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Abstract— This paper introduces the Collective Neuro Evolu-
tion (CONE) method, and compares its efficacy for designing
specialization, with a conventional Neuro-Evolution (NE) method.
Specialization was defined at both the individual agent, and at the
agent group level. The CONE method was tested comparatively
with the conventional NE method in an extension of the multi-
rover task domain, where specialization exhibited at both the
individual and group level is known to benefit task performance.
In the multi-rover domain, the task was for many agents (rovers)
to maximize the detection and evaluation of points of interest
in a simulated environment, and to communicate gathered
information to a base station. The goal of the rover group was
to maximize a global evaluation function that measured per-
formance (fitness) of the group. Results indicate that the CONE
method was appropriate for facilitating specialization at both the
individual and agent group levels, where as, the conventional NE
method succeeded only in facilitating individual specialization.
As a consequence of emergent specialization derived at both
the individual and group levels, rover groups evolved by the
CONE method were able to achieve a significantly higher task
performance, comparative to groups evolved by the conventional
NE method.

I. INTRODUCTION

Research in simulated and physical collective behavior
systems, has often attempted to replicate the success of certain
biological social systems [7] at decomposing the labor of a
group into composite specialized and complementary roles so
as to accomplish global goals that could not otherwise be
accomplished by individuals, and to increase global task per-
formance. The mechanisms motivating emergent specialization
have been studied in biological [22] artificial life [3], and
multi-robot [2] systems. However, collective behavior design
methods for harnessing and utilizing emergent specialization
for the benefit of problem solving and increasing task perfor-
mance in such systems is currently lacking.

Neuro-Evolution (NE) is a research field that combines
techniques native to neural [10] and evolutionary computation
[5] research. Recently NE has been applied for the purpose of
finding solutions to both discrete and continuous multi-agent
systems control tasks [8]. Such applications include agent
controller design in multi-agent computer games [3], RoboCup
soccer [23], and physical multi-robot systems [2]. NE has
been highlighted as being most appropriately applied to multi-
agent tasks that are neither effectively addressed via pure
evolutionary or neural computation methods [8]. NE methods
have been successfully applied to the rover task domain [1],
[21]. However, extending this domain to include the notion
of using NE to facilitate emergent specialization, in order to

increase task performance, has not yet been investigated.
This paper describes the application of CONE and conven-

tional NE to the rover task domain. This task requires solu-
tions for controlling groups of simulated planetary exploration
rovers that seek to maximize the number of points of interest,
herein termed red rocks, discovered in an unexplored environ-
ment. An extension to the rover domain was implemented, in
which rovers operated in a discrete simulation environment,
and used complementary sensors and actuators in order to
maximize a global fitness function.

The research of [4] elucidated that behavioral specialization
(at either the individual or group rover level) is beneficial
for task performance in this extension of the rover domain.
Furthermore, it was demonstrated that heuristic based system-
atic search methods are not appropriate for achieving optimal
performance in the extended rover task, and that such non-
adaptive heuristic methods are significantly out-performed by
NE multi-agent control methods.

For both NE methods, each rover maintained and evolved
its own population of genotypes. The CONE method evolved
populations of neurons, from which complete neural network
controllers were constructed, where as, the conventional NE
method evolved populations of complete controllers. We also
introduced a heuristic performance benchmark, against which
the task performance results of rover groups derived with the
NE methods could be compared.

A. Goals, Hypotheses and Specialization

1) Research Goal: To conduct a comparative study in
order to evaluate the CONE versus a conventional NE method
for deriving simulated robot (rover) controllers in the rover
domain. One contribution of this research was the provision of
the CONE method, which facilitated emergent specialization,
at both the individual agent and group level, so as to increase
group fitness in collective behavior tasks.

2) Task Performance Evaluation: The evaluation criterion
for individual rover task performance was the number of red
rocks detected, moved to, and evaluated, where information
pertaining to red rocks was communicated to a lander (base
station). The evaluation criterion for the rover group was the
number of communications received by the lander. In order to
avoid the problem where each rover evolves neural networks
that maximize their own fitness function, yet the system as
a whole achieves low values of the global fitness function,
we used a difference evaluation function [1] to evaluate group
fitness.
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3) Research Hypothesis: In the rover task domain, the
CONE method is appropriate for deriving specialization at
both the individual agent (rover controller), and at the group
(composition of specialized rover controllers), where such
specialization results in a high group fitness (performance).

In order to test this hypothesis, the task performance and
emergent specialization observed using the CONE method for
controller derivation was compared to that of a conventional
NE method, as well as a non-adaptive heuristic controller
method.

4) Specialization: Specialization was defined at both the
individual and the rover group level. An individual rover was
defined as being specialized if a given behavioral role (a given
action executed) was assumed for the majority (≥ 50%) of the
rovers lifetime. Likewise, a rover group was defined as being
specialized if rovers with a given behavioral role (that is: a
individual specialization) constituted the majority (≥ 50%) of
the rovers in the group.

Emergent specialization, facilitated by the NE methods was
measured at both the individual and rover group level. At
any simulation time step, a rover could execute one action,
which equated to using one of two sensor types (detection
or evaluation), or one of two actuator types (movement or
communication). If a rover spent the majority of its lifetime
executing a single action, it would be labeled as an evaluator,
detector, communicator, or mover (table IV). Likewise, rover
groups were defined as evaluator, detector, communicator, or
mover groups if a majority of the group consisted of rovers
with a given individual specialization.

For defining a rover domain performance benchmark, in-
dividual rover specialization was specified a priori, and a
parameter calibration method (section V-B) used to evolve a
non-specialized rover group with a high task performance.

II. COLLECTIVE NEURO-EVOLUTION

The CONE method is an extension of both the SANE [11]
and ESP [8] methods. A key difference between the CONE
and other NE methods [11], [8], is that it creates n separate
genotype sub-populations (neurons) for n neural controllers
(phenotypes) operating in the task environment.

One advantage of the CONE method is that it expedites
artificial evolution, given that the genotype population is
organized into sub-populations. Hence, specialized controllers
do not have to emerge out of a single population of neurons,
and progressive specialization of controllers is not hindered
by recombination of controllers with complementary special-
izations.

A second advantage is that it provides more genotype
diversity (comparative to single genotype population based NE
methods) and encourages emergent controller specialization
given that evolution occurs within separate sub-populations of
genotypes. That is, it has been highlighted that organizing the
genotype population into separate niches (sub-populations),
either dynamically [18], or a priori [17] facilitates special-
ization, and protects innovation (emergent behaviors) within
the specialized niches of the genotype space.

Fig. 1. Collective Neuro-Evolution (CONE) Method (Section II).

A. Genotypes

For both the CONE (figure 1) and conventional NE (section
III) methods, the populations of genotypes were encoded as a
string of floating point values (table I). In the case of CONE,
a genotype represented weights connecting all sensory input
neurons and all motor output neurons to a given hidden layer
neuron. In the case of the conventional NE method, a genotype
represented the weights connecting all sensory input neurons
and all motor output neurons to all hidden layer neurons in a
neural network.

1) Recombination of genotypes: In both the CONE and
conventional NE methods, each child genotype was produced
using single point crossover [5], and Burst mutation with a
Cauchy distribution [8]. As illustrated in table I mutation of
a random value in the range [-1.0, +1.0] was applied to each
gene (connection weight) with a 0.05 degree of probability,
and weights of each genotype were kept within the range [-
10.0, +10.0]. Burst mutation was used to ensure that most
weight changes were small whilst allowing for larger changes
to some weights.

B. CONE Process

As illustrated in figure 1, after each of the n sub-populations,
were randomly initialized with m genotypes the process of the
CONE method was as executed follows.

1) n rovers (neural controllers) were constructed via se-
lecting p genotypes (neurons) from each neuron sub-
population. These p neurons then became the hidden
layer of each of the n controllers, which were subse-
quently placed in the task environment. The group of
controllers was thus heterogeneous, given that each was
constructed via selecting a set of p hidden layer neurons
from each of the n sub-populations. Evolutionary oper-
ators were not applied between the n sub-populations.

2) The n controllers were tested together in the task envi-
ronment for a lifetime of q epochs, where an epoch was a
test scenario lasting for w iterations of simulation time.
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Each epoch tested different task dependent rover and
environment conditions, such as rover starting positions
and locations of resources in the environment. For each
of the q epochs (where q ≥ m genotypes in a sub-
population), each genotype in a given sub-population
was selected and tested in combination with p-1 other
neurons (thus forming a controller) randomly selected
from the same sub-population.

3) Thus p neurons from each of the n sub-populations
would be concurrently evaluated in the task environment
and assigned a fitness. Testing of neurons within each
sub-population would continue until all neurons had
been tested at least once.

4) At the end of a rovers lifetime (q epochs) an average
fitness value was assigned to each of the p neurons
that participated in each controller. The average fitness
of each neuron was calculated as its cumulative fitness
divided by the number of controllers it participated in.

5) The testing and evaluation of the m neurons in each
rovers genotype sub-population constituted one genera-
tion of the CONE process.

6) For each sub-population, recombination and mutation of
the fittest 20% of neurons then occurred, where the fittest
20% were arranged into pairs of neurons, and each pair
produced 5 child neurons, so as to replace the genotypes
in each sub-population and propagate the next generation
of each sub-population.

7) p neurons were randomly selected from the fittest 20%
of the newly recombined neurons within each of the
n sub-populations. These n sets of p neurons were
then decoded into n controllers, placed in the task
environment, and executed as the next generation. This
process was then repeated for r generations.

C. Constructing controllers from neurons

Given that the CONE method operated at the neuron (not the
controller [14]) level, a controller was constructed via selecting
p neurons from one sub-population of neurons.

The setting of specific neurons in specific hidden layer
locations has the well investigated consequence that different
neurons become specialized for different controller sub-tasks
[19], over the course of a NE process. Hence, each neuron in
each sub-population was assigned to a fixed position in the
hidden layer of any given controller. The position that the ith
neuron (gi) would take in a hidden layer of p neurons, where
gi was selected from any sub-population of m neurons, was
calculated as follows.

Each of the m neurons in a sub-population were initially
assigned a random and unique ranking in the range [0, m-1]. A
sub-population was divided into approximately equal portions
(m / p), where if gi was within the kth portion (where: k = [1,
p]) then gi would adopt the kth position in the hidden layer.

III. CONVENTIONAL NEURO-EVOLUTION

The conventional neuro-evolution method was based on the
research of [1], [21], where each of the n rovers in the group

TABLE I

MULTI-ROVER NE AND SIMULATION PARAMETER SETTINGS.

Neuro-Evolution and Simulation Parameter Settings

Environment size 200 x 200

Points of interest (Red rocks) 40000

Rover battery 1000 units

Cost per action 1 unit

Runs per experiment 20

Generations 500

Epochs 50

Iterations per Epoch 1000

Mutation probability 0.05

Mutation range [-1.0, +1.0]

Weight range [-10.0, +10.0]

Crossover single point

Hidden neurons 10

Phenotypes 100 Controllers

Genotype length 25 (21 + 4) weights

Genotypes 10000

maintained and evolved its own population of complete neural
network controllers. This approach differs from the CONE
method (section II-B), which evolved n populations of neu-
rons, from which n neural controllers were constructed. After,
randomly initializing (with random weights) n populations,
each containing m genotypes (controllers), the conventional
NE process operated as follows.

1) Each rover selects the fittest genotype from its popula-
tion 90% of the time and a random genotype from its
population 10% of the time.

2) These fittest n genotypes were decoded into controllers,
and placed in the task environment to be tested and
evaluated.

3) Each of the m genotypes (representing the population of
controllers for a given rover) was systematically decoded
into a neural controller and tested, together with n-1
other (randomly) selected genotypes (representing the
controllers of other rovers), in the task environment.

4) Each controller was tested for a lifetime of q epochs,
where each epoch constituted a test scenario that lasted
for w iterations of simulation time.

5) At the end of each controllers lifetime (q epochs), a
fitness value was assigned to the genotype corresponding
to each controller. The fitness assigned to a genotype was
calculated as the average of all fitness values attained for
all epochs of its lifetime.

6) The testing and evaluation of the m genotypes in each
rovers genotype population constituted one generation
of the conventional NE process.

7) The fittest 20% of genotypes were then arranged into
randomly selected pairs, and each pair recombined to
produce 5 child genotypes each, so as to replace the
current genotype population.

8) This process was repeated for the r generations that the
conventional NE method was executed for.
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IV. DISCRETE ROVER PROBLEM

A. Extended Rover Task

We propose an extended version of the multi-rover task [1],
[21], in which the complexity of the rovers and environment
is increased. As in the original rover problem, each rover
attempts to maximize its own private evaluation function
(subsection IV-E.2) in order to maximize a global evaluation
function (subsection IV-E.1). The private evaluation function
calculates the number of red rocks detected in a rovers lifetime.
The global evaluation function calculates the number of red
rocks detected by a rover group over the course of the groups
lifetime.

However, each rover has the possibility of selecting between
multiple actions (as opposed to only a move action in the
original rover problem) at a given simulation iteration (section
IV-C). Previous case studies conducted in the extended multi-
rover problem [4], have highlighted that behavioral special-
ization increases task performance. Furthermore, these case
studies demonstrated that applying a systematic search method
to the rover group is not appropriate for attaining a high degree
of task performance in the extended multi-rover problem.
That is, the constraints of limited rover energy and sensor
capabilities1 mandated the use of an adaptive search method.

B. Environment

Adapted from the research of [1], this task simulation was
characterized by a set of rovers operating on a discrete two
dimensional plane (200 x 200 quadrants) which served as a
survey area for a simulated search and find mission. At the
start of a simulation 100 rovers and 1 lander were initialized
in a random quadrant (x, y, where: 0 ≤ x, y < 200). A
maximum of four rovers could occupy any given quadrant.
On the plane, red rocks were distributed according to a two
dimensional Gaussian mixture model [16]. The mixture model
was specified with 4 centroids, set in static locations, where
the radius of each determined the spatial distribution of red
rock around each. 10 radii (ρ = 50, 45, 40, 35, 30, 25, 20, 15,
10, 5) were tested, such that red rock distributions generated
ranged from approximately uniform (low degree of structure)
through to a clustered (high degree of structure). 40000 red
rocks were distributed such that a red rock could be placed at
each possible x, y, where 0 ≤ x, y < 200. Red rock locations
and distributions were initially unknown to the rovers. The
lander had no active role in the discovery of red rocks. Its role
was to act as a base station that kept a record of the number
of successful red rock evaluations (the global performance
measure of the rover group).

C. Rover Sensors and Actuators

Rover morphology was defined by two sensor types (detec-
tion and evaluation) and two actuator types (movement and
communication). This selection of sensors and actuators was

1Rover parameter settings, such as battery energy, sensor and actuator costs,
communication range and speed of movement are specified in previous work
[4].

based upon design proposals for autonomous rovers [20] that
are capable of detecting and performing some preliminary
categorization of red rocks using directional visual sensors
(detection sensor), moving (movement actuator) in order to
evaluate selected red rocks using a physical contact sensor
(evaluation sensor), and then communicating pertinent red rock
data to a base station (communications actuator).

1) Movement Actuator: At any given simulation time step
a rover could activate its movement actuator (wheels) to move
to an adjacent quadrant. To calculate distances between two
quadrants (p, q) with discrete positions of (u, v) and (w,
z) respectively, on the two dimensional plane, the following
metric was used.

δ(p, q) = min(|(u, v) − (w, z)|) (1)

2) Communications Actuator: At any given simulation time
step a rover could activate its communications actuator (radio)
in order to communicate the value of evaluated red rocks
(cumulative since the last communication) to the lander. Com-
munication is broadcast with a fixed radius, so the location of
the lander does not need to be known by each rover. If no
red rocks had been evaluated since the last communication,
nothing would be communicated.

3) Detection Sensors: At each simulation iteration, the
rovers sensed the environment through 16 detection (visual)
sensors that accepted continuous inputs (figure 2). From a
rovers perspective, the environment was divided up into 8
quadrants adjacent to the rovers position. Two visual sensors
were applied per quadrant. The first visual sensor, for quadrant
q, returned the sum of red rocks in quadrant q divided by their
discrete distance to the rover.

s1,q,η,t =
∑

qεVq

Vq

δ(LqLη,t)
(2)

Where, Vq was the number of red rocks on quadrant q, Lq

was the location of quadrant q, and Lη,t was the location of
rover η at time t.

The second sensor returned the sum of discrete distances
from a rover in quadrant q to all the other rovers at time t.

s2,q,η,t =
∑

η′εNq

1

δ(Lη′Lη,t)
(3)

Where, Nq was the set of rovers in quadrant q.
4) Evaluation Sensor: All red rocks on quadrant q (�

= [r0..rk]) were evaluated given that rover η and � both
occupied quadrant q. Red rocks either had a value of 0 or
1. If the value of � for quadrant q ≥ 1, then this value would
then be marked for communication to the lander (next time
the communications actuator was activated). The red rocks
were then marked as evaluated so as they would not be
evaluated again. After rover η had evaluated � on quadrant q,
it would receive an immediate private fitness reward calculated
according to the value of � on quadrant q (section IV-E).
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Fig. 2. Rover neural network controller (Section IV-D).

D. Rover Neural Controllers

Figure 2 presents a rover controller as a Multi-Layer-
Perceptron (MLP) consisting of 21 sensory input nodes
(SI0..SI20) and 4 motor output nodes (MO0..MO3) connected
to 10 hidden layer nodes (HL0..HL9). SI0..SI20 accepted
continuous inputs which represented 16 detection sensor inputs
(8 adjacent quadrants with 2 detection sensors per quadrant),
plus 5 non-visual sensors. This sensor vector constituted the
state space for a rover. At each time step the rover used its
current state to compute one of four possible actions. An action
was either: detect, evaluate, move, or communicate. Each rover
MLP performed this mapping from a rovers current state to
its next action.

1) Sensory inputs: The 5 non-visual input nodes (SI0..SI4)
took as input the 4 motor output (MO0-MO3) values and the
red rock evaluation from the previous simulation iteration,
respectively. Red rock evaluation was the value of red rocks on
the quadrant that the rover was occupying during the previous
simulation iteration, where this value was calculated by the
rover’s private fitness function (section IV-E). If the evalua-
tion sensor was not activated during the previous simulation
iteration then zero was returned. Previous motor outputs were
teaching inputs [15] which influenced the next motor outputs.
The 16 visual input nodes (SI5..SI20) represented the number
of red rocks, and rovers detected in the 8 adjacent quadrants
in the environment. That is, to the north, south, east, west,
northwest, northeast, southwest, and southeast. All sensory
input values were normalized.

2) Motor outputs: MO0-MO3 corresponded to the 4 actions
a rover could select. MO0 and MO1 activated the detection
and evaluation sensors, respectively. MO2 and MO3 activated
the movement and communications actuators, respectively. The
motor output node that generated the highest value was the
action selected. All motor output values were normalized.

3) Genotype representation: The CONE method encoded
a rover’s controller as a set of 10 genotypes (hidden layer

neurons). A single genotype was encoded a set of 25 con-
nection weights. That is, 21 weights (IW0..IW20) connecting
21 sensory inputs, plus 4 weights (OW0..OW3) connecting 4
motor outputs to a given hidden layer neuron. The conven-
tional NE method worked with genotypes that encoded the
250 connection weights of a complete controller.

E. Rover fitness functions

As with the experiments of [1], [21] we defined a global
evaluation function, G(z), which was a function of all environ-
ment variables and actions of all the rovers, z. The goal of the
rover group was to maximize G(z). However, the rovers did
not maximize G(z) directly. Instead each rover η attempted to
maximize its private evaluation function gη(z).

It is important to note that G(z) does not guide evolution,
but rather provides a measure of rover group performance,
based upon the contributions of individual rovers. Instead
the private rover evaluation function guided the evolution of
each rovers controller. In order to ensure that as each rover
improves its private evaluation function it also improves the
global evaluation function, a difference evaluation function
was applied.

1) Global fitness evaluation: The global evaluation (fitness)
function is given by G(z), where z is the current state of the
system. That is, the position of all the rovers in the group,
their internal parameters and the state of the environment. The
global evaluation function (G) calculated the sum of the value
of red rocks evaluated (communicated to the lander) for all
n rovers over the course of their lifetimes. G was defined as
follows.

G =
∑

t

∑

i

Vi

minηδ(LiLη,t)
(4)

Where, Vi was the number of red rocks on quadrant i, Li

was the location of quadrant i, and Lη,t was the location of
rover η at time t. G is factored given that when rover η acts
so as to increase G then gη increases also. However, G has
poor learnability given that its insensitive to individual rover
actions and sensitive the actions of the group.

2) Private fitness evaluation: The private evaluation func-
tion (P) calculated the value of red rocks evaluated by a given
rover over the course of its lifetime. P was defined as follows.

Pη =
∑

t

∑

i

Vi

minδ(LiLη,t)
(5)

The P evaluation function is equivalent to the global eval-
uation function when there is only one rover. Since P was
not affected by the actions of the other rovers, it had infinite
learnability, but was not factored. Whilst any rover could detect
red rocks in adjacent quadrants, the evaluation functions were
only concerned with red rocks on the same quadrant as a rover
(min δ(LiLη,t) = 0). This was stipulated since a rover had to
occupy the same quadrant as a red rock in order to evaluate
it.
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Fig. 3. Results from application of the conventional NE, CONE and
heuristic (REVAC) methods to the extended multi-rover task in 10 different
test environments (section IV-B).

3) Difference fitness evaluation: As elucidated by previous
research [1], a difference evaluation function ensured that each
local fitness evaluation function (Pη) was both aligned with
the global evaluation function and was learnable. That is,
each rover was able to readily observe how their behavior
affected their evaluation function. Thus, D does not have as
high learnability as P, but is still factored like G. In this case,
the difference evaluation function, D, was defined as follows.

Dη =
∑

t[
∑

i
Vi

minη‘δ(LiLη‘,t)
−

∑
i

Vi

minη‘ �=ηδ(LiLη‘,t)
]

=
∑

t

∑

i

Ii,η,t(z)
Vi

minηδ(LiLη,t)
(6)

Where, Ii,η,t(z) is the indicator function, returning one if
and only if η is the rover occupying the quadrant Li at time
t. The second term of D is equal to the value of all red rocks
collected if rover η were not in the system. For all time steps
where η was not the rover occupying the same quadrant as a
red rock, the subtraction (resulting in D) returned zero.

V. HEURISTIC METHOD

A set of meta-control heuristics was applied to the non-
adaptive heuristic method experiments. In these experiments
a heuristic controller was implemented for each rover in
the group, and action selection was executed according to
a set of probabilistic preferences (section V-A). Meta-control
heuristics were implemented so as to direct rovers to perform
particular actions when red rocks were detected. Specifically:

1) When red rocks were detected, the rover would move
(in the next simulation iteration) to the quadrant with
the highest number of red rocks. If this quadrant was
fully occupied by other rovers, the quadrant with the
second highest number of red rocks would be moved to,
otherwise no move at all would be executed.

2) After red rocks with a value > 0, had been evaluated
this value was communicated to the lander (in the next
simulation iteration).

TABLE II

HEURISTIC CONTROLLER: SPECIALIZATION WAS PRE-DEFINED AT THE

INDIVIDUAL ROVER (CONTROLLER) LEVEL VIA GIVING A PROBABILISTIC

PREFERENCE EACH OF 4 POSSIBLE ACTIONS.

Rover Type Detect Evaluate Move Communicate
Detector 0.55 0.15 0.15 0.15
Evaluator 0.15 0.55 0.15 0.15
Communicator 0.15 0.15 0.15 0.55
Mover 0.15 0.15 0.55 0.15

A. Heuristic Controller

A heuristic controller was one of four specialized types
(table II), and defined by a set of probabilistic preferences for
selection of 1 of 4 actions (detection, evaluation, movement,
or communication) at each simulation time step.

B. Non-Specialized Group

For the purposes of testing a non-adaptive heuristic con-
troller in the rover domain, we used the REVAC (Relevance
Estimation and Value Calibration) method to evolve a rover
group composition from the four different specialized rover
types (table IV). REVAC is a parameter calibration method
which has been successfully applied to calibrate parameters
in an agent-based evolutionary economics simulation [12],
and for calibrating genetic algorithm parameters for numerous
common objective functions [13].

The goal of REVAC was to evolve group compositions
of individually specialized rovers. That is, the constituent
portions of detectors, evaluators, communicators, and movers.
We elected to evolve rover group compositions, and to specify
individual rover specialization a priori (table II), as ex-
periments that attempted to evolve individual specialization
with REVAC did not succeed. For the purposes of these
experiments, rovers having individual specializations was a
prerequisite for defining group specialization. The calibration
resulted in a non-specialized rover group (table III), where this
group composition yielded the highest task performance in the
calibration of rover group compositions.

C. Benchmark Comparison

The REVAC evolved group composition (table III) was
subsequently executed in experiments using the heuristic
controller. Since a non-specialized group was evolved, these
results constituted a non-specialized task performance bench-
mark for the rover domain. The highest task performance
results were attained in environment type 3, where an average
of 3798 red rocks were evaluated (table V). Benchmark task
performance results were compared with those of rover groups
where neural controllers were applied and adapted with either
the conventional NE (section III) or the CONE method (section
II).

VI. EXPERIMENTS

Experiments tested both NE and the heuristic method in
10 different environment types. Each environment type used
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TABLE III

NON-SPECIALIZED ROVER GROUP COMPOSITION EVOLVED BY REVAC.

Detector
Portion

Evaluator
Portion

Mover
Portion

Communicator
Portion

0.33 0.38 0.26 0.03

a different red rock distribution (section IV-B). Each method
was executed for 20 simulation runs. Averages presented in
figure 3 were thus calculated over the 20 runs. The goal
of the non-adaptive (heuristic) versus adaptive (NE) methods
comparison was to elucidate the benefit of specialization (at
both the individual and group levels) for task performance.
The simulation and NE parameters are presented in table I.

A. Evolved Group Compositions

1) CONE Method: Table V presents the highest performing
rover group (4907 red rocks evaluated) derived by the CONE
method as being specialized at both the individual and at the
group level. That is, this group (labeled a detector group) was
comprised of the following portions of individual specializa-
tions: 52% detectors, 25% evaluators, 7% communicators, and
11% movers. 5% of the group did not derive an individual
specialization.

2) Conventional NE Method: Table V presents the highest
performing rover group (3988 red rocks evaluated) derived
by the conventional NE method as being specialized at the
individual level but unspecialized at the group level. That
is, the group was comprised of the following portions of
individual specializations: 37% detectors, 36% evaluators, 5%
communicators, and 12% movers. 10% of the group did not
derive an individual specialization.

B. Comparisons

In order to draw conclusions from this comparative study,
a set of statistical tests were performed in order to gauge task
performance differences between respective NE methods, and
the heuristic controller method results. The data sets repre-
senting results of the conventional NE, CONE and heuristic
methods were found to conform to normal distributions via
applying the Kolmogorov-Smirnov test [6]. P = 1.0, 0.98, and
1.0 respectively. To determine the statistical significance of
difference between data presented in figure 3 an independent
t-test [6] was applied. We selected 0.05 as the threshold for
statistical significance, and the null hypothesis was stated as
the data sets not significantly differing.

First, we applied the t-test to the results of the heuristic
controller method (using the REVAC evolved rover group
composition presented in table III) and the conventional NE
method. P = 0.32 was calculated, meaning the null hypothesis
was accepted and there was no significant difference be-
tween these task performance results. This served to partially
support the hypothesis that specialization was beneficial for
task performance, via illustrating that the conventional NE
method (which did not derive a specialized group) performed
comparably to a non-adaptive heuristic controller method (us-
ing a previously evolved non-specialized group composition).

TABLE IV

EVOLVED ROVER GROUP COMPOSITIONS.

Rover Type CONE Conventional NE
Detector 0.52 0.37
Evaluator 0.25 0.36
Communicator 0.07 0.05
Mover 0.11 0.12
No-Specialization 0.05 0.1

Second, we applied the t-test to the conventional NE and
CONE method results, and third, to the heuristic and CONE
method results. The t-test yielded P = 0.0007 and 0.00003,
respectively, indicating rejection of the null hypothesis and
thus highlighting a significant difference between the CONE
and conventional NE results, as well as between the CONE
and heuristic method results (figure 3).

1) Measuring Specialization: Specialization was measured
at the group, as well as the individual rover level. Specialized
rovers were labeled as: detectors, evaluators, movers or com-
municators according to which sensor (detection or evaluation)
or actuator (movement or communication) was used for ≥ 50%
of the rovers lifetime.

A group was likewise labeled specialized if ≥ 50% of
rovers in the group were either detectors, evaluators, movers,
or communicators. Table V presents the performance of the
best performing group evolved using the CONE method, and
labels it as a detector group, since (52% of rovers in the group
were specialized as detectors (table IV).

Emergent specialization exhibited at both the individual
(table IV presents 95% of the group as having an individual
specialization) and group levels by the detector group, and its
high task performance (comparative to the performance of the
non-specialized group derived by the conventional NE method,
and the heuristic benchmark) supports our research hypothesis
(section I-A.3) for the rover domain.

The conventional NE method was successful in deriving
specialization at the individual rover level, where these in-
dividually specialized rovers constituted 90% of the group
(table IV). However, none of these individual specializations
constituted ≥ 50% of the rovers in the group. As a result, the
rover group derived by the conventional NE method performed
comparably to the heuristic method, which used a previously
evolved non-specialized group composition.

Supporting the performance gain results of similar neuro-
evolution methods [9], the performance advantage yielded by
the CONE method is theorized to be consequent of its fine-
grained representation of the genotype space (figure 1). That
is, the CONE method evolved a population of neurons for
each rover controller in the group, where as, the conventional
NE method evolved populations of complete controllers. We
theorize that, construction of specialized controllers from
individually specialized neurons thus made the CONE method
appropriate for deriving a sufficient number of specialized
controllers so as to warrant specialization at the group level.
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TABLE V

PERFORMANCE OF GROUPS (INCLUDING THE TEST ENVIRONMENT THEY

PERFORMED BEST IN) CONTROLLED BY THE CONVENTIONAL NE (A)

CONE (B), AND HEURISTIC (C) METHODS.

Best Performing Group Derived With Method (A)
Group Label Environment Type Performance
Non-specialized 5 3988

Best Performing Group Derived With Method (B)
Group Label Environment Type Performance
Detector 8 4907

Best Performing Group Derived With Method (C)
Group Label Environment Type Performance
Non-specialized 3 3798

VII. CONCLUSIONS

This paper described a NE method (CONE) that worked
via having each agent in a group of agents to evolve its
own population of neurons. At each evolutionary step of the
CONE method, an agents neural controller was constructed
from the fittest set of neurons within a given population.
The performance of the CONE method was compared with
a conventional NE method, that worked via having each agent
in a group of agents evolve its own population of complete
neural controllers.

These NE methods were comparatively tested in a collective
behavior task domain, where specialization is known to be
beneficial for task accomplishment. Specialization was defined
at both the individual agent level, and at the agent group level.
This was an extension of the rover task domain. The goal was
for a group of agents (rovers) to detect and evaluate as many
points of interest (red rocks) in a discrete two-dimensional
environment, given limited energy, mission time, sensor, and
actuator capabilities.

The research hypothesis was that the CONE method was
appropriate for deriving emergent specialization for the bene-
fit of increasing task performance. The CONE method was
successful at deriving specialization at both the individual
and group level, and consequently derived a rover group
that yielded the highest task performance. Furthermore, rover
groups controlled by the CONE method yielded a significantly
higher group fitness (measured by a difference evaluation
function) for all environment types tested.

The performance of rover groups controlled by the CONE
method was compared with groups controlled by the conven-
tional NE, as well as a heuristic controller. The conventional
NE method was successful at deriving specialization at the
individual rover level, but not at the group level. Rover
groups controlled by the heuristic controller used individual
specialization specified a priori, but did not use specialization
at the group level. The performance of rover groups using
the heuristic controller thus represented a non-specialized per-
formance benchmark. The conventional NE and heuristic con-
trolled groups were found to yield a comparative performance.
Comparative to rover groups controlled by the CONE method
(exhibiting specialization at both the individual and group

levels), the inferior performance of rover groups controlled
by the conventional NE and heuristic methods was theorized
to be a consequence of the lack of group level specialization.
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