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Abstract— In this research, a neuro-evolution method called
Collective Neuro-Evolution (CONE), is introduced for the design
of neural controllers (agents) operating in collective behavior
task domains. The efficacy of the CONE method for facilitating
emergent behavioral specialization for the benefit of increasing
task performance is tested in a pursuit-evasion and collective
gathering task. For a comparative study, a conventional neuro-
evolution method was applied to the same tasks. In both tasks,
the CONE method derived behavioral specialization in groups
of agents resulting in higher task performances, where as the
conventional neuro-evolution method was unable to derive spe-
cialization resulting in comparatively lower task performances.

I. INTRODUCTION

Research in simulated and physical collective behavior
systems, has often attempted to replicate the success of certain
biological social systems [1] at decomposing the labor of a
group into composite specialized and complementary roles so
as to accomplish global goals that could not otherwise be
accomplished by individuals, and to increase global task per-
formance. The mechanisms motivating emergent specialization
have been studied in biological [1], artificial life [2], and multi-
robot [3] systems. However, collective behavior design meth-
ods for harnessing and utilizing emergent specialization for the
benefit of problem solving and increasing task performance in
such systems is currently lacking.

This paper describes a comparative study testing two neuro-
evolution methods, for the purpose of controller design, where
the aim was to demonstrate the benefit of emergent special-
ization in different collective behavior tasks1.

A neuro-evolution method, termed herein as CONE: Col-
lective Neuro-Evolution is introduced, and compared with a
conventional neuro-evolution method in two separate collec-
tive behavior task domains. First, a pursuit-evasion task using
small groups of simulated Khepera robots, where the task was
for a group of predator robots to immobilize a prey robot.
Second, a collective gathering task using a simulated swarm
of Unmanned Autonomous Vehicles (UAV’s), where the task
was to discover as many features of interest in an environment
unknown to the UAV’s, given limited energy and life spans.

1The terms used herein are defined as follows. Task: what has to be done,
activity: what is being done, role: the task assigned to an individual within
a set of responsibilities given to a group of individuals, caste: a group of
individuals specialized in the same role [3].

A. Neuro-Evolution for Collective Behavior Design

Neuro-evolution (NE) is an approach that combines tech-
niques native to both neural networks and evolutionary com-
putation research, for the purpose of evolving weights of
neural controllers [4]. Recently NE has been successfully
applied to controller design in a range of collective behavior
task domains that have included multi-agent computer games
[5], RoboCup soccer [6], and multi-robot controller design
[2]. NE is most appropriately applied to complex problems
that are neither effectively addressed via pure evolutionary
computation methods [7] or neural processing approaches [8].

NE methods that are pertinent to this research include,
SANE: Symbiotic, Adaptive Neuro-Evolution [9], and ESP:
Enforced Sub-Populations [10], which has achieved particular
success in collective behavior task applications.

SANE differed from other NE systems in that it evolved
a population of neurons instead of complete networks. These
neurons were combined to form hidden layers of feed-forward
networks that were then evaluated in a given task domain.
SANE has been effectively applied to single agent control
tasks, such as playing Othello, robot arm control, and classical
pole-balancing [10], and has proved faster and more efficient
than reinforcement learning methods such as Adaptive Heuris-
tic Critic, and Q-Learning, as well as conventional NE [9].

ESP is an extension of the SANE method, that similarly
evolves neurons instead of complete networks. However, ESP
creates one sub-population of neurons for each hidden layer
neuron in a fully connected feed-forward network, where
neurons could only be recombined with other neurons in
the same sub-population. Dissimilar to SANE, ESP has been
effectively applied to collective behavior tasks such as multi-
agent computer games [5], Keep-away RoboCup soccer [6],
and pursuit-evasion games [11]. In such tasks, the correct
input-output mappings for controllers is not known a priori.

B. Research Goals, Hypotheses and Specialization

1) Research Goal: To conduct a comparative study in order
to evaluate the CONE versus a conventional NE method for
deriving (simulated) robot controllers in collective behavior
tasks. Evaluation criteria included task performance and the
level of specialization in a group of robots. One contribution
of this research was the provision of a NE method, which
facilitated emergent specialization so as to increase the per-
formance of a group of robots in collective behavior tasks.
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Previous research has elucidated that there exist particular
types of task environments where behavioral specialization in-
creases task performance. Specialization was been highlighted
as being beneficial in pursuit-evasion [12] and collective gath-
ering [13] task domains. Given this, our research hypothesis
was formulated as follows.

2) Research Hypothesis: The CONE method was appro-
priate for deriving specialized agents that would yield a high
task performance, in collective behavior task domains.

In order to test this hypothesis in both task domains, the
task performance and emergent specialization observed was
compared to that of a conventional neuro-evolution method.

3) Specialization: Specialization was defined at the indi-
vidual agent level. An agent was considered to be specialized
if a given behavioral role was assumed for the majority (more
than 50%) of the agents lifetime.

In the case of the pursuit-evasion experiments, a behavioral
role was defined according to observed emergent behavior.
Emergent behavior was correlated with average sensor and
motor activation values being within a particular range, for a
given observed behavior. In the case the collective gathering
experiments, a behavioral role was defined according to which
one, out of a set of possible actions, an agent executed for the
majority of its lifetime.

II. CONE: COLLECTIVE NEURO-EVOLUTION METHOD

A. Contributions of CONE

The CONE method was an extension of both the SANE
[9] and ESP [10] methods. A key difference between the
CONE and other NE methods [9], [10], was that it created n
separate sub-populations of genotypes2 (neurons) for n neural
controllers (phenotypes) operating in the task environment.

One advantage of the CONE method was that it expedited
artificial evolution, given that the genotype population was
organized into sub-populations. Hence, specialized controllers
did not have to emerge out of a single population of neurons,
and progressive specialization of controllers was not hindered
by recombination of controllers with complementary special-
izations.

A second advantage was that it provided more genotype di-
versity (comparative to conventional NE methods) and encour-
aged emergent controller specialization given that evolution
occurred within separate sub-populations of genotypes. That
is, it has been highlighted that organizing the genotype popula-
tion into separate niches (sub-populations), either dynamically
[14], or a priori [15] facilitates specialization, and protects
innovation (emergent behaviors) within the specialized niches
of the genotype space.

A third advantage of the CONE method was that it could be
applied to execute online [14] as well as offline [2] in collective
behavior tasks that require fast adaption of controllers, or yield
poor performance if controllers are evolved offline, and then
placed in a task environment.

2Throughout this article the terms genotype and neuron, as well as con-
troller and agent are used interchangeably.

Fig. 1. CONE: Collective Neuro-Evolution. See section II for details.

B. Genotypes

For both the CONE (figure 1) and conventional NE (figure
2) methods, the populations of genotypes were encoded as
a string of floating point values (table I), which represented
neural network weights connecting all sensory input neurons
and all motor output neurons to a given hidden layer neuron.

C. CONE Process

As illustrated in figure 1, after each of the n sub-populations,
were randomly initialized with m genotypes the process of the
CONE method was as executed follows.

1) n agents (neural controllers) were constructed via se-
lecting p genotypes (neurons) from each sub-population
of genotypes. These p neurons then became the hidden
layer of each of the n controllers, which were subse-
quently placed in the task environment. The group of
controllers was thus heterogeneous, given that each was
constructed via selecting a set of p hidden layer neurons
from each of the n sub-populations. Evolutionary oper-
ators were not applied between the n sub-populations.

2) The n controllers were tested together in the task envi-
ronment for a lifetime of q epochs, where an epoch was a
test scenario lasting for w iterations of simulation time.
Each epoch tested different task dependent agent and
environment conditions, such as agent starting positions
and locations of resources in the environment. For each
of the q epochs (where q ≥ m genotypes in a sub-
population), each genotype in a given sub-population
was selected and tested in combination with p-1 other
neurons (thus forming a controller) randomly selected
from the same sub-population.

3) Thus p neurons from each of the n sub-populations
would concurrently be evaluated in the task environ-
ments and assigned a fitness. Testing of neurons within
each sub-population would continue until all neurons
had been tested at least once.

4) At the end of an agents lifetime (q epochs) a fitness value
was assigned to each set of p neurons that participated
in each of the controllers. The assigned fitness of each
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set of p neurons was calculated as the average of fitness
values attained over all epochs of an agents lifetime.

5) For each sub-population, recombination and mutation of
the fittest 20% of genotypes then occurred, where the
fittest 20% were arranged into pairs of genotypes, and
each pair produced 5 child genotypes, so as to propagate
the next generation of each sub-population.

6) A single genotype was randomly selected from the fittest
20% of the newly recombined genotypes within each
of the n sub-populations. These n selected genotypes
were then decoded into controllers, placed in the task
environment, and executed as the next generation. This
process was then repeated for r (table I) generations.

D. Recombination of genotypes: Crossover and Mutation

Each child genotype was produced using single point
crossover [7], and Burst mutation with a Cauchy distribution
[10]. As illustrated in table I mutation of a random value in
the range [-1.0, +1.0] was applied to each gene (connection
weight) with a 0.05 degree of probability, and weights of each
genotype were kept within the range [-10.0, +10.0]. Burst
mutation was used to ensure that most weight changes were
small whilst allowing for larger changes to some weights.

E. Constructing controllers from neurons

Given that the CONE method operated at the neuron (not the
controller [16]) level, a controller was constructed via selecting
p neurons from one sub-population of neurons.

The setting of specific neurons in specific hidden layer
locations has the well investigated consequence that different
neurons become specialized for different controller sub-tasks
[17], over the course of a NE process. Hence, each neuron in
each sub-population was assigned to a fixed position in the
hidden layer of any given controller. The position that the ith
neuron (gi) would take in a hidden layer of p neurons, where
gi was selected from any sub-population of m neurons, was
calculated as follows.

Each of the m neurons in a sub-population were initially
assigned a random and unique ranking in the range [0, m-1]. A
sub-population was divided into approximately equal portions
(m / p), where if gi was within the kth portion (where: k = [1,
p]) then gi would adopt the kth position in the hidden layer.

F. Fitness Calculation

At the end of each generation (section II-C) a fitness value
was assigned to each of the n controllers, where each of
the neurons participating in each controller was assigned an
equal portion of the fitness value. These individual neuron
fitness values were then assigned back to the sub-population
corresponding to each of the controllers.

Although this fitness estimation method, known as fitness
sharing [18] was convenient for deriving the contribution
of each neuron to a controller, it was problematic in that
it potentially prevented the selection of the best neurons
across successive generations. However, this was offset by the
advantage that there was no disparity between controller fitness

Fig. 2. Conventional neuro-evolution. See section III for details.

and the fitness of individual neurons. The same fitness sharing
method was also applied at the controller level, meaning that,
when necessary (section IV-B), we assumed each controller
contributed to group performance equally and should thus be
rewarded with an equal fitness share.

III. CONVENTIONAL NEURO-EVOLUTION

The conventional NE method was adapted from that used for
previous evolutionary robotics experiments [19], and as illus-
trated in figure 2 used only a single population of genotypes.
After, randomly initializing a population of m genotypes, the
conventional NE process operated as follows.

1) Initially, n genotypes were randomly selected from the
population of m genotypes, and decoded into n agents
(neural controllers).

2) These n controllers were then placed in the task envi-
ronment, to be tested and evaluated.

3) Each controller was tested for a lifetime of q epochs,
where each epoch constituted a test scenario (section
II-C) that lasted for w iterations of simulation time.

4) At the end of each controllers lifetime (q epochs), a
fitness value was assigned to the genotype corresponding
to each controller. The fitness assigned to a genotype was
calculated as the average of all fitness values attained for
all epochs of its lifetime.

5) Each of the m genotypes was systematically decoded
into a neural controller and tested, together with n-1
other (randomly) selected genotypes, in the task environ-
ment. The testing of all m genotypes in the population
constituted one generation of the NE process.

6) The fittest 20% of genotypes were then arranged into
randomly selected pairs, and each pair recombined to
produce 5 child genotypes each, so as to replace the
current genotype population.

7) n genotypes were then randomly selected from the fittest
20% of the next generation of genotypes. Each selected
genotype was decoded into its corresponding controller
and placed in the task environment.

8) This process was repeated for the r generations that the
conventional NE method was executed for (table I).
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CONE and Conventional Neuro-Evolution Parameter Settings
Pursuit-Evasion Collective Gathering

Runs per NE method 20 20
Generations 500 500
Epochs 50 50
Iterations / Epoch 1000 1000
Mutation probability 0.05 0.05
Mutation range [-1.0, +1.0] [-1.0, +1.0]
Weight range [-10.0, +10.0] [-10.0, +10.0]
Crossover single point single point
Hidden neurons 5 10
Phenotypes [1, 6] Controllers 100 Controllers
Genotype length 18 (16 + 2) weights 18 (14 + 4) weights
Genotypes 100 / 600 (CONE) 100 / 10000 (CONE)

TABLE I
NEURO-EVOLUTION PARAMETER SETTINGS FOR THE PURSUIT-EVASION

VERSUS THE COLLECTIVE GATHERING TASK DOMAINS.

IV. PURSUIT-EVASION TASK

The pursuit-evasion task was a game played by the sim-
ulated robots, where it was the collective task of pursuers
(herein called: predators) to immobilize one evader (herein
called: prey). A control experiment using a single predator
and single prey, demonstrated that cooperation, between at
least two predators, was needed to accomplish this task [12].
Collective behavior was only evolved for the predator team,
and each prey was able to move 20 percent faster than the
predators. The behavior of each prey was not evolved, but
instead used a previously evolved obstacle avoidance behavior.

Experiments were conducted in simulation using an ex-
tended version of the EvoRobot Khepera simulator [20], where
each predator and prey was embodied as a Khepera mobile
robot [21]. Figure 3 presents the prey as being equipped with 8
infrared proximity sensors (SI0..SI7), as well as a light (L0) on
its top. This light could be detected by predator light sensors,
and allowed each predator to distinguish fellow predators from
a prey. Each predator had the same set of sensors and actuators:
8 infrared proximity (SI0, S12, SI4, SI6, SI8, SI10, SI12, SI14)
and 8 light sensors (SI1, S13, SI5, SI7, SI9, SI11, SI13, SI15)
positioned on its periphery.

The simulation environment corresponded to a 1000cm x
1000cm arena with no obstacles. When the predator and prey
robots were placed in the environment, sensory input was
received via the input units, and activation values were passed
to the two motor units. The activation value of the two motor
units (MO0, MO1) was used to move the robots, thus changing
the sensory input for the next simulation cycle. This cycle was
then repeated, continuing until the end of robots lifetime.

A. Neural Controllers for Pursuit-Evasion

Predator and prey behavior was controlled by feed-forward
neural controllers, with a single hidden layer connecting sen-
sory inputs and motor outputs. Since only predator controllers
were evolved, only the predator controller is illustrated in
figure 4. The neural controller of each predator robot consisted
of 16 sensory neurons, which encoded the state of infrared and
light sensors, and 2 motor neurons, which encoded the speed
of the two wheels, where sensory inputs and motor outputs
were fully connected to 5 hidden layer neurons.

Fig. 3. Sensory-motor configuration of simulated Khepera robots. See section
IV for explanation.

A predators controller was represented as a set of 5 geno-
types (hidden layer neurons). Where a single genotype was
encoded as a string of 18 connection weights. That is, 16
weights (IW0..IW15) connecting 16 sensory input neurons, and
2 weights (OW0..OW1) connecting 2 motor output neurons to
a given hidden layer neuron. Hence a complete controller was
encoded as 90 (5 x 18) connection weights, where weights
connecting sensory input and motor output neurons to hidden
layer neurons changed only according to the NE method
applied (sections II and III). The NE parameters utilized for
the comparative NE methods are presented in table I. The
genotype to phenotype mapping scheme for the predators (prey
controllers were not subject to a NE process) was a direct one-
to-one mapping, where each connection weight corresponded
to a floating-point number in the interval [-10, +10].

A prey controller consisted of 8 sensory inputs encoding
infrared neuron states, and 2 motor neurons encoding the speed
of two wheels. Sensory input and motor output neurons were
fully connected to 5 hidden layer neurons.

For both predators and prey, the activation value of each
output unit was used to update the speed of the corresponding
wheel every 100 milliseconds of simulation time. To allow
the prey to move 20% faster than the predators, the activation
value of each of its output units was multiplied by 1.2,
before setting the wheel speed. Further descriptions of predator
and prey controllers, as well as the previously evolved prey
obstacle avoidance behavior is given in related work [12].

B. Predator Fitness Rewards

The predator team was rewarded a fitness equal to the total
time for which it was able to immobilize a prey. This fitness
value was shared equally (section II-F) between all predator
controllers in a team.

V. PURSUIT-EVASION GAME EXPERIMENTS

For both NE methods, 5 different group configurations of
predators and prey were tested. These group configurations
were named and defined as follows. Group type 1: 2 predators
and 1 prey; Group type 2: 3 predators and 1 prey; Group
type 3: 4 predators and 1 prey; Group type 4: 5 predators
and 1 prey; Group type 5: 6 predators and 1 prey. The
performance measure used was the average prey-capture time,
where the average was taken over all predators lifetimes, and
all experimental runs. The NE parameter settings specified in
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Fig. 4. Neural controller of predator robots. See section IV-A for details.

table I were selected given the success of related parameter
settings in previous evolutionary robotics experiments [19].

A. Evolved Prey-Capture Behavior

1) Conventional NE Method: For all experimental runs
of the conventional NE method, and all group types tested
(section V), two cooperative prey capture strategies3, termed:
entrapment and encirclement consistently emerged.

In the encirclement strategy, at least three and at most four
predators moved to circle the prey, each moving in the same
direction in close proximity to the prey. The predators would
gradually move closer to the prey, eventually immobilizing it.
The strategy was only successful for immobilizing a prey for
relatively short periods of time, given that the predators were
not able to coordinate their movements for extended periods.

Similarly, the entrapment strategy utilized at least three
and at most four predators, where all moved simultaneously
towards a prey from different directions in order to immo-
bilize it within a triangular or square formation. As with
the encirclement strategy, all predators remained in close
proximity to the prey, except that they would knock against
it in order to prevent its escape. The entrapment strategy
was also hindered by a lack of coordination between the
predators, and the number of prey capture instances was less
than the encirclement strategy. Although in an instance when a
prey was cooperatively trapped, prey capture time was longer
comparative to the encirclement strategy.

2) CONE Method: For all experimental runs, and all group
types tested using the CONE method, only one emergent
cooperative prey capture strategy (termed: role switcher) was
consistently observed. Here, predators adopted and kept com-
plementary behavioral roles throughout their lifetimes, where
these behaviors were either switched on (active) or off (idle).

Figure 5 illustrates the role switcher strategy. After detecting
the prey at simulation time t, predators A and B, moved
to intercept the prey at simulation time t + w. Predator B
switched off its flanking behavior to become idle, and predator
C switched from an idle to a flanking behavior, whilst predator

3All emergent prey capture strategies observed for both the CONE and
conventional NE methods are detailed in [12].

Fig. 5. Role switcher strategy. Predators B and C alternated between
specialized roles of flanker and idle, so as to increase strategy effectiveness.

A retained its knocker behavior, in order to prevent evasion
of the prey when it turned about to move in the opposite
direction at simulation time t + z, where z ≥ w. Thus,
particular predators assumed particular roles (either a flanker
or knocker), where these behaviors were switched on or off
(idle), in response to prey movements. This adoption of roles,
maintained throughout the lifetime of the predators increased
the effectiveness of the role switcher strategy, and thus the
performance of the CONE method. Also, the role switcher
strategy was consistently effective at immobilizing a prey, for
all group types tested, where as this was not the case for
the entrapment and encirclement prey-capture strategies that
emerged under the conventional NE method.

3) Comparisons: In order to determine the statistical sig-
nificance of difference between the prey-capture time results
of the conventional NE and CONE methods presented in figure
6, an an independent t-test [22] was applied to each data set.
Both data sets were found to conform to normal distributions
via applying the Kolmogorov-Smirnov test [22] (P = 0.99,
0.98 for the conventional and CONE methods respectively).
For each t-test, 0.05 was selected as the threshold for statistical
significance, and the null hypothesis was stated as the two data
sets not significantly differing. The t-test yielded P = 0.0003,
indicating rejection of the null hypothesis, and supporting
the observation that the CONE method yielded a greater
performance comparative to the conventional NE method.

This comparison, and the observation that the role switcher
strategy (emergent under the CONE method) comprised com-
plementary specialized behaviors, supported our research hy-
pothesis (section I-B.2) for the pursuit-evasion task.

4) Measuring Specialization: Importantly, the role switcher
strategy exhibited complementary specialized behaviors at the
controller level, where as the entrapment and encirclement
prey-capture strategies did not. Using methods from related
work [19] we were able to ascertain which sensory activation
and motor output value ranges corresponded to an observed
behavior. Specifically, we measured the portion of a predators
lifetime that light sensors (for prey detection) and infrared
sensors (for proximity detection) were activated (within a
given range). These activation instances were then named
according to the corresponding observed behavior (flanker,
blocker and idle), and their activation times summed. If the
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Fig. 6. Performance results of the conventional NE and CONE methods in
the pursuit-evasion task. Results are displayed for 5 different group types.

portion summed ≥ 50% of the predators lifetime the observed
behavior was labeled as specialized (section I-B.3). Flanker
and blockers were classified and labeled as such via simply
observing predator behavior during the simulation.

Hence, the role switcher strategy (emergent under the
CONE method) was comprised of predators with comple-
mentary and specialized behaviors, and this strategy resulted
in a significantly higher prey-capture time comparative to
the encirclement and entrapment strategies (emergent under
the conventional NE method). Given this, it was theorized
that specialization was beneficial for task performance in
that it facilitated successful coordination of predator behav-
iors, reduced physical interference, and thus increased prey-
capture time. This was not the case for the encirclement and
entrapment strategies where a lack of coordinated behavior
and resultant physical interference between predators (as they
collectively approached a prey) was observed.

VI. COLLECTIVE GATHERING TASK

Inspired by UAV survey and exploration missions of un-
known environments [23], a group of 101 simulated UAV’s
(100 explorer agents and 1 lander agent) were given the task of
maximizing the number of features of interest (herein termed:
red rocks) discovered within a survey area of an environment
given limited sensor and actuator capabilities, battery power
and mission time. Red rock locations and distributions were
initially unknown to the agents. The lander had no active
role in the discovery of red rocks. Its role was to act as a
base station that received red rock data (locations and value
of features of interest) communicated to it, and to recharge
explorer agents that successfully accomplished their task.

A. Environment

The simulation environment 4 was represented as a discrete
three dimensional environment of 200 x 200 x 200 voxels. At
the start of each simulation, each explorer was initialized in a
random voxel (x, y, z, where, 0 ≤ x, y, z < 200). A maximum

4Demo’s, source code and documentation of the simulation environment is
available at: www.cs.vu.nl/nitschke/Marsscape/.

Fig. 7. Neural controller of explorer agents. See section VI-C for explanation.

of 4 explorer agents could occupy any given voxel. Within
the environment, red rocks were distributed according to a
two dimensional Gaussian mixture model [24]. The mixture
model was specified with 4 centroids, set in static locations,
where the radius of each determined the spatial distribution of
red rock around each. For all collective gathering experiments,
five radii were tested, such that red rock distributions generated
ranged from approximately uniform (low degree of structure)
through to a clustered (high degree of structure). For a given
simulation, 40000 red rocks were distributed over the ground
level of the environment. Where, a red rock could be placed
at each possible x, y, z, where 0 ≤ x, y < 200, and z=0.

B. Explorer Agents: Sensors and Actuators

Agent morphology was defined in terms of 1 detection
sensor, 1 evaluation sensor, 1 movement actuator, and 1 com-
munication actuator. This selection of sensors and actuators
was based upon design proposals for rotorcraft that are to
operate as autonomous aerial explorers [25]. Rotorcraft are
considered advantageous given their vertical lift capabilities,
allowing them to detect red rocks in flight using a directional
visual sensor, perform some preliminary categorization of red
rocks, move in order to evaluate selected red rocks using a
physical contact sensor, and then communicate red rock data.
Rotorcraft are also able to land to recharge at a base station.

Selection of one of the four possible actions (detect, evalu-
ate, move, communicate) was determined by the motor output
node yielding the highest output value (figure 7).

Parameter settings specific to explorer agents, such as bat-
tery energy, sensor and actuator costs, communication range
and speed of movement are specified in related work [13].

C. Explorer Agents: Neural Controllers

Figure 7 illustrates an explorer agent controller as consisting
of 14 sensory input nodes (SI0..SI13) and 4 motor output nodes
(MO0..MO3) connected to 10 hidden layer nodes (HL0..HL9).

1) Sensory inputs: The 5 non-visual input nodes (SI0..SI4)
took as input the 4 motor output (MO0-MO3) values, and the
red rock evaluation value from the previous simulation itera-
tion, respectively. These previous motor outputs were teaching
inputs [19] which influenced the next motor outputs. The 9

422

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



non-visual input nodes (SI5..SI13) represented the number of
red rocks at the agents current position, and at each of the
surrounding 8 voxels (on the plane z = 0) in the environment.
That is, to the north, south, east, west, northwest, northeast,
southwest, and southeast. All values taken by sensory input
nodes were normalized.

2) Motor outputs: MO0-MO3 corresponded to the 4 actions
an agent could select. MO0 and MO1 activated the detection
and evaluation sensors, respectively. MO2 and MO3 activated
the movement and communications actuators, respectively. The
motor output node that generated the highest value was the
action selected. All motor output values were normalized.

3) Genotype representation: A controller was represented
as a set of 10 genotypes (hidden layer neurons). A single
genotype was encoded as a string of 18 connection weights.
That is, 14 weights (IW0..IW13) connecting 14 sensory inputs,
and 4 weights (OW0..OW3) connecting 4 motor outputs to a
given hidden layer neuron. The parameters utilized for the
comparative NE methods are presented in table I.

D. Features of Interest: Red Rock
Heuristic behavior (based on controller heuristics described

by [13]), complemented explorer agent neural controllers
(which learnt how best to discover red rocks) so as to ensure
particular behavior when red rocks were discovered.

1) Discovered red rock heuristics: When an agent discov-
ered a red rock using its detection sensor; red rock location
was moved to using its movement actuator; red rock data
was then ascertained using its evaluation sensor; red rock
data was communicated from the agent to the lander using
its communication actuator; red rock value (0 or 1) was
communicated back to the agent from the lander; and the
evaluated red rock was marked: evaluated, so it would not
be evaluated again.

2) Red rock value: Agents that had evaluated red rocks
would be marked as eligible to receive a recharge reward (reset
= 0 after an agent returned to the lander to recharge) and an
immediate fitness reward equal to the previous red rock value
gathered, where rewards were cumulative. An agent returned to
the lander for recharge when its energy level was ≤ 25% of its
maximum. Hence, red rock value served two purposes. First,
it was equated with controller fitness and thus used by a NE
method in selection and propagation of the best performing
controllers. Second, it allowed high performance agents to
have their lifetimes extended.

E. Individual and Group Fitness Rewards
When an agent discovered a red rock, all other agents within

its communication range would receive an equal share of a fit-
ness reward (red rock value). This reward scheme assumed that
red rock data of newly discovered red rocks would always be
communicated to other agents (within communication range),
thereby increasing group performance. Hence, individual agent
fitness was equal to the number of red rocks it had discovered
thus far (in its lifetime), where as, group fitness was equal
to the total number of communications (concerning red rock
with value = 1) received by the lander.

Fig. 8. Performance results (for 5 different test environments) of the
conventional NE and CONE methods in the collective gathering task.

VII. COLLECTIVE GATHERING EXPERIMENTS

For both NE methods, 5 different environment types were
tested, where each used a specific red rock distribution (section
VI-A). The performance measure was the average number of
red rocks discovered, where the average was taken over the
lifetime of all agents, and all experimental runs (table I).

A. Evolved Group Compositions

1) CONE Method: Table II presents the highest performing
group composition (average of 4907 red rocks discovered)
derived by the CONE method (occurring in environment type
3). The group was comprised of a majority of detector agents
(0.52), minor portions of evaluator (0.25) and communicator
(0.22) agents, and agents of no specialization (0.01).

2) Conventional NE Method: Likewise, table II presents
the highest performing group composition (average of 3988
red rocks discovered) derived by the conventional NE method
(occurring in environment type 5) as consisting of three
approximately equal portions of agent types, with none having
a majority. That is, detector (0.37), evaluator (0.36), commu-
nicator (0.15), and agents of no specialization (0.12).

3) Comparisons: In order to draw conclusions from this
comparative study, a set of statistical tests were performed
in order to gauge task performance differences between re-
spective NE method results. First, it was determined that
results of the conventional and CONE methods conformed
to normal distributions via applying the Kolmogorov-Smirnov
test [22] (P = 1.0, 0.98 for the conventional and CONE
methods respectively). Second, to determine the statistical
significance of difference between data presented in figure 8
an independent t-test [22] was applied. We selected 0.05 as
the threshold for statistical significance, and stated the null
hypothesis as the two data sets not significantly differing.
The t-test yielded P = 0.0007, indicating rejection of the null
hypothesis.

4) Measuring Specialization: In this case we measured
specialization at the group level (as well as the agent level).
Specialized agents were labeled as: detectors, evaluators or
communicators according to which sensor or actuator (exclud-
ing movement) was used for ≥ 50% of the agents lifetime.
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Group composition derived with conventional NE (A)
Detectors Evaluators Communicators No

Special-
ization

DoS Average
RRVG

0.37 0.36 0.15 0.12 3 3988
Group composition derived with the CONE method (B)

Detectors Evaluators Communicators No
Special-
ization

DoS Average
RRVG

0.52 0.25 0.22 0.01 5 4907

TABLE II
COMPOSITIONS OF BEST PERFORMING GROUPS USING CONVENTIONAL

NE (A) CONE (B) METHODS. RRVG: RED ROCK VALUE GATHERED.
DOS: DEGREE OF STRUCTURE.

A caste was likewise labeled if ≥ 50% of agents in the
group were detectors, evaluators, or communicators. Table II
presents the best performing agent group using the CONE
method as converging to a detector caste. Comparison of best
performing groups for both NE methods, and the specialization
(section I-B.3) of the highest performing group to a detector
caste, supports our research hypothesis (section I-B.2) for
the collective gathering task. The CONE method yielded a
detection caste and the conventional NE method yielded no
castes (theorized to be a result of using a single genotype
population). Hence, specialization (facilitated by the CONE
method) was theorized to be beneficial for task performance.

VIII. CONCLUSION

This paper introduced the CONE: Collective Neuro-
Evolution method, and compared its task performance with
a conventional NE method for controller design given two
different collective behavior tasks. The CONE method was
designed to facilitate emergent behavioral specialization within
a group of controllers (agents), and operated under the suppo-
sition that if specialization was advantageous, then behavioral
specialization would emerge for the benefit of increasing
collective behavior task performance. To test this research
supposition, the CONE and a conventional NE method were
applied to pursuit-evasion and collective gathering tasks.

When the CONE method was applied to the pursuit-evasion
task, a group of predator robots adopted specialized behavioral
roles which enabled the formation of collective prey-capture
strategies capable of effectively immobilizing a prey robot.
When the CONE method was applied to the collective gather-
ing task, a group of Unmanned Autonomous Vehicles (UAV’s)
adopted different frequencies of use of their sensors and
actuators so as to form complementary specialized behaviors.
For both tasks, in addition to these emergent specialized
behaviors a high level of task performance was observed.

The value of behavioral specialization emergent under the
CONE method was demonstrated by the result that, compar-
atively, the conventional NE method yielded a lower perfor-
mance in both task domains. The higher task performance of
controllers derived using the CONE method, was theorized
to be consequent of emergent behavioral specialization that
enabled the formation of effective collective behaviors yielding
the benefit of increased task performance. However, this is
subject to current research.
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