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Abstract

Various studies have shown that diverse groups perform better, solve problems more adeptly, and are more

resilient. However, in evolutionary robotics, evolving group diversity is a difficult task that frequently calls

for geographic isolation, a division of labour mechanism, and a careful choice of parameters. According

to recent research, decentralized Quality Diversity (QD) algorithms can generate behavioral diversity

across a swarm without requiring geographical isolation or a division of labour mechanism. Despite

the fact that these findings represent an essential first step in the quest to find a mechanism to evolve

behavioral diversity across a swarm in physical robot tasks, little research has been done on evolving

behaviour-morphology diversity across a robot swarm given cooperative tasks. To address this issue, we

investigate the application of a decentralized QD algorithm (EDQD) to generate group diversity given

an increasingly challenging collective behavior task in order to determine the circumstances in which it

succeeds and fails. We further develop Double-Map EDQD-M, an algorithm that combines morphology

characterization and behavior characterization (body-brain diversity maintenance). Results indicate that

body-brain diversity maintenance yielded significantly higher behavioral and morphological diversity in

evolved swarms overall, which was beneficial in the most complex task environment.
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Chapter 1

Introduction

A swarm robotics system (Hamann, 2018) is composed of numerous autonomous robotic agents that are

relatively simple in nature. These agents have the ability to interact with one another as well as their

surrounding environment. However, their access to environmental information is limited or constrained

in some way. This means that the individual agents must rely on local interactions and their immediate

surroundings to gather and exchange information, rather than having access to a centralized control

system or comprehensive environmental data. These local interactions, both among the robotic agents

themselves and between the agents and their environment, give rise to the emergence of complex collective

behavior (Kernbach, 2012).

The emergent property of a swarm robotics system offers numerous potential benefits, including flexibility,

robustness, and scalability. Flexibility refers to the system’s ability to adapt to a broad range of

environments and tasks. Robustness implies that the system can adjust and remain functional even

in the face of individual agent loss or significant shifts in environmental conditions, avoiding catastrophic

failures. Lastly, scalability denotes the system’s capability to perform effectively regardless of changes in

population size, meaning that the addition or removal of agents does not lead to substantial disruptions

in task performance.

These desirable traits have made swarm robotics systems highly attractive across a wide range of

application domains. They find utility in tasks that require cost-effective designs (Navarro & Mat́ıa,

2012), such as agricultural foraging and mining activities, as well as in high-precision and hazardous tasks

(Arnold et al., 2019) like target searching and post-disaster relief. However, the literature on real-world

swarm applications remains limited due to the inherent risks associated with their deployment (Schranz

et al., 2020). Consequently, a majority of current studies are conducted in physics simulations and

controlled laboratory environments. While these settings provide valuable insights into the capabilities

and potential of swarm robotics systems, the translation of findings into real-world applications is still

relatively scarce due to the associated risks and complexities.

As task complexity increases, capturing all the possible combinations of outcomes resulting from local

interactions among agents and between agents and the environment becomes impractical, making it

necessary to automate the design process (Furman et al., 2019). Evolutionary Robotics (ER) (Bongard,

2013; Doncieux et al., 2015; Nolfi et al., 2016) has proven to be highly successful in addressing this

challenge. ER has made significant contributions to the fields of evolutionary biology and engineering.
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In evolutionary biology, ER provides valuable scientific tools for modeling and simulating biological

evolution (Long, 2012). It enables researchers to study and understand the mechanisms and dynamics of

evolution in a controlled and reproducible manner. This approach allows for the exploration of various

evolutionary processes and the examination of their outcomes.

In the field of engineering, ER offers an alternative approach to designing robotic systems. Unlike

traditional design methods that focus on individual components, ER takes a holistic perspective,

considering both the morphology (physical structure) and control aspects of the robot system. By

balancing the complexity across these different parts, ER facilitates the creation of simpler and more

effective robotic systems (Doncieux et al., 2015).

One notable advantage of using evolution in the design process is its capacity to produce novel and

unexpected solutions that may not arise through conventional design approaches (Hornby et al., 2011).

Evolutionary Algorithms (EA) explore a vast design space and have the potential to discover innovative

solutions that go beyond the limitations of human-designed systems. This capability is particularly

valuable when dealing with complex problems that are challenging for traditional design methods.

Furthermore, unlike traditional design methods, ER offers learning and adaptation capabilities (Doncieux

et al., 2015). This means that ER can be utilized to design robotic systems that can learn and adapt to

unforeseen or changing environments. This ability reduces the need for the designer to make assumptions

about potential sources of failure and integrate them into the design beforehand.

However, it is important for the designer to possess prior knowledge of the problem domain in order

to define an appropriate fitness function for the given task. The choice of fitness function plays a

crucial role in the design process. An explorative fitness function drives the search towards unexplored

regions of the solution space, while an exploitative fitness function directs the search towards high-

performing areas of the space. Striking the right balance between exploration and exploitation is critical.

Excessive exploration can result in slow convergence, while excessive exploitation can lead to premature

convergence, where the search becomes trapped in local optima.

In most cases, approaches that prioritize behavioral diversity through explorative search have

demonstrated superior performance compared to objective-driven approaches that solely focus on

optimization (Kistemaker & Whiteson, 2011; Lehman & Stanley, 2010, 2011a; Lehman & Stanley,

2008). A new class of algorithms known as QD algorithms (Pugh et al., 2016b) addresses this trade-

off by reformulating the optimization process to consider both behavioral diversity and quality. These

algorithms aim to find a balance between exploring new behaviors and achieving high-quality solutions,

offering a more comprehensive approach to evolutionary optimization in robotics (see figure 1.1).

Traditionally, the focus of optimization in ER has been on the controller, neglecting the potential benefits

of morphology optimization. However, recent research (Bongard, 2011) has emphasized that adapting a

robot’s morphology while it is actively engaged in behavior can reveal novel motor-sensor relationships.

This adaptive process has been shown to enhance the evolution of robust behaviors, particularly in

challenging and unfamiliar environments. These findings have sparked further investigations into the

advantages of co-evolving the body and brain of robots (Birattari et al., 2019; Kriegman et al., 2018;

Lipson et al., 2016; Nygaard et al., 2021b). Notably, previous work (Kriegman et al., 2018) has

demonstrated that the morphology of a robot significantly influences the range of behaviors that its
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(a) Objective-driven evolutionary search typically
focuses solely on the fitness value of individuals during
the selection process.

(b) QD-driven evolutionary search takes both the fitness
value and some aspects of the individual behavior into
account during the selection process.

Figure 1.1: Illustration of the differences between Objective driven and QD driven evolutionary search
(Doncieux et al., 2015).

controllers can exhibit. In other words, the morphology of a robot plays a critical role in determining the

types and complexity of behaviors it can perform. These insights have motivated further exploration of

the interplay between morphology and controller, providing valuable insights into how optimizing both

aspects can enable robots to exhibit specific behaviors and effectively adapt to diverse environmental

conditions.

By combining the adaptive and learning capabilities of ER with the consideration of body-brain diversity,

it is possible to design swarm robotic systems that not only adapt to changing environments but also

possess a wide range of behaviors and morphologies, enhancing their overall problem-solving capacity.

The objective of this thesis is to investigate the benefits of such approaches within the context of

cooperative robot teams and examine how environmental conditions impact their efficiency and diversity.

By examining the relationship between the environment, morphology, and controller, this research aims

to contribute to our understanding of the interdependencies among these factors and their implications

for the performance and adaptability of swarm robotic systems.
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1.1 Motivation

Social insect societies represent significant examples of self-organization and decentralized control in the

biological realm (O’Shea-Wheller et al., 2020). Within these societies, complex interactions between the

behavior and morphology of evolving organisms, as well as their surrounding environment, have given rise

to a wide range of complex and diverse social structures (Duarte et al., 2011; Hart et al., 2002). Likewise,

in artificial social systems like swarm robotics, different types of collective behavior emerge through the

interconnected dynamics among a robot’s morphology (its sensory-motor configuration), behavior (the

output of its controller), and environment (the task at hand) (Bredeche et al., 2018). One viewpoint

suggests that an agent’s morphological and behavioral complexity should align with the complexity of its

environment (Pfeifer & Bongard, 2006). However, considering the diverse instances observed in biology

(McShea, 1996), it remains an open question whether higher levels of task complexity necessitate agents

with more complex behaviors and morphologies (Cheney et al., 2013; Nygaard et al., 2021a; Xu & Wang,

2021).

Research focused on the evolution of artificial morphology-behavior (body-brain) couplings using

simulated (Cheney et al., 2017; Kriegman et al., 2018) and physical (Nygaard et al., 2021a; Xu & Wang,

2021) ER platforms has garnered considerable attention (Doncieux et al., 2015). However, the exploration

of how body-brain adaptation influences collective (swarm) robotic systems has been relatively limited

(Buason et al., 2005; Furman et al., 2019; Hewland & Nitschke, 2015), primarily due to the challenge of

effectively discerning the connections between genotype (body-brain encodings) and phenotype plasticity

(body-brain couplings) in emerging collective behaviors (Moore et al., 1997). In this context, phenotypic

plasticity pertains to a single genotype generating multiple morphology-behavior couplings in response

to environmental conditions (Kelly et al., 2012; Schlichting & Pigliucci, 1998; West-Eberhard, 1989; Wolf

et al., 1999).

As an illustration, in artificial swarms (Just & Moses, 2017), local cues regarding resource distributions

modify the foraging parameters of agents. Likewise, in ant colonies, environmental heterogeneity leads

to diverse foraging behaviors (Beverly et al., 2009; Gordon et al., 2011). Phenotypic plasticity has been

identified as a crucial adaptive element that is currently lacking in enabling autonomous robots to operate

effectively in unconstrained real-world environments (Hauser, 2019). It has been explored through the

lens of the necessary genotypic-phenotypic interactions and environmental conditions for the emergence

of behavioral diversity (Ferrante et al., 2015; Montanier et al., 2016; Nitschke et al., 2011; Steyven et al.,

2017; Trueba et al., 2013; Trujillo & et al., 2011; van Diggelen & et al., 2022) in evolutionary swarm

robotics (Dias et al., 2021; Doncieux et al., 2015).

Despite prior research (Bongard, 2011; Kriegman et al., 2018) in evolutionary robotics highlighting the

significance of phenotypic plasticity in driving morphological adaptation to enhance the resilience of

adapted behaviors, there is a scarcity of studies examining the influence of emergent morphological

diversity on evolving swarm-robotic behavior (Hunt, 2021). Moreover, although previous research

(Auerbach & Bongard, 2014; Miras & Eiben, 2019; Miras et al., 2020; Spanellis et al., 2021) in

evolutionary robotics has examined the influence of the environment on body-brain co-evolution, there is

a limited body of work (Furman et al., 2019; Nagar et al., 2019a, 2019b) investigating the environmental

impact on body-brain evolution specifically in the context of swarm robotics. The existing studies

on phenotypic plasticity in evolutionary swarm robotics can be divided into two categories. The first
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category focuses on fixed robot morphologies, where only the controllers are evolved, while the second

category involves the co-evolution of both the controllers and the morphologies of each robot (Doncieux

et al., 2015). Within the studies using fixed morphologies, there are few instances that demonstrate the

potential for diverse environments to yield diverse behaviors (Ferrante et al., 2013; Ferrante et al., 2015).

On the other hand, research on evolutionary swarm robotics incorporating evolvable coupled controllers

and morphologies remains scarce and confined in its scope (Dias et al., 2021), with a noticeable absence

of studies exploring the effects of environment complexity (task complexity) on phenotypic plasticity.

Conventionally, researchers define a specific environment and task, and then evolve robots specifically

tailored to operate within that particular combination. For instance, in the majority of swarm-robotics

studies where the task environment is considered an experimental parameter, behavioral diversity is

evolved using pre-existing morphologies that are predefined to address diverse collective behavior tasks

(Brutschy et al., 2012; Ferrante et al., 2015; Nitschke et al., 2011; Steyven et al., 2017; van Diggelen &

et al., 2022).

Another motivation behind this study is the recognition that morphological diversity plays a significant

role in enhancing the problem-solving capabilities of swarm behaviors as observed in social insect colonies

(Fjerdingstad & Crozier, 2006). For instance, in social insect colonies, different workers with varying

body shapes and sizes are more adept at solving specific tasks, leading to an overall enhancement in

the robustness of collective behavior (Jandt & Dornhaus, 2014). Building on this observation, our

hypothesis posits that incorporating morphological diversity within robotic swarms will yield similar

benefits, contributing to improved problem-solving efficacy and the overall performance of the swarm.
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1.2 Research Questions

In order to address the challenges mentioned in section 1.1, our research builds upon previous work (Hart

et al., 2018) that utilizes decentralized QD methods to evolve functional diversity, specifically behavioral

specialization, within simulated swarms, without the need for geographical isolation (Montanier et al.,

2016) or division of labor mechanisms (Haasdijk et al., 2014).

Specifically, our research explores the application of three QD methods to evolve collective behavior in

increasingly complex cooperative tasks. We first evaluate behavior evolution with behavioral diversity

maintenance (section 3.4), secondly, behavior and morphology evolution with behavioral diversity

maintenance (section 3.5), and lastly, behavior and morphology evolution with behavior-morphology

diversity maintenance (section 3.6). The aim is to identify the most suitable swarm controller design

methods for specific task environments and gain insights into how environmental factors impact the

evolution of behavioral and morphological diversity, as well as the resulting benefits (task performance).

By exploring the potential of the three QD methods to evolve diverse body-brain couplings and

cooperative behaviors in robotic swarms, this research aims to contribute to a better understanding

of how to effectively employ QD maintenance approaches in complex and cooperative swarm tasks. The

progression of this thesis is guided by the following research questions.

1. Primary research question: Do environmental conditions impact the efficiency (that is, task

performance) and diversity (that is, behavioral and morphological diversity) of body-brain evolved

cooperative robot teams?

2. Secondary research questions:

2.1. Is behavioral diversity maintenance beneficial for evolving collective behavior across

increasingly complex task environments?

2.2. Is behavioral diversity maintenance beneficial for co-evolving collective behavior and

morphology across increasingly complex task environments?

2.3. Is behavioral-morphological diversity maintenance beneficial for co-evolving collective

behavior and morphology across increasingly complex task environments?

The QD team task performance (section 4.3.1) and diversity (section 4.3.3) will be evaluated with respect

to mEDEA (section 3.2) and mEDEA-M (section 3.3) as benchmarks over an increasingly complex

collective gathering task (section 4.1). In this task, robots will be tasked with moving different block

types randomly scattered in the environment to a designated gathering zone. Team task performance

will be measured as the portion of blocks gathered in a given run. Task complexity (section 4.2) will

denote the degree of cooperation required to optimally solve the task.
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1.3 Contributions

The primary contribution of this study is empirical evidence indicating the effectiveness of body-brain

diversity maintenance search approaches in complex tasks defined by large feature spaces in robotic

swarms. While previous related work (Nordmoen et al., 2021; Pugh et al., 2016a; Pugh et al., 2016b;

Zardini et al., 2021) has shown the benefits of these approaches for single agents, this thesis extends

those findings to collective behavior in robotic swarms.

• This work conducts empirical experiments (Chapter 4, table 4.3) using a collective gathering task of

varying complexity (section 4.1). Through these experiments, our work investigates the influence of

environmental complexity on the emergence of neural-morpho complexity (section 5.2.4), as well as

behavioral (section 5.1) and morphological (section 5.2) diversity in robotic swarms. By examining

how different levels of environmental complexity impact these aspects, this thesis aims to shed light

on the relationship between environmental conditions and the observed complexity and diversity

within the evolved behavior-morphology couplings in robotic swarms.

• The design and development of an extension for the RoboGen framework (Auerbach et al., 2018),

allowing for the embodied evolution of robotic swarms. The existing RoboGen framework already

encompasses tools for generating 3D-printable design files for robot body parts and compiling

neural-network controllers that can be executed on an Arduino micro-controller board. Previous

research (Jelisavcic et al., 2017) has successfully validated the functionality of this modular robot

system using physical hardware. Hence, this thesis serves as evidence for the framework’s capability

to be expanded and adapted.

1.4 Overview

The rest of this thesis is divided into several Chapters as follows, Literature Review (Chapter 2),

Methodology (Chapter 3), Experiments (Chapter 4), Results (Chapter 5), Discussion (Chapter 6), and

Conclusions (Chapter 7). The following is an overview of the Chapters.

Chapter 2 is divided into three main sections. The first section provides a background on simulated

and real swarm robotics, offering a comprehensive understanding of the field. The second and third

sections review relevant literature that pertains to the main questions addressed in this thesis. These

sections critically examine existing studies and research contributions, highlighting their significance and

relevance to the research objectives.

Chapter 3 outlines the methodology employed to address the research questions presented in this thesis. It

describes the various evolutionary methods utilized in conducting the experiments. The chapter provides

a clear and detailed explanation of each of the five evolutionary methods evaluated in this thesis.

In Chapter 4, the experiments conducted to investigate the research questions are presented. The Chapter

provides a detailed explanation of the experimental setup, including the collective behavior task, how

team task performance and behavior diversity and quality were measured, the swarm robotics simulator
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used, and the environmental conditions evaluated.

Chapter 5 presents the main findings of this thesis. Specifically, the Chapter presents the results of

evaluating the five evolutionary methods in terms of the efficiency and diversity of the cooperative robot

teams under different environmental conditions.

Chapter 6 critically discusses the findings presented in Chapter 5 and examines their significance in the

context of the research questions. It explores the implications of the results and compares them with

previous studies discussed in the literature review.

Lastly, chapter 7 draws conclusions based on the discussion of the results and their implications. It

summarizes the key findings, evaluates the research objectives, and answers the research questions

formulated in this thesis. This Chapter also discusses the broader implications of the study and potential

avenues for future research vis-a-vis cooperative robot teams and their interaction with environmental

conditions.
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Chapter 2

Literature Review

Section 1 covers a background on simulated and real swarm robotics and the benefits and applications

of swarm robotics. More of an emphasis will be placed on simulated swarm robotic systems since

this will be the focus of this thesis. Whereas, section 2 will focus on methods to adapt robot (agent)

behaviour (controllers) in simulated and physical swarm and collective robotic systems with more of a

focus on simulated rather than physical systems. Lastly, section 3 reviews previous work that investigates

environmental influences on evolving morphology and behavior.

2.1 Swarm Robotics

This section presents a high-level overview of the swarm robotics field. The aim is to highlight the many

potential benefits offered by robot swarms. Section 2.1 gives a concise definition of swarm robotics.

Section 2.2 gives a brief introduction to the concepts of self-organization and emergence. Section

2.3 presents basic collective robot swarm behaviors. Lastly, section 2.4 presents current and future

applications of robot swarms.

2.1.1 What is Swarm Robotics

Swarm robotics draws inspiration from the self-organized behaviors demonstrated by social animal groups

in nature (see figure 2.1), such as an ant colony (Jackson & Ratnieks, 2006), a swarm of bees (Narumi

et al., 2018), a flock of birds (Wallraff, 2010) and a school of fish (Eberhart et al., 2001). Şahin (2005)

defines swarm robotics as “the study of how a large number of relatively simple physically embodied

agents can be designed such that a desired collective behavior emerges from the local interactions among

agents and between the agents and the environment.” This definition is adopted by most predominant

work in the literature (Brambilla et al., 2013; Hamann, 2018).

However, Arnold et al. (2019) criticize the above definition, citing that it is ambiguous with regards to

the swarm size. That is, what is the appropriate size of a swarm? Indeed this is a valid question to

ask. From the definition, it is clear that it has to be many robots, but what exactly is the threshold? In
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(a) An ant colony (Wild, 2007). (b) A swarm of bees (Swenty, 2012).

(c) A flock of birds (Hodan, n.d.). (d) A school of fish (Kratochvil, n.d.).

Figure 2.1: Self-organization in social animals.

this regard, Beni (2004) posits that the swarm size should not be so large that it has to be treated as a

statistical problem, and not so small that it has to be treated as a few-body problem.

Arnold et al. (2019) also argue that the swarm agents do not necessarily have to be simple. Citing that

modern swarms may incorporate sophisticated, highly capable agents as part of a heterogeneous team.

In fact, we have already seen such heterogeneous swarms in various applications (Dorigo et al., 2013;

Ducatelle et al., 2010; Kengyel et al., 2015; Prorok et al., 2016). So, while this is a valid claim, the

authors miss the point that the agents are relatively simple when compared to the collective behavior

that emerges from local interactions among agents and between the agents and the environment. That

is, individual agents are inefficient relative to the considered task (Hamann, 2018).

2.1.2 Self-organization and Emergence

A robot swarm has self-organization capabilities. This means that the system can be stimulated by

external influences to set in motion specific internal system mechanisms that result in the origin of

distinguished structures (Kernbach, 2012). The said structures manifest at two distinct levels; micro

and macro. Self-organization is made possible by multiple interactions between system elements (that
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is, agents), feedback (both positive and negative), and the balance between exploration and exploitation

(Hamann, 2018).

Self-organization in swarms gives rise to emergent behavior. This refers to the ability of a swarm to

demonstrate complex collective behavior at the swarm level from only local interactions among agents

and between the agents and the environment. The grand challenge in swarm robotics is designing

control mechanisms for the agents such that the desired behavior emerges at the swarm level from local

interactions among agents and between the agents and the environment. The emergence of a robot

swarm offers numerous benefits, including robustness, scalability, and flexibility. Interestingly, these

characteristics align with those found in social animal groups in the natural world.

Robustness: This indicates that the system possesses adaptability, meaning it can withstand the loss

of individuals or significant changes in the environment without experiencing catastrophic failure.

Robustness is achieved through decentralized control and distributed communication and sensing.

Decentralized control means that each agent follows its own control algorithm, so if one agent fails,

the rest of the system remains unaffected. Distributed communication relies on local communication,

as does distributed sensing. This is feasible due to the agents’ limited sensing and communication

capabilities.

Scalability : System scalability refers to its ability to maintain good performance despite changes in

population size. Adding or removing agents does not lead to significant fluctuations in task performance.

Scalability is achieved through decentralized control, distributed communication, and sensing. By

avoiding a centralized communication or sensing mechanism, the system mitigates the risk of bottlenecks

in sensing or communication when the population size increases. Consequently, this ensures that the

system remains unaffected by changes in size, making it size-proof.

Flexibility : This implies that the system has the capacity to adapt to various environments and tasks.

It achieves flexibility by employing simple agent behaviors and incorporating redundancy.

2.1.3 Basic Collective Behaviors

Basic collective behavior tasks can be broadly categorized into four main groups: spatially organizing

behaviors, collective navigation behaviors, collective decision-making behaviors, and miscellaneous

collective behaviors.

Spatially organizing behaviors involve the movement and arrangement of robots or objects within the

environment. This category includes various behaviors such as aggregation (see figure 2.2), pattern

formation, chain formation, self-assembly and morphogenesis, as well as object clustering and assembling.

Collective navigation behaviors involve the coordination and organization of a swarm of robots to move

together within the environment (see figure 2.3). This category includes behaviors such as collective

exploration, coordinated motion, and collective transport.

Collective decision-making behaviors aim to facilitate consensus among a swarm of robots when making
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(a) Starting position. (b) Final position.

Figure 2.2: Aggregation behavior in a swarm (Misir & Gökrem, 2021).

(a) Dynamic chain formation (Ducatelle et al., 2011). (b) Self-organized flocking (Turgut et al., 2008).

Figure 2.3: Collective navigation behaviors.

decisions on a particular issue. This category includes two main behaviors: consensus achievement (see

figure 2.4) and task allocation.

The final category encompasses collective behaviors that do not fit into the previous three categories. This

category includes various behaviors such as human-swarm interaction, group size regulation, collective

fault detection, self-healing, and self-reproduction.
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(a) Consensus in progress. (b) Consensus achieved.

Figure 2.4: Collective decision-making in a swarm (Montes de Oca et al., 2011).

2.1.4 Current Applications

By skillfully combining various basic collective behaviors, robot swarms can be employed in a wide range

of application domains, including those where optimal solutions are currently lacking (Brambilla et al.,

2013). These applications can be broadly categorized based on the environment in which the swarms

operate, namely, aerial, aquatic, and terrestrial. Each of these environments offers unique challenges and

opportunities for swarm robotics applications.

2.1.4.1 Aerial

In the work by Camci et al. (2018), a particle swarm optimization-sliding mode control algorithm

is employed to optimize type-2 fuzzy neural networks (T2-FNNs). These networks are specifically

designed for controlling a swarm of quad-copters engaged in farm inspection and mapping tasks. The

experimental results demonstrate that these controllers can significantly improve performance compared

to conventional proportional-derivative controllers, with a reduction in trajectory tracking integral

squared error of up to 26%. This highlights the effectiveness of the proposed approach in enhancing

the control capabilities of the quad-copter swarm for agricultural applications.

In the study conducted by Garcia-Aunon et al. (2019), a behavior-based (section 2.2.1) surveillance

algorithm is developed for aerial swarms responsible for monitoring traffic in a simulated city environment

known as SwarmCity (refer to figure 2.5). The algorithm incorporates six distinct behaviors, each defined

by twenty-three parameters that are fine-tuned using a genetic algorithm. The optimized algorithm’s

performance is subsequently evaluated within the SwarmCity simulation. The results show that the

algorithm achieves an efficiency rate of 25%. However, it is worth noting that the efficiency decreases

significantly when the number of cars in the simulation is increased. This observation suggests that the

algorithm’s performance may be impacted by scalability issues when dealing with higher traffic volumes.

Further investigation and potential enhancements may be required to address this limitation and improve
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(a) SwarmCity skyline. (b) SwarmCity map.

Figure 2.5: Simulation of SwarmCity in Unity (Garcia-Aunon et al., 2019).

its efficiency in scenarios with larger numbers of vehicles.

2.1.4.2 Aquatic

In the study conducted by Duarte et al. (2016), controllers for a robot swarm are evolved (section

2.2.3) to perform multiple tasks, including homing, dispersion, clustering, and monitoring. The evolved

controllers are subsequently evaluated using a real robotics system comprised of aquatic surface robots.

The authors also demonstrate the practical application of the swarm by combining the evolved swarm

behaviors to accomplish a comprehensive environmental monitoring task. By carefully combining the

different evolved swarm behaviors, the swarm of robots is able to effectively carry out the environmental

monitoring task. This showcases the versatility and potential of the evolved controllers in enabling robot

swarms to perform complex tasks in real-world scenarios.

In the study conducted by Zoss et al. (2018), behavior-based (section 2.2.1) cooperative algorithms

are developed to enable a real swarm of 50 buoys to perform various collective behaviors, including

flocking, navigation, and area coverage (refer to figure 2.6). These behaviors are crucial for the swarm to

effectively operate and coordinate its actions in a coordinated manner. The developed algorithms not only

allow the swarm to exhibit core swarm properties such as scalability, flexibility, and robustness but also

demonstrate their applicability in monitoring coastal and inland water environments. By combining the

flocking behavior, which promotes cohesion and alignment within the swarm, with navigation and area

coverage behaviors, the swarm is capable of efficiently monitoring and exploring these environments. The

success of the developed algorithms showcases the significance of collective behaviors and their practical

application in real-world scenarios, particularly in environmental monitoring.

Finally, in their work, Gupta and Bayal (2020) employ a Modified Glowworm Swarm Optimization

(MGSO) algorithm to optimize controllers for a swarm of robots assigned with the task of locating the

source of oil spills in marine environments. The MGSO algorithm is utilized to enhance the performance

of the swarm and improve its efficiency in carrying out this specific task. The results obtained from their

study indicate that reducing the number of iterations and swarm size leads to higher performance in

terms of the swarm’s ability to locate the source of oil spills. This finding suggests that optimizing the

parameters of the MGSO algorithm, such as the number of iterations and swarm size, can significantly
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Figure 2.6: Top panel: a swarm of bouys collectively operating. Bottom left panel: a swarm of bouys
during transportation. Bottom right: a swarm of bouys just before deployment (Zoss et al., 2018).

impact the performance and effectiveness of the swarm in carrying out the desired objective. By

leveraging the MGSO algorithm and optimizing the controllers for the swarm of robots, Gupta and Bayal

(2020) demonstrate the potential of swarm intelligence techniques in addressing complex environmental

challenges, such as oil spill detection and localization in marine environments. Their findings highlight

the importance of parameter optimization and provide insights into improving the performance of swarm-

based systems in real-world applications.

2.1.4.3 Terrestrial

In their research, Ball et al. (2015) focus on the development of small, lightweight, and cost-effective

behavior-based (section 2.2.1) cooperative robots. These robots are specifically designed to address

the issue of resistant weeds in large-scale crop fields while minimizing the environmental impact. By

employing mechanical mechanisms, the swarm of robots is capable of effectively dealing with weeds that

are resistant to conventional methods of control. The potential applications of this swarm of robots

extend beyond weed control. They can also be utilized for tasks such as mowing and slashing vegetation,

planting seeds, irrigation management, and even harvesting crops. The versatility of these robots allows

for their integration into various agricultural operations, offering potential benefits in terms of efficiency,

precision, and environmental sustainability.
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Gebhardt et al. (2018) employ policy search (section 2.2.2) techniques to train a swarm of robots in

assembly tasks. The assembly process is divided into two components: creating a high-level plan for

the assembly and acquiring a low-level policy for object movement. The findings demonstrate the

system’s ability to successfully complete assembly tasks involving objects with different shapes, even

when encountering objects that have not been seen before.

In their study, Farrugia and Fabri (2018) propose behavior-based (section 2.2.1) cooperative

transportation algorithms, including pushing, caging, and grasping, for a swarm of LEGO robots. The

objective is to enable the swarm to work together to transport large objects to a specific location. The

authors evaluate the efficiency of these algorithms by conducting experiments with the LEGO robot

swarm. The results demonstrate that the caging and grasping algorithms are capable of generating

accurate collective object transportation behavior across various scenarios, indicating their reliability

and effectiveness in facilitating cooperative transport tasks.

Lastly, Hiraga et al. (2020) focus on evolving controllers (section 2.2.3) for a swarm of robots with

the objective of collectively distinguishing between food and poison objects. Additionally, the robots are

required to cooperate in order to transport food objects to a designated nest. Accordingly, the controllers

are optimized to effectively handle the tasks of object recognition, discrimination, and cooperative

transportation. The study demonstrates the successful evolution of controllers that enable the swarm to

collectively distinguish between food and poison objects and work together to move food objects to the

desired nest location.

2.1.5 Future Applications

The existing literature on real-world applications of robot swarms is relatively limited, with most

applications being conducted in controlled laboratory settings. Schranz et al. (2020) highlight several

barriers that hinder the widespread adoption of swarm robotic systems in real-world scenarios. Firstly,

there is the challenge of accurately predicting and quantifying the effectiveness of swarm behavior that

emerges from local interactions among the robots. This difficulty arises due to the complex and nonlinear

nature of swarm dynamics. Secondly, the current communication architectures used in swarm robotics

often fail to meet the requirements for efficient swarm communication. Innovations in communication

technologies are needed to address this limitation. Lastly, while simulations are commonly used for

testing swarm algorithms, relying solely on simulations can be risky as it may lead to a significant gap

between simulated and real-world performance, known as the ”reality gap” (Bredeche et al., 2018).

Despite these challenges, there are envisioned future applications of swarm robotics in various

domains. Dorigo et al. (2020) propose potential applications in precision medicine, precision agriculture,

infrastructure inspection and maintenance, civil construction, and space missions. These domains could

benefit from the collective capabilities of robot swarms in terms of efficiency, scalability, adaptability, and

robustness. However, further research and development are necessary to overcome the current barriers

and realize the full potential of swarm robotic systems in real-world applications.
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2.2 Adaptive Behaviour Methods

Swarm robotics systems are characterized by decentralization, meaning there is no central control and

each individual agent is responsible for its own decision-making. This aspect presents a significant

challenge in system design due to the complex interactions among agents and between agents and the

environment. The main objective in swarm robotics is to design controls for individual agents in a way

that desired collective behaviors emerge at the swarm level through local interactions. Two broad design

approaches have been adopted to tackle this challenge: behavior-based methods and automatic methods.

2.2.1 Behavior-based methods

Behavior-based methods require the designer to specify control of each individual robotic agent such that

when all the agents interact amongst themselves and with the environment the desired collective behavior

emerges at the swarm level. Hand-crafting control for each agent requires the designer to have enough

a priori knowledge of the task domain as this process typically requires one to describe the desired

behavior in the form of a mathematical model. Nevertheless, models for commonly studied collective

behaviours such as aggregation (Misir & Gökrem, 2021), and flocking (Fine & Shell, 2013), are readily

available.

In this category, two commonly utilized approaches are Probabalistic Finite State Machines (PFSM)

and potential-field based approaches. Potential-field based approaches employ the principles of physics,

providing a well-grounded framework for analysis. However, PFSM is the more widely adopted approach.

For instance, Garcia-Aunon and Cruz (2018) implemented PFSM to control an aerial robotic swarm

engaged in a search task within a rectangular environment. The authors defined six distinct behaviors

that govern the agents’ movements (refer to figure 2.7). They also introduced a virtual pheromone

model that facilitates transitions between behavior-states. Building upon this algorithm, Garcia-Aunon

et al. (2019) extended it for surveillance purposes in a traffic monitoring task. They modified the

search behavior to ensure agents persistently search within a confined area, while keeping the remaining

behaviors unchanged.

Another example is the work of Zoss et al. (2018), where a PFSM is employed to control a swarm

of buoys responsible for collectively monitoring large marine environments with arbitrary shapes. The

authors establish a set of three collective behaviors: flocking, collective navigation, and area coverage,

to govern the swarm’s movement. Notably, the area coverage control algorithm is based on a potential-

field approach specifically designed for area coverage (Howard et al., 2002). Through field experiments,

the study demonstrates that these three collective behaviors effectively enable the deployment, control,

and positioning of a large number of aquatic surface vehicles for efficient monitoring of diverse marine

environments.

Behavior-based methods inherently involve an iterative process where the designer fine-tunes the model

parameters of individual behaviors until the desired collective behavior emerges. Manual parameter

tuning can be time-consuming, especially for complex models. For example, Garcia-Aunon and Cruz

(2018) and Garcia-Aunon et al. (2019) utilized a genetic algorithm to automate the tuning of twenty-three

parameters in a behavior-based algorithm consisting of six behaviors. Moreover, creating mathematical
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(a) A set of behaviors that control the movement of
robotic agents.

(b) An example of a search task with 16 agents. The
color bar depicts the intensity of virtual pheromones.

Figure 2.7: Behavior-based control of an aerial swarm (Garcia-Aunon & Cruz, 2018).

models to describe individual behaviors in unknown, complex, or dynamic problem domains becomes

increasingly challenging. To address this limitation, automatic design methods have been adopted,

namely, RL (Sutton & Barto, 2018) and ER (Doncieux et al., 2015). These approaches aim to overcome

the need for manual parameter tuning and facilitate the design process in complex problem domains.

2.2.2 Reinforcement Learning

RL involves the process of learning how to map environmental states to actions in order to optimize a

numerical reward. RL consists of two main components: trial-and-error search and delayed reward. The

trial-and-error search component stems from the fact that the RL learner has no prior knowledge of which

actions to take and must explore and learn through a process of trial and error. By interacting with the

environment, the learner discovers which actions lead to favorable outcomes and gradually improves its

decision-making abilities. Delayed reward refers to the concept that the consequences of the learner’s

actions extend beyond immediate rewards. The actions taken by the learner not only impact immediate

rewards but also carry over to the next state, influencing subsequent rewards. This delayed feedback

allows the learner to consider long-term consequences and make decisions that maximize cumulative

rewards over time.

A typical RL agent consists of four essential elements: a policy, a reward function, a value function, and

sometimes a model of the environment. The policy is responsible for mapping observed environmental

states to the corresponding actions to be taken in those states. This mapping can take various forms,

such as a simple function, a lookup table, or even computationally intensive processes like search

algorithms. The reward function assigns a numerical value to each state-action combination, representing

the desirability of that state. It captures the immediate feedback and essential aspects of the task that

the learning agent aims to maximize. The value function provides insight into the long-term desirability

or utility of being in a particular state. Additionally, the RL agent may incorporate a model of the

environment, which simulates the behavior of the actual environment. Given a state-action pair, the

model predicts the resultant next state and the associated reward. This model is often used for planning
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Figure 2.8: Various components of a RL agent.

purposes, enabling the agent to anticipate and evaluate potential future scenarios and decide on a course

of action accordingly.

RL has been widely used in mainstream robotics to optimize the control of robotic agents. It has proven

to be particularly effective in single agent domains where it is not necessary to model or predict the

behavior of other actors in the environment. RL methods have a strong theoretical foundation with

elaborate convergence proofs.

However, when it comes to multi-agent situations, traditional RL algorithms face challenges. The

inherently non-stationary nature of the environment hampers Q-learning (Watkins & Dayan, 1992),

and the variance worsens as the number of agents increases in Policy Gradient methods (Silver et al.,

2014). Agent interactions can be categorized into three types, namely, cooperative, competitive, or a

hybrid of both.

There are two main approaches to learning in cooperative multi-agent scenarios: centralized Multi-Agent

Reinforcement Learning (MARL) and independent learners approach. The centralized MARL approach

treats the learning problem as a single-agent RL problem, where the observations of individual agents

are concatenated, and the action space becomes combinatorial. However, in practice, this approach often

struggles to solve even relatively simple cooperative MARL problems (Buşoniu et al., 2010; Zhang et al.,

2021).

The independent learners approach trains each agent independently to optimize for the benefit of the

team. In this scenario, each agent faces a non-stationary learning problem, as the environment dynamics

change when teammates adapt their behavior based on their own learning experiences. This creates a

challenging and dynamic learning environment for each agent (Laurent et al., 2011).
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The challenges posed by multi-agent environments have been the subject of extensive research (Busoniu

et al., 2008; Buşoniu et al., 2010; Lanctot et al., 2017; Zhang et al., 2021). For example, Lowe et

al. (2017) propose an extension of actor-critic approaches that addresses the non-stationarity problem

by incorporating information from other agents. However, this method faces scalability issues, as the

input space grows linearly with the number of agents (N). This leads to high state and observation

dimensionality, and changes in the number of agents or observed neighbors result in a varying information

set size.

Taking inspiration from this observation, Húttenrauch et al. (2019) propose a novel state representation

for deep reinforcement learning in multi-agent systems. This representation utilizes mean embeddings

of distributions to treat state information from neighboring agents as samples. As a result, the

representation is permutation invariant, meaning it is insensitive to the order of agents or the swarm

size, thereby overcoming the scalability limitations faced by other methods.

In the independent learners approach, where agents can only observe a portion of the environment,

there is a possibility of receiving erroneous reward signals that stem from the actions of unobserved

teammates. To mitigate this limitation, Sunehag et al. (2017) propose a novel architecture called the

value decomposition network. This architecture learns to decompose the team value function into agent-

wise value functions.

Specifically, the proposed representation encodes information received from different agents in a multi-

channel image, where each channel corresponds to a specific feature based on the local view of the

agents. This representation helps alleviate permutation invariance issues. However, it is important to

note that the information obtained from neighboring agents is of a spatial nature, which means that the

dimensionality of the representation increases linearly with each feature. Additionally, representing the

information as pixels in an image format can introduce accuracy loss due to quantization errors.

While the reviewed MARL research findings are valuable, it is important to acknowledge their limitations.

These findings have primarily been validated using simple tasks and a small number of robots, which

may not fully capture the complexity and challenges of real-world scenarios. To evaluate the effectiveness

of MARL mechanisms in practical swarm applications, further research and validation are needed to test

these mechanisms in more complex task environments and with larger swarms to assess their scalability

and robustness.

2.2.3 Evolutionary Robotics

ER utilizes EAs to design and optimize different aspects of a robot, including its morphology and

control. EAs draw inspiration from biological evolution to find solutions to complex problems. A generic

EA typically involves three phases, namely, initialization, evaluation, and reproduction (refer to figure

2.9). In the initialization phase, a population of genomes is created, where each genome represents a

potential robot aspect, such as a controller or morphology. The genomes are randomly generated to

explore a wide range of possibilities. During the evaluation phase, the quality of each genome is assessed

using a fitness function. This function measures how well a particular robot aspect performs in achieving

its objectives or solving the given task. In the reproduction phase, the best-performing genomes are
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Figure 2.9: The steps of an evolutionary algorithm (Doncieux et al., 2015).

selected for further improvement. Through stochastic variations, such as mutation (introducing small

random changes) and crossover (combining genetic information from different genomes), new solutions

are generated. These variations allow for exploration of different combinations of traits. Low-quality

solutions are typically removed from the population to maintain a constant population size. This selection

and reproduction process continues for a fixed number of generations or until the desired performance

is achieved. Finally, the solution with the highest quality, typically the best-performing robot aspect, is

selected for manufacturing and deployment in the real-world task environment.

EAs can optimize both the parameters and architecture of a robotic control policy, often implemented as

an ANN. This approach reduces the assumptions that need to be made about the optimization problem,

as it allows for a more flexible search in the solution space. However, unlike RL methods, EAs do not

provide guarantees about finding an optimal solution or specify when such a solution will be found for

a given optimization problem (Bongard, 2013). The effectiveness of EAs depends on various factors,

including the quality of the fitness function, the representation of the solution space, and the selection

and variation operators used.

2.2.3.1 Evolving control

Despite the lack of theoretical convergence proofs, ER techniques have shown successful applications

in designing control for swarm robotic systems. Researchers have used various ER methods to evolve

controllers for different collective behavior tasks.

For example, Duarte et al. (2016) employed NeuroEvolution of Augmenting Topologies (NEAT) to evolve

ANN controllers for tasks such as homing, dispersion, clustering, and monitoring in robot swarms. The

NEAT algorithm allows for the evolution of both the weights and structure of ANNs, providing flexibility

in designing complex controllers.
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Figure 2.10: Swarm controller evolution with 100 robots. The green circles are food objects while the
red circles are poison objects (Hiraga et al., 2020).

In another study, Hiraga et al. (2018) utilized a (µ, λ) evolution strategy (Eiben, Smith, et al., 2003),

a type of EA, to optimize the weights of ANN controllers for a path-formation task in swarm robotics.

This approach allows for the exploration of the solution space by generating a population of candidate

solutions and selecting the best-performing individuals for reproduction and variation.

Furthermore, Hiraga et al. (2020) employed the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) (Hansen & Ostermeier, 1996), another EA, to evolve controllers for robotic swarms in a foraging

task that requires collective cognition. CMA-ES adapts the covariance matrix of the search distribution

to improve the search efficiency and exploration of the solution space.

Practical validation has shown that EAs can be effectively used to design control for robot swarms, despite

the associated costs in terms of time and computational resources. However, the benefits of using EAs

outweigh these drawbacks. One of the key advantages is that ER techniques have learning and adaptation

capabilities (Doncieux et al., 2015). This means that the designer is not required to have prior knowledge

of all possible sources of failure or combinations of outcomes resulting from interactions between agents

during the system design phase. ER allows the system to learn and adapt to its environment, improving

its performance over time.

Additionally, ER takes a holistic approach to robot design, considering the entire system as a whole.

It balances complexity across different components, such as the controller and morphology, to achieve

optimal performance. This holistic perspective leads to simpler and better-performing robotic systems

(Doncieux et al., 2015). By leveraging the power of EAs, ER can explore a wide range of design

possibilities and find solutions that are well-suited for the given task and environment. The next section
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Figure 2.11: In related work (Hewland & Nitschke, 2015), morphology adaptation adapted the sensory
configuration parameters shown above.

will further delve into this idea.

2.2.3.2 Body-brain co-evolution

While the optimization of robot controllers is commonly pursued in evolutionary swarm robotics, and

ER in general, it is important to note that the optimization of robot morphology can also be highly

beneficial. The morphology plays a significant role in determining the range and complexity of behaviors

that can be exhibited by the robot’s controllers (Kriegman et al., 2018).

The concept of body-brain co-evolution, where both the morphology and controller evolve in tandem,

has several positive implications. One such benefit is increased resilience, as highlighted by Zhang et al.

(2017). By allowing the morphology to adapt and evolve alongside the controller, robots can better

withstand and recover from perturbations or environmental changes. This adaptability enhances the

robot’s ability to navigate and operate in unpredictable or challenging environments.

Furthermore, body-brain co-evolution can lead to higher performance. Furman et al. (2019) have shown

that optimizing both the morphology and controller can result in robots that exhibit superior capabilities

compared to those optimized with only the controller (see figure 2.11). The interplay between the robot’s

morphology and its control system can lead to synergistic effects, enabling the robot to perform tasks

more efficiently and effectively.

In some cases, adapting the robot’s morphology becomes essential to ensure suitable behaviors in

previously unknown environments. Kriegman et al. (2019) emphasize that by evolving both the body

and brain, robots can overcome limitations and explore environments that were previously considered

uninhabitable. This adaptability allows the robot to leverage its physical structure to interact with and
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navigate through complex or unfamiliar surroundings.

Notably, there are instances where morphology adaptation is the only viable option to enable desired

behaviors in unknown environments. Picardi et al. (2021) highlight scenarios where preconceived notions

about the environment may not hold true, and the robot’s morphology needs to be capable of adapting

on-the-fly to achieve suitable behaviors.

2.2.4 Embodied Evolutionary Robotics

Embodied Evolution (EE) is a sub-field of ER that focuses on continuous adaptation through the use

of evolution. In EE, evolution takes place within a population of robotic agents that are physically

embodied and situated in their task environment. Unlike offline evolution where robots are optimized in

a separate simulation or offline environment, EE enables the robots to actively evolve and adapt their

behaviors in a distributed, asynchronous, and autonomous manner.

Autonomy plays a crucial role in EE. Firstly, once deployed, the robotic agents operate and carry out

their mission objectives without any human supervision. They are self-sufficient in performing their

tasks and do not require continuous human intervention. Secondly, the agents possess the capability to

continuously evaluate their own behavior and make adjustments to adapt to the given task and changing

environment. This autonomous learning allows the agents to improve their performance and adapt to

new circumstances without human oversight or supervision.

Ficici et al. (1999) pioneered the EE methodology with three primary objectives, namely, mitigating

the reality gap problem in transferring robot controllers from simulators to real robots, enhancing the

robustness of the evolution process in robotics, and improving its scalability. By integrating evolution

within physically embodied robots situated in their task environment, EE aimed to bridge the gap

between simulation and reality, ensuring that evolved controllers perform well in real-world conditions.

However, EE also has certain limitations, with the most significant being the requirement for a large

population size. To maintain genotypic diversity and avoid premature convergence, EE necessitates a

substantial number of robots in the environment. This large population size enables a wider exploration

of the solution space and increases the chances of finding high-quality solutions. Nevertheless, managing

and coordinating a large number of robots can pose logistical and practical challenges, such as increased

computational resources, communication overhead, and potential physical constraints in the environment.

To address the challenge of large population size in EE, an alternative approach called encapsulated

Embodied Evolution (eEE) has been developed. In eEE, each agent in the swarm carries its own

population of genotypes and conducts its own evolution process, either partially or entirely independently

from other agents. This decentralized approach allows for more efficient evolution and reduces the need

for a large population size.

One notable method that follows the eEE approach is the EMbodied Open-ended evoluTIONary

ALgorithm (EMOTIONAL) (Nogueira et al., 2020). EMOTIONAL is designed to evolve behaviors

for a single autonomous agent without requiring explicit objectives, evaluation metrics, or cooperative
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Figure 2.12: Visualisation of the necessary steps of an EER implementation (Bredeche et al., 2018).

dynamics. Instead, the algorithm promotes the emergence of open-ended evolution, where agents can

continuously adapt and generate novel and diverse behaviors without specific predefined goals.

2.2.5 Evolutionary Embodied Collective Robotics

In distributed Embodied Evolution (dEE), individual agents in the swarm carry their own unique genome,

and the exchange of genetic information occurs through interactions between the robotic agents. This

exchange of genetic material, known as mating, plays a crucial role in dEE. Mating is influenced by

heuristics predetermined by the designer and the evolved behavior of the agents. Evolution in dEE is

characterized by decentralization, online adaptation, and parallel processing, with the additional step of

mating facilitating the genetic exchange between agents (refer to figure 2.12).

2.2.5.1 Evolving control

The original dEE algorithm, known as the Probabilistic Gene Transfer Algorithm (PGTA) (Ficici et

al., 1999), was specifically designed for evolving a population of real robots. During its development,

practical considerations, including inter-agent communication, were carefully taken into account. One

notable feature of PGTA is its minimal reliance on inter-agent communication, and it eliminates the

need for a separate reproduction phase by integrating reproduction with task behavior. In their study,

Ficici et al. (1999) assess the effectiveness of PGTA in a phototaxis task involving a population of eight

robots. The results obtained demonstrate that solutions evolved through PGTA outperform manually

designed solutions.
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The mEDEA algorithm is a widely studied approach for adapting robotic-swarm controllers within the

dEE framework. It has been a subject of various research efforts, including extensions and combinations

with other algorithms, leading to the development of novel approaches in various studies (Galassi et al.,

2016; Hart et al., 2018; Shan & Mostaghim, 2021; Silva et al., 2015).

In the work of Galassi et al. (2016), mEDEA is combined with Novelty Search (NS) (section 2.2.6),

resulting in a distributed and online variant of NS. This hybrid approach effectively addresses deception

and outperforms mEDEA in problem domains that involve deception and complexity. Similarly, Hart et

al. (2018) hybridize mEDEA with MAP-Elites, creating a distributed and online variant of MAP-Elites.

This combination successfully promotes behavioral diversity within a robot swarm, as demonstrated in

a token foraging task.

Another integration is presented by Shan and Mostaghim (2021), who combine mEDEA with the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002). This hybridization enhances

the multi-objective optimization capabilities of mEDEA by leveraging the strengths of NSGA-II. Lastly,

Silva et al. (2015) combine mEDEA with NEAT, providing a combined approach that benefits from the

evolutionary capabilities of mEDEA and the adaptive neural network structures of NEAT.

2.2.6 Novelty Search

In NS, the focus is on rewarding the learning method for discovering individuals that exhibit behavior

different from previously found individuals. This is in contrast to objective search, where the learning

method is rewarded for finding solutions that are closer to a predefined objective in the search space.

NS uses a novelty metric to measure the uniqueness of each behavior. The novelty metric quantifies the

distance between a newly found individual and the existing population of individuals in terms of their

demonstrated behaviors. It compares the behavior of the new individual to an archive of previously

encountered individuals with highly novel behaviors.

The novelty metric serves to determine how areas in the behavior space are rewarded. It is a domain-

independent metric that computes the sparseness of visited points in the behavior space. Areas with

dense clusters of visited points receive lower rewards because they are considered less novel compared to

areas with sparse clusters of visited points.

When a newly found individual exhibits sufficient novelty, it is added to the permanent archive. The

archive, along with the current population, provides a comprehensive representation of the areas visited

by the learning method and its current location in the search space. The termination condition is

typically based on whether the discovered individuals meet the desired goal criteria, which needs to be

evaluated by the practitioner.
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2.2.6.1 Evolving control

Lehman and Stanley (2011a) conducted experiments using NS to evolve ANN controllers for a single agent

in maze navigation and biped locomotion tasks. They demonstrated that NS outperforms objective-based

search in complex and deceptive problem domains. Building upon this, Pugh et al. (2016b) used NS in a

more challenging deceptive maze navigation task, achieving superior performance compared to objective-

based search.

The success of NS in single-agent tasks inspired further research in other areas, such as swarm robotics.

Gomes et al. (2013) employed NS to evolve controllers for a homogeneous swarm of robots, evaluating its

effectiveness in an aggregation task and resource sharing. They found that NS reliably handles deception,

discovers solutions with lower neural network complexity, and combining NS with an objective function

improves performance.

Didi and Nitschke (2016) applied NS to evolve controllers for a multi-robot task, specifically RoboCup

keep-away soccer. They compared NS with hybrid variants that combine novelty and fitness rewards, as

well as other approaches. The novelty-fitness variant outperformed the others in increasingly complex and

deceptive tasks. Similarly, Gomes et al. (2017) used NS-driven cooperative coevolution in three simulated

multi-robot tasks namely, a predator-prey pursuit task (Nitschke et al., 2012), a simulated multi-rover

task (Nitschke et al., 2010) and a herding task (Potter et al., 2001), demonstrating its superiority over

fitness-driven coevolution.

Galassi et al. (2016) implemented a novelty-based evolution approach in an online distributed context,

evaluating its performance in a foraging task. Their results showed improved performance compared to

the mEDEA algorithm, particularly in more complex and deceptive scenarios. Brown et al. (2018) took

a different perspective by using NS to search for all possible collective emergent behaviors in a robot

swarm with specific capabilities. They discovered various behaviors like wall following, dispersal, cyclic

pursuit, and aggregation using a binary-sensor capability model.

Overall, these studies highlight the advantages of NS in handling deception, discovering diverse and

effective solutions, and outperforming objective-based search in complex and deceptive problem domains,

both in single-agent, collective, and swarm scenarios.

2.2.6.2 Body-brain co-evolution

Joachimczak et al. (2015, 2016) conducted research using NS to co-evolve the body and brain of soft-

bodied robots. They found that NS is well-suited for this problem domain. While objective-based

search can discover complex morphologies capable of various movements and reshaping, the large search

space and complex genotype-phenotype relationship make the problem highly deceptive. Objective-based

search often gets stuck in local optima, whereas NS, with its bias towards novelty, enhances evolvability

in this context.

However, NS has its limitations. Without an explicit objective, there is no inherent bias towards

optimizing solutions once they are found. Recognizing this, Mouret (2011) proposed a concurrent
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Figure 2.13: MAP-Elites: an example of a QD algorithm (Mouret, 2020).

approach that rewards both novelty and fitness in a multi-objective formulation of the deceptive maze

problem. This variant proved to be more effective in fine-tuning results and generating more precise

solutions compared to the original NS algorithm. This approach allows for a more nuanced exploration of

both novelty and fitness in parallel. The next section will discuss a class of algorithms that simultaneously

search for novelty and quality in a more refined manner.

2.2.7 Quality Diversity Algorithms

QD is a class of algorithms that aims to generate a diverse set of high-quality behaviors or solutions in a

single run (Pugh et al., 2016b). The algorithm produces an archive or map of behaviors by discretizing

a low-dimensional representation known as a Behavior Characterization (BC) (see figure 2.13). Each

solution found is mapped to a cell in the map based on its features according to the BC. QD takes

inspiration from natural evolution, where organisms are rewarded for being different rather than just

being better.

The BC is typically a vector of real numbers that describes the actions performed by an individual during

evaluation. It represents the space of all possible behaviors. However, in challenging problem domains,

certain choices of the BC may hinder the algorithm from finding high-performing solutions. The BC

plays a crucial role in driving diversity in QD by quantifying and assessing the novelty of solutions.

In some cases, discovering novel solutions also leads to improved performance, indicating a highly

aligned BC. However, there are situations where the desired behavior, as characterized by the BC, does

not necessarily result in higher performance or quality, indicating an unaligned BC. While an algorithm

solely driven by an unaligned BC can still converge to the desired solution due to the quality component
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Figure 2.14: MAP-Elites searches a high-dimensional space for the highest-performing solutions within
a single run (Mouret & Clune, 2015) .

of QD, this convergence process can be quite slow (Pugh et al., 2015).

2.2.7.1 Evolving control

Novelty Search with Local Competition (NSLC) is considered the original QD algorithm (Pugh et al.,

2016b), while MAP-Elites is the most extensively studied QD approach. NSLC has shown success in

various studies, including the evolution of diverse morphologies or creatures with varying numbers of

legs within a single run (Lehman & Stanley, 2011b) and the evolution of hundreds of walking strategies

for a hexapod robot (Cully & Mouret, 2016).

On the other hand, MAP-Elites is widely used in different application domains and has been extended to

various contexts, such as online evolution in robot swarms (Hart et al., 2018) and body-brain co-evolution

in soft robots (Zardini et al., 2021). In MAP-Elites, the designer specifies N dimensions of variation

of interest, defining a low-dimensional space. The algorithm then searches a high-dimensional space to

find the highest-performing solutions at each point defined by the N dimensions, creating an archive of

diverse and high-performing individuals. The algorithm terminates after a fixed number of iterations or

when the desired performance is achieved, and at that point, the archive of diverse and high-performing

individuals is returned (refer to figure 2.14).

The multi-BC MAP-Elites variant proposed by Pugh et al. (2016b) introduces a second map to the

algorithm, maintaining two distinct maps instead of one. These maps are updated independently at

the end of each generation. The first map is defined by a highly aligned BC, while the second map is

defined by an unaligned BC. This approach aims to overcome deception in difficult problem domains

and improve performance for simple task domains. The effectiveness of this approach is evaluated using

a deceptive maze navigation task for a wheeled robot controller, and the reported results demonstrate

successful evolution of diverse solutions.

Another variant of MAP-Elites is developed by Hart et al. (2018) and is implemented in a distributed,
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online context to evolve robot swarm controllers for a token foraging task. This variant outperforms

mEDEA and has the ability to generate behavioral diversity without the need for carefully selecting

parameters (Trueba et al., 2013), introducing a market mechanism (Haasdijk et al., 2014), or employing

geographical separation (Montanier et al., 2016). The results indicate that this variant performs

significantly better in evolving swarm controllers and showcases the advantages of applying MAP-Elites

in a distributed, online setting.

The design of resilient robots is indeed an interesting application of MAP-Elites. In this approach, a

large repertoire of behaviors is evolved in an offline manner under different operating conditions prior

to robot deployment. The robot is equipped with this repertoire of behaviors, allowing it to adapt and

select the most suitable behavior from the repertoire in response to failures or drastic changes in the

environment. For example, Kaushik et al. (2020) utilized MAP-Elites to evolve repertoires for various

situations, such as a hexapod robot with a missing leg or operating on different floors. During online

adaptation, the robot can query this repertoire and select the behavior that best matches the current

operating conditions. This approach enhances the robot’s resilience by enabling it to dynamically adapt

its behavior based on the specific situation it encounters.

2.2.7.2 Body-brain co-evolution

The study by Zardini et al. (2021) introduces the Double-Map MAP-Elites (DM-ME) algorithm to

address the co-design of morphology and control in Tensegrity Soft Modular Robots (TSMRs). In this

approach, two maps are utilized, each associated with a different feature descriptor—one for entity-

related features and the other for controller-related features. Unlike the multi-BC MAP-Elites approach

by Pugh et al. (2016b) that focuses on diversifying controller properties, DM-ME aims to diversify both

morphology and controller properties simultaneously.

The effectiveness of the DM-ME approach is evaluated through two robotic tasks: goal reaching and

squeezing through an aperture. The results of the study indicate that DM-ME performs exceptionally

well in exploring the search space for both tasks. The algorithm successfully discovers a diverse collection

of potential designs within a single run, demonstrating its capability to illuminate the design space and

provide a range of options for TSMRs morphologies and control strategies.

By leveraging the power of MAP-Elites and incorporating multiple maps with different feature

descriptors, the DM-ME algorithm enables the exploration of a broader solution space in the co-design

of morphology and control in TSMRs. This approach can facilitate the discovery of novel and effective

designs that exhibit diverse morphologies and control properties, leading to enhanced performance and

adaptability of TSMRs in various tasks and environments.
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2.3 Environmental Influences on Evolving Behavior and

Morphology

The body-brain synergy has been identified as a crucial factor in the development of advanced intelligence,

as indicated by several studies (Pfeifer & Bongard, 2006; Weigmann, 2012). In nature, the evolution

of the body, brain, and behavior of living creatures is strongly influenced by the environment (Farina,

2012; Sapolsky, 2017; Southwood, 1977). For example, species with distinct genetic ancestors may

undergo parallel evolutionary adaptations when exposed to similar ecological conditions (Stern, 2013).

This implies that the same concept applies to artificial evolutionary systems given that natural evolution

is the hallmark of evolution (O’Shea-Wheller et al., 2020).

Within the realm of swarm robotics, studies investigating the influence of the environment on the

evolution of behavior and morphology can be categorized into two main groups. The first category

encompasses studies that consider the simultaneous evolution of both robot bodies and brains. These

studies explore the interplay between morphology and control in response to environmental factors.

However, research in this area is relatively scarce and often has limitations in terms of scope and depth

of analysis. The second category focuses on scenarios where the robot morphologies are kept fixed, and

only the evolution of the robot brains or controllers is considered. We consider the former.

Hewland and Nitschke (2015) conducted a study where they co-evolved behavior and morphology in

robot teams. Their objective was to investigate the relationship between the complexity of the collective

gathering task and the resulting morphology of the robot teams. They found that the most complex

gathering task, which required a high level of cooperation among the robots, led to the selection of

morphologically simple teams.

Interestingly, when they examined a simpler version of the same task that required a medium degree

of cooperation, they observed the evolution of more complex controllers and morphologies in the robot

teams. This suggests that the complexity of the task influenced the evolution of both behavior and

morphology.

It is important to note that in this particular study, there was no cost associated with increasing

morphological complexity. This means that the selection process favored the development of more

complex morphologies without any trade-offs or disadvantages. The absence of such costs may have

contributed to the observed evolution of more complex controllers and morphologies in the simpler task

scenario.

Contrary to the absence of cost associated with increasing morphological complexity in the study by

Hewland and Nitschke (2015), Nagar et al. (2019a) conducted a study that introduced a neural complexity

cost in the evolution of robot groups. They aimed to examine the effect of this cost on the resulting

neural complexity in three different task environments of varying complexity, where the measure for task

complexity is the same as in (Hewland & Nitschke, 2015).

This study demonstrates that when robot groups are evolved with a neural complexity cost, it leads

to the emergence of comparable neural simplicity across all environments. Interestingly, the simplest
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neuro-morpho couplings are observed in the simple environment, followed by the medium and difficult

environments.

The overall findings of Nagar et al. (2019a) highlight the advantages of incorporating a neural complexity

cost during the evolution process. This cost constraint encourages the evolution of simpler controllers,

and yet the best-performing simple controllers are capable of producing collective behaviors that are

comparable to those achieved by more complex controllers evolved without any complexity cost. This

suggests that the neural complexity cost can lead to the development of efficient and effective collective

behaviors while promoting simpler neural architectures.
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2.4 Discussion

Behavior-based methods have been extensively researched in designing controllers for swarm robotics

systems. These methods provide complete control over individual agent behaviors and offer a well-

established framework for design and analysis. They rely on mathematical models or physics functions

to describe agent behaviors, allowing for analysis and fine-tuning based on mathematical and physics laws.

However, these methods have primarily been applied to simpler swarm robotic tasks like aggregation,

collective navigation, and self-organized flocking. The iterative process of manually crafting control for

each individual in the swarm becomes impractical in more complex, unknown, or dynamic task domains.

RL and ER have been employed in swarm robotics to address the challenges of behavior design in

complex problem domains. RL has a well-established theoretical framework with convergence proofs

in single agent problems. However, when applied to swarm robotics, the extensive search space makes

it difficult for multi-agent learning to find optimal solutions within a reasonable time frame (Bernstein

et al., 2002; Panait & Luke, 2005).

On the other hand, ER has shown remarkable success in swarm robotics through practical validation,

despite lacking an elaborate theoretical framework. With ER, designers are not required to pre-engineer

control aspects, as EAs optimize both the parameters and architecture of a robot’s control policy, typically

an ANN. This approach enables the discovery of sophisticated ANN designs that may not have been

conceived by human designers. As a result, ER facilitates the design of swarm robot controllers for

more complex problem domains, including cooperative tasks, where neither behavior-based methods

nor RL alone may suffice. Moreover, ER provides valuable scientific tools for modeling and simulating

biological evolution (Long, 2012), allowing researchers to study and understand the mechanisms and

dynamics of evolution in a controlled and reproducible manner. Consequently, ER has been employed

as an experimental platform to answer various biological hypothesis, such as the social brain hypothesis

(Dunbar, 2009).

Research in the field of ER has extensively focused on studying the evolution of artificial morphology and

behavior, both in simulated (Cheney et al., 2017; Kriegman et al., 2018) and physical (Nygaard et al.,

2021a; Xu & Wang, 2021) robotics platforms. However, there is comparatively less research dedicated to

exploring the effects of body-brain adaptation in collective or swarm robotic systems (Buason et al., 2005;

Furman et al., 2019; Hewland & Nitschke, 2015). This scarcity of studies can be attributed to the inherent

challenges in understanding and analyzing the intricate relationships between genotype (representing

body-brain encodings) and phenotype plasticity (representing the adaptability of body-brain couplings)

that give rise to emergent collective behaviors (Moore et al., 1997). Phenotypic plasticity, in this context,

refers to the ability of a single genotype to exhibit multiple morphology-behavior couplings in response

to varying environmental conditions (Kelly et al., 2012; Schlichting & Pigliucci, 1998; West-Eberhard,

1989; Wolf et al., 1999).

While previous research (Bongard, 2011; Kriegman et al., 2018) in ER has highlighted the significance

of morphological adaptation through phenotypic plasticity in enhancing the robustness of adapted

behaviors, there has been limited investigation into the influence of emergent morphological diversity

on evolving swarm-robotic behavior (Hunt, 2021). However, there are a few noteworthy examples in

this area. One such example is the utilization of self-assembly swarm robotics systems, where numerous
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functionally simple robots physically connect to each other (Brambilla et al., 2013; Mathews et al., 2019;

Mondada et al., 2004), as demonstrated in proof-of-concept experiments involving hundreds of Kilobots

(Carrillo-Zapata et al., 2019; Rubenstein et al., 2014; Slavkov et al., 2018). These experiments have

explored concepts such as mergeable nervous systems (Mathews et al., 2017) and group minds (Otte,

2018), wherein swarm-robotic behaviors emerge from the interconnections among self-organizing neural

controllers across a large number of robots. Additionally, there have been studies involving multi-robot

organisms (Levi & Kernbach, 2010) that exhibit morphological adaptation through self-organization

into various problem-solving forms. For instance, these adaptations often involve the evolution of

functional specialization in different interacting body parts (Auerbach & Bongard, 2009). In the context

of smaller swarm sizes, collective robotics research has focused on evolving desired group behaviors

through morphological adaptation that dynamically activates or deactivates sensors, allowing robots to

adapt to complementary sensory configurations (Furman et al., 2019; Hewland & Nitschke, 2015; Watson

& Nitschke, 2015).

Furthermore, while previous research (Auerbach & Bongard, 2014; Miras & Eiben, 2019; Miras et al.,

2020; Spanellis et al., 2021) in ER has examined the influence of the environment on body-brain co-

evolution, there has been limited exploration of how the environment impacts body-brain evolution

specifically in the context of swarm robotics (Furman et al., 2019; Nagar et al., 2019a, 2019b). Studies

focusing on phenotypic plasticity in evolutionary swarm robotics can be broadly categorized into two

groups. The first category involves studies where robot morphologies remain fixed while only the

controllers evolve and second, where both the controllers and morphologies of individual robots are

coupled and co-evolved (Doncieux et al., 2015). When considering fixed morphologies, there are only a

few studies that have demonstrated the potential for diverse environments to give rise to diverse behaviors

(Ferrante et al., 2013; Ferrante et al., 2015).

However, research on evolutionary swarm robotics that incorporates evolvable coupled controllers and

morphologies is scarce and limited in scope (Dias et al., 2021), and lacks comprehensive exploration of the

impact of environmental complexity on phenotypic plasticity. Typically, experiments in this field involve

setting a specific environment and task and evolving robots to perform in that particular combination.

For instance, many swarm robotics studies consider the task environment as an experimental parameter

and evolve behavioral diversity using predetermined morphologies to solve various collective behavior

tasks (Brutschy et al., 2012; Ferrante et al., 2015; Nitschke et al., 2011; Steyven et al., 2017; van

Diggelen & et al., 2022).

Finally, in both biology (Armstrong, 1983; Carroll, 2001; Isler & van Schaik, 2009) and robotic design

(Cheney et al., 2013; Nygaard et al., 2021a; Xu & Wang, 2021), an unanswered question pertains to

the ideal type of body-brain coupling that enables survival and task-solving in diverse environments.

While natural evolution offers some examples, the automation of body-brain design in robotics requires

exploration. Limited research has been conducted on employing behavior-diversity maintenance methods,

specifically QD approaches, to automate the design of body-brain couplings in cooperative tasks within

robotic swarms. Although previous work (Cully & Mouret, 2016; Hart et al., 2018; Lehman & Stanley,

2011b; Zardini et al., 2021) has demonstrated the value of these methods, their effectiveness in cooperative

body-brain design remains unknown. Consequently, this thesis proposes a method that seeks to evolve

QD through the body-brain co-evolution of robot swarms engaged in cooperative tasks.
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Methodology

This thesis employs a bespoke evolutionary embodied collective robotics simulator to evaluate swarm-

robotic controller and morphology evolution. Specifically, our work applies five different methods,

namely mEDEA, an extension to mEDEA (termed mEDEA-M), EDQD, and two extensions to EDQD

(termed EDQD-M, and Double-Map EDQD-M), to evolve behavior, behavior and morphology, behavior

with behavioral diversity maintenance, behavior and morphology with behavioral diversity maintenance,

and behavior and morphology with behavioral-morphological diversity maintenance, respectively, across a

robot swarm given increasingly complex cooperative tasks. Both EDQD and mEDEA have been extended

to allow for body-brain co-evolution. We chose to extend EDQD because it has already been shown to

evolve a behaviorally diverse robot swarm without the need for explicit mechanisms for genotypic isolation

(Montanier et al., 2016) or division of labor (Haasdijk et al., 2014). We chose mEDEA as a benchmark

since it is a widely studied method in embodied evolution (Galassi et al., 2016; Hart et al., 2018; Shan

& Mostaghim, 2021; Silva et al., 2015).

3.1 Robot Controllers

To build on earlier research (Hart et al., 2018), robots explore their environment for the duration (table

4.2) of their lifetimes in accordance with an ANN controller behavior, where the ANN behavior is

adapted by either mEDEA, mEDEA-M, EDQD, EDQD-M, or Double-Map EDQD-M (sections 3.2, 3.3,

3.4, 3.5, and 3.6, respectively). Each robot in the swarm employed the same controller topology, a fully

connected feed-forward ANN with 33 sensory input nodes (proximity, color, target-area detection), a 20

node hidden layer, and two motor output nodes (table 4.2).

For each simulation (robot lifetime) iteration, the two ANN outputs corresponded to the rotational

and translational speeds of each robot. The sensory input nodes corresponded to three forward-facing

proximity sensors, one backward-facing proximity sensor, and a bottom-facing target area detection

sensor (constantly active). In order to detect the closest object in the environment, proximity sensors

were set up so that the closer an object is to the robot, the higher the sensor activation value (normalised

to the range: [0, 1]). However, there were seven object type (color) detection sensors for each forward and

backward-facing proximity sensor that would activate to discriminate between the colors of five resource

types, walls, and other robots (table 4.2). Hence, the robot’s peripheral consisted of four sensor sets
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Table 3.1: An overview of each of the evolutionary methods evaluated in this thesis.

Evolutionary method Behavior map Morphology map Behavior adaptation Morphology adaptation

mEDEA ✗ ✗ ✓ ✗

mEDEA-M ✗ ✗ ✓ ✓

EDQD ✓ ✗ ✓ ✗

EDQD-M ✓ ✗ ✓ ✓

Double-Map EDQD-M ✓ ✓ ✓ ✓

(each with eight sensors) and one downward-facing target-area detection sensor (figure 3.1, left), with

these 33 sensors corresponding to the ANN input layer. As a result, the controller genotype adapted by

mEDEA, mEDEA-M, EDQD, EDQD-M, or Double-Map EDQD-M had 700 connection weights. More

specifically, there were 33 input nodes fully connected to 20 hidden nodes (33x20 connections), which

were then fully connected to two output nodes (20x2 connections).

3.2 mEDEA

In mEDEA, an agent moves around its environment according to its control algorithm for a fixed

period of time (a lifetime). When it moves, it broadcasts its genome to neighboring agents within

its communication range while simultaneously receiving genomes from nearby agents. Once the lifetime

of its currently active genome has ended, the agent randomly selects parents from the list of received

genomes. Following the use of variation operators, the selected genetic material is copied to form progeny.

The offspring then replaces the currently active genome. Later variants incorporate an explicit objective

function to perform a specific task however, the key concepts do not change except now the fitness value

is broadcasted with the genetic material and selection with regard to task performance is active. The

latter variant is employed in this work.

3.3 mEDEA-M

The mEDEA-M extension of mEDEA enables morphological (sensor) and behavioral (controller)

adaptation for each robot. In particular, a random sensor type is chosen to undergo mutation at the end

of each generation. The mutation operator limits the range of a sensor chosen at random until it exceeds

a specified sensor-morpho threshold (table 4.2). When the range drops below this threshold, the supplied

sensor goes into inactive mode, which is indicated by an input of zero to the appropriate ANN sensory

input node. Similar to this, if the sensor range exceeds the sensor-morpho threshold due to the mutation

operator, an inactive sensor will reactivate, restoring the prior non-zero connection weight value for the

specified ANN sensory input node. The target-area detection sensor (section 3.1) that faces the ground

is not affected by morphological adaptation since robots still need to be able to find the target area and

finish their work. The robot swarm is morphologically homogeneous, which means that the same sensor

adaptations (sensors turned on and off) are simultaneously applied to all of the robots in the swarm.

Other than that, mEDEA-M controller adaptation is the same as mEDEA (section 3.2).
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Figure 3.1: Left: Simulated robotic agent : Each robot’s peripheral consisted of four sensor sets (three
forward facing and one backward facing, all blue in color), each with eight sensors and one downward-
facing target-area detection sensor (below the core-component/the red-cube, but not visible in this aerial
picture). Right: EDQD: Each generation, a random genotype (controller encoding) is selected from the
SelectMap − which is created by merging the ReceivedMapList with the robot’s LocalMap.

3.4 EDQD

The EDQD method hybridizes the MAP-Elites and mEDEA methods. Differing from mEDEA, as

robots explore their environment they periodically broadcast (table 4.2), their behavioral map (list of

genotypes), instead of genomes, which is received and stored by all robots within broadcast range. Such

robot behavioral maps are termed LocalMaps, and contain a map of the genotypes (genome, figure 3.1,

right) corresponding to specific robot behaviors (phenome, figure 3.1, right) previously evaluated for each

robot. At the end of each robot’s current lifetime (table 4.2), a genotype is randomly selected from the

SelectMap (which is formed by merging the received maps with the robot’s own LocalMap, figure 3.1,

right), and a mutation operator (table 4.2) is applied to produce a new genotype which replaces the

currently active genotype (robot behavior).

Applying EDQD to our swarm, robots store a 2D behavior map (LocalMap, figure 3.1, right) defined

by two behavioral dimensions of the collective gathering task (section 4). Specifically, resource type

collected (table 4.2), and maximum Euclidean distance traversed (explored) in the environment, by each

robot (during its lifetime). The EDQD method and its extensions: EDQD-M and Double-Map EDQD-M,

thus purposefully leveraged these behavioral dimensions to promote the evolution of behavioral diversity

in terms of resource types collected and environment exploration.
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Figure 3.2: Double-Map EDQD-M: Robots maintain two LocalMaps. LocalMap-1 is associated with
behavior feature descriptors, LocalMap-2 is associated with morphology feature descriptors.

3.5 EDQD-M

EDQD-M extends EDQD by allowing morphological (sensor) and behavioral (controller) adaptability

for each robot. As with mEDEA-M, a random sensor type is chosen at the end of each generation

to undergo mutation. The mutation operator narrows the range of a randomly chosen sensor until it

reaches a pre-specified sensor-morpho threshold (table 4.2). Once the range falls below this threshold,

the given sensor becomes inactive, which is indicated by a zero input to the related ANN sensory input

node. Similarly, if the mutation operator increases the sensor range above the sensor-morpho threshold,

an inactive sensor will reactivate, restoring the prior non-zero connection weight value for the associated

ANN sensory input node. The robot swarm is morphologically homogeneous, which means that the same

sensor adaptations (sensors turned on and off) are applied to all robots in the swarm at the same time.

Otherwise, the EDQD-M controller adaption procedure using the LocalMap is the same as the EDQD

method (section 3.4).

3.6 Double-Map EDQD-M

Double-Map EDQD-M is an extension of EDQD that allows for the co-adaptation of a robot’s morphology

and behavior. Double-Map EDQD-M employs two LocalMaps, the first of which is associated with

controller (behavior) feature descriptors and the second with sensor (morphology) feature descriptors.

This second map has two (morphological) dimensions: the ratio of active sensor types and the average

range of active sensors. As in EDQD and EDQD-M, a random genotype is independently selected from

each SelectMap to undergo mutation at the end of each generation of the evolutionary process. The chosen

genotypes from each SelectMap replace the robot’s current active behavior (controller) and morphology

(sensory configuration), respectively (figure 3.2). The selected morphology, however, determines the

corresponding controller, ensuring that robot behavior and morphology are appropriately matched. As

a result, a chosen morphology with x active and y inactive sensors automatically reconfigures the chosen

ANN controller so that x sensory input nodes are active and y are inactive.
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As in EDQD-M (section 3.5), ANN connection weights remain active, and robot sensory configuration

(morphology) is adapted by switching specific sensors on and off, with zero values being input to

ANN inputs corresponding to switched off sensors. As a result, Double-Map EDQD-M adapts both

of each robot’s LocalMaps to promote morphological and behavioral diversity. In contrast to EDQD and

EDQD-M, two maps are concurrently maintained and adapted in this case, where both robot behavior

and morphology are subject to diversity maintenance. EDQD and EDQD-M, on the other hand, only

accounted for behavioral diversity maintenance, with sensor adaptation in EDQD-M not accounting for

morphological diversity maintenance.

3.7 Summary

In this Chapter we described each of the evolutionary methods evaluated in order to answer the research

questions of this work. Specifically, we described the implementation of mEDEA, mEDEA-M (an

extension of mEDEA), EDQD, and two variants of EDQD, namely, EDQD-M and Double-Map EDQD-

M.
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Chapter 4

Experiments

All experiments were carried out using a collective gathering task (section 4.1) simulation implemented

on RoboGen (section 4.5). Experiments (table 4.3) assess the capability of mEDEA, mEDEA-M, EDQD,

EDQD-M, and Double-Map EDQD-M (sections 3.2, 3.3, 3.4, 3.5, and 3.6, respectively) to evolve efficient

(section 4.3.1) and diverse (section 4.3.1) collective behavior for solving progressively challenging (section

4.2) collective gathering tasks.

4.1 Collective Behavior Task

The collective gathering task used to evaluate mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map

EDQD-M involved running the swarm for one lifetime (10000 simulation iterations) and 100 generations,

with each generation representing a lifetime (table 4.2). At the start of each run, robots and resources

were re-initialized in new random positions and orientations. To complete the collective gathering task,

robots had to search the environment for resources, find them, and then cooperatively move them to the

target-area.

Table 4.1: Parameters for robot ANN controllers adapted by MAP-Elites component of EDQD, EDQD-
M, Double-Map EDQD-M swarm behavior-morphology adaptation methods.

Sensory input nodes 33
Hidden layer nodes 20
Motor output nodes 2
Node activation function Sigmoidal
Sensory input-motor output weight range [0.0, 1.0]
Neuron weight range [-400, +400]

Mutation operator Gaussian (tuned σ)
Sigma range [0.001, 0.5]
Update sigma step 0.35
Mutation probability 0.34
Sensor-morpho threshold 0 (≤0: Sensor inactive; >0: Sensor active)

Map archive size 100
Number of dimensions per map 2
Number of intervals per map-dimension 10
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Table 4.2: Experiment parameters for mEDEA, mEDEA-M, EDQD, EDQD-M and Double-Map EDQD-
M methods (applied to adapt swarm behavior-morphology) and collective gathering task (evaluating
swarm adaptation methods) parameters.

A 0.08 x 0.08 x 0.08
B 0.50 x 0.50 x 0.08

Resource-types (size: x, y, z: meters) C 0.8 x 0.8 x 0.08
D 1.0 x 1.0 x 0.08
E 1.2 x 1.2 x 0.08

Infrared proximity [0.0, 1.0]
Sensor types: Range Color [0.0, 1.0]

Target-area detector Bottom facing

1: Simple 30, 5, 5, 5, 5
Task environments (Resource types: A, B, C, D, E) 2: Medium 10, 10, 10, 10, 10

3: Difficult 5, 5, 5, 5, 30

A 1 robot
B 2 robots

Cooperation needed to move resource type C 3 robots
D 4 robots
E 5 robots

Run length (per experiment) 100 generations
Robot lifetime (simulation iterations) 10 000
Swarm size 100 robots
Wait for assistance (cooperation) time Remaining lifetime
Initial robot & block position (outside target-area) Random
Environment size | Target-area size (meters) 20 x 20 | 20 x 2
Robot LocalMap broadcast range Environment size
Robot LocalMap broadcast frequency 1 (per lifetime)

4.2 Task Complexity

The degree of task difficulty is determined by the level of team cooperation required to cooperatively

collect all resources in the environment (table 4.2). Each resource type (A, B, C, D, E) differed in

geometric size and so required varied degrees of cooperation for robots to transport to the target-area

(table 4.2). A simple environment, for example, implies a high proportion of type-A resources (which can

be collected without the need for cooperation) whereas a difficult environment implies a high proportion

of type-E resources (which require five cooperating robots to be transported) thus necessitating more

team cooperation. The rationale for varying task difficulty is to address the primary research question,

as well as for completeness when answering the secondary research questions ( research question 2.1, 2.2,

and 2.3).

4.3 Experiments Setup

Five different sets of experiments were conducted in order to answer the questions of this thesis (table

4.3). All experiments were designed to address the primary question of this work, to investigate whether

environmental conditions (that is, varying degrees of task complexity) influence the efficiency (that is,

task performance) and diversity (that is, behavioral and morphological diversity) of body-brain evolved

cooperative robot teams across increasingly challenging collective gathering tasks. Experiments number

3, 4, and 5 (table 4.3) seek to further address the secondary questions of this work.
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Table 4.3: An overview of each of the experiments conducted in this thesis, and the specific objective
each experiment is trying to satisfy.

Experiment
number

Evolutionary
method

Task difficulty Research objective

1 mEDEA Simple, Medium,
Difficult

Investigates whether environmental conditions
(that is, varying degrees of task complexity)
influence task performance and behavioral
diversity of body-brain evolved cooperative
robot teams.

2 mEDEA-M Simple, Medium,
Difficult

Investigates whether environmental conditions
(that is, varying degrees of task complexity)
influence task performance and body-brain
diversity of body-brain evolved cooperative
robot teams.

3 EDQD Simple, Medium,
Difficult

Investigates the impact of behavioral diversity
maintenance on evolving swarm behavior
(research question 2.1.).

4 EDQD-M Simple, Medium,
Difficult

Investigates the impact of behavioral diversity
maintenance on co-evolving behavior and
morphology (research question 2.2.).

5 Double-Map
EDQD-M

Simple, Medium,
Difficult

Investigates the impact of behavioral-
morphological diversity maintenance on co-
evolving behavior and morphology (research
question 2.3.).

4.3.1 Collective Behavior Evaluation

For each experiment, a 3D environment (simple, medium and difficult task environments, table 4.2) was

initialized with a swarm of 100 robots and 50 resources in random positions and orientations. Robots

and resources were set up outside of a target-area (where the collected resources were delivered to).

For mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M the percentage of resources

that were pushed into the target-area throughout the course of all swarm lives (that is, per run: 100

generations) was used to compute the average (over 20 runs) swarm (team) task performance. After

that, the average swarm task performance was normalized to: [0.0, 1.0].

4.3.2 Behavior Quality Evaluation

Behavior quality (fitness) for each evaluated controller (the value that determines whether a found

solution is high performing enough to be stored in each grid cell) was calculated according to equation

4.1.

fitness =
resourceV alue

numberOfPushingRobots
∗ distanceResourceMoved

totalDistancePossible
(4.1)

Where the resourceV alue is equal to the minimum number of robots required to push a

resource, numberOfPushingRobots is the number of robots attached (pushing) to a resource,

distanceResourceMoved is the straight-line distance that the resource is moved towards the gathering
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zone, and totalDistancePossible is the straight-line distance from one end of the environment to the

center of the gathering zone.

4.3.3 Diversity Evaluation

Also, at the conclusion of each run (100 generations), we determine the behavioral diversity for EDQD,

EDQD-M, and Double-Map EDQD-M (specifically, the behavior map is used for this analysis) as the

quantity of unique behaviors (occupied cells in the swarm’s LocalMap). mEDEA and mEDEA-M do not

require the maintenance of a behavior map however, for ease of analysis one is created, and updated (in

the same fashion as the QD methods) at the end of each generation. Note that this map does not form

part of the evolutionary process, it is maintained solely for analysis purposes only.

In line with prior research (Pugh et al., 2015), we additionally determine the average QD score for

behaviors discovered by mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M over the

course of 20 runs.

4.3.4 mEDEA: Robotic Swarm Behavior Evolution

The objective of this experiment (experiment number 1, table 4.3) is to investigate whether environmental

conditions (that is, varying degrees of task complexity) influence task performance and behavioral

diversity of body-brain evolved cooperative robot teams. The mEDEA algorithm (section 3.2) is chosen

to establish a benchmark because of its popularity.

4.3.5 mEDEA-M: Robotic Swarm Behavior-Morphology Co-evolution

This experiment (experiment number 2, table 4.3) uses the mEDEA-M algorithm (section 3.3) to evolve

both collective behavior and morphology in robotic swarms. The objective is to investigate whether

environmental conditions (that is, varying degrees of task complexity) influence the efficiency (that is,

task performance) and diversity (that is, behavioral and morphological diversity) of body-brain evolved

cooperative robot teams across increasingly challenging collective gathering tasks.

Given that mEDEA-M does not maintain a morphology map, one is created at the conclusion of each

generation in order to compare mEDEA-M to the EDQD-M and Double-Map EDQD-M methods in

terms of quality of evolved morphologies. This morphology map is not used during the evolutionary

process.
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4.3.6 EDQD: Robotic Swarm Behavior Bvolution with Behavioral Diversity

Maintenance

This experiment (experiment number 3, table 4.3) uses the EDQD algorithm to evolve collective behavior

with behavioral diversity maintenance. The objective is to investigate the impact of collective behavior

evolution with behavioral diversity maintenance across cooperative robot teams given an increasingly

challenging collective behavior task. Evolution takes place in three environments of increasing task

difficulty for a collective gathering task.

4.3.7 EDQD-M: Robotic Swarm Behavior-Morphology Co-evolution with

Behavioral Diversity Maintenance

This experiment (experiment number 4, table 4.3) utilizes the EDQD-M algorithm (section 3.5) to

evolve both robot behavior (controller task performance) and morphology with behavioral diversity

maintenance. The objective is to elucidate the impact of behavior-morphology evolution with behavioral

diversity maintenance in cooperative robot swarms given progressively challenging collective gathering

tasks.

Given that EDQD-M does not maintain a morphology-related LocalMap, one is created and updated at

the end of each generation in order to compare EDQD-M to the mEDEA-M and Double-Map EDQD-

M methods in terms of quality of evolved morphologies. As in mEDEA-M, this morphology map is

maintained solely for analysis purposes.

4.3.8 Double-Map EDQD-M: Robotic Swarm Behavior-Morphology

Evolution with Behavior-Morphology Diversity Maintenance

This experiment (experiment number 5, table 4.3) employs the novel Double-Map EDQD-M algorithm

(section 3.6) to adapt robotic swarm behavior (controller task performance) and morphology (sensory

configuration) with behavior-morphology diversity maintenance. The objective is to investigate the

impact of behavioral-morphological diversity maintenance in co-evolving behavior and morphology in

cooperative robot teams given increasingly challenging collective gathering tasks.

At the conclusion of each run (100 generations), we determine a swarm’s average morphological diversity

(across 20 runs) as the number of distinctive morphologies evolved (occupied cells in the swarm’s second

LocalMap).
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4.4 Parameter Tuning

Parameter tuning experiments were used to derive the values in the parameter values table (table 4.2).

Five different task environments were evaluated, each with a different complexity level. The different

task environments were coined super-simple, simple, medium, difficult, and super-difficult. The resource

type distribution of the simple, medium, and difficult environments is given in table 4.2. Otherwise, in

the super-simple environment, 80% of the resources were type A resources, with an equal distribution

of type B, C, D, and E resources. In the super-difficult environment, 80% of the resources were type

E resources, with an equal distribution of type A, B, C, and D resources. The number of simulation

evaluations (generations) was determined through trial and error over the range [100, 200]. The number

of iterations per genome lifetime was also determined experimentally over the range [8000, 12000]. Lastly,

three swarm sizes were evaluated; 100, 150, and 200 robots.

4.5 Simulator

All experiment simulations were conducted on an open source framework known as RoboGen (Auerbach

et al., 2018). RoboGen was created with the goal of evolving robots that can be easily produced using

3D printing and a modest collection of low-cost, off-the-shelf electronic components. It has a physics

simulation engine as well as an evolution engine (figure 4.1). It also includes utilities for creating 3D-

printable design files for body components and compiling neural-network controllers to run on an Arduino

microcontroller board. Earlier work (Jelisavcic et al., 2017) has proved the functionality of this modular

robot system in real hardware. This was the main motivation for implementing our experiments on this

framework. However, the original plartform can only simulate one robot at any given instance. As a

result, we had to extend the simulation engine component of RoboGen to allow for the simulation of a

robot swarm. This involved a number of design considerations such as, performance, accuracy, and how

to handle communication between robotic agents. The extended version1 is written in c++.

All simulation experiments were implemented on a homogeneous cluster, comprising Intel 5th generation

CPUs. The cluster has 1368 compute nodes with 24 cores and 128 GiB memory. Local testing was

conducted on a Linux Ubuntu 22.04.2 LTS computer with an 11th Gen Intel Core i7-1165G7 (@ 2.80GHz

× 8) processor, Intel iRISxe graphics and 32 GB memory (RAM).

4.5.1 Robotic Agents

Each robotic agent used in the experiments of this thesis consisted of a core component, four fixed bricks,

five infrared sensors, two active wheels, and two passive wheels. The core component (figure 4.2a) is a

cube that houses the inertial measurement unit (IMU) as well as the microcontroller. The side length

of the cube is 4.65 cm. The fixed brick is the same as the core component, except it does not contain

the latter’s electronics. The infrared sensor (figure 4.2b) is a range sensor that measures distance in

a 10-millimeter-wide beam perpendicular to the sensor across a 10-millimeter to 1-meter range. The

1The simulator used in this study is available online: https://github.com/einstein07/AUTOFAC
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Figure 4.1: Overview of RoboGen framework (Auerbach et al., 2018).

(a) Core component. (b) Infrared sensor.

(c) Active wheel. (d) Passive wheel.

Figure 4.2: Robotic agent components.

(a) Robotic agent front view. (b) Robotic agent back view.

Figure 4.3: Front and back views of a complete robotic agent.

active wheel (figure 4.2c) differs from the passive wheel (figure 4.2d) in that it contains a rotation motor,

otherwise the two wheel types are of the same diameter, that is, 0.04 meters. Figures 4.3a and 4.3b show
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Figure 4.4: Task environment with robotic agents cooperating to move resources.

front and back views of a robotic agent in its task environment. An example of how the task environment

looks like is also shown in figure 4.4.

4.6 Summary

In this Chapter, we described each of the experiments carried out as part of this thesis. More specifically,

we defined each experiment by the evolutionary method type (chapter 3), task complexity (table 4.2),

and research objective that the experiment is attempting to meet (research questions). We went on to

discuss how all experiments are set up and carried out, including initial robot and object positions, robot

lifespan, the number of generations, how task performance, diversity, and quality diversity are measured,

and how averages are determined.
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Results

In this chapter, we present the results of the experiments (table 4.3) conducted in order to evaluate the

research questions of this thesis. We specifically present the results of evaluating mEDEA, mEDEA-M,

EDQD, EDQD-M, and Double-Map EDQD-M (experiments 1, 2, 3, 4, and 5, respectively) in terms of

quality diversity of behaviors evolved (section 5.1), task performance (section 5.3), and quality diversity

score (section 5.4). We further present the results of evaluating mEDEA-M, EDQD-M, and Double-Map

EDQD-M in terms of diversity of evolved morphologies, and the relative quality of those morphologies

(section 5.2).

5.1 Quality Diversity (QD) of Evolved Behaviors

The behavior map-archive is defined by two dimensions, namely, the resource type collected and

maximum Euclidean distance traversed (explored) in the environment by each robot during its lifetime.

This means that in order for diverse behaviors to be evolved (and hence fill up the map-archive), each

approach needs to encourage the collection of diverse resource types as well as a varied exploration of

the task environment.

The remainder of this section is divided into the following sections; Average Behavioral Diversity (section

5.1.1), Average Distance Explored (section 5.1.2), Average Resources Per-type Collected (section 5.1.3),

and Behavior Map-archive of Best Performing Swarms (section 5.1.4). Section 5.1.1 presents comparative

method average behavioral diversity. Sections 5.1.2 and 5.1.3 present comparative method results in each

dimension of the map-archive in order to gain a deeper understanding of how behavioral diversity evolved.

Finally, section 5.1.4 compares method behavior map-archives of the best performing swarms.
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5.1.1 Average Behavioral Diversity

Figure 5.1 presents the average (over 20 runs) number of distinct behaviors evolved by each approach in

each environment. This was determined by counting the number of LocalMap cells that were occupied

at the end of each run (for mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M).

Table 5.1: Statistical comparisons of unique behaviors in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.533600 0.007991 0.007725 0.006012

mEDEA-M 0.095910 0.013550 0.045020

EDQD 0.197000 0.613100

EDQD-M 0.454900

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.841400 0.972000 0.005123 0.004662

mEDEA-M 0.834400 0.040910 0.007893

EDQD 0.018000 0.006758

EDQD-M 0.9544

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.189200 0.185500 0.012660 0.0001872

mEDEA-M 0.7756 0.058670 0.002204

EDQD 0.323800 0.009830

EDQD-M 0.022410

5.1.1.1 Behavioral diversity comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.1) indicate that EDQD,

EDQD-M, and Double-Map EDQD-M outperform mEDEA (p<0.05), while there is no statistical

significance (p≥0.05) between the QD approaches. EDQD-M and Double-Map EDQD-M also outperform

mEDEA-M (p<0.05), with no statistical significance between mEDEA-M and EDQD (p≥0.05).

5.1.1.2 Behavioral diversity comparison in the medium environment

EDQD-M and Double-Map EDQD-M outperform mEDEA, mEDEA-M, and EDQD (p<0.05, table 5.1),

with no statistical significance between EDQD-M and Double-Map EDQD-M (p≥0.05). There is no

statistical significance between mEDEA, mEDEA-M and EDQD (p≥0.05).
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Figure 5.1: Average behavioral diversity of swarms evolved by each approach in each environment

5.1.1.3 Behavioral diversity comparison in the difficult environment

Double-Map EDQD-M outperforms the other methods in the difficult environment (p<0.05, table 5.1).

EDQD-M outperforms mEDEA (p<0.05), with no statistical significance between mEDEA-M, EDQD

and EDQD-M (p≥0.05). Lastly, there is no statistical significance between mEDEA, mEDEA-M and

EDQD (p≥0.05).

5.1.1.4 Behavioral diversity comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.2) indicate that all methods

evolve significantly more behavioral diversity in the simple and medium environments than the difficult

environment (p<0.05). For mEDEA, mEDEA-M, and Double-Map EDQD-M, the behavioral diversity

that emerges in the simple environment is comparable to that that emerges in the medium environment

(p≥0.05). However, EDQD and EDQD-M evolve significantly more behavioral diversity in the simple

environment than the medium environment (p<0.05).

Table 5.2: Statistical comparisons of unique behaviors in each approach across the three environments.

mEDEA

Medium Difficult

Simple 0.053000 9.159e− 05

Medium 0.000660

mEDEA-M

Medium Difficult

Simple 0.080110 0.000159

Medium 0.000426

EDQD

Medium Difficult

Simple 0.001880 0.000116

Medium 0.000365

EDQD-M

Medium Difficult

Simple 0.045080 0.000109

Medium 0.000301

Double-Map EDQD-M

Medium Difficult

Simple 0.119800 0.001290

Medium 0.002659
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Figure 5.2: Average distance explored by swarms evolved by each approach in each environment

5.1.2 Average Distance Explored

Figure 5.2 presents the average (over 20 runs) distance explored by swarms evolved by each approach

in each environment. Explored swarm distance was calculated as the sum of the distance explored by

each individual of the swarm for each run (for mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map

EDQD-M).

Table 5.3: Statistical comparisons of distance explored in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.869500 2.67e− 05 1.907e− 06 9.537e− 06

mEDEA-M 0.001690 1.907e− 05 2.67e− 05

EDQD 0.02958 0.002712

EDQD-M 0.840800

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.048440 0.039990 9.537e− 06 5.722e− 06

mEDEA-M 0.8983 0.001986 0.001017

EDQD 9.537e− 06 5.722e− 06

EDQD-M 0.8124

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.000261 0.058260 1.907e− 06 1.907e− 06

mEDEA-M 0.017180 0.089690 0.010690

EDQD 0.000261 0.0001335

EDQD-M 0.728500
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5.1.2.1 Distance explored comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.3) indicate that the QD

approaches outperform mEDEA and mEDEA-M (p<0.05, table 5.3), while there is no statistical

significance between mEDEA and mEDEA-M (p≥0.05). EDQD and Double-Map EDQD-M outperform

EDQD (p<0.05), while there is no statistical significance between EDQD-M and Double-Map EDQD-M

(p≥0.05).

5.1.2.2 Distance explored comparison in the medium environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.3) indicate that all the other

methods outperform mEDEA (p<0.05). EDQD-M and Double-Map EDQD-M outperform mEDEA-M

and EDQD, while there is no statistical significance between mEDEA-M and EDQD (p≥0.05). There is

no statistical significance between EDQD-M and Double-Map EDQD-M (p≥0.05).

5.1.2.3 Distance explored comparison in the difficult environment

Double-Map EDQD-M outperforms mEDEA, mEDEA-M, and EDQD (p<0.05, table 5.3), while

there is no statistical significance between Double-Map EDQD-M and EDQD-M (p≥0.05). EDQD-M

outperforms mEDEA and EDQD (p<0.05), while there is no statistical significance between mEDEA-

M and EDQD-M (p≥0.05). mEDEA-M outperforms EDQD and mEDEA, while there is no statistical

significance between EDQD and mEDEA (p≥0.05).

5.1.2.4 Distance explored comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.4) indicate that the QD

evolved swarms explore significantly greater (p<0.05) portions of the simple environment, followed

by the medium, and then the difficult environment. mEDEA and mEDEA-M evolved swarms

explore significantly greater portions of the simple and medium environments compared to the difficult

environment. There is, however, no significant difference between the distance explored in the simple

and medium environments (p≥0.05).
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Table 5.4: Statistical comparisons of distance explored in each approach across the three environments.

mEDEA

Medium Difficult

Simple 0.123100 5.722e− 06

Medium 0.001209

mEDEA-M

Medium Difficult

Simple 0.621500 0.005581

Medium 0.009436

EDQD

Medium Difficult

Simple 3.815e− 06 1.907e− 06

Medium 9.537e− 06

EDQD-M

Medium Difficult

Simple 0.048440 9.537e− 06

Medium 0.001690

Double-Map EDQD-M

Medium Difficult

Simple 0.001017 5.722e− 06

Medium 1.907e− 06
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(a) Simple task environment.

(b) Medium task environment.

(c) Difficult task environment.

Figure 5.3: Resources collected by swarms evolved by each approach in each task environment.

5.1.3 Average Resources Collected

To further elucidate how behavioral diversity evolved in the swarms, figure 5.3 shows the various resources

collected by swarms evolved by each approach in each task environment. The average number of resources

collected for each resource type was calculated as the sum of resources (for each resource-type) pushed
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into the target-area at the end of each run over 20 runs.

5.1.3.1 Type A resources

Double-Map EDQD-M outperforms all the other methods in the simple environment (p<0.05, table 5.5),

while there is no statistical significance between mEDEA-M, EDQD, and EDQD-M (p≥0.05). mEDEA-

M, EDQD, and EDQD-M outperform mEDEA (p<0.05).

In the medium environment, Double-Map EDQD-M outperforms mEDEA, mEDEA-M, and EDQD

(p<0.05, table 5.5), while there is no statistical significance between Double-Map EDQD-M and EDQD-M

(p≥0.05). EDQD-M outperforms mEDEA and EDQD, while there is no statistical significance between

EDQD-M and mEDEA-M (p≥0.05). There is no statistical significance between mEDEA, mEDEA-M,

and EDQD (p≥0.05).

In the difficult environment, Double-Map EDQD-M outperforms mEDEA, EDQD, and EDQD-M

(p<0.05, table 5.5), while there is no statistical significance between Double-Map EDQD-M and mEDEA-

M (p≥0.05). Otherwise there is no statistical significance between the other methods (p≥0.05).

Table 5.5: Statistical comparisons of type-A resources collected in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.032410 0.009330 0.016470 0.000136

mEDEA-M 0.423800 0.540500 0.000525

EDQD 0.871500 0.000877

EDQD-M 0.000662

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.139100 0.469400 0.002100 0.001928

mEDEA-M 0.515000 0.154700 0.023180

EDQD 0.003906 0.002561

EDQD-M 0.701500

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.307200 0.490500 0.459600 0.006808

mEDEA-M 0.397700 0.661100 0.142800

EDQD 0.667500 0.008309

EDQD-M 0.031660

5.1.3.2 Type B resources

In the simple environment, EDQD and EDQD-M outperform mEDEA (p<0.05, table 5.6), while there

is no statistical significance between mEDEA, mEDEA-M, and Double-Map EDQD-M (p≥0.05). EDQD
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outperforms mEDEA-M (p<0.05), while there is no statistical significance between mEDEA-M, EDQD-

M, and Double-Map EDQD-M (p≥0.05). There is no statistical significance between the QD approaches

(p≥0.05).

In the medium environment, EDQD-M outperforms mEDEA, mEDEA-M, and EDQD (p<0.05, table

5.6), while there is no statistical significance between EDQD-M and Double-Map EDQD-M. The QD

approaches outperform mEDEA, while there is no statistical significance between mEDEA and mEDEA-

M (p≥0.05). There is no statistical significance between all the methods in the difficult environment

(p≥0.05).

Table 5.6: Statistical comparisons of type-B resources collected in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.500600 0.011280 0.026490 0.212200

mEDEA-M 0.023290 0.095950 0.575700

EDQD 0.646300 0.103300

EDQD-M 0.221800

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.611300 0.000944 0.001388 0.006443

mEDEA-M 0.084490 0.014950 0.087060

EDQD 0.049220 0.454300

EDQD-M 0.294700

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.177500 0.853200 0.144300 0.259400

mEDEA-M 0.365700 0.874800 0.772300

EDQD 0.296900 0.561700

EDQD-M 0.743000

5.1.3.3 Type C resources

In the simple environment, EDQD outperforms mEDEA-M (p<0.05, table 5.7), while there is no

statistical significance between mEDEA, EDQD, EDQD-M, and Double-Map EDQD-M (p≥0.05). There

is no statistical significance between all the methods in the medium and difficult environments (p≥0.05).
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Table 5.7: Statistical comparisons of type-C resources collected in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.292700 0.244300 0.504800 0.968400

mEDEA-M 0.042490 0.237000 0.521800

EDQD 0.949300 0.321300

EDQD-M 0.416600

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.854500 0.631100 0.081380 0.979200

mEDEA-M 1 0.174600 0.848800

EDQD 0.194900 0.734800

EDQD-M 0.142600

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.543900 0.555800 0.156800 0.759600

mEDEA-M 0.818200 0.585300 0.407000

EDQD 0.296900 0.464400

EDQD-M 0.081060

5.1.3.4 Type D resources

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.8) indicate that there is no

statistical significance between all the approaches in the simple and difficult environments (p≥0.05).

In the medium environment, EDQD outperforms Double-Map EDQD-M (p<0.05, table 5.8), while there

is no statistical significance between mEDEA, mEDEA-M, EDQD, and EDQD-M (p≥0.05)
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Table 5.8: Statistical comparisons of type-D resources collected in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.726700 0.238600 0.750200 0.366900

mEDEA-M 0.394900 0.815700 0.478000

EDQD 0.610200 0.073590

EDQD-M 0.165100

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.772200 0.183600 0.346700 0.322100

mEDEA-M 0.407500 0.688800 0.389100

EDQD 0.612900 0.032770

EDQD-M 0.056990

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 1 0.587700 0.831900 0.789700

mEDEA-M 0.565300 0.793100 0.835300

EDQD 0.675600 0.482100

EDQD-M 0.887000

5.1.3.5 Type E resources

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.9) indicate that in the simple

environment EDQD outperforms mEDEA (p<0.05), while there is no statistical significance between

mEDEA, mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05). EDQD-M outperforms mEDEA-

M (p<0.05), while there is no statistical significance between mEDEA-M, EDQD, and Double-Map

EDQD-M (p≥0.05). There is no statistical significance between the QD approaches (p≥0.05).

There is no statistical significance between all the methods in the medium environment (p≥0.05).

In the difficult environment, Double-Map EDQD-M and EDQD outperform mEDEA-M (p<0.05, table

5.9), while there is no statistical significance between mEDEA, mEDEA-M, and EDQD-M. There is no

statistical significance between the QD approaches (p≥0.05).
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Table 5.9: Statistical comparisons of type-E resources collected in each environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.850100 0.033010 0.058150 0.851400

mEDEA-M 0.055620 0.020960 0.667500

EDQD 0.915500 0.077070

EDQD-M 0.089960

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.873700 0.440200 0.071530 0.930300

mEDEA-M 0.592600 0.275100 0.923300

EDQD 0.475500 0.746000

EDQD-M 0.159000

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.161400 0.218400 0.526100 0.401100

mEDEA-M 0.018120 0.161500 0.032030

EDQD 0.462100 1

EDQD-M 0.714300
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Figure 5.4: Map-archive of robot behaviors discovered by the best-performing swarm of each approach
in the simple environment over a single run (at the final generation), colored based on fitness.

5.1.4 Behavior Map-archives of Best-Performing Swarms

At the end of each run (table 4.2), QD behavioral maps (figures 5.4, 5.5, 5.6) evolved by the highest

performing swarm provided an indication of swarm behavior and the quality of such behaviors for

gathering each resource type in each task environment. The Euclidean distance traversed and resource

type gathered (transported) to the target-area were used to measure swarm behavior (and thus diversity).

There is a task performance value that corresponds to the solution discovered in each map cell (section

4.3.2, equation 4.1). Hence, such QD maps show how efficient evolved gathering behaviors are for various

task difficulties (simple, medium, difficult).
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Figure 5.5: Map-archive of robot behaviors discovered by the best-performing swarm of each approach
in the medium environment over a single run (at the final generation), colored based on fitness.

Figure 5.6: Map-archive of robot behaviors discovered by the best-performing swarm of each approach
in the difficult environment over a single run (at the final generation), colored based on fitness.
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Figure 5.7: Average morphological diversity of swarms evolved by the mEDEA-M, EDQD-M, and Double-
Map EDQD-M approaches in each environment

5.2 Quality Diversity (QD) of Evolved Morphologies

The morphological map-archive is defined by two dimensions, namely, the proportion of active sensors

and the average range of active sensors. This means that in order for unique morphologies to emerge

(and therefore fill up the map-archive), each approach must use the whole spectrum of the sensor range

(range: [0;1]) as well as a variable number of sensors (that is, switch on and off some of its sensors).

The remainder of this section is divided as follows: Average Morphological Diversity (section 5.2.1),

Average Range of Active Sensors (section 5.2.2), Average Proportion of Active Sensors (section 5.2.3), and

Morphology Map-archive of Best Performing Swarms (section 5.2.5). Section 5.2.1 presents comparative

method average morphological diversity. Sections 5.2.2 and 5.2.3 consider the results of each method

in each dimension of the map-archive in order to gain a deeper understanding of how morphological

diversity evolved. Lastly, section 5.2.5 compares method behavior map-archives of the best performing

swarms.

Table 5.10: Statistical comparisons of unique morphologies in each environment.

Simple environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.17 9.33e− 05

EDQD-M 9.356e− 05

Medium environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.628800 9.316e− 05

EDQD-M 9.251e− 05

Difficult environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.903500 9.33e− 05

EDQD-M 9.343e− 05
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5.2.1 Average Morphological Diversity

Figure 5.7 presents the average (over 20 runs) number of unique morphologies evolved by each approach

in each environment. This was determined by counting the number of LocalMap cells that were occupied

at the end of each run (for mEDEA-M, EDQD-M, and Double-Map EDQD-M).

5.2.1.1 Morphological diversity comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.10) indicate that the average

morphological diversity of Double-Map EDQD-M evolved swarms was significantly higher than mEDEA-

M and EDQD-M evolved swarms (p<0.05), while there is no statistical significance between mEDEA-M

and EDQD-M (p≥0.05).

5.2.1.2 Morphological diversity comparison in the medium environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.10) indicate that Double-

Map EDQD-M outperforms mEDEA-M and EDQD-M (p<0.05), while there is no statistical significance

between mEDEA-M and EDQD-M (p≥0.05).

5.2.1.3 Morphological diversity comparison in the difficult environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.10) indicate that Double-

Map EDQD-M outperforms mEDEA-M and EDQD-M (p<0.05), while there is no statistical significance

between mEDEA-M and EDQD-M (p≥0.05).

5.2.1.4 Morphological diversity comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.11) indicate that there is no

significant difference in the diversity that evolves in the three environments for mEDEA-M and EDQD-

M (p≥0.05). However, Double-Map EDQD-M evolves significantly (p<0.05) more diverse morphologies

in the medium environment, followed by the simple environment, and then the difficult environment

(p<0.05).
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Figure 5.8: Average range of active sensors (mean of the population) at the end of each treatment

Table 5.11: Statistical comparisons of average morphological diversity in each approach across the three
environments.

mEDEA-M

Medium Difficult

Simple 0.067220 0.192600

Medium 0.497400

EDQD-M

Medium Difficult

Simple 0.331200 0.795200

Medium 0.175900

Double-Map EDQD-M

Medium Difficult

Simple 0.00276 0.006328

Medium 0.000109

5.2.2 Average Range of Active Sensors

Figure 5.8 presents the average (over 20 runs) range of active sensors evolved by each approach in each

environment. The average range of active sensors was calculated at the end of each run (final generation)

over 20 runs (for mEDEA-M, EDQD-M, and Double-Map EDQD-M).

Figure 5.9 shows mEDEA-M, EDQD-M, and Double-Map EDQD-M learning curves. Despite the fact

that the final average range of the three approaches is comparable (sections 5.2.2.1, 5.2.2.2, and 5.2.2.3),

the learning curves show that Double-Map EDQD-M tends to decrease quickly and then settle at about

≈50% of the total range. However, mEDEA-M and EDQD-M both decline gradually before stabilizing

within the same average range.
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Figure 5.9: Average (over 20 runs) range of active sensors calculated from mEDEA-M, EDQD-M, and
Double-Map EDQD-M at the end of each generation (for each run) for swarms evolved in the simple,
medium and difficult environments.

Table 5.12: Statistical comparisons of average range of active sensors in each environment.

Simple environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.8124 0.8408

EDQD-M 0.5459

Medium environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.08255 0.08255

EDQD-M 0.2774

Difficult environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.6742 0.4524

EDQD-M 0.8124

5.2.2.1 Sensor range comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.12) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).

5.2.2.2 Sensor range comparison in the medium environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.12) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).
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5.2.2.3 Sensor range comparison in the difficult environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.12) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).

5.2.2.4 Sensor range comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.13) indicate that there is no

statistical difference between the simple, medium, and difficult environments for mEDEA-M, EDQD-M,

and Double-Map EDQD-M (p≥0.05).

Table 5.13: Statistical comparisons of average range in each approach across the three environments.

mEDEA-M

Medium Difficult

Simple 0.132700 0.701200

Medium 0.257500

EDQD-M

Medium Difficult

Simple 0.230500 0.756200

Medium 0.294300

Double-Map EDQD-M

Medium Difficult

Simple 0.701200 0.812400

Medium 0.430400

5.2.3 Average Proportion of Active Sensors

Figure 5.10 presents the average (over 20 runs) proportion of active sensors evolved by each approach in

each environment. The average proportion of active sensors was calculated at the end of each run (final

generation) over 20 runs (for mEDEA-M, EDQD-M, and Double-Map EDQD-M).

Figure 5.11 depicts the learning curves for mEDEA-M, EDQD-M, and Double-Map EDQD-M in relation

to the proportion of active sensors. These learning curves show the same tendency as the evolution of the

average range of active sensors (section 5.2.2), but slightly more apparent. That is, Double-Map EDQD-

M tends to decrease quickly and then settle at about ≈60% of the total number of sensors however,

mEDEA-M and EDQD-M both decline gradually before stabilizing within the same average proportion.
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Figure 5.10: Average proportion of active sensors (mean of the population) at the end of each treatment

Figure 5.11: Average (over 20 runs) proportion of active sensors calculated from mEDEA-M, EDQD-M,
and Double-Map EDQD-M at the end of each generation (for each run) for swarms evolved in the simple,
medium, and difficult environments.

Table 5.14: Statistical comparisons of proportion of active sensors in each environment.

Simple environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.6861 0.3488

EDQD-M 1

Medium environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.7548 0.06372

EDQD-M 0.05826

Difficult environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.465400 0.01718

EDQD-M 0.33
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5.2.3.1 Proportion of active sensors comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.14) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).

5.2.3.2 Proportion of active sensors comparison in the medium environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.14) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).

5.2.3.3 Proportion of active sensors comparison in the difficult environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.14) indicate that mEDEA-M

outperforms Double-Map EDQD-M (p < 0.05), while there is no statistical significance between Double-

Map EDQD-M and EDQD-M (p≥0.05). There is no statistical significance between mEDEA-M and

EDQD-M (p ≥ 0.05).

5.2.3.4 Proportion of active sensors comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.15) indicate that there is no

statistical difference between the simple, medium, and difficult environments for mEDEA-M, EDQD-M,

and Double-Map EDQD-M (p≥0.05).

Table 5.15: Statistical comparisons of proportion of active sensors in each approach across the three
environments.

mEDEA-M

Medium Difficult

Simple 0.420100 0.078020

Medium 0.340500

EDQD-M

Medium Difficult

Simple 0.101100 0.468900

Medium 0.474900

Double-Map EDQD-M

Medium Difficult

Simple 0.595800 0.654100

Medium 0.311800
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Figure 5.12: Average morphological complexity (mean of the population) at the end of each treatment

5.2.4 Morphological Complexity

Figure 5.12 presents the average (over 20 runs) morphological complexity evolved by each approach in

each environment. The average morphological complexity was calculated at the end of each run (final

generation) over 20 runs (for mEDEA-M, EDQD-M, and Double-Map EDQD-M).

Morphological complexity is calculated from sensor configurations (that is, average sensor range and

proportion of active sensors) according to equation 5.1:

Mc =
1

2
(SR + SA) (5.1)

where Mc is the morphological complexity, SR is the normalized average sensor range, and SA is the

proportion of active sensors. Since SR and SA fall in the range [0;1], we multiply by 1
2 to normalize Mc

to the range [0;1]. A high value of Mc indicates a high degree of morphological complexity.

Table 5.16: Statistical comparisons of morphological complexity in each environment.

Simple environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.8695 0.5706

EDQD-M 0.8124

Medium environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.6215 0.02958

EDQD-M 0.3884

Difficult environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.5459 0.01208

EDQD-M 0.5217
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5.2.4.1 Morphological complexity comparison in the simple environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.16) indicate that there is no

statistical significance between mEDEA-M, EDQD-M, and Double-Map EDQD-M (p≥0.05).

5.2.4.2 Morphological complexity comparison in the medium environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.16) indicate that Double-Map

EDQD-M evolves the least complex morphologies compared to mEDEA-M (p<0.05), while there is no

statistical significance between Double-Map EDQD-M and EDQD-M (p≥0.05).

5.2.4.3 Morphological complexity comparison in the difficult environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.16) indicate that Double-Map

EDQD-M evolves the least complex morphologies compared to mEDEA-M (p<0.05), while there is no

statistical significance between Double-Map EDQD-M and EDQD-M (p≥0.05).

5.2.4.4 Morphological complexity comparison: simple vs. medium vs. difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.17) indicate that mEDEA-

M evolves significantly more complex morphologies in the difficult environment compared to the

simple environment (p<0.05), while there is no statistical significance between the simple and medium

environments, and between the medium and difficult environments. There is no statistical significance

in the morphological complexity that evolves in the simple, medium, and difficult environments for

EDQD-M and Double-Map EDQD-M (p≥0.05).

Table 5.17: Statistical comparisons of morphological complexity in each approach across the three
environments.

mEDEA-M

Medium Difficult

Simple 0.2162 0.03623

Medium 0.5713

EDQD-M

Medium Difficult

Simple 0.8983 0.9854

Medium 0.9563

Double-Map EDQD-M

Medium Difficult

Simple 0.8983 0.6215

Medium 0.4524
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(a) Simple environment.

(b) Medium environment.

(c) Difficult environment.

Figure 5.13: Map-archive of robot morphologies evolved by the best-performing swarm of each approach
in each environment over a single run (at the final generation), colored based on fitness.

5.2.5 Morphology Map-archive of Best-Performing Swarms

At the end of each run (table 4.2), morphology map-archives (figures 5.4, 5.5, 5.6) evolved by the highest

performing swarm of each approach provided an indication of the highest quality morphologies (sensory

configurations) evolved in each cell of the map-archive. Morphological descriptors were defined as the

average sensor range and proportion of active sensors. There is a task performance value that corresponds

to the solution discovered in each map cell (section 4.3.2, equation 4.1). Hence, such maps show how

efficient evolved morphologies are for various task difficulties (simple, medium, difficult).

71



Results

Figure 5.14: Average task performance of swarms evolved by the mEDEA, mEDEA-M, EDQD, EDQD-
M, and Double-Map EDQD-M approaches in each environment.

5.3 Swarm Task Performance

Average team fitness is calculated as the portion of resources (range: [0.0, 1.0]) gathered during all swarm

life-times (100 generations per run), averaged over 20 runs (figure 5.14).

Table 5.18: Statistical comparisons of task performance of robot teams evolved by the mEDEA, mEDEA-
M, EDQD, EDQD-M, and Double-Map EDQD-M approaches in each task environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.075620 0.000667 0.002973 0.000444

mEDEA-M 0.017400 0.047350 0.001569

EDQD 0.532400 0.358100

EDQD-M 0.156400

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.186900 0.036140 0.000391 0.022540

mEDEA-M 0.419700 0.007357 0.197300

EDQD 0.008313 0.678300

EDQD-M 0.024750

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.871900 0.266100 0.099330 0.078670

mEDEA-M 0.913200 0.330900 0.204000

EDQD 0.265000 0.169600

EDQD-M 0.856100
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5.3.1 Task Performance Comparison in the Simple Environment

Statistical tests indicate that EDQD and Double-Map EDQD-M outperform mEDEA and mEDEA-M

(Mann-Whitney U, p<0.05, table 5.18). EDQD-M outperforms mEDEA (p<0.05), while there is no

statistical significance between mEDEA-M and EDQD-M (p≥0.05). There is no statistical significance

between EDQD, EDQD-M and Double-Map EDQD-M (p≥0.05).

5.3.2 Task Performance Comparison in the Medium Environment

EDQD-M outperforms all the other methods (Mann-Whitney U, p<0.05, table 5.18). EDQD and Double-

Map EDQD-M outperform mEDEA (p<0.05), while there is no statistical significance between mEDEA

and mEDEA-M (p≥0.05). There is no statistical significance between mEDEA-M, EDQD and Double-

Map EDQD-M (p≥0.05).

5.3.3 Task Performance Comparison in the Difficult Environment

Statistical tests (Mann-Whitney U-tests, table 5.18) indicate that there is no statistical significance

between all the methods in the difficult environment (p≥0.05).

5.3.4 Task Performance Comparison: Simple vs. Medium vs. Difficult

Environment

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.19) indicate that robotic

swarms evolved by all methods in the simple environment performed significantly better, followed by

swarms evolved in the medium environment, and then the difficult environment (Mann-Whitney U,

p<0.05, table 5.19).

Table 5.19: Statistical comparisons of task performance in each approach across the three environments.

mEDEA

Medium Difficult

Simple 9.556e− 05 9.556e− 05

Medium 0.000300

mEDEA-M

Medium Difficult

Simple 9.529e− 05 9.542e− 05

Medium 0.000142

EDQD

Medium Difficult

Simple 9.542e− 05 9.462e− 05

Medium 0.000129

EDQD-M

Medium Difficult

Simple 9.516e− 05 9.475e− 05

Medium 9.436e− 05

Double-Map EDQD-M

Medium Difficult

Simple 9.422e− 05 9.449e05

Medium 9.475e− 05
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Figure 5.15: QD score calculated from mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-
M final behavior-maps (at the end of each run) for swarms evolved in the simple, medium, and difficult
environments.

Figure 5.16: Average (over 20 runs) QD score calculated from mEDEA, mEDEA-M, EDQD, EDQD-
M, and Double-Map EDQD-M behavior-maps at the end of each generation (for each run) for swarms
evolved in the simple, medium, and difficult environments.

5.4 Quality Diversity Score of Behavior Archives

As in previous work (Pugh et al., 2015), the QD score is calculated as the overall quality (section 4.3.2,

equation 4.1) across all filled grid-cells within the QD behavior map-archive. A high average QD score

thus implies swarms with a high level of behavioral diversity, as well as a high level of quality. Figure 5.15

depicts the average quality diversity score of mEDEA, mEDEA-M, EDQD, EDQD-M, and Double-Map

EDQD-M at the end of each run, where an average QD score is obtained for the 20 runs of each approach.

Figure 5.16 shows the average variation of the QD score over the course of 20 runs of each treatment. As

task difficulty increases, we see the benefits of Double-Map EDQD-M. That is, Double-Map EDQD-M

produces the lowest average QD score after 100 evaluations (generations) in the simple environment.

Double-Map EDQD-M has the second lowest average QD score in the medium environment. In the

difficult environment, however, Double-Map EDQD-M produces the highest average QD score (figure

5.16).
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This evidence supports the benefits of increased behavioral (and morphological) diversity afforded by

Double-Map EDQD-M, and the QD maps for evolved behaviors (section 5.1) and morphologies (section

5.2) provide additional evidence for the method’s suitability for evolving swarms in environments with

increased levels of difficulty.

Table 5.20: Statistical comparisons of quality diversity score of robot teams evolved by the mEDEA,
mEDEA-M, EDQD, EDQD-M, and Double-Map EDQD-M approaches in each task environment.

Simple environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.5958 0.03277 0.003153 0.3683

mEDEA-M 0.3488 0.08969 0.9854

EDQD 0.2162 0.2774

EDQD-M 0.02958

Medium environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.9563 0.5217 0.02395 0.4524

mEDEA-M 0.7841 0.1231 0.5706

EDQD 0.002712 0.4091

EDQD-M 0.03999

Difficult environment

mEDEA-M EDQD EDQD-M Double-Map EDQD-M

mEDEA 0.498 0.7562 0.6477 0.01069

mEDEA-M 0.8695 0.6215 0.2611

EDQD 0.8695 0.1327

EDQD-M 0.1893

5.4.1 Quality Diversity Score Comparison in the Simple Environment

Statistical tests indicate that EDQD and EDQD-M outperform mEDEA (Mann-Whitney U, p<0.05,

table 5.20), while there is no statistical significance between mEDEA-M, EDQD, and EDQD-M (p≥0.05).

EDQD-M outperforms Double-Map EDQD-M (p<0.05), while there is no statistical difference between

mEDEA, mEDEA-M, and Double-Map EDQD-M (p≥0.05).

5.4.2 Quality Diversity Score Comparison in the Medium Environment

EDQD-M outperforms mEDEA, EDQD, and Double-Map EDQD-M (Mann-Whitney U, p<0.05, table

5.20), while there is no statistical difference between mEDEA-M and EDQD-M (p≥0.05). There is no

statistical significance between mEDEA, mEDEA-M, EDQD, and Double-Map EDQD-M (p≥0.05).
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5.4.3 Quality Diversity Score Comparison in the Difficult Environment

Statistical tests indicate that Double-Map EDQD-M outperforms mEDEA (Mann-Whitney U, p<0.05,

table 5.20), whereas there is no statistical difference between mEDEA-M, EDQD, EDQD-M, and Double-

Map EDQD-M (p≥0.05). There is no statistical significance between the other approaches (p≥0.05).

5.4.4 Quality Diversity Score Comparison: Simple vs. Medium vs. Difficult

Statistical tests (Mann-Whitney U-tests (Mann & Whitney, 1947), table 5.21) indicate that robotic

swarms evolved by all methods in the simple environment performed significantly better, followed by

swarms evolved in the medium environment, and then the difficult environment (p<0.05).

Table 5.21: Statistical comparisons of QD score in each approach across the three environments.

mEDEA

Medium Difficult

Simple 0.000168 1.907e− 06

Medium 3.624e− 05

mEDEA-M

Medium Difficult

Simple 1.907e− 06 1.907e− 06

Medium 1.907e− 06

EDQD

Medium Difficult

Simple 1.907e− 06 1.907e− 06

Medium 3.815e− 06

EDQD-M

Medium Difficult

Simple 2.67e− 05 1.907e− 06

Medium 1.907e− 06

Double-Map EDQD-M

Medium Difficult

Simple 9.537e− 06 1.907e− 06

Medium 1.907e− 06
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Figure 5.17: QD score calculated from mEDEA-M, EDQD-M, and Double-Map EDQD-M final
morphology-maps (at the end of each run) for swarms evolved in the simple, medium, and difficult
environments.

Figure 5.18: Average (over 20 runs) QD score calculated from mEDEA-M, EDQD-M, and Double-Map
EDQD-M morphology-maps at the end of each generation (for each run) for swarms evolved in the
simple, medium, and difficult environments.

5.5 Quality Diversity Score of Morphology Archives

For mEDEA-M, EDQD-M, and Double-Map EDQD-M we measured the QD score of morphology map

archives as the overall quality across all filled grid-cells at the end of each run. A high average QD

score thus implies swarms with a high level of morphological diversity and quality. Figure 5.17 shows

the average QD across the task environments, over 20 runs. Statistical tests (Mann-Whitney U-tests

(Mann & Whitney, 1947), table 5.22) indicate that Double-Map EDQD-M significantly outperformed

the other two approaches in all three environments (p<0.05), while there is no statistical significance

between mEDEA-M and EDQD-M (p≥0.05).

Figure 5.18 shows the average variation of the QD score over the course of 20 runs of each treatment.

In all three environments, Double-Map EDQD-M tends to rise sharply until the 30th generation, after

which it continues rising but not as rapidly as in the first 30 generations. In comparison, the rise of

mEDEA-M and EDQD-M is gradual throughout the 100 generations in all the task environments. As

task complexity increases, the QD score evolved by all three approaches decreases however, Double-Map

EDQD-M remains superior to other the other two approaches across all three task environments.
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Table 5.22: Statistical comparisons of QD score in each environment.

Simple environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.08969 1.907e− 06

EDQD-M 1.907e− 06

Medium environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.2455 1.907e− 06

EDQD-M 1.907e− 06

Difficult environment

EDQD-M Double-Map EDQD-M

mEDEA-M 0.7652 9.537e− 06

EDQD-M 0.0003893
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5.6 Summary

In this Chapter, we presented the results of evaluating mEDEA, mEDEA-M, EDQD, EDQD-M,

and Double-Map EDQD-M in relation to the diversity and quality of evolved behaviors, swarm task

performance, and quality diversity score. We observed visually distinct results and conducted Mann-

Whitney U tests (with a significance level of p = 0.05) to determine their statistical significance.

Regarding the diversity of evolved behaviors, the tests showed that in the simple environment, both

mEDEA and mEDEA-M performed poorly and were comparable. EDQD performed better than

mEDEA but was comparable to mEDEA-M. EDQD-M and Double-Map EDQD-M were the highest

performing approaches, outperforming mEDEA and mEDEA-M while being comparable to EDQD. In

the medium environment, EDQD-M and Double-Map EDQD-M were comparable and outperformed the

other approaches. mEDEA, mEDEA-M and EDQD were all comparable. In the difficult environment,

Double-Map EDQD-M outperformed all other methods. EDQD-M outperformed mEDEA, while being

comparable to mEDEA-M and EDQD. Otherwise, mEDEA, mEDEA-M, and EDQD were all comparable.

Upon further analysis of the diversity of evolved morphologies, it was found that in the simple, medium,

and difficult environments, Double-Map EDQD-M outperformed the other two approaches. In all three

environments, mEDEA-M and EDQD-M showed comparable performance.

Further statistical tests were conducted to evaluate the swarm task performance of different approaches.

In the simple environment, mEDEA and mEDEA-M showed comparable and relatively poor performance.

EDQD-M performed better than mEDEA, while being comparable to mEDEA-M. All the QD approaches

demonstrated similar performance, but EDQD and Double-Map EDQD-M outperformed mEDEA and

mEDEA-M. In the medium environment, mEDEA and mEDEA-M exhibited comparable and relatively

poor performance. mEDEA was outperformed by EDQD and Double-Map EDQD-M. mEDEA-M,

EDQD, and Double-Map EDQD-M showed comparable performance. In the difficult environment, all

the methods displayed comparable performance.

The statistical analyses of the QD score of behavior archives revealed the following results. In

the simple environment,mEDEA, mEDEA-M, and Double-Map EDQD-M showed comparable and

relatively poor performance. EDQD and EDQD-M outperformed mEDEA, while being comparable

to mEDEA-M. EDQD and Double-Map EDQD-M exhibited comparable performance, while EDQD-

M outperformed Double-Map EDQD-M. In the medium environment, mEDEA, mEDEA-M, EDQD,

and Double-Map EDQD-M demonstrated comparable performance. EDQD-M outperformed mEDEA,

EDQD, and Double-Map EDQD-M, while being comparable to mEDEA-M. In the difficult environment,

mEDEA, mEDEA-M, EDQD, and EDQD-M showed comparable performance. Double-Map EDQD-M

outperformed mEDEA, while being comparable to all the other approaches.
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Discussion

This chapter discusses our Chapter 5 findings and offers a critical assessment of the research questions

raised in this thesis. Overall, the results of this work demonstrate that environmental conditions influence

the efficiency and diversity of body-brain evolved cooperative robot teams. In particular, our findings

show that task performance and diversity of evolved robot teams decrease as task environment complexity

is increased, where task complexity is the level of cooperation (amongst individual robots) required

for optimal performance. Furthermore, the results indicate that explicit behavioral-morphological

diversity maintenance is well suited for evolving collective behavior across increasingly complex task

environments given that it consistently facilitated the emergence of significantly more diverse behaviors

and morphologies than all the other methods in all the task environments while maintaining comparable

team performance.

The remainder of the Chapter discusses the findings of this work in connection to the said research

questions. Section 6.1 compares the efficiency and diversity of robot teams evolved in the simple, medium,

and difficult environments. Section 6.2 discusses the impact of behavioral diversity maintenance on

evolving swarm behavior. Section 6.3 reviews the influence of behavioral diversity maintenance on

co-evolving swarm behavior and morphology. Section 6.4 details the impact of body-brain diversity

maintenance on co-evolving swarm behavior and morphology. Section 6.5 provides a summary of the

entire Chapter.
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6.1 Impact of Environmental Conditions

Experiments (Chapter 4, table 4.3) intended to investigate whether environmental conditions (that is,

varying degrees of task complexity) influence the efficiency (that is, task performance) and diversity (that

is, behavioral and morphological diversity) of body-brain evolved cooperative robot teams. Our findings

imply that environmental conditions influence task performance (section 6.1.1) as well as the emergence

of behavioral (section 6.1.2) and morphological (6.1.3) diversity in cooperative robot teams.

6.1.1 Team Task Performance

For all methods (Chapter 3, table 3.1), the best-performing robot teams evolved in the simple task

environment, followed by the medium environment, while the worst-performing teams evolved in the

difficult environment (section 5.3.4). The rest of this section discusses the properties of each of the

environments in order to understand how team performance evolved.

In the simple task environment, 60% of the resources were type A which could be collected individually

without cooperation. The remaining 40% were evenly distributed between types B, C, D, and E

(requiring two, three, four, and five robots to cooperatively push, respectively, table 4.2). It was expected

that the highest team performance would be achieved in this environment because optimal fitness could

be attained without a high level of cooperation. Additionally, with a large number of robots (100 in

the group), there was sufficient concurrency in the gathering behavior, leading to near-optimal task

performance.

Comparatively, in the medium task environment, all resource types (A, B, C, D, and E) were equally

distributed. One-fifth of the resources could be collected by individual robots, while the rest required

varying levels of cooperative effort (table 4.2). Consistent with earlier findings (Furman et al., 2019),

team fitness was improved by the relative simplicity of acquiring a fifth of the resources individually,

that is, without cooperation.

The lowest-performing robot teams evolved in the difficult task environment, where 60% of the resources

were type E, requiring five robots to cooperatively push. The remaining 40% were evenly distributed

among types A, B, C, and D. Cooperation involved a wait-for-help period that lasted for the robot’s

lifetime (table 4.2). Due to the large portion of type E resources, many robots spent most of their

lifetime idle or waiting for help. It was less likely for three or more robots to converge upon the same

resource within the given wait-for-help period. This was corroborated by behavior map archives of the

best-performing swarms (section 5.1.4, figures 5.4, 5.5, and 5.6), where behaviors associated with types

D and E resources were of a lower quality (section 4.3.2) across all three environments for all treatments.

Overall, the task environment complexity (the degree of cooperation required) had a significant impact

on the performance of the robot teams, with simpler environments leading to better outcomes.
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6.1.2 Behavioral Diversity

Behavior was described in terms of two behavioral descriptors, namely, (1) the type of resource collected

and (2) the maximum distance traversed in the environment during a robot’s lifetime (that is, a single

generation). These descriptors aimed to encourage diversity in both the types of resources collected and

the portions of the environment explored. These traits were calculated at the end of a lifetime (section

3.4).

Except for EDQD and EDQD-M, all other methods (Chapter 3, table 3.1) evolved comparable behavioral

diversity in the simple and medium task environments (section 5.1.1.4, table 5.2). We observe that

these environments required lower to moderate degrees of cooperation, allowing for extensive exploration

of the environment (thus maximizing diversity in terms of the portions of the environment explored,

section 5.1.2, figure 5.2) and diverse resource collection (section 5.1.3, figures 5.3a and 5.3b). This is

corroborated by behavior map archives of the best-performing swarms (section 5.1.4, figures 5.4 and 5.5),

where all methods evolved high-quality behaviors in the simple and medium environments that explored

environment portions in the range [0.05, 0.95] and collected resource types A and B with a quality in

the range [0.1, 0.95]. For resource types C, D, and E, the corresponding quality was in the range [0.05,

0.65]. Such maps show that swarms are capable of evolving diverse behavior (exploring up to 95% of

the environment and gathering each resource type), with resource types A and B (requiring no and two

robot cooperation, table 4.2) exhibiting the best-quality behavior (section 4.3.2).

In comparison to the simple and medium environments, the difficult environment necessitated a higher

level of cooperation, resulting in reduced exploration of the environment (due to a wait-for-assistance

period, table 4.2). This decrease in exploration was corroborated by a significantly smaller exploration

of the environment (section 5.1.2.4, table 5.4) and fewer and less varied resource collection (section

5.1.3, figure 5.3c) compared to the simple and medium environments. This was further evidenced by

behavior map archives of the best-performing swarms (section 5.1.4, figure 5.6), where all methods evolved

behaviors that explored less than 50% of the environment (with the exception of Double-Map EDQD-

M, which explored up to 55% of the environment for resource type A, with a corresponding quality

of ≈0.95). The explored portions of the environment ranged from [0.05, 0.45] for all other methods,

and the quality of resource types A and B collected fell within the range of [0.10, 0.3]. On the other

hand, resource types C, D, and E had lower quality scores within the range [0.0, 0.2]. These behavior

maps demonstrate that swarms can evolve diverse behaviors, although not to the same extent as in the

simple and medium environments (section 5.1, figure 5.1). Additionally, resource types A and B, which

required no or minimal cooperation (two robot cooperation), exhibited the highest quality behaviors

(section 4.3.2).

These findings demonstrate that robot swarms (as described in this thesis), are capable of evolving

diverse behaviors, exploring a large portion of the environment, and collecting diverse resource types.

However, the degree of cooperation required in the task environment influenced the extent of exploration

and the quality of behaviors exhibited by the swarms.
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6.1.3 Morphological Diversity

We found that for mEDEA-M and EDQD-M, there was no significant difference in the morphological

diversity that evolved across the three environments (section 5.2.1, table 5.11). However, Double-Map

EDQD-M evolved significantly greater morphological diversity in themedium environment than the other

two environments. The simple environment also significantly outperformed the difficult environment.

We do not discuss environmental influences on the evolution of morphological diversity for robot swarms

evolved with mEDEA-M and EDQD-M, since these variants yielded comparable morphological diversity

across all task environments.

We observe that Double-Map EDQD-M evolved significantly greater morphological diversity in the

medium environment (section 5.2.1, figure 5.7). This increased morphological diversity was accompanied

by the highest maximum number of behaviors (section 5.1.1, figure 5.1) compared to the simple and

difficult environments. A similar pattern was observed in the simple environment, where significantly

higher morphological diversity coincided with significantly higher behavioral diversity compared to the

difficult environment. These results support the notion that robot morphology determines the types and

complexity of behaviors that can be exhibited by robot controllers (Kriegman et al., 2018).

The significant morphological diversity observed in the difficult environment for Double-Map EDQD-M

swarms, coupled with significantly greater behavioral diversity, sets it apart from the other methods.

While the other methods evolved comparable behavioral diversity (section 5.1.1, figure 5.1, table 5.1),

Double-Map EDQD-M showcased a unique relationship between morphological and behavioral diversity.

These results suggest that the evolution of morphological diversity contributes to the emergence of

behavioral diversity. By allowing for a wider range of morphological configurations, robot swarms

can explore a greater repertoire of behaviors, leading to increased behavioral diversity. The particular

significance of morphological diversity in the difficult environment underscores its role in enabling the

swarms to tackle the challenges posed by the high degree of cooperation required.

The morphology map archives of the best-performing swarms provided evidence for the benefits of

significant morphological (and behavioral) diversity. These archives showed that swarms with higher

morphological diversity exhibited higher behavioral quality across all task environments (figures 5.13a,

5.13b, 5.13c). Furthermore, the swarms evolved using Double-Map EDQD-M demonstrated the best

overall team fitness compared to the other methods in the simple and difficult environments, although

the difference was not statistically significant. These findings align with previous research (Zardini

et al., 2021) that has highlighted the effectiveness of body-brain diversity maintenance mechanisms in

facilitating the exploration of search spaces and the evolution of high-performing solutions.

This work focused on different task environments that varied in the level of cooperation (measure of

complexity) needed to collect all the resources (table 4.2). The medium environment required a moderate

degree of cooperation and had an equal distribution of resource types, resulting in the highest resource

variety. A hypothesis suggests that the evolution of morphological diversity is influenced by the diversity

of resources in the environment. To test this hypothesis, we examined a scenario where each robot

only reacted to one type of resource. Table 6.1 presents the number of agents needed to collect all the

resources of each type in the three task environments.
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Table 6.1: The number of individuals required to collect all the resources of each resource type in each
environment.

A B C D E
Simple 30 10 15 20 25
Medium 10 20 30 40 50
Difficult 5 10 15 20 120

Upon examining the hypothetical scenario where each robot responds to only one resource type, it

becomes apparent that the task would still be accomplished in the simple environment since the total

number of required robots matches the population of the swarm (100 robots). However, in the medium

environment, a total of 150 robots would be necessary, which is 1.5 times more than the swarm population.

This indicates that robots in this environment need to respond to multiple resource types. The variation

in the number of robots required per resource type in the medium environment is minimal, ranging from

7% to 33%, with an average difference of 7%. Hence, the medium environment necessitates a higher level

of diversity. On the other hand, the difficult environment demands a lower level of diversity, as 70.5%

of the population is needed to collect all the type E resources, while only 11% is required for type D

resources (the second highest).

The observed results, combined with the hypothetical scenario, provide support for the hypothesis

proposing that the diversity of resources in the environment influences the evolution of morphological

diversity. The findings indicate that in environments with a higher variety of resources, such as the

medium environment, a greater level of morphological diversity is required to effectively collect all the

resources. Conversely, in environments with a lower diversity of resources, like the difficult environment, a

lesser amount of morphological diversity is necessary. Therefore, it can be concluded that the availability

and distribution of resources play a role in shaping the evolution of morphological diversity in robot

swarms.

When examining the relationship between neural-morpho complexity (section 5.2.4) and morphological

diversity in each environment, an intriguing observation emerges. The medium environment exhibits the

highest morphological diversity (section 5.2.1, figure 5.7) in concert with the lowest median complexity

(section 5.2.4, figure 5.12). This finding suggests that diversity leads to the evolution of simpler

morphologies within the population. In the simple environment, the second highest morphological

diversity corresponds to the second lowest median complexity. In contrast, the difficult environment

shows the least morphological diversity in conjunction with the highest median complexity. These results

indicate that a lack of diversity results in the emergence of complex morphologies.

Consequently, these findings lead to the hypothesis that there exists a relationship between morphological

complexity and the emergence of morphological diversity in robot swarms, similar to what is observed

in nature (Carroll, 2001). However, in the field of ecology, this relationship has primarily been studied

at the phylogenetic level, where it has been observed that increased morphological complexity leads to

expansions into previously unoccupied ecological niches and an accompanying increase in species diversity

(Carroll, 2001). Indeed, further research is warranted to gain a deeper understanding of the relationship

between morphological complexity and morphological diversity at the group level in robot swarms. While

this work provides valuable insights into the influence of environmental factors on morphological diversity,

there is still more to explore.

84



Discussion

6.2 Impact of Behavioral Diversity Maintenance on Collective

Behavior Evolution

Our second objective was to investigate whether behavioral diversity maintenance is advantageous for

evolving collective behavior across increasingly complex task environments. Overall results indicated

that the EDQD method, evolving collective behavior with behavioral diversity maintenance, was

demonstrated as beneficial as environment complexity increased. These benefits were demonstrated

as significantly higher task performance (section 5.3, figure 5.14) and behavioral diversity (section 5.1,

figure 5.1) compared to the mEDEA method (benchmark), evolving collective behavior without diversity

maintenance mechanisms.

Our observation focuses on the behavioral diversity maintenance mechanism employed by the EDQD

method, specifically the BC. The BC actively promotes varied exploration of the environment and the

collection of diverse resources. As a result, the discovery of novel solutions also led to higher team task

performance. This is supported by significantly higher team task performance compared to the mEDEA

method in the simple and medium environments, while performance remains comparable in the difficult

environment (section 5.3, figure 5.14). The BC mechanism is considered to be aligned with the task at

hand, as it encourages behaviors that enhance overall performance in the given environments.

In the simple environment, the effectiveness of diversity maintenance, characterized by an aligned BC,

was corroborated by significantly greater exploration of the environment (section 5.1.2, figure 5.2). This

increased exploration proved beneficial in the collection of resource typesA, B, and E (section 5.1.3, figure

5.3a). The suitability of diversity maintenance in evolving effective behaviors in the simple environment

was further demonstrated by analyzing the behavior map archives of the best-performing swarms (section

5.1.4, figure 5.4). The EDQD method evolved behaviors explored up to 95% of the environment and

successfully collected all resource types within a quality range of [0.01, 0.8]. Comparatively, mEDEA

evolved behaviors explored up to 55% of the environment, with a corresponding quality range of [0.05,

0.95]. These findings highlight how diversity maintenance, driven by an aligned BC, enhances exploration

and resource collection capabilities in the simple environment.

Comparatively, in the medium environment, both EDQD and mEDEA evolved comparable behavioral

diversity (section 5.1, table 5.1). However, EDQD evolved swarms significantly outperformed those

evolved with mEDEA on the collective gathering task overall (section 5.3, figure 5.14), demonstrating

the effectiveness of diversity maintenance in the medium environment. Furthermore, the effectiveness of

diversity maintenance was further evidenced by behavior map archives of the best-performing swarms

(section 5.1.4, figure 5.5). In the case of resource types A and B, the behaviors evolved by EDQD

explored up to 45% of the environment, with corresponding quality values within the range [0.2, 0.8]. In

comparison, behaviors evolved by mEDEA for the same resource types explored only up to 20% of the

environment, with quality values within the range [0.1, 0.5]. These behavior maps clearly demonstrate

the benefits of explicitly encouraging environment exploration during behavior search, as opposed to

relying solely on the objective function to discover such behaviors.

In the difficult environment the effectiveness of driving behavior search with diversity maintenance,

guided by an aligned BC, was demonstrated by the evolution of greater behavioral diversity (section 5.1,

figure 5.1) and improved task performance (section 5.3, figure 5.14), although the differences were not

85



Discussion

statistically significant when compared to mEDEA (which evolves collective behavior without a diversity

maintenance mechanism). However, the benefits of diversity maintenance were evident when analyzing

the behavior map archives of the best-performing swarms (section 5.1.4, figure 5.6). The behaviors

evolved by EDQD were capable of exploring up to 45% of the environment with a maximum quality of

≈0.6. In comparison, the behaviors evolved by mEDEA explored up to 30% of the environment with

a similar quality of ≈0.6. Although not significantly different in terms of performance, the behavior

maps highlight the potential of diversity maintenance in enabling the evolution of behaviors that can

effectively explore a substantial portion of the environment while achieving comparable quality.

The demonstrated benefits of the EDQD algorithm in evolving effective collective behaviors across

multiple robots align with previous research (Hart et al., 2018), which showed that a decentralized

QD approach can achieve such results. Additionally, our findings support previous work (Pugh et al.,

2016b) that demonstrated the effectiveness of an aligned BC in driving search for QD as task environment

complexity increases. While Pugh et al. (2016b) focused on single agents in a maze exploration context,

our work extends these findings to the collective behavior domain. Moreover, the aligned BC used in

our diversity maintenance methods explicitly encouraged diverse exploration of the environment and

collection of varied resources, contrasting with the maze endpoint exploration encouraged by Pugh et al.

(2016b).

86



Discussion

6.3 Impact of Behavioral Diversity Maintenance on Co-evolving

Collective Behavior and Morphology

Our third objective was to investigate whether behavioral diversity maintenance is beneficial for co-

evolving collective behavior and morphology across increasingly complex task environments. Overall

results indicated that the EDQD-M method, co-evolving collective behavior and morphology with

behavioral diversity maintenance, was demonstrated as beneficial as task complexity increased. These

benefits were demonstrated as significantly higher task performance (section 5.3, figure 5.14) and

behavioral diversity (section 5.1, figure 5.1) compared to the mEDEA-M method (benchmark), co-

evolving collective behavior and morphology without diversity maintenance mechanisms.

6.3.1 Behavioral Diversity

The EDQD-M method utilized a behavioral diversity maintenance mechanism, guided by an aligned BC,

to drive behavior search. On the other hand, the mEDEA-M method exclusively utilized an objective

function to guide behavior search. Specifically, in EDQD-M, the BC was designed to explicitly encourage

diversity in terms of environmental exploration, which was evidenced by significantly greater average

distance explored overall (section 5.1.2, figure 5.2). The BC further promoted diversity in terms of the

resource types collected. The benefits of fostering diversity in this aspect were evidenced by the ability

of EDQD-M evolved swarms to consistently outperform mEDEA-M in terms of the average number of

resource types gathered overall (section 5.1.3, figures 5.3a, 5.3b, and 5.3c).

The benefits of behavioral diversity maintenance were further evidenced by examining behavior map

archives of the best-performing swarms (section 5.1.4, figures 5.4, 5.5, and 5.6). The EDQD-M method

consistently evolved high-quality behaviors for resource types A, B, and C across all three environments.

Comparatively, the mEDEA-M method typically evolved a high-quality behavior for one resource type,

while the behaviors corresponding to other resource types had lower quality. For example, in the

medium environment, the highest-quality behavior evolved by mEDEA-M corresponded to resource type

A (quality ≈0.9), while the highest-quality for resource types B and C were ≈0.4 and ≈0.3, respectively.

In contrast, the highest-quality behavior evolved by EDQD-M corresponded to resource type A (quality

≈0.8), while the highest quality for resource types B and C were ≈0.6 and ≈0.6, respectively, which are

all comparable.

Consequently, diversity maintenance led to the emergence of significantly higher behavioral diversity in

the simple and medium environments compared to mEDEA-M (section 5.1, figure 5.1). This increased

diversity also resulted in a significantly higher level of team task performance in the medium environment

(section 5.3, figure 5.14). Specifically, EDQD-M significantly outperformed all other methods in the

medium environment. We observe that the medium environment had an equal distribution of all

resource types, and required a moderate level of cooperation. These findings highlight the effectiveness

of behavioral diversity maintenance in evolving effective behaviors, in conjunction with morphologies, in

collective behavior tasks that necessitate a moderate level of cooperation.
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6.3.2 Morphological Diversity

In both EDQD-M and mEDEA-M, the state of the evolving sensors at the end of each generation,

determined by the sensor-morpho threshold in table 4.2, determined the activation or deactivation of

the associated ANN sensory input nodes (sections 3.5 and 3.3). For example, if there were x active

sensors and y inactive sensors, the chosen ANN controller would be reconfigured so that x sensory input

nodes were active and y were inactive. Therefore, the evolved morphology determined the corresponding

controller.

However, behavioral diversity maintenance, defined by a task-aligned BC, did not have an impact on

the evolution of morphological diversity. This was evident from the emergence of similar levels of

morphological diversity across all task environments (section 5.2, figures 5.7). Furthermore, the learning

curves of both approaches were identical (sections 5.2.2 and 5.2.3, figures 5.9 and 5.11).

Examining the morphology map archives of the best-performing swarms, it was observed that mEDEA-

M utilized a wider range of active sensors and sensor ranges compared to EDQD-M (section 5.2.5,

figures 5.13a, 5.13b, and 5.13c). This suggests that environment-driven approaches are better suited to

exploiting morphological diversity.

6.3.3 Neural-Morpho Complexity

Neural-morpho complexity, measured according to equation 5.1, results indicated no statistical

significance between mEDEA-M and EDQD-M (section 5.2.4, figure 5.12). This is because both

approaches had an environment-driven morphology evolution process. The diversity maintenance

mechanism in EDQD-M was solely employed to drive behavior search.

However, when we considered the median neural-morpho complexity for each approach, interesting

observations were made (table 6.2). Specifically, EDQD-M evolved its simplest morphologies in the

difficult environment, while the most complex morphologies were evolved in the medium environment.

It is worth noting that these complex morphologies were associated with significantly higher team task

performance compared to all other methods (section 5.3, figure 5.14). Comparatively, mEDEA-M evolved

its simplest morphologies in the simple environment, while the most complex morphologies were evolved

in the medium environment.

Based on these observations, we hypothesize that the influence of the diversity maintenance mechanism

in EDQD-M, which drives behavior search, is responsible for the observed differences between mEDEA-M

and EDQD-M. This hypothesis aligns with the notion proposed by Spanellis et al. (2021) that diversity

maintenance approaches evolve robot complexity necessary to achieve high task performance in specific

environments. It is a reasonable assumption considering the coupling of morphology and behavior in this

work.
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Table 6.2: Median neural-morpho complexity (over 20 runs) in each environment. Bold values indicate
the lowest neural-morpho evolved in each environment.

Method Simple Medium Difficult
mEDEA-M 0.549 0.630 0.621
EDQD-M 0.596 0.599 0.564

6.4 Impact of Body-Brain Diversity Maintenance on Co-

evolving Collective Behavior and Morphology

Our final objective was to investigate whether behavioral-morphological diversity maintenance is

beneficial for co-evolving collective behavior and morphology across increasingly complex task

environments. Results indicated that the Double-Map EDQD-M method, co-evolving collective behavior

and morphology with behavioral-morphological diversity maintenance, was demonstrated as beneficial

as task complexity increased. These benefits were demonstrated as significantly higher task performance

(section 5.3, table 5.18), behavioral diversity (section 5.1, table 5.1), and morphological diversity

(section 5.2, table 5.10) than the mEDEA-M method (benchmark), co-evolving collective behavior and

morphology without diversity maintenance mechanisms.

6.4.1 Behavioral Diversity

The Double-Map EDQD-M method utilized two QD maps to maintain diversity in controller and

morphology related properties. The BC used in the controller-related QD map was aligned with the

collective gathering task, promoting varied exploration of the environment and collection of diverse

resources. As a result, the discovery of novel solutions contributed to higher task performance. This can

be observed through the emergence of significantly higher behavioral diversity in the simple, medium,

and difficult environments (section 5.3, table 5.18) compared to mEDEA-M. In the simple environment,

this increased diversity was also accompanied by significantly higher team task performance (section 5.3,

table 5.18).

The behavior map archives of the best-performing swarms in each approach provided evidence of the

effectiveness of evolved gathering behaviors across different task complexities (simple, medium, difficult,

section 5.1.4). In the simple environment, the benefits of body-brain diversity were evidenced by the

discovery of high-quality behaviors (figure 5.4), where the maximum portion of the environment explored

for resource types A, B, and C was ≈0.45, with corresponding behavior quality in the range: [0.65, 0.95].

Comparatively, mEDEA-M evolved behaviors yielded a quality range of [0.03, 0.75] for an explored area

in the range: [0.25, 0.45] for the same resource types. Moreover, Double-Map EDQD-M evolved behaviors

exhibited an extensive exploration of the environment (explored up to 45% of the environment) to find

resource types B and C, while also yielding high behavior quality. In contrast, mEDEA-M only explored

25% of the environment for these resources. The ability of Double-Map EDQD-M to evolve behaviors

that efficiently search the environment to find all resource types was further corroborated by significantly

greater overall environment exploration (section 5.1.2, table 5.3).
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The benefits of body-brain diversity were further evidenced in themedium environment (figure 5.4), where

the maximum portion of the environment explored for resource type A was 0.45, with a corresponding

behavior quality of ≈0.95. Comparatively, mEDEA-M evolved behaviors explored a larger portion of

the environment (0.85) for resource type A but yielded a lower quality of ≈0.65. This indicates that

mEDEA-M behaviors wasted more time exploring the environment without achieving higher quality.

On the other hand, for resource type C, Double-Map EDQD-M evolved behaviors explored a maximum

environment portion of 0.35 and yielded a quality of ≈0.65. In comparison, mEDEA-M evolved behaviors

explored a smaller environment portion (0.25) for resource type C and had a lower quality of ≈0.2. These

findings demonstrate that when Double-Map EDQD-M evolved behaviors explored a larger portion of

the environment, they also exhibited higher quality. These findings are consistent with prior research

(Nordmoen et al., 2021), which has shown that body-brain diversity maintenance is effective in achieving

a balance between exploration and exploitation in the behavior-morphology search space.

In the difficult environment, the effectiveness of body-brain diversity maintenance was particularly

evident in Double-Map EDQD-M (figure 5.6). The behaviors evolved by Double-Map EDQD-M exhibited

a high-quality diversity, with an explored environment portion range of [0.35, 0.55] for resource types A

and B, and a corresponding quality range of [0.65, 0.95]. In contrast, mEDEA-M evolved behaviors for

resource types A and B had a quality range of [0.10, 0.50] for an explored area of [0.05, 0.25]. Additionally,

figure 5.1 illustrates the average behavioral diversity of Double-Map EDQD-M evolved swarms, which

showed significantly higher diversity compared to swarms evolved by mEDEA-M (mEDEA, EDQD,

and EDQD-M) according to statistical analysis (Mann-Whitney U, p<0.05). Although the team

task performance of Double-Map EDQD-M was higher than other approaches, the difference was not

statistically significant. These findings support previous research demonstrating that sufficient diversity

is required to find solutions in complex environments, and search algorithms that generate and maintain

diversity are more likely to find a solution even when considering different environments with varying

complexities (Nordmoen et al., 2021).

6.4.2 Morphological Diversity

The morphological descriptors utilized by the morphology-related QD map in the Double-Map EDQD-

M method encouraged diverse utilization of the maximum sensor range and the number of active

sensors. The benefits of morphological diversity maintenance were demonstrated as significantly higher

morphological diversity compared to mEDEA-M (and EDQD-M) in the simple, medium, and difficult

task environments (section 5.2, table 5.10). Moreover, the evolved morphologies proved to be effective,

as they achieved significantly higher task performance in the simple environment, and comparable task

performance in the medium and difficult environments when compared to mEDEA-M (section 5.3, table

5.18).

The effectiveness of the Double-Map EDQD-Mmethod in evolving morphological diversity and generating

high-quality behavior was consistently demonstrated across all task environments. The best-performing

morphologies evolved by Double-Map EDQD-M exhibited active sensor portions and average active sensor

ranges ranging from 0.1 to 1.0. (figures 5.13a, 5.13b, 5.13c). The highest-quality solutions, with success

rates exceeding 90%, were achieved when sensors were active between 65% and 95% and operated at 85%

to 100% of their maximum range (figures 5.13a, 5.13b, 5.13c, right). Comparable task performance was

observed in the simple and difficult environments for the morphologies evolved by EDQD-M, indicating
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that the sensor activity and ranges achieved through the Double-Map EDQD-M approach facilitated

effective swarm behaviors.

Upon examining the morphology map archives of mEDEA-M and Double-Map EDQD-M, it becomes

evident that in the simple and medium task environments, the highest quality morphologies consistently

outperform their counterparts in mEDEA-M (and EDQD-M) evolved swarms. These superior

morphologies in Double-Map EDQD-M exhibit higher quality scores compared to the highest quality

morphologies in mEDEA-M (and EDQD-M) evolved swarms (as shown in figures 5.13a and 5.13b).

Similarly, in the difficult task environment, the highest quality morphology evolved by Double-Map

EDQD-M surpasses the highest quality morphology evolved by mEDEA-M, although the difference is

only slight (≈90% against 60% of maximum sensor range, as depicted in figure 5.13c).

Additionally, in the difficult task environment, the benefits of morphological diversity in Double-Map

EDQD-M are reinforced by the presence of higher behavioral quality diversity compared to mEDEA-

M. Specifically, the highest quality behaviors evolved by Double-Map EDQD-M (related to gathering

resource type A) outperformed the highest quality behaviors evolved by mEDEA-M (with a maximum

behavior quality of approximately ≈0.9 and ≈0.6, respectively, as depicted in figure 5.6). This

finding highlights the effectiveness of morphological diversity maintenance in Double-Map EDQD-M

in generating behaviors of superior quality compared to mEDEA-M in challenging task environments.

In the medium task environment, Double-Map EDQD-M exhibited similar, albeit less noticeable, benefits

compared to mEDEA-M. Specifically, the maximum behavior quality achieved by Double-Map EDQD-

M for gathering resource type A was ≈0.9, while mEDEA-M achieved a maximum behavior quality of

≈0.9 (as shown in figure 5.6). In the simple environment, the maximum behavior quality of Double-

Map EDQD-M was comparable to that of mEDEA-M for gathering resource type A. These findings,

supported by table 5.18, further validate previous research (Pugh et al., 2016a) using single agents (while

this study focuses on collective behavior) that demonstrates how multi-BC approaches can facilitate the

explicit search for both unaligned (morphological diversity in this study) and aligned diversity, while

potentially losing no significant performance.

6.4.3 Neural-Morpho Complexity

Since Double-Map EDQD-M maintained two map archives, each of which was updated independently

at the end of each generation, there had to be a mechanism in place to ensure that robot behavior

and morphology were appropriately matched. Consequently, the evolved morphology determined the

corresponding controller. As an example, a chosen morphology with x active and y inactive sensors

would automatically reconfigure the chosen ANN controller so that x sensory input nodes were active

and y were inactive. As a result, the complexity of the morphology directly influenced the complexity

of the neural network in this work (where neural complexity is calculated as the number of active input

nodes, which corresponds to the proportion of active sensors, section 5.2.3).

Table 6.3 serves as additional evidence for the benefits of body-brain diversity maintenance. Specifically,

in the simple environment, Double-Map EDQD-M evolved the most complex morphologies, although

the difference was not statistically significant, and these morphologies were accompanied by significantly
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Table 6.3: Median neural-morpho complexity (over 20 runs) in each environment. Bold values indicate
the lowest median complexity in each environment.

Method Simple Medium Difficult
mEDEA-M 0.549 0.630 0.621
Double-Map EDQD-M 0.551 0.549 0.559

higher task performance compared to mEDEA-M. However, as task complexity increased, body-brain

diversity maintenance consistently led to the evolution of significantly simpler morphologies compared

to mEDEA-M, while still maintaining effective task performance (although not significantly higher than

mEDEA-M). These results provide additional evidence that diversity maintenance promotes the evolution

of simple controllers and high-quality behaviors in robot teams (Gomes et al., 2013; Lehman & Stanley,

2011a; Nitschke & Didi, 2017).

The results presented in Table 6.3 reinforce the notion that diversity maintenance approaches are capable

of evolving the necessary complexity in robots to achieve high task performance in specific environments

(Spanellis et al., 2021). Therefore, these results provide further evidence that increased task complexity

does not necessarily equate to the evolution of increased morphological complexity in robot teams

(Hewland & Nitschke, 2015; Nitschke & Didi, 2017). One hypothesis suggests that this is due to the

presence of morphological diversity (see section 6.1.3).
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6.5 Summary

This Chapter discussed our findings from Chapter 5 and provided a critical evaluation of the research

questions posed in this thesis. The focus was on comparing the task performance, behavioral diversity,

and morphological diversity that emerged in the simple, medium, and difficult environments. Our results

clearly showed that the complexity of the task environment had a significant impact on task performance

as well as the emergence of behavioral and morphological diversity in cooperative robot teams. As the task

complexity increased from simple to difficult, we observed a notable decrease in team fitness. A similar

trend was observed in terms of the emergence of behavioral diversity. To gain a deeper understanding

of how environmental complexity influences the evolution of collective behavior and morphology, we

conducted a comprehensive analysis of the properties associated with each of the three environments

considered in this thesis.

In section 6.2, we focused on comparing the impact of behavioral diversity maintenance versus

objective-based evolutionary search on collective behavior evolution. Our analysis revealed that the

EDQD approach outperformed mEDEA in terms of producing significantly diverse robot swarms with

significantly higher team task fitness. By examining behavior map archives, we found that EDQD

evolved high-quality behaviors that extensively explored the environment and gathered diverse types of

resources. On the other hand, mEDEA struggled to evolve such combinations of behavioral features

due to its inability to ensure equal distribution of effort across different behavior dimensions. The

ability of EDQD to achieve a balanced effort distribution and explore a wide range of behaviors was

made possible by its behavioral diversity maintenance mechanism. This allowed for the discovery of

high-quality behaviors through sufficient exploration of the search space.

In section 6.3, we focused on the coevolution of collective behavior and morphology and compared

the impact of behavioral diversity maintenance and objective-based evolutionary search. The analysis

of results showed that EDQD-M outperformed mEDEA-M in several aspects. Firstly, EDQD-M

facilitated the evolution of significantly behaviorally diverse robot swarms with higher team task

fitness. Additionally, EDQD-M maintained lower median neural-morpho complexity as task complexity

increased. The evolved swarms from EDQD-M explored larger portions of the environment and collected

a greater number of resources per resource type compared to mEDEA-M. The analysis of behavior map

archives further supported the effectiveness of EDQD-M in evolving high-quality behaviors associated

with diverse resource types, whereas mEDEA-M struggled to achieve similar quality for more than

one resource type. The ability of EDQD-M to balance exploration and exploitation in the behavior

space, facilitated by behavioral diversity maintenance, also led to the evolution of simpler neural-morpho

complexity in complex environments.

In section 6.4, we investigated the impact of body-brain diversity maintenance compared to objective-

based evolutionary search on the coevolution of collective behavior and morphology. The results showed

that Double-Map EDQD-M outperformed mEDEA-M in several aspects. Firstly, Double-Map EDQD-M

enabled the evolution of significantly higher behavioral and morphological diversity in robot swarms

with higher team task fitness. As task complexity increased, Double-Map EDQD-M maintained simpler

behavior-morphology couplings. The analysis of evolved swarm behaviors revealed that Double-Map

EDQD-M consistently explored larger portions of the environment compared to mEDEA-M. This

propensity for exploration and the collection of diverse resource types was facilitated by body-brain
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diversity maintenance, leading to the discovery of high-quality behaviors. In contrast, mEDEA-M

and other approaches failed to explore the feature space to the same extent and consequently could

not uncover high-quality behaviors, particularly in complex environments. The findings highlight the

effectiveness of body-brain diversity maintenance in promoting behavioral and morphological diversity

and enhancing overall swarm performance.

This thesis makes a significant contribution to the state of the art by exploring the interplay between

environmental complexity, behavioral diversity maintenance, and body-brain diversity maintenance in

the evolution of collective behavior and morphology in robot swarms. The key findings highlight the

importance of these factors in achieving robust and adaptive behavior in cooperative robot teams.

The study demonstrates that incorporating diversity maintenance mechanisms during the evolutionary

process, as exemplified by the EDQD, EDQD-M, and Double-Map EDQD-M approaches, leads to the

evolution of significantly diverse robot swarms with higher task fitness when compared to objective-based

approaches. These approaches effectively balance exploration and exploitation, enabling the discovery

of high-quality behaviors associated with diverse resource types. Moreover, the research sheds light

on the impact of environmental complexity on task performance and the emergence of behavioral and

morphological diversity. By providing insights into these dynamics, the thesis offers valuable knowledge

for designing more effective evolutionary algorithms and strategies for collective behavior in robotics.
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Conclusions

The goal of this thesis was to examine the influence of task complexity on the task performance, behavioral

diversity, and morphological diversity of body-brain evolved cooperative robot teams. We sought to

achieve this by comparing robot teams evolved with diversity maintenance mechanisms against those

evolved without such mechanisms (that is, objective-based search). By conducting this comparison, the

research aimed to provide insights into the role of diversity maintenance in shaping the characteristics

and capabilities of evolved robot teams in different task complexity scenarios.

To evaluate the effectiveness of the different neuro-evolution approaches, it was necessary to employ

various levels of task complexity. The collective gathering task was chosen as the primary test-bed

due to its suitability for assessing cooperation levels among individual robots for optimal performance.

This task has been widely used as a benchmark in collective robotics research (Bonabeau et al., 1999;

Furman et al., 2019; Hewland & Nitschke, 2015; Kernbach, 2012) and is closely related to real-world

applications such as surveillance, environment monitoring (Vásárhelyi et al., 2018), agricultural foraging,

and mining tasks (Floreano & Wood, 2015). By selecting this task, the thesis aimed to provide insights

that are relevant to both current and future swarm robotics applications, thereby contributing to the

advancement of the field.

The experimental results from this thesis provided valuable insights into the relationship between

task complexity and the performance and diversity of body-brain evolved cooperative robot teams.

Specifically, the findings indicated that increasing task complexity negatively affected team task

performance and behavioral and morphological diversity. Furthermore, the results demonstrated that

explicit diversity maintenance mechanisms in evolutionary search were crucial for evolving effective

collective behavior in progressively complex tasks.

In the simple environment, behavioral diversity maintenance alone resulted in significantly higher team

task performance when compared to objective-based search approaches. However, in the medium

environment, a combination of behavioral diversity maintenance and morphology adaptation was

necessary for achieving similar benefits. In the most complex environment, body-brain diversity

maintenance yielded the best results in terms of behavioral and morphological diversity and team task

performance.
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These findings align with previous research that similarly demonstrated, using single agents (whereas

these results are pertinent to collective behavior), that multi-BC approaches allow explicitly searching

for both unaligned (morphological diversity in this work) and aligned diversity while potentially losing

no significant performance (Pugh et al., 2016a; Pugh et al., 2016b). These results also provide

additional evidence to the notion that sufficient diversity is required to find solutions in complex

environments, and search algorithms that generate and maintain diversity are more likely to find a

solution even when considering different environments with varying complexities (Nordmoen et al.,

2021). Finally, experiment results also indicated that diversity maintenance search evolved high-quality

behaviors encoded by simple behavior-morphology couplings as environment complexity increased. Thus,

these results provide additional evidence that diversity maintenance promotes the evolution of simple

controllers and high-quality behaviors in robot teams (Gomes et al., 2013; Lehman & Stanley, 2011a;

Nitschke & Didi, 2017).

The main contribution of this study is empirical evidence indicating the effectiveness of body-brain

diversity maintenance search approaches in complex tasks defined by large feature spaces in robotic

swarms. While previous related work (Nordmoen et al., 2021; Pugh et al., 2016a; Pugh et al., 2016b;

Zardini et al., 2021) has shown the benefits of these approaches for single agents, this thesis extends

those findings to collective behavior in robotic swarms.

7.1 Future Work

A logical progression of this research would involve exploring alternative indicators of environmental

complexity, such as different levels of environmental steepness, to gain deeper insights into the influence

of body-brain diversity that arises in response to changing environments within robotic swarms. In

particular, there is a need for further investigation to comprehend the effects and interactions of different

types of behavior-morphology couplings in concert with various environment types within the framework

of body-brain diversity maintenance-driven evolutionary search.

Secondly, there is currently a lack of research on the relationship between morphological diversity and

complexity in robot swarms. It is crucial to investigate and comprehend the relationship between

morphological diversity and morphological complexity that arise as a result of changing environments

within robotic swarms. This research would contribute to a better understanding of how changing

environments impact the emergence of diverse morphologies and their associated complexities within the

swarm.
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