
Collective Specialization for Evolutionary Design
of a Multi-Robot System

A.E. Eiben, G.S. Nitschke, and M.C. Schut

Computational Intelligence Group, Vrije Universiteit Amsterdam, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands,

gusz@cs.vu.nl, nitschke@cs.vu.nl, schut@cs.vu.nl

Abstract. This research is positioned in the context of controller design
for (simulated) multi-robot applications. Inspired by research in survey
and exploration of unknown environments where a multi-robot system is
to discover features of interest given strict time and energy constraints,
we defined an abstract task domain with adaptable features of interest.
Additionally, we parameterized the behavioral features of the robots, so
that we could classify behavioral specialization in the space of these pa-
rameters. This allowed systematic experimentation over a range of task
instances and types of specialization in order to investigate the advan-
tage of specialization. These experiments also delivered a novel neuro-
evolution approach to controller design, called the collective specializa-
tion method. Results elucidated that this method derived multi-robot
system controllers that outperformed a high performance heuristic and
conventional neuro-evolution method.

1 Introduction

Biological social systems have long been a source of inspiration to engineers. In
particular, research in multi-robot and artificial life collective behavior systems,
has often attempted to replicate the success of social insect societies at decom-
posing the labor of a group into composite specialized and complementary roles
so as to accomplish collectively, global goals that could not otherwise be accom-
plished by individual insects. Mechanisms and design principles that facilitate
emergent behavioral specialization have been studied in biological [7], artificial
life [1], and multi-robot systems [10] research. However, collective behavior de-
sign methods for harnessing and utilizing emergent specialization for the benefit
for problem solving are lacking in current swarm engineering approaches.

This paper describes a comparative study testing Neuro-Evolution (NE) and
heuristic methods with respect to the role of specialization in solving a collective
behavior task1. NE is an approach that combines techniques native to both neu-
ral networks and evolutionary computation research. Both of these techniques
1 Terms used herein are defined as follows: task : what has to be done, activity : what
is being done, role: the task assigned to a specific individual within a set of respon-
sibilities given to a group of individuals, caste: a group of individuals specialized in
the same role [10].

have historically been successful in addressing single agent control problems [6]
and have recently had some success for controller design in collective behav-
ior research [2]. The advantages of applying NE to collective behavior research
have been illustrated in a variety of applications including multi-agent computer
games [2], RoboCup [17], and robot controller design [1]. Such applications have
highlighted that NE is most appropriately applied to complex problems that
are neither effectively addressed via pure evolutionary computation methods or
neural processing approaches.

It has been suggested that autonomous robotic explorers whose behavioral
or morphological design (or both) is biologically inspired could be feasible and
cost-effective in future planetary exploration [16], as well as providing an alter-
native to traditional, labor-intensive, tele-robotic operations [18]. The challenge
addressed in this paper concerned developing controllers for a group of sim-
ulated Unmanned Autonomous Vehicles (UAV’s) given a search and find task
constrained by limited resources.

Environmental factors such as resource distribution greatly influence social
organization in biological [7], and artificial social systems [10], given specific types
of tasks such as collective foraging. In this paper, heuristic methods highlighted
that specialization was beneficial in a search and find task, given specific types
of resource distribution in the environment. For this task, we defined what we
termed the Collective NE (CONE) method that was successful in deriving a
caste1 that outperformed a heuristic and conventional NE method.

1.1 Research Goal

The research goal was to demonstrate a NE method capable of deriving spe-
cialization for increasing task performance in environments where specialization
was beneficial.

1.2 Specialization

Specialization was defined at the agent level (1 aerial explorer) and the group
level (n aerial explorers). An agent was specialized if more than 50% of its
lifetime was dedicated to one role. We defined a caste where more than 50%
of the group members assumed one role for more than 50% of their respective
lifetimes.

1.3 First Hypothesis

There exist particular types of task environments where specialization increases
task performance.

To support our first hypothesis, the value of specialization in particular types
of task environments was demonstrated using a heuristic method that tested the
task performance of pre-defined castes.

1.4 Second Hypothesis

That the collective specialization NE method is appropriate for deriving special-
ized groups (that is: castes) with high task performance.

To support our second hypothesis of specialization being a requisite for in-
creased task performance, the performance of the collective specialization method
(where we supposed that emergent specialization would be observed to benefit
performance), was compared to that of a conventional NE method.

Fig. 1. CONE: Collective Neuro-Evolution. See section 2 for details.

2 CONE: Collective Neuro-Evolution

As illustrated in figure 1, after each of the n sub-populations, were randomly
initialized with m genotypes the process of the CONE method was as executed
follows.

1. n agents (neural controllers) were constructed via selecting p genotypes (neu-
rons) from each sub-population of genotypes. These p neurons then became
the hidden layer of each of the n controllers, which were subsequently placed
in the task environment. The group of controllers was thus heterogeneous,
given that each was constructed via selecting a set of p hidden layer neurons
from each of the n sub-populations. Evolutionary operators were not applied
between the n sub-populations.

2. The n controllers were tested together in the task environment for a life-
time of q epochs, where an epoch was a test scenario lasting for w iterations
of simulation time. Each epoch tested different task dependent agent and
environment conditions, such as agent starting positions and locations of re-
sources in the environment. For each of the q epochs (where q ≥ m genotypes

in a sub-population), each genotype in a given sub-population was selected
and tested in combination with p-1 other neurons (thus forming a controller)
randomly selected from the same sub-population.

3. Thus p neurons from each of the n sub-populations would concurrently be
evaluated in the task environments and assigned a fitness. Testing of neurons
within each sub-population would continue until all neurons had been tested
at least once.

4. At the end of an agents lifetime (q epochs) a fitness value was assigned
to each set of p neurons that participated in each of the controllers. The
assigned fitness of each set of p neurons was calculated as the average of
fitness values attained over all epochs of an agents lifetime.

5. For each sub-population, recombination and mutation of the fittest 20% of
genotypes then occurred, where the fittest 20% were arranged into pairs of
genotypes, and each pair produced 5 child genotypes, so as to propagate the
next generation of each sub-population.

6. A single genotype was randomly selected from the fittest 20% of the newly
recombined genotypes within each of the n sub-populations. These n selected
genotypes were then decoded into controllers, placed in the task environment,
and executed as the next generation. This process was then repeated for r
(table 1) generations.

2.1 Online versus Offline adaptation in the CONE method

Most NE methods were originally designed to run offline, meaning that all geno-
types in a population were successively tested and evaluated, and after the whole
population had been tested, evolutionary operators were applied in order to cre-
ate the next population. The fittest genotypes of any given population could
then be selected as those best suited to solving the given task. Recently there
has been some success in applying NE methods for online adaptation in certain
collective behavior tasks such as multi-agent computer games [14].

As with the other NE methods applied to collective behavior tasks, such as
NEAT [15] and rtNEAT [14], the evolutionary cycle of selection and replacement
operated continually as controllers interacted with their task environment, ef-
fectuating the emergence of new controllers in response to dynamic challenges
in the task environment. Dissimilar to other online NE methods, the CONE
method derived a new controller (phenotype) from each of n sub-populations of
genotypes at the turn of each generation of artificial evolution, where a separate
evolutionary process of selection and replacement operated within each of the
n sub-populations. Hence, as the n controllers worked to accomplish their task,
each sub-population was progressively (and not necessarily synchronously) up-
dated, such that the ith controller, where i ε n, was in turn updated (decoded)
from the fittest genotype from the ith sub-population.

3 Conventional Neuro-Evolution

The conventional NE method was adapted from that used for previous evo-
lutionary robotics experiments [12], and as illustrated in figure 2 used only a
single population of genotypes. After, randomly initializing a population of m
genotypes, the conventional NE process operated as follows.

Fig. 2. Conventional neuro-evolution. See section 3 for details.

1. Initially, n genotypes were randomly selected from the population of m geno-
types, and decoded into n agents (neural controllers).

2. These n controllers were then placed in the task environment, to be tested
and evaluated.

3. Each controller was tested for a lifetime of q epochs, where each epoch con-
stituted a test scenario (section 2) that lasted for w iterations of simulation
time.

4. At the end of each controllers lifetime (q epochs), a fitness value was assigned
to the genotype corresponding to each controller. The fitness assigned to a
genotype was calculated as the average of all fitness values attained for all
epochs of its lifetime.

5. Each of the m genotypes was systematically decoded into a neural controller
and tested, together with n-1 other (randomly) selected genotypes, in the
task environment. The testing of all m genotypes in the population consti-
tuted one generation of the NE process.

6. The fittest 20% of genotypes were then arranged into randomly selected
pairs, and each pair recombined to produce 5 child genotypes each, so as to
replace the current genotype population.

7. n genotypes were then randomly selected from the fittest 20% of the next
generation of genotypes. Each selected genotype was decoded into its corre-
sponding controller and placed in the task environment.

8. This process was repeated for the r generations that the conventional NE
method was executed for (table 1).

4 Genotypes

For both the CONE (figure 1) and conventional NE (figure 2) methods, the pop-
ulations of genotypes were encoded as a string of floating point values (table 1),
which represented neural network weights connecting all sensory input neurons
and all motor output neurons to a given hidden layer neuron.

4.1 Recombination of genotypes: Crossover and Mutation

Each child genotype was produced using single point crossover [4], and Burst
mutation with a Cauchy distribution [8]. As illustrated in table 1 mutation of
a random value in the range [-1.0, +1.0] was applied to each gene (connection
weight) with a 0.05 degree of probability, and weights of each genotype were kept
within the range [-10.0, +10.0]. Burst mutation was used to ensure that most
weight changes were small whilst allowing for larger changes to some weights.

Fig. 3. Adaptive topology neural controller. See section 7.2 for explanation.

4.2 Fitness Calculation

At the end of each generation (section 2) a fitness value was assigned to each of
the n controllers, where each of the neurons participating in each controller was
assigned an equal portion of the fitness value. These individual neuron fitness
values were then assigned back to the sub-population corresponding to each
of the controllers. Although this fitness estimation method, known as fitness

sharing [3] was convenient for deriving the contribution of each neuron to a
controller, it was problematic in that it potentially prevented the selection of
the best neurons across successive generations. However, this was offset by the
advantage that there was no disparity between controller fitness and the fitness
of individual neurons.

5 Phenotypes: Constructing controllers from neurons

An agent phenotype (feed-forward neural controller) was constructed from a set
of 10 genotypes (hidden layer neurons). Given that the CONE method operated
at the neuron (not the controller [11]) level, a controller was constructed via
selecting p neurons from one sub-population of neurons. The setting of specific
neurons in specific hidden layer locations has the well investigated consequence
that different neurons become specialized for different controller sub-tasks [15],
over the course of a NE process. Hence, each neuron in each sub-population
was assigned to a fixed position in the hidden layer of any given controller. The
position that the ith neuron (gi) would take in a hidden layer of p neurons, where
gi was selected from any sub-population of m neurons, was calculated as follows.

Each of the m neurons in a sub-population were initially assigned a random
and unique ranking in the range [0, m-1]. A sub-population was divided into
approximately equal portions (m / p), where if gi was within the kth portion
(where: k = [1, p]) then gi would adopt the kth position in the hidden layer.

Neuro-Evolution Parameter Settings
Runs per NE
method

20

Generations 500
Epochs 50
Iterations / Epoch 1000
Mutation probabil-
ity

0.05

Mutation range [-1.0, +1.0]
Weight range [-10.0, +10.0]
Initial Weights Random
Crossover single point
Hidden neurons 10
Phenotypes 100 Controllers
Genotype length 18 (14 + 4) weights
Genotypes 100 (Conventional NE) / 10000

(CONE)

Table 1. Neuro-evolution parameter settings.

5.1 Dynamic topologies

Many NE methods have used a process known as complexification which changes
the topology of a neural controller, and thus its corresponding genotype length,
as part of an evolutionary process [9]. However, only a few of such methods have
been successfully applied to collective behavior tasks [14].

The CONE method also uses complexification to dynamically change geno-
type lengths as part of the evolutionary process. Where as, [14] used synapsis
to recombine genotypes of different lengths, this was not necessary in CONE,
as all genotypes within a given sub-population were kept the same length, and
recombination of genotypes from different sub-populations did not occur. Also,
the CONE method only changed the number of sensory input neurons, and the
number of hidden layer and motor output neurons were kept static.

6 Collective Survey Task

Inspired by UAV survey and exploration missions of unknown environments [16],
a group of 101 simulated UAV’s (100 explorer agents and 1 lander agent) were
given the task of maximizing the number of features of interest (herein termed:
red rocks) discovered within a survey area of an environment given limited sensor
and actuator capabilities, battery power and mission time. Red rock locations
and distributions were initially unknown to the agents. The lander had no active
role in the discovery of red rocks. Its role was to act as a base station that received
red rock data (locations and value of features of interest) communicated to it,
and to recharge explorer agents that successfully accomplished their task.

6.1 Environment

The simulation environment2 was represented as a discrete three dimensional
environment of 200 x 200 x 200 voxels.

Adaptive Input Layer Topology of Neural Controller
Total

Detection Sensor Setting Genotype
Length

Visual Neurons Input
Neurons

3 (0.75 < MOV1 ≤ 1.0) 58 49 (FOV=49);
PODS=0.99

54

2 (0.5 < MOV1 ≤ 0.75) 34 25 (FOV=25);
PODS=0.89

30

1 (0.25 < MOV1 ≤ 0.5) 18 9 (FOV=9); PODS=0.79 14

0 (0.0 < MOV1 ≤ 0.25) 10 1 (FOV=1); PODS=0.69 6

Table 2. Adaptive controller topology. MOV: Motor Output Value 1 (MO0 in figure 3). FOV:
Field of View. PODS: Probability Of Detection Success. See section 7.2 for explanation.

2 Demo’s, source code and documentation of the simulation environment is available
at: www.cs.vu.nl/ nitschke/MarsScape/

6.2 Red Rocks (Features of Interest).

As described by the red rock discovery algorithm (section 8.2), when an agent had
discovered a red rock using its detection sensor the red rock location was moved
to, using the movement actuator, red rock value (evaluation data) was then
ascertained, using the evaluation sensor. Evaluation data was communicated
from the agent to the lander, using the communication actuator and the red
rock value communicated back to the agent from the lander. Red rocks either
had a value (1) or not (0). A red rock with value was marked as evaluated, so it
would not again be subject to evaluation. Thus the number of resources in the
environment diminished with successful task accomplishment. Agents that had
evaluated red rocks with value would be marked as being eligible for an energy
reward, and also immediately receive a fitness reward (section 4.2) equal to the
value of the last red rock evaluated.

Red rock value served two purposes. First, it provided a performance measure
for the agent group. Second, it was translated into energy and fitness rewards.
When an agents energy depleted to below 500 units, it would return to the
lander and the total red rock value that the agent had gathered thus far would
be translated directly into an energy reward.

6.3 Red Rock Distribution.

A simulation consisted of 40000 red rocks distributed over the base of the envi-
ronment. That is, a red rock could be placed at each possible xi, yi, zj , where 0
≤ i < 200, j=0. We described red rock distribution (degree of structure) in the
environment using a two dimensional Gaussian mixture model [13]. The mix-
ture model was specified with 4 centroids, where the radius of each determined
the spatial distribution of red rock around each. 10 radii were tested, such that
red rock distributions generated ranged from a uniform (such an environment
was termed as having a low degree of structure) through to a clustered distri-
bution (such an environment was termed as having a high degree of structure).
We labeled these environment types from 0 (low degree of structure) through
to 9 (high degree of structure). All 10 environment types were tested using the
heuristic (section 8), CONE (section 2) and conventional neuro-evolution meth-
ods (section 3).

Agent Type Detect Evaluate Move Communicate
Detector 0.6 0.1 0.2 0.1
Evaluator 0.1 0.6 0.2 0.1
Communicator 0.1 0.1 0.2 0.6

Table 3. Heuristic Method: Specialized agent types and their probabilistic preferences for
action selection.

7 Agents

At simulation initialization, each aerial explorer was placed in a random voxel
(xi, yi, zi, where, 0 ≤ i < 200). A maximum of 4 aerial explorers could occupy
a given voxel.

7.1 Morphology: Sensors and Actuators

Agent morphology was defined in terms of 1 detection sensor, 1 evaluation sensor,
1 movement actuator, and 1 communication actuator. This selection of sensors
and actuators was based upon design proposals for rotorcraft that are to oper-
ate as autonomous aerial explorers [18]. Rotorcraft are considered advantageous
given their vertical lift capabilities, allowing them to detect red rocks in flight
using a directional visual sensor, perform some preliminary categorization of red
rocks, move in order to evaluate selected red rocks using a physical contact sen-
sor, and then communicate red rock data. Rotorcraft are also able to land to
recharge at a base station.

7.2 Controllers: Adaptive Topology Neural Network

Figure 3 illustrates the feed forward neural controller used by the explorer agents.
The controller connected all sensory input nodes to 10 hidden layer nodes,
(HL0..HL9) to 4 motor output nodes (MO0..MO3). The number of non-visual,
hidden-layer and output nodes remained static at 5, 10, and 4 respectively.

Sensory inputs: Non-visual Non-visual input nodes (SI0..SI4) took as
input the 4 motor output (MO0-MO3) values, and the red rock evaluation value
from the previous simulation iteration, respectively. These previous values were
teaching inputs [12] which influenced the next motor outputs.

Sensory inputs: Visual Figure 3 also illustrates that the number of visual
neurons in the sensory input layer was dynamic within the range SI5 (one voxel
viewable) and SI53 (49 voxels viewable). All values taken by sensory input nodes
were normalized.

The number of sensory input neurons determined the accuracy of sensor read-
ings for detecting (table 2) features of interest (red rocks) in the environment.
In this case, more sensory input neurons indicated that more discrete locations
in the environment (voxels) could be observed with the directional red rock
detection sensor (table 6).

Motor outputs Motor outputs (MO0..MO3) corresponded to the 4 actions
an agent could select. MO0 and MO1 activated the detection and evaluation
sensors, respectively. MO2 and MO3 activated the movement and communica-
tions actuators, respectively. The motor output node that generated the highest
value was the action selected. All values generated by motor output nodes were
normalized.

Genotype Representation A single genotype was encoded as a string in
the interval of [10, 58] connection weights. The genotype to phenotype (hidden
layer neuron) mapping scheme was a direct one-to-one mapping, where each

connection weight corresponded to a floating-point number in the interval [-
10, +10]. A controller was constructed from a set of 10 genotypes (encoded
hidden layer neurons). So as to simplify assembly of a neural controller, all
genotypes within a sub-population (CONE method), or population (conventional
NE method) of genotypes were kept the same length. Also, the given NE method
was applied separately to the part of a genotype encoding input-hidden weights
versus the part encoding hidden-output weights, so as not to recombine parts of
a genotype responsible for distinctly different neural functions.

The genotype length was determined by the detection sensor (field of vision)
setting (given by motor output MO0). That is, the NE method also determined
(indirectly via evolution of hidden-output connection weights) the field of vision
most appropriate for a given controller (agent). As the value of MO0 changed
(given that it was the highest of all motor-output values at a given simulation
time step), so to would the number of visual neurons in the sensory input layer,
and the number of weights connecting visual neurons to hidden layer neurons.

As presented in table 2, the minimum genotype length was 10, and the maxi-
mum was 58. That is, 5 input-hidden weights connected the 5 non-visual neurons
(SI0..SI4), between 1 and 49 input-hidden weights connected the same number of
visual neurons (SI5..SI53), and 4 output-hidden weights connected the 4 motor
output neurons (MO0..MO3) to the a given hidden layer neuron (HL0..HL9).

Action selection Action selection depended on whether the agent was using
a heuristic or a NE method (comparative experiments were executed). In the
case of a heuristic method, selection was according to a probabilistic preference,
where as in the case of NE, selection was determined by the motor output node
yielding the highest output value.

8 Heuristic Methods

For the heuristic method, we hand-coded specialization at the agent (table 3)
and group (table 4) level, according to our definition of specialization (section
1.2). An agent was considered to be specialized if it dedicated more than 50% of
its lifetime to one activity. A group was considered to be specialized if more than
50% of its agents were dedicated to one activity over the course of the groups
lifetime.

The heuristic method used probabilistic preferences to determine which ac-
tion to execute at each simulation iteration. The degree of agent specialization
was thus defined and labeled, via setting a probabilistic bias to one of the four
possible actions.

Table 3 presents the specialized agent types tested in experiments using the
heuristic method. The composition of specialized (caste) versus non-specialized
groups is specified in tables 4 and 5 respectively. For these specifications, CP
denotes the portion of communicators, EP denotes the portion of evaluators,
and DP denotes the portion of detectors. CP = 1 - DP - EP. The letters (V-ZA)
denote the non-specialized group types. A blank space denotes a non applicable
combination of detectors, evaluators, and communicators.

Portion of Evaluators in Group (EP)
0 1/5 2/5 3/5 4/5 1

Portion 0 A B C D E F
of 1/5 G H I J K
Detectors 2/5 L M N O
in 3/5 P Q R
Group 4/5 S T
(DP) 1 U

Table 4. Heuristic Method: Specialized group types. The portion of Communicators is calcu-
lated as 1 minus portion of Detectors (DP) minus the portion of Evaluators (EP).

Portion of Evaluators in Group (EP)
0 1/3 1/2

Portion of 0 W
Detectors in 1/3 V X
Group (DP) 1/2 Y Z ZA

Table 5. Heuristic method: Non-specialized group types. The portion of Communicators is
calculated as 1 minus portion of Detectors (DP) minus the portion of Evaluators (EP).

8.1 Specialized and Non-Specialized Group Types

Specialized group types were defined by setting more than 50% of a group to be of
one specialized agent type (table 3). Table 4 presents the specialized group types
tested using the heuristic method. Note that not all the group types presented
in table 4 are specialized according to this definition. Group types M and N
do not have a greater than 50% majority of any one agent type in their group
composition. Non-specialized group types were defined when no single agent type
had a greater than 50% majority in the groups composition. Table 5 presents
the non-specialized group types tested using the heuristic method.

8.2 Red Rock Discovery Algorithm

The red rock discovery algorithm described the activity of aerial explorers with
respect to discovering and evaluating red rocks, regardless of the controller type.

Red Rock Discovery Algorithm()
{ Simulate for N iterations (agent lifetime)
{
IF red rock evaluation data in memory (not communicated) THEN
{
Communicate red rock evaluation data to lander;
Get fitness reward = r, and energy reward = e;
IF lander not within communication range
THEN communicate red rock data to agents in communication range;
}
Select action:[Detect, Evaluate, Move, Communicate];
IF red rock detected THEN
{
Move to closest red rock with value
Evaluate red rock (store in memory as red rock evaluation data);
Communicate red rock evaluation data to lander;
Get fitness reward = r, and energy reward = e;
IF lander not within communication range
THEN communicate red rock data to agents in communication range;
}
IF current energy < minimum energy threshold Move back to lander
to recharge e units;
} }

Experimental Parameters
Communication Range 100 voxels
Communication Type broadcast
Initial Aerial Explorer / Lander Battery 1000 / 100000

units
Detection / Evaluation Sensor Cost 0.5
Movement / Communication Actuator
Cost

0.5

Maximum Move / Iteration 3 voxels
Simulation Length 2500
Initial Agent Positions Random
Reproduce (Apply NE operators) After evaluation
Energy / Fitness reward per red rock 100 / 1
Number of red rocks per simulation 40000
Simulation runs per experiment 20

Table 6. Agent and environment simulation parameters.

Environment Types
0 1 2 3 4 5 6 7 8 9
P U R R O R P Q R Q

Table 7. Highest performing group types and the environment type (0-9) they performed best
in.

9 Experiments and Results
We designed two sets of experiments. The first experiment set applied and
measured the performance of the heuristic method using specialized and non-
specialized agent groups. The second experiment set applied a conventional NE
and the CONE method and tested their task performance comparatively with
the 27 configurations 19 specialized group types and 8 non-specialized group
types) of the heuristic method. Each experiment set was tested for 10 degrees of
structure in 10 test environments (section 6.3). For all experiments, the perfor-
mance measure used was the Red Rock Value Gathered (RRVG). Averages and
standard deviations were calculated over 20 runs, where a single run consisted
of 2500 iterations and a given method. The method used was either heuristic,
or NE. The experimental agent and environment simulation parameters are pre-
sented in table 6.

9.1 Heuristic Method Comparison: Specialized versus
Non-Specialized Groups

Table 8 presents the performance results from the heuristic method applied with
specialized and non-specialized groups. The values in parentheses are the corre-
sponding standard deviations. Highlighted values are the highest values attained
for both specialized and non-specialized groups. Table 7 illustrates the highest
performing groups for each of the 10 test environments (each degree of struc-
ture). Only group types in the range are (H-U) are displayed, since these were
the highest performing group types.

9.2 Neuro-Evolution Method Comparison
Table 9 presents the performance results for the conventional NE method (A)
versus the CONE method (B) when applied to the 10 test environments. The

Specialized versus Non-Specialized Group Types
Group Types: Specialized Group Types: Non-

Specialized
0 2846 (855) 2124 (388)

D S 1 2923 (931) 2103 (669)
E O T 2 3178 (345) 2723 (628)
G F R 3 3197 (285) 2501 (744)
R U 4 3313 (421) 2414 (594)
E C 5 3218 (977) 2115 (597)
E T 6 3507 (818) 2470 (644)

U 7 3636 (322) 2538 (776)
R 8 3412 (847) 2475 (647)
E 9 3313 (618) 2397 (713)

Table 8. Average RRVG for specialized (A-L; O-U) versus non-specialized group types (M,
N, V-ZA).

highlighted values are the RRVG attained for each method. The value in paren-
theses are the corresponding standard deviations. For the NE methods, we deter-
mined if a given agent in a given group assumed a particular role via measuring
what portion of its lifetime was spent on each of the detection, evaluation, and
communication activities. An agent that spent the majority (more than 50%)
of its lifetime on the detection activity was termed a detector. Similarly, the
terms evaluator and communicator were applied for agents that spent a major-
ity of their lifetimes on evaluation and communication. Likewise, convergence to
a caste, via measuring the portion of detectors, evaluators and communicators
that comprised a group, for the majority of the groups lifetime.

10 Analysis and Discussion

In order to draw conclusions from this comparative study, we performed a set
of statistic tests in order to gauge respective differences between heuristic and
NE method results. First, we determined results from the specialized and non-
specialized heuristic (table 8), CONE and conventional NE (table 9) methods
to be normal distributions via applying the Kolmogorov-Smirnov test [5]. P val-
ues were P=0.72, P=0.99, P=1.0, and P=0.98, respectively. To determine the
statistical significance of difference between each of these data sets we applied
an independent t-test [5]. For each t-test we selected 0.05 as the threshold for
statistical significance, and stated the null hypothesis as two data sets not signif-
icantly differing. The t-test was first applied to the comparative specialized and
non-specialized heuristic method data sets. P=0.00003 was calculated, meaning
the null hypothesis was rejected. This served to support our first hypothesis
of specialization being advantageous in terms of increasing task performance in
particular environment types. Second, we applied the t-test to the comparative
NE method results. A P=0.00007 was calculated, meaning the null hypothesis
was rejected. This partially supported our second hypothesis that the CONE
method would yield a high task performance.

Finally, we applied the t-test to the specialized heuristic method (table 8) and
the conventional NE method (table 9) results. A P=0.32 was calculated, meaning
the null hypothesis was accepted and there was no significant difference between
task performance results. This served to partially support our second hypothe-

Neuro-Evolution Method Comparison
Method A: Conventional
NE

Method B: CONE

0 2874 (365) 4290 (265)
D S 1 3338 (341) 4229 (350)
E O T 2 3218 (417) 4189 (421)
G F R 3 3040 (430) 4394(304)
R U 4 3988 (451) 4511 (321)
E C 5 3956 (338) 4898 (444)
E T 6 3633 (314) 4658 (321)

U 7 3466 (384) 4907 (481)
R 8 3525 (253) 4602 (406)
E 9 2971 (441) 4638 (375)

Table 9. Average RRVG for the conventional NE (A) versus the CONE (B) method.

Group Composition of Conventional Neuro-Evolution Method
Detectors Evaluators Communicators No Specializa-

tion
DoS Average RRVG

0.37 0.36 0.15 0.12 4 3988
Group Composition of Collective Neuro-Evolution Method

Detectors Evaluators Communicators No Specializa-
tion

DoS Average RRVG

0.52 0.25 0.22 0.01 7 4907

Table 10. Comparative group compositions of best performing groups using conventional NE
and the CONE methods. DoS denotes Degree of Structure.

sis that specialization was beneficial for task performance, via illustrating that
an adaptive method with no specialization (table 10) yielded no significant ad-
vantage in performance. In terms of supporting our second hypothesis, that the
CONE method derived specialized groups yielding high task performance, it is
necessary to compare table 7 and table 10. The heuristic method showed that the
best performing specialized group type (caste Q) was operating within environ-
ment type 7. As presented in table 4 the group composition of caste Q was such
that a (60%) majority was the agent type detector. The remainder of the group
composition was split between evaluators and communicators. Table 10 presents
the group composition derived by the CONE method in environment type 7 con-
sisted of a majority of detector agents (0.52) and minor portions of evaluator
(0.25) and communicator (0.22) agent types. This group composition resembled
the caste Q in terms of consisting of a majority of detectors and two minorities
of evaluators and communicators. This was not the case for the conventional
NE method. This method yielded on average a comparable performance to the
heuristic method using specialized group types for all test environments. Ad-
ditionally, the conventional NE method was unable to out-perform the CONE
method for all test environments (table 9). Table 10 illustrates that the best per-
forming conventional NE run (test environment 4) as not converging to a caste.
In table 10 only the group composition for environment type 4 is presented,
however, this held true for all environment types. It is theorized that the inferior
performance of the conventional NE (comparative to the CONE) method was a
lack of derived specialization.

11 Conclusions

This paper described a comparative study of neuro-evolution and heuristic meth-
ods designed to test the efficacy and benefits of utilizing specialization as a means
of increasing performance in a search and find task given a range of test envi-
ronments. Performance comparisons were made according to the total value of
features of interest (termed red rocks) discovered by a simulated multi-robot
system. In support of our first hypothesis, a heuristic method using pre-defined
specialized multi-robot groups elucidated that specialization was beneficial in a
range of test environments (defined by different resource distributions. In support
of our second hypothesis, our neuro-evolution method yielded a higher perfor-
mance in all test environments, comparative to a conventional neuro-evolution
method. The best performing group using the collective neuro-evolution method
converged to a specialized group composition (such that the majority of the
agents assumed one role) that resembled the group composition of the highest
performing specialized group tested with the heuristic method. The compara-
tively low performance of the conventional method was deemed to be consequent
of the lack of specialization exhibited in group compositions derived.

References

1. G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behavior. Artificial Life, 9(1):255–267, 2003.

2. B. Bryant and R. Miikkulainen. Neuro-evolution for adaptive teams. In Proceedings
of the 2003 Congress on Evolutionary Computation, pages 2194–2201. IEEE Press,
Canberra, Australia, 2003.

3. L. Bull and J. Holland. Evolutionary computing in multi-agent environments:
Eusociality. In Proceedings of the Second Annual Conference on Genetic Program-
ming, pages 347–352. IEEE Press, San Francisco, USA., 1997.

4. A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer-Verlag,
Berlin, Germany, 2003.

5. B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge
University Press, Cambridge, 1986.

6. D. Floreano and J. Urzelai. Evolutionary robots with on-line self-organization and
behavioral fitness. Neural Networks, 13(1):431–443, 2000.

7. J. Gautrais, G. Theraulaz, J. Deneubourg, and C. Anderson. Emergent polyethism
as a consequence of increased colony size in insect societies. Journal of Theoretical
Biology, 215(1):363–373, 2002.

8. F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5(1):317–342, 1997.

9. N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In Proceedings of Third European Conference
on Artificial Life (ECAL-95), pages 704–720. Springer-Verlag, Granada, Spain,
1995.

10. M. Kreiger and J. Billeter. The call of duty: Self-organized task allocation in a
population of up to twelve mobile robots. Robotics and Autonomous Systems, 30:
65–84, 2000.

11. S. Nolfi and D. Floreano. Learning and evolution. Autonomous Robots, 7(1):
89–113, 1999.

12. S. Nolfi and D. Parisi. Learning to adapt to changing environments in evolving
neural networks. Adaptive Behavior, 1(5):75–98, 1997.

13. P. Paalanen, J. Kamarainen, J. Ilonen, and H. Kälviäinen. Feature representa-
tion and discrimination based on gaussian mixture model probability densities -
practices and algorithms. Pattern Recognition, 39(7):1346–1358, 2006.

14. K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuro-evolution in the nero
video game. IEEE Transactions Evolutionary Computation, 9(6):653–668, 2005.

15. K. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research, 21(1):63–100, 2004.

16. S. Thakoor. Bio-inspired engineering of exploration systems. Journal of Space
Mission Architecture, 2(1):49–79, 2000.

17. S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keep-away soccer
players through task decomposition. In Proceeding of the Genetic and Evolutionary
Computation Conference, pages 356–368. AAAI Press, Chicago, 2003.

18. L. Young, E. Aiken, G. Briggs, V. Gulick, and R. Mancinelli. Rotorcraft as mars
scouts. In Proceeding of the IEEE Aerospace Conference, pages 4–12. IEEE Press,
Big Sky, USA, 2002.

