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Abstract

This research concerns the comparison of different
artificial evolution approaches to the design of
cooperative behavior in a team of simulated mobile
robots co-evolved against a second team. The first
and second approaches, termed: single pool and
plasticity, are characterized by robots that share a
single genotype, though the plasticity approach
includes a learning mechanism. The third approach,
termed: multiple pools, is characterized by robots that
use different genotypes., The application domain is a
pursuit-evasion game in which a team of three robots
termed: pursuers, collectively work to immobilize
one of the three robots of the other team, termed:
evaders. Results indicate that the muliiple pools
approach applied within & competitive co-evolution
process yields superior performance comparative to
the other approaches. Specifically, the co-
evolutionary process allows the multiple pools
approach to ‘bootstrap’ complementary behavioral
roles, facilitating the evolution of a stable cooperative
pursuit strategy.

1 Introduction

The use of' competitive co-evolution to facilitate emergent
behavior [Hillis, 1990], [Angeline and Pollack, 1993], {Rosin
and Belew, 1997] particularly cooperation, remains a
relatively unexplored area of research in the pursuit and
evasion domain {Koza, 1991}, [Koza, 1992], [Reynolds, 1994]
and related predator-prey systems [Cliff and Miller, 1994
1995; 1996],- [Nishimura and Tkegami, 1997] swmdied in an
evolutionary robotics context [Bullock, 1995].

Various approaches to the evolution of behavior within the
pursuit-evasion domain have been studied within a
competitive co-evolutionary context. For example, Koza
{1991, 1992] applied genetic programming techniques to the
co-¢volution of pursuer-evader behaviors in a two-player
pursuit-evasion game. In similar experiments, Reynolds
11994} observed the evolution of increasingly sophisticated
strategies in the competitive co-evolution of a pursuer and
evader, Miller and CULff [1995; 1996] realised the co-
evolution of pursuit-evasion strategies in evolutionary
robotics, where simulated robots co-evolved vision
morphologies as a means of improving pursuit and evasion
strategies. Floreano and Nolfi {1997a, 1997b] evaluated a
competitive co-evolutionary predator-prey scenario within
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evolutionary robotics experiments using two mobile robots.
This co-evolution scenario was compared with single agent
evolution. A comparatively faster evolution of more diverse
behavioral strategies was observed with competitive co-
evolution. Floreano et al. [1998] extended this research with a
physical implementation of this predator-prey co-evolution
using Khepera robots. With notable exceptions such as [Iba,
1996], [Haynes and Sen, 1997], [Yong and Miikkulainen,
2001), [Stone and Veloso, 1998] few researchers have
investigated emergent cooperative behavior in a competitive
co-evolutionary context, where two teams co-evolve
cooperative behavior that ensures the survival of each team.

This paper describes a comparison of three artificial
evolution approaches for the synthesis of cooperative
behaviour evalvated within a team of simulated Khepera
robots [Mondada et al. 1993], co-evolved against a second
team. For each artificial evolution approach, a team of thres
pursuers implementing initially random behavior is
competitively ' co-evolved with a team of three evaders
implementing an obstacle avoidance behavior. The pursuers
and evaders are functionally different in terms of sensor and
movement capabilities. The team of evaders is able to move
40} percent faster than the team of pursuers. Pursuers are
rewarded fitness proportional to how much they are able to
slow down the evader team on average, and the evader team is
rewarded fitness proportional to how fast it is able to move
and avoid obstacles on average. The collective task was for
the pursuers to immobilize one or more of the evaders,
Previous experiments demonstrated that at least two pursuers
are required in order for an evader with superior speed to be
immobilized [Nitschke and Nolfi, 2002). Only cooperative
behavior in the team of pursuers is evolved, since that in the
evader team there is no incentive for evaders to cooperate,
given that evasion is possible as an individual.

The first approach used for the evolution of cooperative
behaviour is termed: single pool, in which pursuer and evader
teams are specified with an identical genotype, meaning that
the corresponding phenotype is also the same. The second
approach, termed: plasticity, uses pursver and evader ieams
also specified with an identical genotype, though the
corresponding phenotype implements a recurrent neuvral
network controller allowing adaptive behavior during a teams
lifetime. The third approach is termed: multiple pools, where
pursuer and evader teams are specified using a different
genotype, and thus the phenotype at the beginning of each
teams lifetime is different. For the team of pursuers, the three
approaches are evaluated in terms of fitness scored {(averaged
for the team), and the time period for which an evader is
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immobilized. Fer the team of evaders, the three approaches
are evaluated in terms of average evader team fitness scored,
and the average time for which the evader team is not
immobilized. It is hypothesized that the multiple pools
approach would yield a superior performance as a result of
‘bootstrapping’ of behavioural specialisation by the co-
evolutionary process. Experimental results suppert this
hypothesis, where the emergence of specialised behavioural
roles proved necessary for the formation of a stable
cooperative pursuit strategy.

2 Artificial Evolution Approaches

For the team of pursuers the three artificial evolution
approaches were tested and evaluated against co-evolved
evader strategies for the task of the pursuer team cooperatively
immobilizing an evader. Where as, for the evader team the
three appreaches were tested and evaluated against co-evelved
pursuer strategies in terms of the time for which an evader
(averaged for the team) was not imrnobilized.

Comparison of Approaches

To execute the co-evolutionary scheme under which the three
artificial evolution approaches were tested, an extension of
realistic Khepera robot simulation software was implemented
[Floreano and Nolfi, 1997a], [Floreano and Nolfi, 1997b]. The
simulator was based on real sensory values sampled from two
functionally different Khepera robots used in previous
predator-prey experiments [Miglino er al. 1996).

Single Pool Approach: As illustrated in figure 1 this
approach generates and tests 3 copies of a single genotype,
meaning that the pursuer and evader teams are homogenous.
In this approach there is no plasticity so individual pursuers
and evaders cannot adapt during their lifetimes. The fitness
assigned to the pursuer and evader teams is the simply the
fitness calculated for the genotypes that specify the pursuer
and evader teams. The main advantage of this approach is its
simplicity in terms of behavioral encoding and calculation of
team fitness.

Plasticity Approach: As illustrated in figure 2 this
approach generates and tests 3 copies of a single genotype, so
that as with the single poo! approach, the pursuer and evader
teams are homogenous. The difference is that individual
phenotypes, representing the behaviors of individual pursuers
and evaders are able to adapt during their lifetime as a result
of a recurrent neural network learning process. This learning
process is affected by both genetic and environmental factors.
Thus, pursuer and evader phenotypes adapt to environmental
influences throughout their respective lifetimes, which affects
fitness calculated for team genotypes, which in torn influences
the selection process in successive generations. The advantage
of the plasticity approach is that it allows for specialization of
behavior by individual team members without the need to
estimate fitness contribution of different team members to the
team as a whole. For these co-evolution experiments, both
pursuers and evaders implemented a two-layer neural network
controller of sigmoid neurons with re-current connections at
the output layer. This type of controller is detailed in previous
co-evolution research {Fioreano and Mondada, 1994], though
its structure as relates to the experiments of this paper is
briefly described in the following section.

Each teusm composcd «f 3 sdantical phanctypes

Figure 1. Single Pool: Pursuer and evader teams correspond to a
genotype selected from the respective genotype populations and
copied 3 times (to represent the 3 pursuers and evaders
comprising each team).
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Figure 2. Plasticity: Same as Single Pool, though phenotypes
implement a recurrent neural network controller for adaptability
during a pursuers or evaders lifetime.
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Figure 3. Multiple Poofs: Pursuer and evader teams correspond
to 3 genotypes selected from 3 separate pools of genotypes.

Multiple Pools Approach: As illustrated in figure 3 this
approach selects a single genotype from each of the three
populations of genotypes. Each genotype was then decoded
into 3 separate phenotypes representing the pursuer and
evader teams. In each generation, every individual genotype
in a population is tested against n other genotypes, randomly
selected from the two other populations of genotypes, where
each individual genotype was also tested against the best
individvals from the most recent 10 generations. The
advantage of the multiple pools approach is that selection
operates within each genotype population and each parsuer
and evader comresponds to genotypes from different
populations, so behavioral - specialization in the team is
encouraged. The disadvantage is that the assignment of
individual fitness is an approximation. Specifically, an equal
fitness score is assigned to each of the genotypes, as a means
of deriving the contribution of each pursuer or evader to the
performance of the team as a whole. Thus the estimation of
the fitness for pursuer and evader teams constitutes a
problem that may prevent the selection of the best
individuals across successive generations.

Evaluation of Approaches

For both the single pool and plasricity approaches two
genotypes, one specifying each the pursuer team and evader
teams are used. In both cases pursuers and evaders are
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clones, so evaluation of team performance is not
problematic, as a single value is assigned as the fitness of
each team. In contrast, the multiple pools approach uses 3
different populaticns of genotypes, so each genotype must
be assigned a fitness score, and team performance evaluation
needs 1o be computed by estimating the fitness contribution
of each genotype to the team as a whole.

A method of evaluation widely known as: fimess sharing
{Bull and Holland, 1997] was implemented for the multiple
pools approach, where an equal fitness score is assigned to
each individual genotype, thereby assuming that each
individual contributed to team performance equally. The
advantage of this method is that fitness for individual
genotypes is easily calculated and there is no disparity
between team fitness and the fitness of individual team
members.

Co-evolutionary Teams

For all experiments two populations, each initially consisting
of 100 randomly generated genotypes, were co-evolved
where each individual genotype was tested against the best
individuals from the most recent 10 generations. This type
of co-evolutionary scheme was adapted from that used by
Sims [1994], Reynolds {1994], Cliff and Miller [1995], and
Floreano et al. [1998] and was selected in order to improve
co-evolutionary stability.

. Each pursuer and evader is a simulated Khepera mobile
robot [Mondada et al. 1993]. As illustrated in figure 4, the
robots used as -pursvers were equipped with 8 infrared
proximity sensors, and 8 light sensors positioned on the
periphery of the Khepera. The robots used as evaders were
equipped with 8 infrared proximity sensors, as well as a light
on its top. This light could be detected by pursuer light
sensors and was used so each pursuer could distinguish
fellow pursuers from evadérs.
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Figure 4. Each pursuer and evader is a simulated Khepera robot,
Pursuers have 8 infrared proximity sensors, and 8 light sensors.
Evaders have 8 infrared proximity sensors, and a light so that
pursuers can distinguish them from fellow pursuers and obstacles.

Figure 5 (right-side) illustrates the neural network controller
implemented for pursuer and evader teams. This controller
is adapted from that described by Floreano et al. [1998] and
Nolfi and Floreano [1999]. In thé case of the pursuvers, the
input layer consisted of 16 sensory units that encoded the
activation level of 8 infrared proximity sensors and 8 light
sensors. These 16 input units were connected to 4 output
units, As figure 5 illustrates the first two output units
represented the two motors of the robot and encoded the
speed of the two wheels. These motor units controlled the
robots behavior in the environment, illustrated in figure 5
(left-side). The next two output units represented two
teaching units that encoded a teaching input for the first two

output units. The two motor units used this teaching input in
order to learn using the back propagation procedure
[Rumelhart er al. 1986], where only the connection weights
were evolved.
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Figure 5. Details of the co-evolutionary experimental setup — A
team of 3 pursuers and a team of 3 evaders are placed into a
1000cm x 1000cm arena (left-side). Cooperative pursuit strategies
are evolved for the pursuers. A two-layered neural network
controller comprising sigmoid neurons is implemented for each
pursuer and evader (right-side).

In the plasticity experiments, there were an additional
two output units that were the recurrent units and contained
activation values for the motors from the previous cycle, The
activation values of these two additional output units were
copied back into an additional two input units.

In the case of the evaders, a neural network controller
connecting 8 sensory input units (representing 8 infrared
proximity sensors) to 4 motor cutput units was trained for an
obstacle avoidance bebavior before being placed in a co-
evolutionary run. Given the simple nature of the neural
controllers, direct genetic coding of connection weights was
vsed. In the case of the pursuers genotype length was set to
24 genes, where each gene consisted of 5 bits. That is, 16
genes represented the 8 infrared proximity sensors, and the 8
light semsors, another 4 genes represented the motor output
units, and an additional 4 recurrent units used in the
plasticity experiments, The 5 bits of each gene encoded
connection weights, where the first bit determined the sign
of the connection weight and the remaining four bits its
strength, In the case of the evaders, genotype length was set
to 16 genes, where 8 genes represented the 8 infrared
proximity sensors, 4 genes for the motor cutput units, and an
additional 4 genes for the recurrent units used in the
plasticity experiments.

Each generation, genotypes were ranked by fitness and
the 20 genotypes that accumulated the highest fitness were
reproduced, via being copied 5 times in order to keep the
population size constant. One-point crossover was applied
on randomly paired genotypes with a 0.6 probability and
mautation, done via flipping bits, was applied to each bit with
a 0.05 probability.

The fitness function for the pursuers rewarded the team
based upon how much the evader team was slowed during
its lifetime. Hence the pursuers attempted to maximize
‘capture time’, which was the time for which one or more
evaders were immobilized. The fitness function of the
evaders rewarded the evaders based on their average speed
and obstacles avoided during their lifetime. Hence the
evader team attempted to maximize their speed of movement
before being immobilized.
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3 Results

The co-evolutionary process tested each of the three
artificial evolution approaches, where the pursuers initially
did not implement any cooperative pursuit strategy. Pursuit
strategies were co-evolved with evaders implementing
obstacle avoidance behaviors. Ten experimental replications
of each artificial evolution approach were made. Figure 6
illustrates the average team fitness attained for pursuer and
evader teams using the single pool, plasticity and multiple
pools approaches. Figure 7 presents average capture time
and average free time attained for pursuer and evader teams
respectively using each of the three evolutionary
approaches. Capture time refers to a time interval £y .. §
when an evader is immobilized, and free time refers to the
complementary time interval.
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Figure 6. Average fitness for populations representing pursuer and
evader teams at the end of the co-evolutionary process (500
generations).
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Figure 7. Average capture and free time for populations
representing pursuer and evader teams respectively, at the end of
the co-evolutionary process (500 generations).

4 Evolved Behavior, Analysis and Discussion

In this section emergent cooperative pursuit strategies
observed within the co-evolutionary scheme, using each of
the three artificial evolution approaches are discussed. The
discussion and analysis is from a behavioral perspective, as
fitness comparisons between pursuer and evader teams only
illustrate progress and counter progress of pursuit and
evasion strategies but do not highlight if evolutionary time
corresponds to ‘tiue’ progress [CLff and Miller, 1995] given
that the fitness landscape of both teams are continuously
changing due to the Red Queen affect [van Valen, 1973].
Single Pool: Given that the pursuers begin with a random
bebavior, the evaders initially performed very well, though a
set of counter-phase oscillations soon emerged in the fitness
scores of the pursuer and evader teams. This counter-phase
oscillation is supported by other co-evolutionary research
[Sims, 1994], [Floreano er al. 1998}, though neither the
pursuers nor evaders maintained dominance throughout the
co-evolutionary process. The pursuer team evolved two
cooperative pursuit strategies each using three pursuers,
termed: entrapment and encirclemenr. As illustrated in
figure 8 (left-side), in the encirclement strategy, three

pursuers in close proximity to an evader, encircle it, moving
in the same direction for some period of time. This caused
the evader to spin on its current position as it tried to escape
the circle. After approximately 200 generations of the co-
evolutionary process, the evaders were able to evolve
counter-active evasion strategies, rendering the encirclement
strategy less successful. These evasion strategies included an
evader closely following a wall or moving slower across the
environment, so that it had sufficient time to detect and
avoid pursuers,
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Figure 8. The cooperative encirclement (left-side) and entrapment
(right-side) pursuit strategies; each used three pursuers, though
neither strategy was successful at immobilizing an evader.

Figure 8 (right-side) also illustrates the entrapment
strategy, using three pursuers, where one pursuer moved to
flank each side of the evader, while a third, termed: blocker,
moved so as to approach the evader from the front, in order
to trap it in a triangular formation. When the evader moved
to escape, the flanking predators moved also, and turning so
as to force the evader in a specific direction. The blocker
then moved around in corder to affront the evader again. This
system of entrapment, movement, and entrapment continued
several times before evasion was possible. While the
entrapment pursuit strategy proved successful in the first 200
generations of the co-evolutionary process, the evaders were
able to evolve counter-active evasion strategies similar to
those described for encirclement in order to render the
entrapment strategy less effective. After 500 generations of
the co-evolutionary process, entrapment and encirclement
strategies were only able to immobilize an evader in 20
percent of single pool experiments. This is reflected in the
average capture time and ¢omplementary free time presented
for pursuer and evader teams, respectively in figure 7.

Plasticity: As with experiments run for the single pool
approach, the evaders initially scored a high fitness before a
sitnilar pattern of counter-phase fitness oscillations emerged
as a result of pursuers evolving effective cooperative pursuit
behavior and evaders evolving behaviors to counter-act
capture. As with the single pool experiments neither the
pursuers nor evaders maintained dominance in the co-
evolutionary process, though one effective cooperative
pursuit strategy emerged. This strategy, termed: role
switcher was similar to the entrapment strategy observed in
the single pool experiments. The role-switcher strategy used
three pursuers, where one pursuer, termed: a flanker, moved
to each side of the prey, while a third pursuer, termed: a
blocker, moved around the flanking predators, to approach
the front, in order to immobilize the evader in a wiangular
formaticn. The three pursuers then encircled the evader
causing it to rotate on its current position. The key difference
noted in the role-switcher strategy, was that behavioral
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specialization evolved in the pursuer team. Each pursver
either assumed the behavioral role of a flanker or a blocker,
and pursuers switched between these roles allowing pursuers
to quickly adapt to evaders strategies whilst maintaining the
strategy,

Time step: n Time step:z+i Timestep:n+j
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€ T} % e s
Dy V: B & 4‘1
A AERIENS
[ )
# Pursuer 11 Flarker < Pursuer 3: Blocker
© Pursuer 2: Flanker & Bvader

Figure 9. The multiple pools version of the role-switcher pursuit
strategy, using three pursuers, emerged in the co-evolutionary
process at approximately generation 400.

This dynamic adoption and switching of roles, afforded
the pursuer team flexibility in forming and maintaining the
entrapment strategy. This is reflected in figure 6, which
illustrates a higher average fitness for pursuer teams using
the plasticity approach, comparative to the single pool
approach, when the co-evolutionary process was ended.
Though the switching of behavioral roles during the strategy
also inhibited the coordination of the three pursuers,
meaning that it was difficult for the team to maintain the
strategy, and thus immobilize an evader for an extended
period. The evaders exploited the lack of coordination
between the three pursuers, and were able to evolve a
strategy of quick turns when being flanked. This evasion
strategy often prevented all three pursuers from being able to
maintain close proximity to an evader. As illustrated in
figure 7, the role-switcher strategy at the end of the co-
evolutionary process was able to immobilize evaders (on
average) in 50 percent of plasticity experiments.

Multiple Pools: As with the plasticity experiments the
role switcher strategy was the only cooperative pursuit
strategy that emerged at the end of the co-evolutionary
process. Figure 9 illustrateés the multiple pools version of
the role-switcher strategy, and its formation in three distinct
stages. A specific difference was noted in the multiple pools
version of the role-switcher strategy, Namely that different
pursuers adopted different behavioral roles from the
beginning of their lifetimes. This allowed the pursuers to
avoid the interference problem that confounded pursuer
teams using the role-switcher strategy under the plasticity
appreach. Specifically, two pursuers always assumed the
role of flankers, while a third always assumed the role of a
blocker. In the first 200 generations of the co-evolutionary
process, the three pursuers moved about the environment in
search of an evader and attempted to capture an evader via
remaining in close proximity to each other. Though, the
evaders soon developed a counter-evasive strategy where
they rapidly and closely followed the wails of the
environment often causing purseers to collide with the walls,
given that evader speed of movement was faster. Similar
behavior to this has alse been cbserved in the predator-prey
experiments of Floreano et al. [1998] that used two robots,

Also, the wall following behavior made it difficult for
two pursuers to flank each side of an evader. To counter-act
this behavior two of the pursuers also developed a wall
following behavior while a third maintained the role of an

tdle pursuer in one corner of the environment. Thus, evaders
following a wall were often trapped by the pursuer team in a
comner. After approximately 300 generations the evaders
adapted to this pursuit strategy that exploited corners, and
evolved the next stable evasion strategy. This was for the
evaders to move randomly about the environment, though
only at approximately 75 percent of full speed. As evaders
moving at full speed often detected pursuers too late (due to
the limited range of infrared sensors) to avoid being flanked,
and subsequently immobilized. After approximately 400
generations the next stable pursuit strategy emerged, where
two pursuers maintained the behavioral roles of flankers,
searching the environment as a pair, while the third pursuer
maintained the behavioral role of a blocker, waiting idly in
one position. The function of the blocker in forming the
role-switcher strategy was either to ‘chase’ an evader
towards the two flankers, or to move in order to capture an
evader in a triangular formation as the two other flanking
pursuers forced the evader towards its own position. As
reflected in figure 7, multiple pools role-switcher was
successful at immobilizing evaders (on average) in 70
percent of experimental replications. Adoption of behavioral
roles was maintained thronghout the lifetime of the pursuers,
which served to aid in the formation of a stable pursuit
strategy. Figure 6 presents the benefit of the role-switcher
strategy at the end of the co-evolutionary process.
Specifically, in the comparatively higher fitness of pursuer
and evader teams implementing the multiple pools approach.

5 Conclusions

This paper presented a set of experiments testing three
different artificial evolution approaches for the synthesis of
cooperative pursuit strategies within a team of simutated
mobile robots, competitively co-evolved with a second team
of robots. Results indicated that the multiple pools approach
applied within a competitive co-evolution process yielded
superior performance comparative to the single pools and
plasticity approaches. In competitive co-evolution, the
multiple pools approach implemented within a co-
evolutionary context allowed the exploitation of
bootstrapping of complementary ° behavioral roles,
facilitating the evolution of a stable cooperative pursuit
strategy. Emergent pursuit strategies observed using the
other two approaches proved less effective, due physical
interference that occurred between pursuers as they
collectively approached an evader in attempted formation of
a pursuit strategy. Behavioral specialization, as observed
under the multiple pools approach, alleviated the problem of
physical interference resulting from a lack of ccordination,
given that the three pursuers maintained three
complementary behavioral roles allowing them to form a
stable pursuit strategy that effectively immobilized an
evader.

A comparison with other research investigating emergent
cooperation within a co-evolutionary context in the pursnit-
evasion domain is difficult given the limited literature on co-
evolving teams within physically realistic environments.
That is, with notable exceptions such as the two robot
predator-prey co-evolution experiments of Floreano er al
[1998], the co-evolution of robot behaviors within a pursuit
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domain has typically employed simulated grid-world
environments [Iba, 1996], [Haynes and Sen, 1997] and
[Yong and Miikkulainen, 2001]. Also, there is relatively
little literature describing the co-gvolution of robot teams for
the purpose evolving cooperative behavior within the teams
themselves.

Though the robot teams in this research were simulated,
the robot simulator used a continuous dormain and the
simulation incorporated noise in sensory data, namely
confused infrared sensor readings resulting from two or
more robots being in close proximity to each other. This
noisy sensor data was a key reason for interference occurring
between multiple pursuers as they collectively approached
an evader. Also, a continzous environment does not allow
for the sefection of distinct sets of situation/action values
that are possible in grid world implementations [Denzinger
and Fuchs, 1996] where a finite set of actions and resultant
outcomes can be defined. While, the emergence of
cogperation is simpler to analyze in these grid world
domains, they are limited by their own implementations, so
the study of mechanisms that facilitate emergent cooperation
such as bebavioral specialization is limited to trivial
situations. Finally, experimental results highlighted that
artificial evolution applied within a competitive co-evolution
context is an effective method for the derivation of
cooperative pursuit strategies in a team of robots with no
explicit communication, or coordination mechanisms. The
advantage of co-evolution in evolving more complex
behaviors is supported by other reseatch. For example, the
evolution of predators against the fixed behavior of a prey in
the case of Nolfi and Floreano [1998) did not attain the same
performance levels as in the co-evolutionary case.
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