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Abstract 

This research concems the comparison of different 
artificial evolution approaches to the design of 
cooperative behavior in a team of simulated mobile 
robots co-evolved against a second team. The first 
and second approaches, termed single pool and 
plasticiry, are characterized by robots that share a 
single genotype, though the plasticity approach 
includes a leaning mechanism. The third approach, 
termed multiple pools, is characterized by robots that 
use different genotypes. The application domain is a 
pursuit-evasion game in which a team of three robots 
termed pursuers, collectively work to immobilize 
one of the three robots of the other team, termed: 
evaders. Results indicate that the multiple p l s  
approach applied within a competitive co-evolution 
process yields superior performance comparative to 
the other approaches. Specifically, the co- 
evolutionary process allows the multiple pools 
approach to 'bootstrap' complementary behavioral 
roles, facilitating the evolution of a stable cooperative 
pursuit strategy. 

evolutionary robotics experiments using two mobile robots. 
This co-evolution scenario was compared with single agent 
evolution. A comparatively faster evolution of more diverse 
behavioral strategies was observed with competitive co- 
evolution. Floreano et al. [1998] extended this research with a 
physical implementation of this predator-prey co-evolution 
using Khepera robots. With notable exceptions such as [lha, 
19961, [Haynes and Sen, 19971, [Yong and Miikkulainen, 
20011, [Stone and Veloso, 19981 few researchers have 
investigated emergent cooperative behavior in a competitive 
co-evolutionary context, where two teams co-evolve 
cooperative behavior that ensures the survival of each team. 

This paper describes a comparison of three artificial 
evolution approaches for the synthesis of cooperative 
behaviour evaluated within a team of simulated Khepera 
robots [Mondada et al. 19931, co-evolved against a second 
team. For each artifiicial evolution approach, a team of three 
pursuers implementing initially random bebavior is 
competitively coevolved with a team of three evaders 
implementing an obstacle avoidance behavior. The pursuers 
and evaders are functionally different in terms of sensor and 
movement capabilities. The team of evaders is able IO move 
40 percent faster than the team of pursuers. F'nrsuen are 
rewarded fitness proportional to how much they are able to 
slow down the evader team on average, and the evader team is 
rewarded fitness propoaional to how fast it is able to move 

1 Introduction 
The use of competitive co-evolution to facilitate emergent and avoid obstacles on average. The collective task was for 
behavior [Hillis, 19901, [Angeline and Pollack 19931, [Rosin the pursuers to immobilize one or more of the evaders. 
and Belew, 19971 particularly cooperation, remains a Previous experiments demonstrated that at least two pursuers 
relatively unexplored area of research in the pursuit and are required speed to be 
evasion domain [Koza, 19911, [KO=, 19921, [Reynolds, 19941 immobilized [Nitschke and Nolfi, 20021. Only cooperative 
and related predator-prey systems [Cliff and Miller, 1994; behavior in the team of pursuers is evolved since that in the 
1995; 19961, [Nishimura and kegami, 19971 studied in an evader team there is no incentive for evaders to cooperate, 
evolutionary robotics context [Bullock, 19951. given that evasion is possible as an individual. 

Various approaches to the evolution of behavior within the for the evolution of cooperative 
Pursuit-evasion domain .have been studied within a behaviour is termed single pool, in which pursuer and evader 
competitive co-evolutionary context. For example, Koza teams are specified with an identical genotype, me-g that 
[1991, 19921 applied genetic Programming techniques to the the corresponding phenotype is also the same. The second 
ccwolution of pursuer-evader behaviors in a two-PlaYer approach, termed plasticity, uses pursuer and evader teams 
pursuit-evasion game. In similar experiments, Reynolds also specified with an identical genotype, though the 
[ 1994) observed the evolution of increasingly sophisticated corresponding phenotype implements a recurrent nemal 
strategies in the competitive Co-eVolutiOII of a pursuer and network controller allowing adaptive behavior during a teams 
evader. Miller and Cliff [1995; 19961. realised the co- lifetime. n e  third approach is termed multiple pools, where 
evolution of pursuit-evasion strategies in evolutionary pursuer and evader teams are specified using a different 
robotics, where simulated robots co-evolved viston genotype, and thus the phenotype at the beginnins of each 
morphologies as a means of improving pursuit and evasion teams lifetime is different. For the team of pursuers, the three 
smtegies. Floreano and Nolfi [1997a, 1997h3 evaluated a approaches are evaluated in terms of fitness scored (averaged 
competitive co-evolutionary predator-prey scenario within for the team), and the time period for which an evader is 
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immobilized. For the team of evaders, the three approaches 
are evaluated in t e m  of average evader team fitness scored, 
and the average time for which the evader team is not 
immobilized. It is hypothesized that the multiple pools 
approach would yield a superior performance as a result of 
'bootstrapping' of behavioural specialisation by the CO- 
evolutionary pmcess. Experimental results support this 
hypothesis, where the emergence of specialised behavioural 
roles proved necessary for the formation of a stable 
cooperative pursuit strategy. 

2 Artificial Evolution Approaches 
For the team of pursuers the three artificial evolution 
approaches were tested and evaluated against co-evolved 
evader strategies for the task of the pursuer team cooperatively 
immobilizing an evader. Where as, for the evader team the 
three approaches were tested and evaluated against co-evolved 
pursuer strategies in terms of the time for which an evader 
(averaged for the team) was not immobilized. 
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Figure 1. Single Pwl: Pursuer and evader team correspond to a 
genotype selected from the respective genotype populations and 
copied 3 times (to represent the 3 pursuers and evaders 
comprising each team). 

Figure 2. Plasticity: Same as Single Pool, though phenotypes 
implement a recurrent neural network controller for adaptability 
during a ~ursuen or evaders lifetime. 

Comparison of Approaches 
To execute the co-evolutionary scheme under which the three 
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artificial evolution approaches were tested, an extension of 
realistic Khepera robot simulation software was implemented 
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simulator [Floreano was and Nolfi, based on 1997a1, real sensory [Floreano values and Nolfi, sampled 1997bl. from The two ~fjqp~fyq 
functionally different Khepera robots used in previous 
predator-prey experiments [Miglino er al. 19961. 

Single Fool Approach: As illustrated in figure I this 
approach generates and tests 3 copies of a single g e n o w ,  
meaning that the pursuer and evader teams =e homogenous. Figure 3. Multiple POOIS: pursuer and evader team correspond 
In this approach there is no plasticity so individual pursuers to 3 genorypes selected from 3 separate pools of genotypes. 
and evaders cannot adapt during their lifetimes. The fitness 
assigned to the pursuer and evader teams is the simply the Mulriple Pools Approach: As illustrated in figure 3 this 
fitness calculated for the genotypes that specify the pursuer approach selects a single genotype from each of the three 
and evader teams. The main advantage Of this approach is its populations of genotypes. Each genotype was then decoded 
simplicity in terms of behavioral encoding and calculation of into 3 separate phenotypes representing the pursuer and 
team fitness. evader teams. In each generation, every individual genotype 

Plasticity Approach: As illuswated in figure 2 this in a population is tested against n other genotypes, randomly 
approach generates and tests 3 copies of a single genotype, so selected from the two other populations of genotypes, where 
that as with the single pool approach, the pursuer and evader each individual genotype was also tested against the best 
teams are homogenous. The difference is that individual individuals from the most recent 10 generations. The 
phenotypes, representing the behaviors of individual pursuers advantage of the multiple pools approach is that selection 
and evaders are able to adapt during their lifetime as a result operates within each genotype population and each pursuer 
of a recurrent neural network l e d g  process. This learning and evader corresponds to genotypes from different 
process is affected by both genetic and environmental factors. populations, so behavioral. specialilation in the team is 
Thus, pursuer and evader phenotypes adapt to environmental encouraged. The disadvantage is that the assignment of 
influences throughout their respective lifetimes, which affects individual fitness is an approximation. Specifically, an equal 
fitness calculated for team genotypes, which in turn influences fitness score is assigned to each of the genotypes, as a means 
the selection process in successive generations. The advantage of deriving the contribution of each pursuer or evader to the 
of the plasticity approach is that it allows for specialization of performance of the team as a whole. n u s  the estimation of 
behavior by individual team members without the need to the fitness for pursuer and evader teams constitutes a 
estimate fitness contribution of different team members to the problem that may prevent the selection of the best 
team as a whole. For these co-evolution experiments, both individuals across successive generations. 
pursuers and evaders implemented a two-layer neural network 
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controller of si-gnoid neurons with re-current c O " m h  at Evaluation of Approaches 
the output layer. This type of conaoller is detailed in previous For both the sing,e 
co-evolution research [Floreano and Mondada, 19941, though genotypes, one specifying each the pursuer team and evader its structure as relates to the experiments of this paper is 

teams are used. In both cases pursuers and evaders are briefly described in the following section. 

and plasrici~ approaches 
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clones, so evaluation of team performance is not 
problematic, as a single value is assigned as the fitness of 
each team. In contrast, the multiple pools approach uses 3 
different populations of genotypes, so each genotype must 
be assigned a fitness score, and team performance evaluation 
needs to be computed by estimating the fitness contribution 
of each genotype to the team as a whole. 

A method of evaluation widely known as: fimess sharing 
[Bull and Holland, 19971 was implemented for the multiple 
pools approach, where an equal fitness score is assigned to 
each individual genotype, thereby assuming that each 
individual contributed to team performance equally. The 
advantage of this method is that fitness for individual 
genotypes is easily calculated and there is no disparity 
between team fitness and the fitness of individual team 
members. 

CO-evolutionary Team 
For all experiments two populations, each initially consisting 
of 100 randomly generated genotypes, were CO-evolved 
where each individual genotype was tested against the best 
individuals from the most recent 10 generations. This type 
of CO-evolutionary scheme was adapted from that used by 
Sims [1994], Reynolds [1994], Cliff and Miller 119951, and 
Floreano et al. [1998] and was selected in order to improve 
co-evolutionary stability. 

Each pursuer and evader is a simulated Khepera mobile 
robot [Mondada et ai. 19931. As illustrated in figure 4, the 
robots used as pursuers were equipped with 8 infrared 
proximity sensors, and 8 light sensors positioned on the 
periphery of the Khepera. The robots used as evaders were 
equipped with 8 infrared proximity sensors, as well as a fight 
on its top. This light could he detected by pursuer light 
sensors and was used so each pursuer could distinguish 
fellow pursuers from evaders. 
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Figure 4. Each pursuer and evader is a simulated Khepero robot. 
Pursuers have 8 infrared proximity sensors, and 8 light sensors. 
Evaders have 8 infrared proximity sensors, and a light so that 
pursuers can distinguish them from fellow pursuers and obstacles. 

Figure 5 (right-side) ikstrates the neural network controller 
implemented for pursuer and evader teams. This controller 
is adapted from that described by Floreano et al. [19981 and 
Nolfi and Floreano [1999]. In the case of the pursuers, the 
input layer consisted of 16 sensory units that encoded the 
activation level of 8 infrared proximity sensors and 8 light 
sensors. These 16 input units were connected to 4 output 
units. As figure 5 illustrates the first two output units 
represented the two motors of the robot and encoded the 
speed of the two wheels. These motor units controlled the 
robots behavior in the environment, illustrated in figure 5 
(left-side). m e  next two output units represented two 
teaching units that encoded a teaching input for the first two 

output units. The two motor units used this teaching input in 
order to learn using the back propagation procedure 
[Rumelban ef al. 19861, where only the connection weights 
were evolved. 

1000 cnl 

Figure 5. Details of the co-evolutionary experimental setup - A 
team of 3 pursuers and a team of 3 evaders are placed into a 
lWOcm x IOOOcm arena (left-side). Cooperative pursuit strategies 
are evolved for the pursuers. A twc-layered neural network 
controller comprising sigmoid neurons is implemented for each 
pursuer and evader (right-side). 

In the plasticity experiments, there were an additional 
two output units that were the recurrent units and contained 
activation values for the motors from the previous cycle. The 
activation values of these two additional output units were 
copied back into an additional two input units. 

In the case of the evaders, a neural network controller 
connecting 8 sensory input units (representing 8 infrared 
proximity sensors) to 4 motor output units was trained for an 
obstacle avoidance behavior before being placed in a CO- 

evolutionary run. Given the simple nature of the neural 
controllers, direct genetic coding of connection weights was 
used. In the case of the pursuers genotype length was set to 
24 genes, where each gene consisted of 5 bits. That is, 16 
genes represented the 8 infrared proximity sensors, and the 8 
light sensors, another 4 genes represented the motor output 
units, and an additional 4 recurrent units used in the 
plasticity experiments. The 5 bits of each gene encoded 
connection weights, where the frst bit determined the sign 
of the connection weight and the remaining four bits its 
strength. In the case of the evaders, genotpe length was set 
to 16 genes, where 8 genes represented the 8 infrared 
proximity sensors, 4 genes for the motor output units, and an 
additional 4 genes for the recurrent units used in the 
plasticity experiments. 

Each generation, genotypes were ranked by fimess and 
the 20 genotypes that accumulated the highest fitness were 
reproduced, via being copied 5 times in order to keep the 
population size constant. One-point crossover was applied 
on randomly paired genotypes with a 0.6 probability and 
mutation, done via flipping bits, was applied to each bit with 
a 0.05 probability. 

The fitness function for the pursuers rewarded the team 
based upon bow much the evader team was slowed during 
its lifetime. Hence the pursuers attempted to maximize 
'capture time', which was the time for which one or more 
evaders were immobilized. The fitness function of the 
evaders rewarded the evaders based on their average speed 
and obstacles avoided during their lifetime. Hence the 
evader team attempted to maximize their speed of movement 
before being immobilized. 
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3 Results 
The coevolutionary process tested each of the three 
artificial evolution approaches, where the pursuers initially 
did not implement any cooperative pursuit strategy. Pursuit 
strategies were coevolved with evaders implementing 
obstacle avoidance behaviors. Ten experimental replications 
of each artificial evolution approach were made. Figure 6 
illustrates the average team fitness attained for pursuer and 
evader teams using the single pool, plasticity and multiple 
pools approaches. Figure 7 presents average capture time 
and average free time attained for pursuer and evader teams 
respectively using each of the three evolutionary 
approaches. Capture time refers to a time interval to .. ti 
when an evader is immobilized, and free rime refers to the 
complementary time interval. 

!ask& Pool 0 Pl lr i i c i tY  
E 1.0 I Multipr Poob 

0.8 

v 0.6 1 0.4 

r-l 

-s 0.2 

Figure 6. Average fitness for populations representing pursuer and 
evader teams at the end of the co-evolutionary process (500 
generations). 
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Figure 7. Average capture and free time for populations 
representing pursuer and evader teams respectively, at the end of 
the co-evolutionary process (5W generations). 

4 Evolved Behavior, Analysis and Discussion 
In this section emergent cooperative pursuit strategies 
observed within the co-evolutionary scheme, using each of 
the three artificial evolution approaches are discussed. The 
discussion and analysis is from a behavioral perspective, as 
fitness comparisons between pursuer and evader teams only 
illustrate progress and counter progress of pursuit and 
evasion strategies but do not highlight if evolutionary time 
corresponds to ‘true’ progress [Cliff and Miller, 19951 given 
that the fitness landscape of both teams are continuously 
changing due to the Red Queen affect [van Valen, 19731. 

Single Pool: Given that the pursuers begin with a random 
bebavior, the evaders initially performed very well, though a 
set of counter-phase oscillations soon emerged in the fitness 
scores of the pursuer and evader teams. This counter-phase 
oscillation is supported by other co-evolutionary research 
[Sims, 19941, [Floreano et al. 19981, though neither the 
pursuers nor evaders maintained dominance throughout the 
coevolutionary process. The pursuer team evolved two 
cooperative pursuit strategies each using three pursuers, 
termed entrapment and encirclement. As illustrated in 
figure 8 (left-side), in the encirclement strategy, three 

pursuers in close proximity to an evader, encircle it moving 
in the same direction for some period of time. This caused 
the evader to spin on its current position as it tried to escape 
the circle. After approximately 200 generations of the c o  
evolutionary process, the evaders were able to evolve 
counter-active evasion strategies, rendering the encirclement 
strategy less successful. These evasion strategies included an 
evader closely following a wall or moving slower across the 
environment, so that it had sufficient time to detect and 
avoid pursuers. 
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Figure S. The cooperative encirclement (left-side) and entrapment 
(right-side) pursuit saatepies; each used three pursuers, though 
neither strategy was successful at immobilizing an evader. 

Figure 8 (right-side) also illustrates the entrapment 
strategy, using three pursuers, where one pursuer moved to 
flank each side of the evader, while a third, termed blocker, 
moved so as to approach the evader from the front in order 
to trap it in a triangular formation. When the evader moved 
to escape, the flanking predators moved also, and tuning so 
as to force the evader in a specific direction. The blocker 
then moved around in order to affront the evader again. This 
system of entrapment, movement, and entrapment continued 
several times before evasion was possible. While the 
entrapment pursuit strategy proved successful in the fust 200 
generations of the CO-evolutionary process, the evaders were 
able to evolve counter-active evasion strategies similar to 
those described for encirclement in order to render the 
entrapment strategy less effective. After 500 generations of 
the coevolutionary process, entrupmeni and encirclement 
strategies were only able to immobilize an evader in 20 
percent of single pool experiments. This is reflected in the 
average capture time and complementary free time presented 
for pursuer and evader teams, respectively injigure 7. 

Phsticify: As with experiments run for the single pool 
approach, the evaders initially scored a high fitness before a 
similar pattern of counter-phase fitness oscillations emerged 
as a result of pursuers evolving effective Cooperative pursuit 
behavior and evaders evolving behaviors to counter-act 
capture. As with the single pool experiments neither the 
pursuers nor evaders maintained dominance in the CO- 
evolutionary process, though one effective cooperative 
pursuit strategy emerged. This suategy, termed: role 
switcher was similar to the entrapment strategy observed in 
the single pool experiments. The role-switcher strategy used 
three pursuers, where one pursuer, termed aflanker, moved 
to each side of the prey, while a third pursuer, termed: a 
blocker, moved around the flanking predators, to approach 
the front, in order to immobilize the evader in a triangular 
formation. The three pursuers then encircled the evader 
causing it to rotate on its current position. The key difference 
noted in the role-switcher strategy, was that behavioral 
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specialization evolved in the pursuer team. Each pursuer 
either assumed the behavioral role of aflanker or a blocker, 
and pursuers switched between these roles allowing pursuers 
to quickly adapt to evaders strategies whilst maintaining the 
strategy. 
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Figure 9. The multiple pools version of the role-switcher pursuit 
strategy, using three pursuers, emerged in the coevolutionary 
prccess at approximately generation 400. 

This dynamic adoption and switching of roles, afforded 
the pursuer team flexibility in forming and maintaining the 
entrapment strategy. This is reflected in figure 6, which 
illustrates a higher average fimess for pursuer teams using 
the plasticity approach, comparative to the single pool 
approach, when the co-evolutionary process was ended. 
" u g h  the switching of behavioral roles during the strategy 
also inhibited the coordination of the three pursuers, 
meaning that it was difficult for the team to maintain the 
strategy, and thus immobilize an evader for an extended 
period. The evaders exploited the lack of coordination 
between the three pursuers, and were able to evolve a 
strategy of quick tums when being flanked. This evasion 
strategy often prevented all three pursuers from being able to 
maintain close proximity to an evader. As illustrated in 
figure 7, the role-switcher strategy at the end of the co- 
evolutionary process was able to immobilize evaders (on 
average) in SO percent of plasticity experiments. 

Multiple Pools: As with the plasticity experiments the 
role switcher suategy was the only cooperative pursuit 
strategy that emerged at the end of the co-evolutionary 
process. Figure 9 illustraks the multiple pools version of 
the role-switcher strategy, and its formation in three distinct 
stages. A specific difference was noted in the multiple pools 
version of the role-switcher strategy. Namely that different 
pursuers adopted different behavioral roles from the 
beginning of their lifetimes. This allowed the pursuers to 
avoid the interference problem that confounded pursuer 
teams using the role-switcher strategy under the plasticity 
approach. Specifically, two pursuers always assumed the 
role of flankers, while a third always assumed the role of a 
blocker. In the fnst 200 generations of the co-evolutionary 
process, the three pursuers moved about the environment in 
search of an evader and attempted to capture an evader via 
remaining in close proximity to each other. Though, the 
evaders soon developed a counter-evasive strategy where 
they rapidly and closely followed the walls of the 
environment often causing pursuers to collide with the walls, 
given that evader speed of movement was faster. Similar 
behavior to this has also k e n  observed in the predator-prey 
experiments of Floreano et al. [I9981 that used two robots. 

Also, the wall following behavior made it difficult for 
two pursuers to flank each side of an evader. To counter-act 
this behavior two of the pursuers also developed a wall 
following behavior while a third maintained the role of an 

idle pursuer in one corner of the environment. Thus, evaders 
following a wall were often trapped by the pursuer team in a 
comer. After approximately 300 generations the evaders 
adapted to this pursuit strategy that exploited comers, and 
evolved the next stable evasion strategy. This was for the 
evaders to move randomly about the environment, though 
only at approximately 75 percent of full speed. As evaders 
moving at full speed often detected pursuers too late (due to 
the limited range of infrared sensors) to avoid k i n g  flanked, 
and subsequently immobilized. After approximately 400 
generations the next stable pursuit strategy emerged, where 
two pursuers maintained the behavioral roles of flankers, 
searching the environment as a pair, while the third pursuer 
maintained the behavioral role of a blocker, waiting idly in 
one position. The function of the blocker in forming the 
role-switcher strategy was either to 'chase' an evader 
towards the two flankers, or to move in order to capture an 
evader in a triangular formation as the two other flanking 
pursuers forced the evader towards its own position. As 
reflected in figure 7, multiple pools role-switcher was 
successful at immobilizing evaders (on average) in 70 
percent of experimental replications. Adoption of behavioral 
roles was maintained throughout the lifetime of the pursuers, 
which served to aid in the formation of a stable pursuit 
strategy. Figure 6 presents the benefit of the role-switcher 
strategy at the end of the co-evolutionary process. 
Specifically, in the comparatively higher fimess of pursuer 
and evader teams implementing the multiple pools approach. 

5 Conclusions 
This paper presented a set of experiments testing three 
different artificial evolution approaches for the synthesis of 
cooperative pursuit strategies within a team of simulated 
mobile robots, competitively coevolved with a second team 
of robots. Results indicated that the multiple pools approach 
applied within a competitive co-evolution process yielded 
superior performance comparative to the single pools and 
plasticity approaches. In competitive co-evolution, the 
multiple pools approach implemented within a co- 
evolutionary context allowed the exploitation of 
bootstrapping of complementary ' behavioral roles, 
facilitating the evolution of a stable cooperative pursuit 
strategy, Emergent pursuit strategies observed using the 
other two approaches proved less effective, due physical 
interference that occurred between pursuers as they 
collectively approached an evader in attempted formation of 
a pursuit strategy. Behavioral specialization, as observed 
under the multiple pools approach, alleviated the problem of 
physical interference resulting from a lack of coordination, 
given that the three pursuers maintained three 
complementary behavioral roles allowing them to form a 
stable pursuit strategy that effectively immobilized an 
evader. 

A comparison with other research investigating emergent 
cooperation within a cc-evolutionary context in the pursuit- 
evasion domain is difficult given the limited literature on co- 
evolving teams within physically realistic environments. 
That is, with notable exceptions such as the two robot 
predator-prey co-evolution experiments of Floreano er al 
[19981, the co-evolution of robot behaviors within a pursuit 
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domain has typically employed simulated grid-world 
environments [Iba, 19961, [Haynes and Sen, 19971 and 
[Yong and Miikkulainen, 20011. Also, there is relatively 
little literature describing the co-evolution of robot teams for 
the purpose evolving cooperative behavior within the teams 
themselves. 

Though the robot teams in this research were simulated, 
the robot simulator used a continuous domain and the 
simulation incorporated noise in sensory data, namely 
confused infrared sensor readings resulting from two or 
more robots being in close proximity to each other. This 
noisy sensor data was a key reason for interference occurring 
between multiple pursuers as they collectively approached 
an evader. Also, a continuous environment does not allow 
for the selection of distinct se& of situationlaction values 
that are possible in grid world implementations [Denzinger 
and Fuchs, 19961 where a f~te set of actions and resultant 
outcomes can be defined. While, the emergence of 
cooperation is simpler to analyze in these grid world 
domains, they are limited by their own implementations, so 
the study of mechanisms that facilitate emergent cooperation 
such as behavioral specialization is limited to trivial 
situations. Finally, experimental results highlighted that 
artificial evolution applied within a competitive co-evolution 
context is an effective method for the derivation of 
cooperative pursuit strategies in a team of robots with no 
explicit communication, or coordination mechanisms. The 
advantage of ceevolution in evolving more complex 
behaviors is supported by other research. For example, the 
evolution of predators against the fixed behavior of a prey in 
the case of Nolfi and Floreano [I9981 did not attain the same 
performance levels as in the co-evolutionary case. 
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