTROLLER NEURO-EVOLUTION
We are concerned with NE methods that evolve connec-

tion weights in Artificial Neural Network (ANN) controllers.
The NE methods used for controller design that are com-
pared in this research descend from the Symbiotic Adaptive
Neuro-Evolution (SANE) method [15]. SANE evolves a pop-
ulation of neurons from which an ANN with a single hidden
layer is constructed. However, assigning each neuron its own
genotype subpopulation as shown in Figure 1 is beneficial
and such an NE method has many applications [8, 27, 6, 7].
Our comparison includes the Enforced Sub-Populations or
ESP method [8, 6] that first applied this approach of sep-
arating genotype subpopulations. The second, multi-agent
variant we call MESP [27] appeared later and co-evolves a
team of networks so they learn to cooperate. Cooperative
co-evolution is shown to outperform parallel evolution, pro-
ducing more complex collective behaviors such that ANN
controllers complement rather than obstruct each other [19,
27]. Going one step further, the recently developed Collec-
tive Neuro-Evolution (CONE) method [17] introduces gene
exchange between neuron subpopulations belonging to dif-
ferent ANN controllers. CONE allows controllers to share
beneficial and similar genotypes and facilitates the special-
ization of complementary behavioral roles.The ESP, MESP,
and CONE methods share a common genotype representa-
tion and a common fitness function. Furthermore, the meth-
ods share some parts of their stagnation handling and breed-
ing process in order to facilitate a fair comparison. Common
features are listed below1:

1Implementations use the Evolutionary Computation for
Java or ECJ toolkit [11].

Generations (G) 250 GDM-adapt interval? (V) 5 Iterations (q) 4000
Evaluation rounds 10 GDM-adapt fraction? .1 Environment size 80.02

Evaluation trials 2 Initial GDM range? .3 Scan\grab range 24.0\3.0
Subpopulation size (P) 10 Lesion interval (W) 10 Slope\drop range 12.0\6.0
Elite fraction .25 Lesion threshold .9 Scan slices (c) 8
Parent fraction (fp) .25 Fall-back interval? (Z) 20 Look-ahead (l) 3
Gene/weight range (wmax)±10.0 Fall-back rate .4 Objects (O) per type (T) 5\4\3
Mutation rate (pm) .05 Agent count (n) 3 Agent type preferences 0\1\2
Mutation range ±1.0 Initial neuron count (m) 10 Preference rate (pa) .7
Cauchy scale .3 Neuron weights (w) 53 ANN learning rate, momentum {.5; .0}
? = CONE-specific

Table 1: ESP, CONE and GACC task parameters.

Genotype Encoding. Strings of real numbers form geno-
types that correspond to a hidden layer neuron’s in-
put and output weights. In this study, genes may vary
within a fixed gene/weight range (see Table 1) rather
than have a free weight range as is the case in [6].

Fitness Evaluation. Each generation the sub-populations
are shuffled so each neuron participates in an evaluated
ANN, rather than just picking random neurons as in
[6] which could leave some neurons unevaluated. This
is repeated a given number of rounds so as neurons
are evaluated in several combinations and each ANN
is evaluated a given number of trials (see Table 1).
A neuron’s final fitness is the average over all trials’
performances of each combination in which the neuron
was combined.

Breeding Process. Shown in Figure 1 (left loop) the meth-
ods follow a general procedure for evolutionary algo-
rithms [3]. After initializing the population parent
genotypes are selected and recombined to produce off-
spring, which are then mutated before they become
part of the next generation together with any other
selected survivors. The compared methods share the
following.

• A common mutation operator, adding noise from
a Cauchy-Lorentz distribution in a fixed noise
range with a fixed mutation probability (see Table
1). This follows methods described by [6], with
the exception that mutation operates with given
probability on each gene rather than on exactly
one gene.

• Survivor selection, where all methods keep the
same top or elite fraction (see Table 1) of each
sub-population in the next generation.

Stagnation Handling. Shown in Figure 1 (left loop) the
selected methods all extend the general breeding pro-
cedure [3] applying following stagnation handling mea-
sures with intervals listed in Table 1:

• A common delta-coding burst-mutation operator
that resets a sub-population and generates new
individuals randomly around the current best so-
lution based on a Cauchy-Lorentz distribution as
in [7].

• A common lesion mechanism similar to [14] that
removes neurons (together with their designated
subpopulations) if removal does not affect the best
team’s performance to below a certain threshold,
or add a neuron if none were removed.

• A fall-back rate to reduce the score-to-beat when
stagnation handling fails. In this study the fall-
back rate is in the range [0, 1]. The purpose is
to keep the best solution found thus far until the
reduced score is improved. In [6] the scores to
beat are reset, often causing the propagation of
inferior champion genotypes.

Although the selected methods share common ancestry, each
has distinct features regarding fitness evaluation, stagnation
handling, and the breeding process.

Cooperative Co-evolution. Unlike in ESP, the fitness eval-
uation in MESP and CONE is based on team perfor-
mance rather than individual performance. This in-
creases the search space exponentially. For instance,
finding the best network of 10 neurons connecting to 53
input/output weights requires searching 10×53 = 530
dimensions. Evaluating 3 controllers in parallel as ESP
does, reduces search time for a single successful con-
troller, while finding a successful team of 3 such con-
trollers that work cooperatively as MESP and CONE
do, means searching in 3×530 = 1590 dimensions thus
increasing search time.

Crossover Operator. Whilst ESP and MESP employ single-
point crossover [3], CONE treats the input weights
separately from the output weights by applying triple-
point crossover with the middle point fixed between
input and output weights [17].

Parent Selection. The implementations of ESP and MESP
select parents randomly from the top fraction (parent
portion) of a sub-population in order to replace the
non-elite that do not survive. This deviates from [6]
where each candidate in the top quarter is combined
with a random better candidate such that their off-
spring replace the bottom half of the subpopulation.

In CONE a Genetic Distance (GD) metric is used to
determine if sub-populations for neurons of the same
type but in different ANN controllers are close enough
to combine their parent portions for parent selection.
GD measures similarity in the potential parents’ genes
as a ratio [0, 1] of the absolute weight range, where 0
is exactly similar and 1 is very dissimilar. Further-
more, a self-adapting GD value regulates the recombi-
nation between corresponding subpopulations in differ-
ent controllers so as to facilitate specialized behavior.
The GD metric and the CONE method are further de-
scribed in [16] and are not elaborated upon here given
space limitations.

Stagnation Handling. Following [6], ESP and MESP share
a common strategy to handle stagnation:

• If for W generations an agent’s performance did
not improve, burst mutation is performed. This
resets its sub-populations around the best corre-
sponding neurons found so far. Burst-mutated
sub-populations skip recombination as their fit-
ness is not yet evaluated.

• After 2·W generations of stagnation (i) ANN con-
troller size is adapted by adding/removing neu-
rons and their corresponding sub-populations us-
ing a lesion mechanism [14], (ii) burst-mutate the
controller’s subpopulations upon neuron removal,
and (iii) multiply the best scores found by the
fall-back rate.

CONE however adopts another approach:

• After V generations of stagnation the GD range
adapts to stabilize inter-population merging of
parent portions;

• After W > V generations the lesion mechanism is
applied (as in ESP the controller’s sub-populations
burst-mutate upon removal).

• After Z > W generations all controllers are burst-
mutated and the best scores multiplied by the fall-
back rate.

3. COLLECTIVE BEHAVIOR TASK

We test the performance of ESP, MESP and CONE in a
collective behavior task2 that requires collective behavior to
complete. Robots are placed in a square environment and
start around a central drop point. Their task is to search
and collect objects O of different types A placed at random
in an unexplored environment before returning and drop-
ping them again within a certain range of the drop point.
As shown in Figure 2, the circular drop-zone resides on a hill
which robots can navigate when empty. However, carrying
objects uphill and onto the drop-zone requires the coopera-
tion of another robot to push or pull them up the slope.

The objects o ∈ O must be gathered in a particular order
as defined by the current scenario. The order is a sequence
of object types a ∈ A. Type 0 is distributed around the
drop point while all other types > 0 are distributed in the
environment’s corners. The reward r ∈ [0, 1] for moving
and delivering objects is calculated as the distance objects
are transported towards the drop-zone, multiplied by the
number of (in order) deliveries Odelivered ⊂ O. That is:

r =

∑
o∈O d(o)∑

o∈O dmax(o)
× |Odelivered|+ 1

|O|+ 1
(3)

Where d(o) denotes the distance between an object and
the drop-zone’s edge. To prevent rewards outside the [0, 1]
range when an object is moved away from the drop-zone its
maximum distance dmax(o) is updated when necessary.

Shaping or incremental evolution is applied to the task of
deriving controllers that collectively deliver objects in the

2The GACC task is implemented with the Multi-Agent Sim-
ulation (MASON) toolkit [10], including its 2D physics en-
gine for collision handling.

correct order, since direct evolution of such controllers was
unsuccessful. Similar to other NE research [8, 27, 6] the task
is decomposed into several difficulty levels which the NE
method can switch between as desired, guiding it towards
good solutions. The following conditions must be met to
complete each level:

Level 0. Each robot gathers one object of any type, in an
environment without obstacles.

Level 1. Each robot gathers one object of each type, in an
environment without obstacles.

Level 2. Each robot gathers one object of each type, in an
environment with obstacles.

Level 3. The team gathers half the object sequence in or-
der, in an environment with obstacles.

Level 4. The team gathers the entire sequence in order, in
an environment with obstacles.

Each ANN controller evolves a behavior with the following
sensors and motors:

• 1 Sensor indicating whether the robot has cargo.

• 2 Sensors for the drop zone’s relative range and bear-
ing.

• 2 Sensors indicating if and how long to wait for help.

• 2 Sensors indicating if and where assistance is required.

• l × |A| Sensors indicating demand per atomic object
type with length l look-ahead.

• 2 × |A| Sensors indicating the nearest object’s range
and bearing for each object type.

• s Sensors indicating obstacles per scan direction.

• m Sensors for receiving previous motor output.

• 7 Motors to move ahead/reverse and left/straight/right
or to halt;

• 1 + |A| Motors to grab the nearest object (for each
type) a or to drop/assist.

For environments with |A| = 3 object types, a look-ahead of
l = 3 and s = 8 scan directions, robots must appropriately
activate m = 7+1+|A| = 11 motor outputs using input from
1+2+2+2+l×|A|+2×|A|+s+m = 41 sensors. This means
that each hidden neuron’s inputs, outputs and bias requires
the NE method to learn an extra 41 + 11 + 1 = 53 weights
per neuron. For controllers with 10 hidden-layer neurons
this means an NE algorithm has to optimize weight starting
points in 53 × 10 = 530 dimensions per controller. Co-
evolving a team of three such agents to behave cooperatively
means optimizing weight starting points in 530 × 3 = 1590
dimensions.

To control these sensors and motors, robots use a single-
layer ANN with sigmoidal units, illustrated in Figure 1 (right
loops). ANN controllers learn during a trial by adapting per-
ceptron weights each iteration using the Back Propagation
algorithm3 [21, 25] with a specific learning rate and momen-
tum (see Table 1) based on the following heuristics.
3ANN controllers and BackPropagation are implemented
with the Weka toolkit for machine learning algorithms [26].

Figure 2: Example environment (left) and definitions (right). The white drop-zone on the brown hill shows the
current sequence look-ahead, indicating that atomic object type 2 (green) is required first, then type 1 (blue) and
again type 1. Currently robot 2 is carrying an object of type 0 (red) and awaiting assistance from robot 1 (grey)
to push/pull it up the brown slope. Agent 0 is searching for objects for its type 2 gripper (green dot) while
avoiding black obstacles.

1. If assist alert→move to assist location and drop/assist.

2. If empty, no alert, and selected object type is not in
demand → select new object type.

3. If empty, no alert, and selected object type not in sight
→ explore.

4. If empty, no alert, and selected object type in sight →
approach object.

5. If cargo, no alert, and not in drop-zone → move to
drop-zone.

6. If cargo, no alert, in drop-zone, and cargo in demand
→ halt and drop cargo.

7. If cargo, no alert, in drop-zone, and cargo not in de-
mand → leave drop-zone.

4. EXPERIMENTS
Robot controllers learn and evolve via one of three exper-

imental design approaches: reactive, adaptive, or Lamarck-
ian. Reactive means that the robots’ ANN controller weights
remain fixed during a trial. This produces reactive behavior
so evolution has to do all the work of finding weights suit-
able for all situations. Adaptive means the robots update
their ANN controller weights during a trial. With adap-
tive behaviors the evolutionary process is finding successful
starting points for lifetime learning of the heuristics states
(section 3). Lamarckian refers to the possibility of passing
on lifetime experience gained through genes [2, 13]. This
last approach means that adapted weights in a given con-
troller are copied back to their genotypes at the end of a
trial before crossover and mutation takes place. NE method
comparisons included a dummy controller as a performance
benchmark. That is, the dummy controller performed dif-
ferent actions with varying degrees of probability. That is,

a dummy controller selects a random move/halt action with
equal probability together with a random grab/drop action
with p = 0.7 for the preferred object type’s grab state and
p = 0.1 for the other grab states.

4.1 Experimental Results and Analysis
The ESP, MESP and CONE methods were applied to-

gether with each of the three learning setups (Reactive, Adap-
tive and Lamarckian), plus the dummy setup, in order to
evolve robot team controllers for accomplishing the GACC
task. The parameter values (see Table 1) used were de-
termined experimentally and found to be effective for the
scenarios that we tested. Table 3 presents results yielded
after 250 generations, averaged over 10 runs. Using time se-
ries data from all runs for each setup, we perform regression
trend analysis and determine the Pearson product-moment
correlation coefficients [12] to decide whether to accept or
reject each of the hypotheses formulated in 1. We assume
the correlation variables over all time points to be bivariate
normal distributed as required [1].

4.1.1 Specialization and GACC Task Performance
Hypothesis 1 states that agent specialization improves col-

lective task performance in the GACC task. This should
be reflected by coefficients of correlation between collective
task performance (I. Best Fitness or II. Difficulty Level)
and agent specialization (III. Action Entropy or IV. Degree
of Specialization). Correlations I/III and II/III are expected
to be negative as performance should drop when action un-
predictability (III) rises, whereas correlations I/IV and II/IV
are expected to be positive as performance should increase
when specialization (IV) also increases.

Table 2 summarizes the relevant performance/specialization
correlation coefficients for the range 1 ≤ G ≤ 250. Their sig-
nificance depends on the number of data points, which is one
for each generation in each runs, or G×N .

Correlation pair I/III II/III I/IV II/IV
Expected (−) (−) (+) (+)
Reactive
A. ESP −0.10 −0.33∗∗ −0.23∗∗ −0.05
C. MESP −0.73∗∗ −0.29∗∗ 0.73∗∗ 0.35∗∗

D. CONE −0.47∗∗ −0.39∗∗ 0.26∗∗ 0.62∗∗

Adaptive
A. ESP −0.30∗∗ −0.36∗∗ −0.55∗∗ −0.52∗∗

C. MESP −0.53∗∗ −0.67∗∗ 0.46∗∗ 0.43∗∗

D. CONE −0.52∗∗ −0.59∗∗ 0.46∗∗ 0.49∗∗

Lamarckian
A. ESP 0.44∗∗ 0.29∗∗ −0.83∗∗ −0.73∗∗

C. MESP 0.28∗∗ 0.57∗∗ −0.68∗∗ −0.88∗∗

D. CONE 0.37∗∗ 0.74∗∗ −0.80∗∗ −0.85∗∗
∗p < 0.05 ∗∗p < 0.01

Table 2: Performance/specialization correlation coefficients.

Method N I. Best II. Difficulty III. Action IV. Degree of V. Neurons VI. Burst
Fitness Level Entropy Specialization Mutations

Randomized
NE Method NA 53 3.4%± 0.1% 1.0± 0.0 0.0000G + 0.6783 −0.0000G + 0.0004 0.0268G + 9.6032 0.0664G− 1.0028
Reactive
A. ESP 11 10.7%± 3.5% 0.6± 0.2 0.0012G + 0.1779 −0.0012G + 0.4131 0.0013G + 8.7279 0.0712G + 0.1905
B. MESP 29 7.5%± 1.0% 0.1± 0.1 0.0002G + 0.2713 0.0002G + 0.2017 −0.0112G + 9.2324 0.0850G− 0.3551
C. CONE 27 8.1%± 0.7% 0.1± 0.1 0.0003G + 0.2459 −0.0000G + 0.3390 −0.0048G + 5.0701 0.0877G + 0.0562
Adaptive
A. ESP 12 14.9%± 3.1% 1.0± 0.3 0.0003G + 0.5038 −0.0001G + 0.1363 0.0008G + 9.3352 0.0679G + 0.2035
B. MESP 14 10.3%± 2.0% 0.2± 0.1 −0.0007G + 0.4569 0.0003G + 0.3174 0.0096G + 8.3262 0.0750G + 0.2297
C. CONE 50 13.0%± 1.2% 0.6± 0.2 0.0001G + 0.3183 −0.0003G + 0.4241 0.0066G + 5.5104 0.0775G− 0.0108
Lamarckian
A. ESP 12 42.6%± 11.0% 1.3± 0.3 −0.0002G + 0.4565 −0.0001G + 0.1988 −0.0064G + 7.4195 0.0838G− 0.0820
B. MESP 37 31.3%± 2.8% 2.4± 0.4 0.0005G + 0.4688 −0.0005G + 0.1854 −0.0051G + 8.4171 0.0792G− 0.8925
C. CONE 14 33.3%± 4.8% 3.5± 0.3 0.0007G + 0.5396 −0.0001G + 0.0420 0.0137G + 5.4645 0.0634G− 1.3839

Table 3: Results averaged after G = 250 generations. NE Method NA: Neuro-Evolution Method Not Applicable

Values must be above (or below) certain thresholds that
are based on this amount to imply a significant correlation
between two variables [1]. The ∗ and ∗∗ indicate whether
the correlations are significant at the 0.05 or 0.01 level re-
spectively. These values must be interpreted carefully, since
the proportion of variance is explained by the value’s square
[12]. A correlation of r = 0.20 means just r2 = 0.04 or 4% of
the variance is explained, whereas a correlation of r = 0.80
explains about r2 = 0.64 or 64% of the variance.

According to the values in table 2, Reactive and Adaptive
agents perform as expected, although in the ESP cases we
see opposite correlations in Degree of Specialization (I/IV
and II/IV). These ESP runs showed increased performance
when agents became all-rounders, switching more (decreas-
ing the Degree of Specialization) between fewer actions (de-
creasing Action Entropy). Lamarckian agents show results
opposite from Reactive and Adaptive agents. Given these
results, hypothesis 1 is accepted for Reactive and Adap-
tive cases, but hypothesis 1 is rejected for Lamarckian cases
where agents perform significantly better when their actions
are less predictable and less focused.

4.1.2 Performance of GACC Evolved Teams
The second hypothesis states that CONE outperforms

similar methods in the GACC task. This means that CONE’s
results after G = 250 generations for Best Fitness and es-
pecially Difficulty Level should be significantly higher than
those yielded by ESP or MESP. Table 3 shows that for Re-
active and Adaptive agents CONE is outperformed only by
ESP and performs about the same as MESP in either per-
formance measure (see also figure 3). With Adaptive agents,
CONE’s advantage over MESP becomes more pronounced,

but ESP with its small search space still outperforms CONE
(see also Figure 4). For Lamarckian agents, CONE reaches
a significantly higher Difficulty Level while Best Fitness is
not significantly higher (see also Figure 5).

However, Best Fitness simply measures how far objects
were moved (which does not take much intelligence, as ex-
emplified by the Randomized runs), whereas increasing the
Difficulty Level requires more complex behaviors. Hypoth-
esis 2 is thus accepted for the Lamarckian cases.

Additionally, the following observations can be made re-
garding results yielded from each of the experimental setups.

1. In both reactive and adaptive learning situations ESP’s
parallel evolution significantly outperforms co-evolution
by reaching higher fitness and difficulty levels, whereas
in Lamarckian setups this advantage is lost and MESP
and CONE reach similar difficulty levels and somewhat
better team fitness.

2. The more CONE is assisted by heuristics, the lower
the GD metric has to become to enable merging of
parent genotype portions that are similar enough for
inter-population recombination.

3. In reactive setups, the weights of different ANN con-
trollers are very dissimilar given that inter-population
recombination occurs only in the later generations.

4. In adaptive setups, there is more similarity between
the weights of different ANN controllers yet more inter-
population recombination is performed in order to counter
fitness stagnation.

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=11
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=29
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=27
95% C.I.
Range

Figure 3: Results for Reactive agents, averages for first G = 250 generations.

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=12
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=14
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=50
95% C.I.
Range

Figure 4: Results for Adaptive agents, averages for first G = 250 generations.

5. In the Lamarckian evolution setups, there is less fitness
stagnation and inter-population recombination there-
fore occurs less frequently and at lower GD values as
there is more similarity between the weights of differ-
ent ANN controllers.

6. For task scenarios of a low difficulty level, such as the
requirement that only one object be delivered in an en-
vironment with no obstacles, the ESP method is suf-
ficient for controller derivation. In such simple task
scenarios the co-operative co-evolutionary approaches
of the CONE and MESP methods yield no advantage.
However, for task scenarios of a higher difficulty level,
such as the requirement that all objects be delivered
cooperatively in a specific sequence, in an environment
containing obstacles, the co-operative co-evolutionary
approaches of MESP and CONE are appropriate.

5. CONCLUSIONS
Results indicate that the CONE method supported by

heuristics derives a higher collective behavior task perfor-
mance in the GACC task, comparative to that derived by
the ESP and Multi-ESP methods. Furthermore, this task
performance was able to effectively operate in tasks scenar-
ios of a higher difficulty level. Also, results indicate that for
simple task levels where no cooperative behavior is required,
then the ESP method is sufficient, whilst for more difficult
task scenarios that require coordinated (delivering objects
in a specific order) and cooperative behavior (cooperative
object transport), the cooperative co-evolutionary methods
MESP and CONE are more appropriate.

6. REFERENCES
[1] J. O. Bennett, W. L. Briggs, and M. F. Triola.

Statistical Reasoning for Everyday Life.
Addison-Wesley, New York, NY, USA, second edition,
2002.

[2] B. D. Bryant and R. Miikkulainen. Acquiring visibly
intelligent behavior with example-guided
neuroevolution. In AAAI-07: Proc. 22nd Ntl. Conf. on
Artificial Intelligence, pages 801–808, Menlo Park,
CA, USA, 2007.

[3] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. Springer-Verlag, Berlin,
Germany, 2003.

[4] J. Gautrais, G. Theraulaz, J.-L. Deneubourg, and
C. Anderson. Emergent polyethism as a consequence
of increased colony size in insect societies. Theoretical
Biology, 215(1):363–373, 2002.

[5] F. Gomez and R. Miikkulainen. Active guidance for a
finless rocket using neuro-evolution. In Proceedings of
the Genetic and Evolutionary Computation
Conference, pages 2084–2095, Chicago, USA, 2003.
ACM Press.

[6] F. J. Gomez. Robust Non-linear Control through
Neuroevolution. PhD thesis, University of Texas,
Austin, TX, USA, 2003.

[7] F. J. Gomez and R. Miikkulainen. Solving
non-markovian control tasks with neuro-evolution.
pages 1356–1361.

[8] F. J. Gomez and R. Miikkulainen. Incremental
evolution of complex general behavior. Adaptive
Behaviour, 5(3-4):317–342, 1997.

[9] L. Li, A. Martinoli, and Y. S. Abu-Mostafa. Learning
and measuring specialization in collaborative swarm
systems. Adaptive Behavior, 12(3-4):199–212, 2004.

[10] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. MASON: A multiagent simulation
environment. Simulation, 81(7):517–527, 2005.

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=12
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=37
95% C.I.
Range

50 100 150 200
0

1

2

3

4

5

D
if

fi
cu

lty
 L

ev
el

Mean, n=14
95% C.I.
Range

Figure 5: Results for Lamarckian agents, averages for first G = 250 generations.

[11] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki,
J. Harrison, J. Bassett, R. Hubley, and A. Chircop.
ECJ 16: A java-based evolutionary computation
research system.

[12] R. B. McCall. Fundamental Statistics for Behavioral
Sciences. Wadsworth Publishing, 2000.

[13] R. Miikkulainen. Evolving neural networks. In
Thierens et al. [24], pages 3415–3434.

[14] D. Moriarty. Symbiotic Evolution of Neural Networks
in Sequential Decision Tasks. PhD thesis, University
of Texas, Austin, TX, USA, 1997.

[15] D. E. Moriarty and R. Miikkulainen. Evolutionary
networks for value ordering in constraint satisfaction
problems. Technical Report AI94-218, University of
Texas, Austin, TX, USA, 1994.

[16] G. Nitschke and M. Schut. Designing multi-rover
emergent specialization. In Proceedings of the 2008
Genetic and Evolutionary Computation Conference,
Atlanta, USA. ACM Press.

[17] G. S. Nitschke, M. C. Schut, and A. E. Eiben.
Collective specialization in multi-rover systems. In
Thierens et al. [24], pages 342–342.

[18] M. Potter and K. De Jong. Evolving neural networks
with collaborative species. In Proceedings of the
Summer Computer Simulation Conference, pages
340–345. The Society of Computer Simulation, 1995.

[19] M. Potter and K. De Jong. Cooperative coevolution:
Architecture for evolving coadapted subcomponents.
Evolutionary Computation, 8(1):1–29, 2000.

[20] M. Potter, L. Meeden, and A. Schultz. Heterogeneity
in the coevolved behaviors of mobile robots: The
emergence of specialists. In Proceedings of the
International Joint Conference on Artificial
Intelligence, pages 1337–1343, Seattle, USA, 2001.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. Nature, 323:533–536, 1986.

[22] C. E. Shannon. A mathematical theory of
communication. Bell System Technical J., 27:379–423,
623–656, 1948.

[23] K. O. Stanley, B. D. Bryant, and R. Miikkulainen.
Evolving neural network agents in the NERO video
game. In CIG’05: Proc. 2005 Sym. on Computational
Intelligence and Games. IEEE Press, 2005.

[24] D. Thierens, H.-G. Beyer, M. Birattari, J. Bongard,
J. Branke, J. A. Clark, D. Cliff, C. B. Congdon,
K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry,
K. O. Stanley, T. Stützle, R. A. Watson, and

I. Wegener, editors. GECCO’07: Proc. 9th Genetic
and Evolutionary Computation Conf., London,
England, UK, 2007. ACM Press.

[25] P. J. Werbos. Beyond regression: New tools for
prediction and analysis in the behavioral sciences. PhD
thesis, Harvard University, Cambridge, MA, USA,
1974.

[26] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

[27] C. H. Yong and R. Miikkulainen. Cooperative
coevolution of multi-agent systems. Technical Report
AI01-287, University of Texas, Austin, TX, USA, 2001.

