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Abstract

Behavioural diversity has been shown to be beneficial in biological social sys-
tems, such as insect colonies and human societies, as well as artificial systems
such as large-scale swarm robotics applications. Evolutionary swarm robotics
is a popular experimental platform for demonstrating the emergence of various
social phenomena and collective behaviour, including behavioural diversity and
specialisation. However, from an automated design perspective, the evolutionary
conditions necessary to synthesise optimal collective behaviours that function
across increasingly complex environments remains unclear. Thus, we introduce a
comparative study of behavioural diversity maintenance methods (based on the
MAP-Elites algorithm) versus those without behavioural diversity mechanisms
(based on the steady-state genetic algorithm), as a means to evolve suitable de-
grees of behavioural diversity over increasingly difficult collective behaviour tasks.
For this purpose, a collective sheep-dog herding task is simulated which requires
the evolved robots (dogs) to capture a dispersed flock of agents (sheep) in a tar-
get zone. Different methods for evolving both homogeneous and heterogeneous
swarms are investigated, including a novel approach for optimising swarm allo-
cations of pre-evolved, behaviourally diverse controllers. In support of previous
work, experiment results demonstrate that behavioural diversity can be gener-
ated without specific speciation mechanisms or geographical isolation in the task
environment. Furthermore, we exhibit significantly improved task performance
for heterogeneous swarms generated by our novel allocation evolution approach,
when compared with separate homogeneous swarms using identical controllers.
The introduction of this multi-step method for evolving swarm-controller alloca-
tions represents the major contribution of this work.

v



Table of Contents

List of Tables ix
List of Figures X
List of Abbreviations xi

1 Introduction 1
1.1 Research Questions . . . . . . . . . . ... 3
1.2 Motivation . . . . . . ..o 4
1.3 Contributions . . . . . . . ... L )
1.4 Overview . . . . . . . o )

2 Related Work 6
2.1 Swarm Robotics . . . . . . . ..o 6

2.1.1  Collective Behaviour . . . . . . ... ... ... . 0., 6
2.1.1.1  Spatially Organising Behaviours . . . . . .. .. ... ... 7
2.1.1.2 Navigation Behaviours . . . . . . .. ... ... ... ... 8
2.1.1.3  Collective Decision-Making . . . . . . ... .. ... ... 9
2.1.1.4  Other Collective Behaviours . . . . . . ... .. ... ... 9
2.1.2  Environment Simulation . . . . . .. .. ... 9
2.1.2.1 2D Simulation . . . .. ..o 9
2.1.2.2 3D Simulation . . . . ... ..o 10
2.1.3 Evolutionary Robotics . . . . . . . . ... ... .. 0. 10
2.1.3.1  Automated Robot Design . . . . ... ... ... ... ... 11
2.1.3.2  Fitness Functions . . . . . ... ... 0oL 11
2.1.3.3 Evolving Collective Behaviour . . . . . . .. .. ... ... 12



2.2 Neuro-Evolution . . . . . . . .. .. 13
2.2.1 Artificial Neural Networks . . . . . . .. ... ... ... ... ... 13
2.2.1.1 Classification . . . . . . .. ... ... 13
2212 Encoding . . .. ... 13
2.2.1.3 Training Methods . . . . . . . . . .. ... ... ... ... 14
2.2.2  Evolutionary Algorithms . . . . . .. . .. ... ... ... ... 15
2.2.2.1  Genetic Algorithms . . . . . . .. ... ... L. 15
2.2.2.2 Genetic Programming . . . . .. .. .. ... 16
2.2.2.3 Evolutionary Strategies . . . .. .. ... ... ... ... 16
2.2.2.4  Evolutionary Programming . . . . . . .. ... ... ... 16
2.2.3 Embodied Evolution . . . . ... ... ... 00 16
2.3 Behavioural Diversity . . . . . . . . ... 17
2.3.1 Changing Environments . . . . . .. . ... ... ... ... 17
2.3.2 Population Adaptability . . . . . ... ... L 18
2.3.3 Optimising Task Performance . . . . . . .. ... ... ... .... 18
2.3.3.1 SSGA: Steady-State Genetic Algorithm . . . .. ... .. 18

2.3.3.2 mEDEA: Minimal Environment-driven Distributed Evolu-
tionary Adaptation . . . . . .. ..o 20
2.3.4  Optimising Behavioural Diversity . . . . .. .. .. ... ... ... 20
2.3.4.1 MAP-Elites: Multi-dimensional Archive of Phenotypic Elites 20
2.3.4.2 EDQD: Embodied Distributed Quality Diversity . . . . . 22
2.3.4.3 QED: Quality-Environment Diversity . . . . . . . .. . .. 23
2.4 Discussion . . . . ... 24
Methods 26
3.1 Simulation Task Environment . . . . . . . . . ... ..., 26
3.1.1 Task Difficulty . . . .. .. ..o 26
3.1.2  Framework Extensions . . . . . .. ... ... .. 27
3.2 Agent Representation . . . . . . . . .. . ... 28
321 Dogs . . . .o 28
3.2.2 Sheep . . . . . 29
3.3 Evolutionary Algorithms . . . . . . . . .. ... ... 30
3.3.1 Behaviour Evolution . . . .. ... ... ... 0L 31

vi



3.3.1.1 SHOM: SSGA Homogeneous
3.3.1.2 SHET: SSGA Heterogeneous
3.3.1.3 MHOM: MAP-Elites Homogeneous
3.3.1.4 MHET: MAP-Elites Heterogeneous
3.3.2 Allocation Evolution . . . ... .. ... .....
3.3.2.1 ASHET: Allocate SSGA Heterogeneous
3.3.2.2 AMHET: Allocate MAP-Elites Heterogeneous

3.4 Solution Evaluation . . . . . . . . . . . ... .. ... ..
3.4.1 Task Performance Metrics . . . . . . . ... ...

3.4.1.1 Individual Fitness . . . . ... .. ...

3.4.1.2 Maximum Fitness . .. ... ... ...

3.4.2  Behavioural Diversity Metrics

3.4.2.1 Archive Size . . . . ... ...
3.4.2.2  Quality Diversity Score

3.4.2.3 Unique Behaviours in Swarm

3.5 Summary ... ..

Experiments

4.1 Simulator Configuration . . . . . ... ... ... .. ..

4.2 Experiment Set-Up . . . . . .. . ...
4.2.1 Behaviour Evolution . . . .. .. ... ... ...
4.2.2  Allocation Evolution . . . . ... ... ... ...

4.3 Parameter Tuning . . . . . . . . . ... ...
4.3.1 Behavioural Characteristics . . . . ... ... ..
4.3.2 Variation Operators. . . . . . . . ... ... ...

4.4 Summary ... ...

Results and Discussion

51 Results. . . .. .. ..o
5.1.1 Behaviour Evolution . . . ... .. ... .. ...
5.1.1.1 Metric Trends . . . . . . .. .. ... ..

5.1.1.2  Solution Archives . . . . . . . ... ...

5.1.1.3 Statistical Tests . . . . . .. ... .. ..

vil



5.1.2 Allocation Evolution . . . . . . . . . . . ... 49

5.1.2.1 Metric Trends . . . . . . . . ... ..o 49

5.1.2.2  Solution Archives . . . . . . . ... ... ... 50

5.1.2.3 Statistical Tests . . . . . . . . .. ... 51

5.1.3 Algorithm Comparison . . . . . . . . ... ... ... ... ... . 52

5.1.3.1 Behaviour vs. Allocation Evolution . . . . . . .. ... .. 52

5.1.3.2  Overall Algorithm Ranking . . . . . ... ... ... ... 54

5.2 DISCussion . . . . ... 56
5.2.1 Research Question 1 . . . . . .. . ... ... ... .. ....... 56

5.2.2 Research Question 2 . . . . . . .. ... .. L o7

5.2.3 Research Question 3 . . . . . . .. ... ... ... 58

5.2.4 Research Question4 . . . . .. .. ... ... ... 59

5.2.5 Previous Work . . . . . ... 60

6 Conclusion 63
References 65

viii



List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
2.3
5.4

2.5

0.6

Neuro-evolution and simulation parameters . . . . . . . . . . .. ... ... 38
Experiment run configuration . . . . . . .. .. ..o 39
Behavioural characteristic maximum values . . . . . . . ... ... ... .. 41
Variation operator values for tuning experiments . . . . . . . . . . .. ... 42
Behaviour evolution (SSGA vs. MAP-Elites) statistical test results . ... 48

Behaviour evolution (homogeneous vs. heterogeneous) statistical test results 48
Allocation evolution (SSGA vs. MAP-Elites) statistical test results . . .. 52

Heterogeneous behaviour evolution vs. heterogeneous allocation evolution
statistical test results . . . . . . . ... oL 53

Homogeneous behaviour evolution vs. heterogeneous allocation evolution
statistical test results . . . . . . ... 54

Comparative ranking of evolutionary algorithms . . . . . . .. .. ... .. 55

X



List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6

4.1

5.1
2.2
2.3
0.4

Taxonomy for collective behaviours . . . . . .. .. .. ... ... ... .. 7
Taxonomy for fitness functions . . . . . . . . . ... ... .. ... 12
Generic neural network architecture . . . . . . ... ..o 14
Taxonomy for evolutionary algorithms . . . . . ... ... ... ... ... 15
Embodied evolution as an evolutionary robotics methodology . . . . . . . . 17
MAP-Elites search spaces . . . . . . . . . . .. ... . 21
Simulation environment for the collective herding task . . . . . . . . .. .. 27
Overview of agent sensory configuration . . . . . ... ... ... ..... 28
Artificial neural network topology for dog agent controllers . . . . . . . .. 29
Overview of evolutionary algorithms implemented . . . . . . . . . ... .. 30
Behaviour genome mapping . . . . . . .. ..o 31
Allocation genome mapping . . . . . . . . ... ... 33
Variation operator tuning experiment results . . . . . . . . ... ... ... 42
Behaviour evolution metric trends . . . . . . .. ... 45
Behaviour evolution solution archives . . . . . . .. ... ... ... .... A7
Allocation evolution metric trends . . . . . . . . .. ... L. 50
Allocation evolution solution archives . . . . . . . . ... .. .. ... ... 51



List of Abbreviations

AMHET
ANN
ASHET
EA
EDQD
ER
ES
FOV
GA
GGA
GP
MAP-Elites
mEDEA
MHET
MHOM
PFSM
SR
SHET
SHOM
SSGA
QD
QED

Allocate MAP-Elites Heterogeneous
Artificial Neural Network

Allocate SSGA Heterogeneous
Evolutionary Algorithm

Embodied Distributed Quality Diversity
Evolutionary Robotics

Evolutionary Strategy

Field of View

Genetic Algorithm

Generational Genetic Algorithm
Genetic Programming
Multi-dimensional Archive of Phenotypic Elites
Minimal Environment-driven Distributed Evolutionary Adaptation
MAP-Elites Heterogeneous

MAP-Elites Homogeneous

Probabilistic Finite State Machine
Swarm Robotics

SSGA Heterogeneous

SSGA Homogeneous

Steady-State Genetic Algorithm

Quality Diversity

Quality-Environment Diversity

xi



Chapter 1

Introduction

The field of swarm robotics (SR) has progressed greatly since its inception approximately
30 years ago [11, 12]. Research in this area is primarily focused on the development of
artificial, multi-agent systems [27] which can effectively collaborate to achieve a common
goal. It has been defined as “the study of how large numbers of relatively simple physically
embodied agents can be designed such that a desired collective behaviour emerges from
the local interactions among agents and between the agents and the environment” [118].
Inspiration for these behaviour models traditionally come from natural collective systems,
such as ant and other insect colonies.

Developing such systems requires careful consideration of the controller algorithms em-
ployed for individual robots to interact cohesively. Artificial neural networks (ANNs) are
commonly used for this purpose, which attempt to emulate the functioning of biological
brains [137]. A graph of nodes is structured in sequential layers whereby sensory informa-
tion is passed into the first layer of input nodes and propagated through several so-called
“hidden” layers, finally resulting in behaviour directives being passed out the final layer
of output nodes. The transformation from input values to output values is chiefly gov-
erned by weighted connections between nodes. Rather than programming these manually,
a popular approach is to use evolutionary techniques. This is implemented by simulating a
task environment where, through the process of natural selection over multiple repetitions,
robots have their ANN connection weights adjusted (by mutation and crossover events)
and gradually improve at achieving their assigned goals.

Successful swarm robotic systems should also be designed to cope with the unpre-
dictable nature of real-world environments and to adapt accordingly. Recent research has
highlighted the potential of evolving behaviourally diverse populations which demonstrate
robustness [15, 61]. This approach is intuitive to understand in the context of biological
populations, where groups of similar individuals are more susceptible to environmental
pressures and catastrophic events than diverse groups of individuals. In the latter case,
it is likely that subsets of a diverse population will display the ability to adapt to new
circumstances even if the remainder of the population cannot. It has also been shown
that diverse groups of individuals tend to perform better at solving problems and collec-
tive tasks than homogeneous groups [63, 65, 87]. As a result of these purported benefits,



research interest has grown surrounding different approaches for evolving behavioural (or
functional) diversity in robot swarms.

Traditional evolutionary algorithms, however, do not explicitly promote the evolution
of behavioural diversity. One example is the collection of “steady state” approaches, which
was originally introduced by Whitley and Kauth with the GENITOR algorithm in 1988
[135]. The key factor with steady-state genetic algorithms (SSGAs) is that the popula-
tion size remains constant over time, with fitter offspring individuals replacing others in
the parent population. Another example is the minimal Environment-driven Distributed
Evolutionary Adaptation (mEDEA) algorithm which was introduced in the 2010 study by
Bredeche and Montanier [19]. This is an embodied (or distributed) evolutionary algorithm
[57] which functions based solely on local interactions between robots, as opposed to a
centralised approach in which there is a global coordination of reproduction and evolution.
The mEDEA algorithm aims to provide long-term adaptation to a robot population in the
face of unpredictable environment changes and operates via genome broadcasting between
nearby robots which, at the end of their lifetime, randomly select one of their received
genomes, mutate it and use it for the next generation.

Since focus has shifted towards heterogeneous robot swarms in recent years, a number
of evolutionary algorithms have been developed which optimise evolved populations for
both high task performance and greater behavioural diversity. These are often referred to
as “illumination algorithms” because of their ability to illuminate the search space defined
by specific behavioural features of solutions [129]. Multi-dimensional Archive of Pheno-
typic Elites (MAP-Elites) is a popular approach which underlies many of these algorithms.
Introduced in 2015 by Mouret and Clune [94], MAP-Elites operates by storing solutions in
an archive which is apportioned into bins along multiple feature dimensions. For example,
designs of a robot body evolved for a walking task might placed in an archive based on
the solution features of leg length and body weight. As evolution proceeds, novel solu-
tions which fall into bins containing existing solutions are only stored if they demonstrate
superior fitness, resulting in an archive of elite solutions being produced.

Some extensions to MAP-Elites include the Embodied Distributed Quality Diversity
(EDQD) and Quality-Environment Diversity (QED) algorithms. EDQD was introduced
in 2018 by Hart, Steyven and Paechter [61] and presents a hybrid approach incorporat-
ing both MAP-Elites and mEDEA. This involves the transmission of a local MAP-Elites
archive between robots rather than just a single genome. QED was introduced in 2020
by Bossens and Tarapore [15] and makes use of feature dimensions which describe the
solution’s evaluation environment rather than the solution itself.

The simulation environments used in the evolution of SR systems are usually task-
specific and can be either static or dynamic in nature. Static environments are those
in which changes are only brought about through the direct manipulation by robots of
objects in the arena. In other words, the absence of robots would result in an unchanging
environment over time. For example, collective construction tasks [110] are often simulated
in static environments where the position of objects (or building blocks) are only affected
by robots directly moving them. Dynamic environments, on the other hand, are those in
which changes occur independent of robot interaction. For example, a collective herding



task [84] is inherently dynamic due to the presence of non-robot agents which move freely
through the environment, thereby changing the complexity of the task over time.

Our aim, in this thesis, is to investigate methods for generating behavioural diversity in
a collective herding task with the end goal of creating a heterogeneous robot swarm. This is
approached using extensions of the SSGA and MAP-Elites evolutionary algorithms. Both
are implemented in a centralised manner (as opposed to distributed) with the key difference
being that MAP-Elites explicitly promotes diversity, whereas SSGA does not. We compare
the effectiveness of these algorithms from the two perspectives of either evolving behaviours
for a homogeneous swarm (that could be combined in future to make a heterogeneous
swarm) or directly evolving a heterogeneous swarm. We then investigate the potential of
a novel, multi-step procedure in which the pre-evolved solutions for a homogeneous swarm
are used for evolving an optimal allocation in a heterogeneous swarm.

1.1 Research Questions

This research focuses on the evolution of behavioural diversity for SR systems in dynamic
task environments. Therefore, we are concerned with algorithms capable of evolving both
high-performing robot controllers and effective allocations of these controllers to individuals
within a behaviourally diverse swarm. We aim to investigate and compare the purported
performance benefits of heterogeneous swarms with those of homogeneous swarms, as well
as different methods for generating heterogeneous swarms.

There are three primary approaches which are implemented and analysed for the above
purposes. Firstly, we look at standard evolutionary algorithms (EAs), including SSGA
and MAP-Elites, which produce a homogeneous swarm by evolving the same controller
for each robot (Method 1). Secondly, we look at variations of these EAs which produce a
heterogeneous swarm by simultaneously evolving different controllers (as part of a single
swarm genome) for each robot (Method 2). Finally, we look at a novel approach which pro-
duces a heterogeneous swarm by evolving an allocation of behaviourally diverse controllers
(generated by Method 1) for each robot (Method 3).

These methods are each divided into sub-methods based on the underlying EA used for
controller evolution, where the first sub-method uses SSGA and the second sub-method
uses MAP-Elites. In this report, both Method 1 and Method 2 will be referred to as the
behaviour evolution experiments (since the robot controllers themselves are being evolved)
and Method 3 will be referred to as the allocation evolution experiments (since the alloca-
tion of robot controllers is being evolved).

The specific questions which this research seeks to answer are therefore:

1. Does the use of MAP-Elites for the evolution of a homogeneous swarm (Method 1.2)
result in higher task performance compared with SSGA (Method 1.1)7

2. Does the use of MAP-Elites for the evolution of a heterogeneous swarm (Method 2.2
and Method 3.2) result in higher task performance compared with SSGA (Method
2.1 and Method 3.1)?



3. Does a heterogeneous swarm (Method 2 and Method 3) elicit any advantage over
standard homogeneous swarm-behaviour evolution (Method 1) for a collective herding
task, given increasing task complexity?

4. When evolving a heterogeneous swarm for a collective herding task with increasing
task complexity, does a multi-step evolutionary process which optimises the allocation
of pre-evolved controllers to robots (Method 3) produce higher-performing swarms
than the single-step direct evolution of a diverse swarm (Method 2)?

In answering these questions, several standard metrics are measured to evaluate swarm
performance and behavioural diversity. These include archive size, maximum fitness and
quality diversity score. Details of each metric are provided in section 3.4.

1.2 Motivation

These questions were motivated by previous results and research in the literature, as de-
scribed in chapter 2. Specifically, we aim to extend on the results presented in the 2018
study by Hart, Steyven and Paechter [61].

In ecology, there are hypotheses which suggest that behavioural diversity amongst indi-
vidual organisms is positively related to the robustness of the overall population to changes
in the environment [26, 131]. It is proposed that this same principle can be applied to the
design of SR systems, thereby providing similar benefits to population performance and
adaptability [61]. This research seeks to investigate and yield further evidence for this
theory.

Moreover, a collective herding task has been selected as it represents a uniquely dynamic
interaction between swarm, task and environment. This task not only encourages robots
to adapt to a changing environment with moving entities, but also to an unpredictable
task with differing solutions. Since the herd’s movement is randomly generated for each
simulation, the task environment promotes the evolution of robots equipped with more
general herding approaches rather than specialised robots attuned to a few specific herd
configurations. Additionally, this task environment allows us to investigate the general
applicability of previous hypotheses in different environments.

The two underlying evolutionary algorithms, SSGA and MAP-Elites, have been chosen
for this investigation since they both represent popular, elementary algorithms. SSGA
is a standard approach which maintains a regularly-sized population throughout the evo-
lutionary process but only seeks to optimise task performance rather than behavioural
diversity. MAP-Elites, on the other hand, is a recently introduced approach which seeks
to optimise both task performance and behavioural diversity in a variable-sized population
during evolution.

Finally, the implementation of our novel approach for generating heterogeneous swarms
via the evolution of behaviour allocations offers the opportunity to compare performance
with previous approaches from the literature, such as Embodied Distributed Quality Di-
versity (EDQD) [61] and Quality-Environment Diversity (QED) [15].

4



1.3 Contributions

In addressing the questions stated above, this research provides the following contributions:

1. Replication of previous research investigating swarm behavioural diversity in a dif-
ferent, dynamic environment for a collective herding task.

2. A novel evolutionary approach based on the SSGA and MAP-Elites algorithms for
efficiently generating heterogeneous swarms via the allocation of pre-evolved, be-
haviourally diverse robot controllers.

3. An extended simulation framework which enables the simultaneous control of multi-
ple agent types as well as parallelised performance evaluation.

1.4 Overview

This thesis is divided into five chapters: Related Work (chapter 2), Methods (chapter 3),
Experiments (chapter 4), Results and Discussion (chapter 5) and Conclusion (chapter 6).

Chapter 2 reviews related work in the fields of swarm robotics and neuro-evolution
covering, inter alia, collective behaviour, artificial neural networks, evolutionary algorithms,
behavioural diversity and population adaptability.

Chapter 3 describes the various aspects of the methodology implemented in this re-
search. This includes the simulation framework, task environment, agent types, controller
design, evolutionary algorithms and solution evaluation.

Chapter 4 outlines the experimental design used to evaluate the various evolutionary
strategies being investigated in this research. The simulator configuration and parameter
tuning for these experiments are also presented here.

Chapter 5 presents the experimental results and discusses performance differences be-
tween alternative methods. There is a specific focus on reviewing and addressing our
research questions, as described in section 1.1.

Finally, chapter 6 distils the key conclusions from the discussion, summarises the con-
tributions of this research and provides suggestions for future work.



Chapter 2

Related Work

This chapter reviews the literature covering the fields of collective robotics and neuro-
evolution, as well as work investigating the incorporation of behavioural diversity into
the evolution of adaptable populations. Firstly, a high-level explanation is given for how
collective robotics systems are simulated and evolved. Thereafter, an in-depth analysis of
the strategy and process of neuro-evolution is provided. This includes an introduction to
the concepts of artificial neural networks and evolutionary algorithms. Finally, the concept
of population adaptability in changing environments is outlined and previous work on state-
of-the-art algorithms for evolving behavioural diversity is reviewed.

2.1 Swarm Robotics

Swarm robotics (SR), a sub-field of collective robotics, is the problem-solving approach
whereby a homogeneous, multi-robot system accomplishes specific task goals through col-
laborative, collective behaviour [79]. In this context, the term “homogeneous” is referring
to groups of robots with highly similar, if not identical, neural controllers and/or body
plans. There are many real-world applications for SR systems, such as hazardous waste
clean-up and oceanic environmental monitoring [118]. This section reviews previous work
in the SR field and explores the connection with evolutionary robotics.

2.1.1 Collective Behaviour

The 1990s saw a surge of interest in the application of social insect group behaviour patterns
to the field of robotics [36, 78, 79, 88]. Similar to how ant colonies consisting of many simple
individuals can achieve tasks far beyond the capabilities of any single ant, it was envisaged
that simple robot controllers could collectively produce complex behaviour. The successful
implementation of such a SR system requires a form of decentralised control similar to that
employed by social insects [79]. This requires robot controllers to be designed in such a way
that the local interactions produced by their behaviour result in global coordination [18].
Modelling such control architectures is not an elementary computational task and so the
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Figure 2.1: Taxonomy for collective behaviours [98]. Diagram representing classes
of collective behaviours relevant to swarm robotics applications, as proposed by Brambilla
et al. [17].

use of artificial neural networks and evolutionary algorithms (elucidated in section 2.2),
both inspired by biological systems, has been adopted as a standard approach [79, 88, 128].

Several classes of collective behaviour have been previously defined, including spatially
organising behaviours, navigation behaviours and collective decision-making (see Figure
2.1). The following subsections review each of these behaviour classes and the related
work in the literature.

2.1.1.1 Spatially Organising Behaviours

This class of behaviours is related to tasks in which robots and objects are arranged
and distributed in space. Such behaviours include aggregation, pattern formation, chain
formation, self-assembly and object clustering.

Aggregation represents a simple form of collective behaviour whereby robots gather in
a specific region of the environment, allowing for nearby interaction. Implementation is
usually achieved through the use of either probabilistic finite state machines (PFSMs) or
artificial evolution [17]. A popular probabilistic approach is based on the aggregation dy-
namics of cockroach populations, as originally proposed in 2007 [33]. Similar approaches
using slightly altered PFSMs have also been successfully demonstrated [10, 120]. Alterna-
tively, evolutionary methods have been applied to evolving suitable robot controllers for
aggregation tasks [50, 127].

Pattern formation behaviours involve positioning robots in relation to each other at
regular and repetitive intervals [17]. Usually, these robot models are developed using
virtual physics-based design. One of the first studies implementing such a design was
published in 2004, where robots used virtual forces to form a hexagonal lattice [124].



Chain formation is a class of behaviours in which robots position themselves to connect
target points. The most common approaches used in this category are PFSMs [40, 104],
virtual physics-based design [89] and artificial evolution [125].

Self assembly is a unique form of collective behaviour where robots physically connect
to each other. There are two primary, associated challenges — morphogenesis (how to
form the target structure) and control (how to command the target structure) — which are
approached differently [17]. The former is usually addressed using PFSMs [106] with the
latter using either PFSMs or artificial evolution [107].

Object clustering includes behaviours in which robots move objects in the environment.
This can result in either the gathering (non-connected) or assembling (connected) of those
objects [17]. The most common approach is to utilise PFSMs, such as in the seminal work
by Beckers el al. [13].

2.1.1.2 Navigation Behaviours

In these types of collective behaviours, the coordinated movement of robot swarms is de-
veloped and simulated. Included behaviours are collective exploration, coordinated motion
and collective transport.

Collective exploration includes behaviours in which robots cooperate to explore and
navigate their surrounding environment. To achieve these goals, the collective behaviours
of area coverage and swarm-guided navigation are often used. Area coverage aims to
distribute robots throughout an environment forming a grid of communicating robots,
whereas swarm-guided navigation aims to have robots direct the movement of other robots.
Virtual physics-based design is usually employed to address area coverage, while swarm-
guided navigation focuses on communication protocols implemented with PESMs [17]. One
study introduced the concept of “virtual pheromones” where, through communication,
robots created a gradient between source and destination which could be exploited for
navigation [109].

Coordinated motion, also known as flocking, refers to collective behaviours in which
robots harmoniously move together in a manner similar to that of birds or fish. These
behaviour models are often based on virtual physics-based design, but artificial evolution
has also been used successfully [17]. The first application of coordinated motion developed
a virtual flock of birds and was published in 1987 under the computer graphics domain
[116]. In this paper, the concept of a “bird-oid” object (or “boid”) was introduced which
has since come to refer to the popular flocking algorithm employed.

Collective transport tasks involve robots collaborating to move objects that are too
large or heavy to be handled by individual robots. These behaviours are obtained through
the implementation of PFSMs or artificial evolution [17]. One of the first studies into
distributed, collective transport was published in 1997 and proposed behaviours based on
force sensing, position sensing and orientation sensing [38].



2.1.1.3 Collective Decision-Making

These types of collective behaviour cope with the problem of how robots should influence
other robots when deciding between different options. Such behaviours include consensus
achievement and task allocation.

Consensus achievement is associated with achieving agreement on decisions between
all robots in a swarm. There are two subcategories of implementation based on the type of
communication model employed, namely direct and indirect communication [17]. A 2010
study used direct communication in a swarm of foraging robots to choose between two
foraging zones [59]. Indirect communication was used in a 2009 study where a swarm of
cockroach-like robots sought consensus agreement [55].

Task allocation behaviours attempt to optimise performance by delegating available
tasks between robots in a swarm. The primary approach used here is PFSMs, where
probabilities for selecting different tasks are altered amongst robots [17]. A 2000 study,
representing one of the first works in task allocation, implemented a simple threshold-based
model governing how robots would either leave a nest to collect prey or remain in the nest
[77].

2.1.1.4 Other Collective Behaviours

Besides these major classes of collective behaviour described above, there are many works
in swarm robotics which do not fall neatly into this classification system. These include
behaviour types such as collective shepherding [84], collective fault detection [30], group
size regulation [92] and human-swarm interaction [91].

Collective shepherding, specifically, represents a unique form of dynamic task environ-
ment for SR applications. Unlike most of the behaviours previously described in this sec-
tion, collective shepherding (or simply collective herding) involves interactions with other
autonomous agents in the environment rather than just static objects. In 2020, Long et al.
[84] compiled a comprehensive review of prior research in swarm shepherding behaviour.

2.1.2 Environment Simulation

There are a variety of software packages available for simulating swarm robotics systems,
which have developed in terms of increasing complexity and realism over the years. These
broadly fall into the two categories of 2-dimensional (2D) and 3-dimensional (3D) simula-
tors.

2.1.2.1 2D Simulation

SimbotCity represents one of the early robot population simulators, developed by Kube
and Zhang for their related work in the 1990s [78, 79]. In their implementation, a modified
fixed-priority subsumption architecture [21] was used for managing behaviour arbitration.



Many modern alternatives have been developed in recent years. ARGoS was intro-
duced in 2011 with the primary objective of providing a simulation environment for large
heterogeneous robot swarms [111]. In 2013, a C++ based simulator named Roborobo!
was released which specialises in evolutionary swarm robotics [20]. In 2015, Kilombo was
announced as virtual simulator for the popular Kilobot robot [117] (traditionally used in
physical simulations) which greatly expedites development and allows for pre-screening of
potential controller algorithms [71]. Even more recently, in 2019, a paper was published
detailing a massive multi-agent simulation environment, SCRIMMAGE, for simulating col-
laborative robots [35].

2.1.2.2 3D Simulation

Gazebo was introduced in 2004 as one of the first freely-available 3D simulators specific to
robotics applications [75]. A major intention behind its development was to fill a gap in
simulators of the time by producing one capable of outdoor environment simulation. De-
spite representing a significant step forward in robotics simulation, the simulator possessed
many limitations such as a lack of physics models for pliable surfaces (e.g. soil, sand and
grass) which are prevalent in outdoor environments.

In 2006, an open source Java 3D robotics simulator named Simbad was introduced [67].
This simulator was designed to be simple and fast to adopt for projects in either research or
education. It was specifically intended to be used in evolutionary robotics applications and
was distributed with pre-installed packages for both neural network and artificial evolution
implementations.

The distributed robotics simulator V-REP (Virtual Robot Experimentation Platform)
was first released in 2010 [51]. A versatile, modular architecture was incorporated which
maintains a high level of performance by only applying intensive physics models to the
necessary parts of the system. The processes of control, actuation, sensing and monitoring
are concurrently simulated, allowing for complex configurations of different sensors and/or
actuators. Still under active development, this 3D simulator is widely used today and has
since been renamed to CoppeliaSim.

2.1.3 Evolutionary Robotics

FEvolutionary robotics (ER) is the field of research into the automatic design of autonomous
robot controllers and morphologies through processes which mimic natural evolution [52].
The basic premise of natural evolution is that a population of genetically similar, yet
unique, organisms compete in a common environment and, through the process of natural
selection, the “fittest” individuals survive and reproduce [136]. In this manner, superior
traits are inherited over successive generations and the population as a whole tends to
become better adapted to its environment.
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2.1.3.1 Automated Robot Design

Traditionally, robotic controllers and morphologies are manually, and often laboriously,
designed by human engineers [99]. This is an expensive endeavour that has hindered
potential niche applications of robotics which are not feasible without the economies of
scale [83]. ER provides an alternative, cost-effective approach to robot design whereby
variations are automatically assessed for functionality through simulation and iteratively
improved over multiple cycles [42]. Using this method of artificial evolution, new models
of cognition can be developed that, through experimental analysis, may prove better than
existing hand-designed solutions [102]. Furthermore, many real-world environments are
inaccessible (e.g. deep ocean, outer space and extraterrestrial planets) and necessitate
fully automated robot design and evaluation approaches, where it is not feasible to have
pre-engineered solutions [68, 100].

2.1.3.2 Fitness Functions

A key aspect of the artificial evolution process used in ER is the measurement of fitness for
the developing robotic components. During each cycle, or generation, robots (consisting of
the current state of the evolving morphology and/or controller) are tasked with engaging
in an evaluation period. Each robot morphology and/or controller (whichever is being
evolved) is then assessed based on its performance using a fitness function. As the final
step in each cycle, an evolutionary algorithm (see section 2.2.2) is applied which uses the
results from the fitness function to selectively propagate the fittest robots for the next
generation [99].

There are seven broad classes of fitness functions as defined by Nelson, Barlow and
Doitsidis [99]. This classification system is based on the level of a priori knowledge incor-
porated by the fitness functions (see Figure 2.2). Firstly, there are training data fitness
functions which use datasets for comparing behaviour and scoring fitness. These are com-
monly used in mimetic learning, where a robot attempts to replicate the behaviour of a
trainer [37]. Secondly, there are behavioural fitness functions which assess fitness based
on how a robot goes about performing its tasks rather than what it ultimately achieves
[8]. In contrast, there are also aggregate fitness functions which select based only on high-
level ability to accomplish a task, without consideration of the behaviour involved [66].
Combining characteristics of both behavioural and aggregate fitness functions, there are
tailored fitness functions which contain behaviour-measuring terms and aggregate terms in
the fitness calculation [114]. Then there are functional incremental fitness functions which
are used to iteratively select for more complex abilities by progressively adapting the fit-
ness function over the course of robot evolution [81]. Similarly, there are environmental
incremental fitness functions which gradually increase the difficulty of the environment in
which the evolving robots interact [97]. Finally, there is competitive and co-competitive
fitness selection which involves direct intra-population competition between individuals,
where interactions influence other robots’ behaviours and their resulting fitness evaluation

23].

11



Aggregate
7]
g Competitive | C ity Comp
o
c Environmentall Environmental
.g Incremental | Incremental
o
c
=1
[T
7]
7]
(]
£
o Behavioral Behavioral
: 52(,&\0 5 a® A Priori Knowledge
NS W e Incorporated

Figure 2.2: Taxonomy for fitness functions [99]. Chart relating classes of fitness
function to levels of incorporated a priori knowledge.

2.1.3.3 Evolving Collective Behaviour

ER enables the development of robot controllers which facilitate the self-organising, col-
lective behaviour patterns required in SR systems. This is possible by simulating environ-
ments which require collaboration between individuals for successful task completion and
the subsequent selection and propagation of effective controllers.

Baldassarre, Nolfi and Parisi [7] demonstrated that simulated robots evolved for the
ability to move together toward a light target were able to display collective behaviours
with interesting properties. Forms of situated specialisation were observed where robots
with identical controllers expressed varying behavioural roles dependent on their specific
circumstances in the group.

Similar forms of specialised behaviour (albeit in a heterogeneous population) were
specifically selected for in research by Nitschke, Schut and Eiben [101] where the per-
formance of three cooperative co-evolution methods was compared. In this study, robot
controllers were evolved for a simulated collective construction task. The results indicated
that the method of collective neuro-evolution (CONE) outperformed the other two tested
methods: multi-agent enforced sub-populations (MESP) and cooperative co-evolutionary
algorithm (CCGA).

Distinguishing it from the majority of studies in the field, research in 2002 by Quinn
et al. [114] explored the evolution of controllers for real robots. Here, robots, minimally
equipped with infrared sensors, were evolved for a formation movement task. It was ob-
served that a team of robots successfully evolved to adopt individual, specialised roles in
order to complete the assigned task.

More recent work by Duarte et al. [39] similarly investigated the evolution of collabo-
rative control systems for a physical swarm of robots. The neural controllers were initially
evolved, in simulation, for various swarm robotics tasks (e.g. homing, dispersion, clustering
and monitoring) before being transferred to real aquatic surface robots. Results demon-
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strated that the controllers successfully achieved similar task performance in a real-world,
uncontrolled environment as they did in simulation.

2.2 Neuro-Evolution

Neuro-evolution is a broad term encompassing an array of approaches to training artificial
neural networks (ANNs) for specialised behaviours, all of which draw on insights from
neuroscience and evolutionary biology [45]. ANNs are used in many different problem
spaces including pattern recognition, prediction, optimisation and associative memory, as
well as robot control [69, 128]. This section introduces the concept of an ANN, explains
their applicability in evolutionary algorithms (EAs) and describes the method of embodied
evolution in the field of ER.

2.2.1 Artificial Neural Networks

ANNSs are structured as weighted directed graphs with nodes representing artificial neurons
and edges representing the connections between neuron inputs and outputs [69]. An ex-
ample of the basic composition of an ANN is presented in Figure 2.3, where environmental
information flows from input nodes (or units) to output nodes via weighted connections
which may pass through hidden nodes within the network. The original inspiration for this
architecture, as evidenced by the name, can be traced back to the fundamental structure
and operation of biological nervous systems [90]. This alternative approach to computation
makes ANNs far more effective in solving certain problems, such as pattern recognition,
which traditional computational architectures struggle to handle efficiently.

2.2.1.1 Classification

There are two major types of ANNs: feed-forward and recurrent networks [69]. In feed-
forward networks, the graph is acyclic, and data only moves from input nodes to output
nodes. Alternatively, in recurrent (or feedback) networks, cycles occur in the graph whereby
information from previous activations can feed back into the network and alter the inputs
to each node. As a result of this operation, feed-forward networks are considered to be
static (i.e. only produce a single set of output values for a given input value) whereas
recurrent networks are considered to be dynamic (i.e. produce a sequence of output values
for a given input value).

2.2.1.2 Encoding

ANN architectures can be represented using either direct or indirect encoding schemes
[73, 138]. In the former approach, all the structural information (i.e. every node and
connection) of the ANN is encoded in an unabridged form. This representation results in a
one-to-one mapping from the genotype (or encoding) to the phenotype (or architecture). At
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Figure 2.3: Generic neural network architecture [45]. Input units and output units
are connected to the external environment and hidden units which connect to other neurons
but are not directly connected to the environment.

the other extreme, with indirect encoding, only the most pertinent aspects of the network
(e.g. the number of hidden layers) are encoded such that a variation of the phenotype can
be derived from the genotype [138].

2.2.1.3 Training Methods

Training ANNSs involves iteratively updating connection weights to achieve greater task
performance. The ability of ANNs to automatically learn through experience of examples,
rather than following prescriptive rules, is one of the major advantages over conventional
expert systems [69).

Traditionally, ANNs are trained using methods such as supervised and reinforcement
learning. Supervised learning techniques, such as backpropagation [5], make use of labelled
data sets (i.e. correct input-output pairs) to incrementally revise connection weights in the
network so as to match the mapping between inputs and expected outputs. Reinforcement
learning techniques, on the other hand, do not use labelled training data and are commonly
implemented in situations where such data is difficult or impossible to compile. In the
standard model, an agent (or robot) is placed in an environment where it can both sense
its surroundings and control the actions of its body. The agent is then incentivised, through
a system of reward and punishment, to favour behaviour that achieves specific goal-oriented
objectives [72].

An alternative approach, known as unsupervised learning, has also proven successful
in training ANNs. Unsupervised learning techniques provide none of the exemplar solu-
tions or reward and punishment feedback used in supervised and reinforcement learning,
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Figure 2.4: Taxonomy for evolutionary algorithms [130]. Diagram representing the
classes of evolutionary algorithm as well as their placement in the broader field of search
methods.

respectively [9]. Instead, simply the correlations between input data are considered. Neuro-
evolution algorithms (see section 2.2.2) typically fall under this category.

2.2.2 Evolutionary Algorithms

FEvolutionary algorithms (FAs) represent a class of probabilistic optimisation algorithms
which are based on the model of natural evolution [6]. These entail a collective learning
process whereby individuals in a population, representing potential solutions to a problem,
undergo repetitive cycles of selection, mutation and recombination converging on an opti-
mal solution [6]. When EAs are applied to training ANNs (especially for complex control
tasks), the process is referred to as neuro-evolution.

There are four main streams of EAs (as shown in Figure 2.4) which are differen-
tiated based on the data structures used in the encoding of candidate solutions: ge-
netic algorithms, genetic programming, evolution strategies and evolutionary programming
[6, 41, 130]. The following subsections review each of these categories and their related
works.

2.2.2.1 Genetic Algorithms

The concept of genetic algorithms (GAs) was first introduced by Holland in the early 1960s
[64] and remains the most popular type of EA in use today [60, 130]. Sexual recombination
acts as the primary operator for this method, with mutation as a secondary operator [31].
GAs use strings over a finite alphabet (traditionally binary [138]) to represent the genotype
of solutions. Applications have been explored in the areas of machine learning [58], pattern
recognition [3, 85] and optimisation problems [80, 105].
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2.2.2.2 Genetic Programming

The genetic programming (GP) approach was originally introduced by Koza in 1992 [76],
using a genetic algorithm with a tree-based encoding [31]. It presented a solution to the
problem of how to use an artificial intelligence system to automatically generate a desired
computer program [31]. Unlike the binary encoding employed by GAs, GP uses programs or
instruction sets as attributes [130]. This method has been applied to arithmetic operations
[96], boolean operations [93] and recursive functions [1].

2.2.2.3 Evolutionary Strategies

The class of evolutionary strategies (ESs) was first developed by Rechenberg during his
PhD studies in 1973 [115]. This was proposed as an optimisation method for difficult
problems in hydrodynamics [31]. In this approach, solutions are directly represented using
vectors of real numbers and no intermediary encoding is used as with GAs and GP [130].
Relevant application areas include networking, biochemistry and optics [31].

2.2.2.4 Evolutionary Programming

Evolutionary programming was introduced by Fogel in the 1960s [46] and bears close re-
semblance to ESs. This method attempts to consider intelligence in the light of being an
adaptive behaviour [31]. Similar to ESs, no particular encoding is used and representation
is selected based on the appropriate format for decision variables [31]. Some well-known ap-
plications of evolutionary programming include forecasting [47], games [25] and automatic
control.

2.2.3 Embodied Evolution

The approach of embodied evolution (see Figure 2.5) was first introduced in 1999 [43]. This
method is based on a probabilistic version of Harvey’s microbial GA [62]. It sought to
address the need for ER systems to autonomously evolve while simultaneously performing
tasks in the environment. The proposed method is defined as “evolution taking place within
a population of real robots where evaluation, selection and reproduction are carried out by
and between the robots in a distributed, asynchronous and autonomous manner” [43].

Therefore, since there is no centralised locus of control in such an algorithm, the funda-
mental evolutionary operations of evaluation, selection and reproduction must be executed
locally by each robot. Performing evaluation locally necessitates programming some metric
of fitness measurement into the robots. Selection involves differentiating between the more
and less fit individuals in the population and ensuring that the more fit robots propagate
genes while the less fit have their genes replaced. Finally, reproduction usually entails using
the previously selected, less fit robots to be used as bodies for new offspring.
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Figure 2.5: Embodied evolution as an evolutionary robotics methodology [132].
Tree diagram illustrating the relative classification of embodied evolution alongside other
methods.

2.3 Behavioural Diversity

Recently, focus has intensified in the investigation of the effect of behavioural (or functional)
diversity on robot task performance. There are practical benefits to the development of
functionally diverse robot swarms, including increased robustness to environmental changes
[61]. In this section, we review the implications of changing environments, the relevance of
behavioural diversity to population adaptability and, finally, some evolutionary approaches
for developing performant and diverse robotic populations.

2.3.1 Changing Environments

Most research in the field of evolutionary robotics to date has been conducted in static and
predictable simulated environments. Real-world environments, however, are constantly
undergoing gradual changes and occasionally experience sudden periods of major disrup-
tion. In natural ecosystems, such phases of rapid change are often accompanied by the
extinction of some species and the adaptation of others [24]. This represents a fundamental
challenge for the field of swarm robotics, in which multi-agent systems must be developed
for prolonged use in dynamic, unpredictable environments. Future swarm robotics appli-
cations envision sending robot swarms into remote, hazardous environments for tasks such
as nuclear waste removal [2, 14]. These swarms must be able to continuously adapt their
behaviour to survive and perform tasks successfully.

In the field of machine learning, overfitting is an established problem whereby candidate
solutions perform effectively on training data but fail to generalise well to unseen examples
[133]. Overfitting has been demonstrated in reinforcement learning applications, such as
maze-finding tasks where trained agents perform poorly when placed in new environments
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[123]. Furthermore, the concept of “the reality gap” has been coined in evolutionary
robotics to refer to systems that work appropriately in simulation but not in the real world
[70]. Therefore, evolutionary approaches which optimise for population adaptability in
changing environments (as opposed to solely static task performance) are needed.

2.3.2 Population Adaptability

To combat the negative consequences of changing environments, natural populations have
developed mechanisms to adapt to new circumstances. Natural selection is the elementary
process whereby species evolve over time to become better suited to their environments
[136]. While evolutionary robotics attempts incorporate this theory, most approaches have
distinct training phases (where the robots are evolved) and application phases (where the
evolved robot controllers remain fixed and are indefinitely applied to a task). This short-
coming has driven the development of new evolutionary methods which adopt a lifelong
learning process of continual adaptation, even after the initial training phase [119].

Behavioural (or functional) diversity in natural populations has also been shown to im-
prove both their robustness and overall performance. For example, functional diversity in
bee populations has been demonstrated to increase pollination rates [63]. Cultural diver-
sity amongst humans in the workplace is related to better problem solving with different
ways of approaching the same tasks [87]. A more general study using agent-based mod-
elling also found that a diverse team of problem solvers is more likely to outperform a team
of high-ability problem solvers [65]. These results have led to recent research investigat-
ing the impacts on task performance of evolving robotic populations which demonstrate
behavioural diversity.

2.3.3 Optimising Task Performance

Traditional evolutionary algorithms are designed to primarily optimise a solution’s fitness
or task performance. In these cases, the only selective pressure applied to an evolving
population is the relative fitness scores of the individuals. Below, we review two such
algorithms: one which is implemented in a centralised manner (SSGA) and another which
is distributed (mEDEA).

2.3.3.1 SSGA: Steady-State Genetic Algorithm

Evolutionary algorithms incorporating a “steady state” approach were first introduced in
1988 by Whitley and Kauth with the GENITOR algorithm [135]. In a Steady-State Genetic
Algorithm (SSGA), the population being evaluated remains a constant size throughout
evolution. Reproduction takes place one individual at a time, with the parents selected
from the current population and the offspring added directly back into the population.
Individuals are sorted by fitness and, for every new individual generated, the least fit
individual is removed from the population [134].
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Algorithm 1 Example of a SSGA [74]
procedure STEADY-STATE GA
Randomly generate N solutions s;,¢ =1,2,..., N
repeat
Choose parents p; and ps from the population by proportional selection
(01, 09)  crossover(py, p2)
o < fitter of 0; and oy
Replace an individual in the population with offspring o using preselection and
Genitor-style replacement
until the given number T" of generations is reached
return the fittest solution found

Algorithm 2 Example of a GGA [74]
procedure GENERATIONAL GA
Randomly generate N solutions s;,i =1,2,..., N
repeat
for each k + 1,2,..., N/2 do
Select parents si, and s, from the population using tournament selection
with size ¢
(0261, 021) <= (Skys Sky)
(09k—1, 09x) <— crossover(sg,, Sg,) with probability p.
09k—1 — mutation(og_1) with probability p,,
O9r, <— mutation(oqx) with probability p,,

Replace the population with offspring o1, 09, ..., on, keeping the fittest individuals
until the given number 7' of generations is reached
return the fittest solution found

It should be noted that SSGA is considered very similar to another approach known
as the Generational Genetic Algorithm (GGA) [126]. Whereas SSGA is traditionally im-
plemented so that two parent individuals are selected to produce one offspring individual
in each iteration step, GGA rather replaces the entire population with new offspring in-
dividuals in each iteration step (referred to as a “generation”) [121]. This difference in
implementation is clarified in the pseudo-code examples for both SSGA (see Algorithm 1)
and GGA (see Algorithm 2).

In this thesis, the method which we refer to as SSGA is implemented in a manner that
more closely resembles the traditional GGA approach. However, since these terms are used
interchangeably in recent literature and since the other algorithms that we investigate are
also “generational” in nature, the term SSGA is used to avoid unnecessary confusion.
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Algorithm 3 The mEDEA algorithm [19]

genome.randomlInitialize()
while forever do
if genome.notEmpty() then
agent.load(genome)

for iteration = 0 to lifetime do
if agent.energy > 0 and genome.notEmpty() then
agent.move()
broadcast(genome)

genome.empty()
if genomeList.size > 0 then
genome = apply Variation(select,qngom(genomeList))

genomeList.empty()

2.3.3.2 mEDEA: Minimal Environment-driven Distributed Evolutionary Adap-
tation

A 2010 study by Bredeche and Montanier [19] introduced the minimal Environment-driven
Distributed Evolutionary Adaptation (mEDEA) algorithm. This is an embodied (or dis-
tributed) evolutionary algorithm which aims to provide long-term adaptation to a robot
population in the face of unpredictable environment changes. The algorithm operates via
genome broadcasting between nearby robots which, at the end of their lifetime, randomly
select one of their received genomes, mutate it and use it for the next generation. Pseudo-
code for this algorithm is presented above (see Algorithm 3).

2.3.4 Optimising Behavioural Diversity

Although the high performance of solutions in isolation is a reasonable and important ob-
jective for evolutionary algorithms, it does not fully model the process of natural evolution
whereby separate niches are simultaneously optimised and diversified [112]. As such, var-
ious evolutionary approaches have recently been adapted and developed which facilitate
the evolution of behavioural diversity in addition to optimising task performance. These
have been termed quality diversity (QD) algorithms and are often (although not exclu-
sively) based on the popular MAP-Elites algorithm [94, 113]. Applications are realised for
problems where a selection of possible solutions demonstrating different characteristics is
desired, rather than only a single effective solution. The following subsections review the
MAP-Elites algorithm and some of its recent extensions for evolving behavioural diversity.

2.3.4.1 MAP-Elites: Multi-dimensional Archive of Phenotypic Elites

In 2015, the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm was
first introduced [94]. Unlike most search algorithms which traditionally only return the
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Figure 2.6: MAP-Elites search spaces [94]. The algorithm searches in a high-
dimensional space (A) to identify the highest-performing solutions at each point in a low-
dimensional feature space (B).

overall best solution, MAP-Elites is used create an archive of high-performing solutions
covering a user-defined, multi-dimensional search space. This type of search algorithm
is referred to as an “illumination algorithm”, because it illuminates the search space by
providing insight into how different features of interest combine to influence performance
[129].

The algorithm allows for searching in a high-dimensional space to find the highest-
performing solution at each point in a low-dimensional feature space (see Figure 2.6).
These highest-performing solutions are referred to as “elites” and are stored in an archive
which is progressively explored to illuminate the fitness potential of different areas of the
feature space. For example, the high-dimensional search space might be all possible robot
designs, whereas the low-dimensional feature space could be height and weight. Pseudo-
code for this algorithm is presented on the following page (see Algorithm 4).

MAP-Elites was originally demonstrated for solving optimisation problems within robotics
applications such as navigation, exploration and locomotion tasks. For example, there have
been studies investigating the evolution of maze navigation behaviours [112, 113], strategies
for foraging tasks [16, 61], as well as diverse gaits for legged robots [29, 34, 86]. However,
besides robotics, the use of MAP-Elites has been successfully extended to several other
domains where solution diversity is desired. One example is in game design where the
algorithm has been applied to generate game levels with varying characteristics [4]. An-
other is in the field of architecture where diverse sets of urban layouts have been produced
[54]. Industrial design has also seen applications such as the generation of multiple aero-
dynamic airfoil designs [53]. The use of MAP-Elites across these widely different problem
spaces provides clear evidence of its versatility and effectiveness as a tool for promoting
behavioural diversity and discovering novel solutions.

Despite the benefits of search space exploration, solution optimisation and cross-domain
generalisability, there are still some notable limitations of MAP-Elites. Firstly, the al-
gorithm can become computationally expensive, especially when using high-dimensional
feature spaces or complex fitness functions [53]. Secondly, since the algorithm is inherently
elitist, it can demonstrate a bias towards local optima which is exacerbated by poorly
designed fitness functions that assign high fitness to sub-optimal solutions [44]. Thirdly,
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Algorithm 4 The MAP-Elites algorithm [94]
procedure MAP-ELITES
(P« 0,X <« 0)
for iter =1 — I do
if iter < G then
&' < random_solution()
else
x < random_selection(X)
&' + random_variation(x)

b’ + feature_descriptor(z’)
P’ performance(x’)
if P(b') =0 or P(b') < p/ then
P(b) < pf
X))+ x
return feature-performance map (P and X)

there is often difficulty in effective parameter tuning due to the consideration of several
additional hyperparameters such as the number of niches, mutation rate and choice of
behavioural characteristics [103]. As a result, several variants of MAP-Elites have been
developed to address some of its general shortcomings or task-specific inadequacies.

MAP-Elites with Evolutionary Strategies was introduced in 2020 to efficiently scale the
algorithm for high-dimensional controllers parameterised by large neural networks [32]. In
2019, MAP-Elites with Sliding Boundaries was introduced to avoid the overpopulation of
archive cells with conflated behaviours by instead sliding the boundary of cells based on the
distribution of solutions [48]. Dynamic mutation rates were tested with MAP-Elites in 2018
to reduce parameter tuning requirements [103]. Multi-task MAP-Elites was introduced in
2020 to simultaneously optimise solutions for multiple tasks, where each niche corresponds
with a task [95]. There have been numerous other extensions to the MAP-Elites algorithm,
but in the following subsections we review two relevant variants (EDQD and QED) for the
purposes of robotic evolution.

2.3.4.2 EDQD: Embodied Distributed Quality Diversity

The EDQD algorithm was introduced by Hart, Steyven and Paechter in 2018 [61]. This
distributed, evolutionary approach is implemented as a hybrid of MAP-Elites and mEDEA.
As opposed to broadcasting their current genome (like in mEDEA), robots broadcast their
LocalMap in EDQD. This LocalMap represents an elite archive of previously evaluated
genomes (based on MAP-Elites). At the start of each new generation, robots then randomly
select a genome from the received maps of the previous generation. Pseudo-code for this
algorithm is presented on the following page (see Algorithm 5).

In this study, four variations of the algorithm were tested in a token gathering task
environment. The variants are based on different mechanisms by which the active genome
is selected from the received archives and how the LocalMap is updated. It was found that
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Algorithm 5 The EDQD algorithm [61]

genome.randomlnitialize();
local M ap.create();
while (generations < maxGen) do
for iteration = 0 to lifetime do
if agent.hasGenome() then
agent.move();
broadcast(local M ap);

mapList < receivedMaps

localMap < updateLocalMap(genome, fitness);
genome.empty();
if mapList.size() > 0 then
createSelectMap();
genome = apply Variation(select andgom (select Map));
if collectedMapMemory.isForget() then
mapList.empty();

all of the EDQD variants outperformed the benchmark mEDEA algorithm in their ability
to generate greater behavioural diversity, with one variant also achieving higher precision.
This precision (or opt-in reliability) metric was introduced in the original MAP-Elites
study [94] and measures the reliability of an algorithm to produce the optimal solution for
a particular cell in the archive.

These results provide evidence that behavioural diversity can be generated without
specific speciation mechanisms or geographical isolation in the task environment. One
noted limitation is that useful functional traits for the specified task must be pre-defined,
requiring some level of prior knowledge about desired behaviour. However, despite this, it
is hypothesised that this approach could be useful in the further development of techniques
for evolving swarms that are robust to changing environments.

2.3.4.3 QED: Quality-Environment Diversity

The QED algorithm was introduced by Bossens and Tarapore in 2020 [15]. As with EDQD,
it is also built upon MAP-Elites. In contrast to vanilla MAP-Elites, solutions are located
in the archive based on their environment descriptor (features of the solution’s evaluation
environment) rather than their behavioural descriptor. Furthermore, unlike the distributed
approach for EDQD, QED is implemented as a centralised algorithm. Pseudo-code for this
algorithm is presented on the following page (see Algorithm 6).

Rationale behind using environment descriptors for solutions stems from the idea that
different evaluation environments are more likely to induce novel behaviours than multiple
evaluations in the same environment. As such, QED is implemented with an environment
generator that randomly perturbs various attributes of the environment (such as number
of obstacles, size of the arena and number of robots) within pre-defined ranges. Robot
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Algorithm 6 The QED algorithm [15]
M0
for 1 =1 to p do
PJi] < random-controller ()
Perform add-controller(PJi])
forv=1to I do
c~M
¢ <+ mutate(c)
Perform add-controller(c)

procedure ADD-CONTROLLER(controller ¢)
Randomly select A; € P; Vj € {1,...,D}
Generate environment € parameterised by A
3 + environment-descriptor(&)
if M[B]=0 or f(& c)> f(€, M[B]) then
M) = c

controllers are then evaluated for a specific task (e.g. aggregation, dispersion, flocking,
etc.) in each of these environments and archived with their resulting fitness scores. In this
way, the algorithm promotes implicit exploration of a behaviour space through the explicit
exploration of an environment space.

In the study, QED was used to train robot controller behaviours for fault recovery
scenarios. Results demonstrated successful fault recovery with a high level of behavioural
diversity in the generated solutions. It is noted that one of the principal benefits of the
QED approach is the ability to simply describe a range of plausible environments without
the need for prior knowledge of useful behavioural characteristics. However, a limitation
to consider is a trade-off between improved generalisation and reduced performance in the
normal operating environment.

2.4 Discussion

Overall, it is evident from the literature that the field of swarm robotics has made great
strides in progress since its advent in the early 1990s, especially in the area of evolutionary
robotics. There has been a notable shift in focus from single-pass evolutionary processes
to methods of lifelong learning and adaptation. This has seen interesting applications in
the evolution of multi-robot systems robust to environmental changes.

As opposed to the traditional approach of evolutionary algorithms which exclusively
optimise task performance (or fitness) of solutions, there has been increased interest in
the generation of behavioural diversity within populations. This has precipitated the rise
of a new class of evolutionary algorithms termed quality diversity (QD) algorithms which
aim to search behaviour spaces while concurrently maximising solution fitness. One of
the foundational algorithms introduced in this regard is the MAP-Elites algorithm (see
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section 2.3.4.1), which underlies many later extensions and other QD algorithms. For
these approaches, generated solutions which demonstrate functional uniqueness (based on
behavioural characteristics of interest) are usually inserted and stored in an archive to grow
and maintain population diversity throughout the evolutionary process.

The evolution of behavioural diversity, with algorithms based on MAP-Elites such
as EDQD and QED, presents a promising new approach to the research of population
adaptability. With EDQD (see section 2.3.4.2), embodied evolution has been successfully
applied to the development of high-performing, adaptive robot systems. With QED (see
section 2.3.4.3), the evolution of adaptive behaviours (for fault tolerance) has been achieved
through the definition and exploration of plausible task environments, without requiring
specialised knowledge of desired behaviour patterns.

However, several limitations which affect these QD approaches have also been identi-
fied. MAP-Elites has been shown to be computationally expensive when exploring high-
dimensional behaviour spaces and has a tendency to bias towards local optima. Addition-
ally, EDQD necessitates that the dimensions of a target behaviour space are defined in
advance, possibly constraining the discovery of optimal solutions. Finally, although QED
attempts to address this latter issue, it presents a trade-off of reduced performance for
improved generalisation.

These limitations present some gaps in the current state of the art. Firstly, there
appears to be scope for further work in the investigation of alternative methods for evolving
behaviourally diverse, heterogeneous swarms. Secondly, it is apparent that there is a lack
of research on the ability for a swarm’s memory of alternative behaviours to grow over
time. Finally, there is a need to explore tasks which demand greater interactions with the
environment.

In addition to the limitations discussed, another area that requires further investigation
is the scalability of QD algorithms in the context of large-scale swarm robotics applications.
As the number of robots in a swarm increases, the behaviour space that needs to be explored
becomes exponentially larger, which could potentially lead to increased computational costs
and longer convergence times. Therefore, it is crucial to develop scalable QD algorithms
that can efficiently handle large-scale swarm robotics applications, while still maintaining
the diversity and adaptability of the population.

As such, the following chapter describes alternative methods for evolving both homoge-
neous and heterogeneous robot swarms in a dynamic, collective herding task environment
(see section 2.1.1.4). We will compare a traditional evolutionary algorithm, SSGA (see
section 2.3.3.1), which does not explicitly promote the generation of behavioural diversity,
with a more recent quality diversity algorithm, MAP-Elites, which does. Furthermore,
a novel approach is introduced for more efficiently generating heterogeneous swarms via
the evolution of controller allocations for robot teams of increasing size. By addressing
the issue of scalability, we hope to contribute to the development of QD algorithms that
can effectively handle large-scale swarm robotics applications, thereby advancing the field
towards its potential applications in real-world scenarios.
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Chapter 3

Methods

In this chapter, we present the framework and algorithms used for evolving robot swarms
in our collective herding task environment. Firstly, the simulation framework and task
environment is described. Secondly, the morphology and controller architecture for the
simulated agents is elucidated. This includes the robots (or “dogs”) being evolved to
perform the herding task and the rule-based agents (or “sheep”) representing the targets
to be herded. Thirdly, the various evolutionary algorithms implemented for evolving both
homogeneous and heterogeneous robot swarms are explained, all of which are extensions
to the popular SSGA and MAP-Elites algorithms. Finally, we detail the metrics used to
assess solution fitness and behavioural diversity.

3.1 Simulation Task Environment

The collective herding task is simulated using an extended version® of the Roborobo! (ver-
sion 4)? multi-agent simulation framework [20]. This framework is based on a C++ core
engine for efficiency, but interfaced with through Python. For our task, a swarm of N
robots, called “dogs”, is assigned the objective of capturing a randomly dispersed group of
M agents, called “sheep”, inside a centrally-located target zone. Sheep move in a flocking
pattern and actively avoid entering the target zone, unless pursued by a dog. Once they
enter the target zone, they are considered “captured” and removed from the simulation.
The 2D environment is bounded on all sides by walls. Figure 3.1 provides a visual snapshot
of the environment during a simulation run.

3.1.1 Task Difficulty

Three difficulties of task environment have been defined (easy, medium and difficult) based
on the ratio of dogs to sheep and their relative maximum translation speeds. The easy

!Extended project source code available at https://github.com/scotthallauer/sheepdogai
2Qriginal Roborobo! source code available at https://github.com/nekonaute/roborobo4
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Figure 3.1: Simulation environment for the collective herding task. Red agents
are dogs, green agents are sheep and the yellow circle represents the target zone.

task has more dogs that move faster than sheep, while the difficult task has more sheep
that move faster than dogs. The medium task has an equal number of dogs and sheep
which move with the same maximum speed. Table 4.1 provides parameter values for the
different task difficulties.

3.1.2 Framework Extensions

To accommodate the collective herding task environment, several extensions to the Roborobo!
framework have been implemented. The most fundamental and crucial change is added
support for the concurrent simulation of two different agent types in the same environ-
ment. This is achieved through the assignment of a customised controller class (i.e. “dog”
controller or “sheep” controller) to each agent in the environment. To implement the ANN
controllers for the dog agents (see section 3.2.1), the PyTorch® library [108] is used. To
implement the heuristic controllers for the sheep agents (see section 3.2.2), a variation of
the “boids” algorithm first introduced by Reynolds in 1987 [116] is used.

For the implementation of our proposed evolutionary algorithms (see section 3.3), the
popular DEAP? library [49] is used. Additionally, to facilitate the MAP-Elites algorithm,
the QDpy® library [28] is used. Support for parallelisation has been added to greatly
improve the efficiency of independent solution evaluation. Besides these significant exten-
sions, a number of other minor changes were also made to enable the successful analysis of
evolved solutions, including behavioural characteristic monitoring, fitness tracking, graph-
ical simulations and generation checkpointing.

3PyTorch library available at https://pypi.org/project/torch/
4DEAP library available at https://pypi.org/project/deap/
5QDpy library available at https://pypi.org/project/qdpy/
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Dog Sheep

Figure 3.2: Overview of agent sensory configuration. Dogs have a sensory range
of 100px and a 180° field of view. Sheep have a sensory range of 50px and a 360° field of
view. Sensory detections are made at 15° intervals within these fields of view.

3.2 Agent Representation

Two types of agent, dogs and sheep, are simulated in this task environment. Although both
incorporate a similar body shape and sensory configuration, there are major differences in
the controllers used (and thus behaviours elicited). These agent-specific characteristics are
described in the subsections that follow. Figure 3.2 gives a basic overview of the agent
morphology.

3.2.1 Dogs

These are the robot agents that undergo neuro-evolution for the herding task. They incor-
porate a simple, circular morphology similar to Khepera [122] or e-puck robots. In terms
of sensory configuration, a radar-type proximity sensor is used which detects the nearest
instance of each type of object (dog, sheep and wall) within a specific range (set to 100px)
and field of view (set to [-90°, 90°]), where objects are detected at 15-degree intervals.

A fully-connected artificial neural network (ANN) is implemented for each dog’s con-
troller (see Figure 3.3). The topology consists of 9 input nodes, 10 hidden nodes and 2
output nodes, resulting in a total of 110 connection weights for the genome. The 9 input
nodes include distance and angle values from 3 radar sensors (one for each object type),
distance and angle values from a target zone sensor, and a bias input which is set to a con-
stant value of 1. Distance values are normalised in the range [0, 1], where 0 is undetected
and 1 is as close as possible. Angle values are normalised in the range [-1, 1], where -1 is
-180 degrees and 1 is +180 degrees. The 2 output nodes include the dog’s translation value
in the range [-1, 1] (where -1 is maximum translation speed backwards and +1 is maximum
translation speed forwards) and the dog’s rotation value in the range [-1, 1] (where -1 is
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Figure 3.3: Artificial neural network topology for dog agent controllers. It
consists of 9 input nodes, 10 hidden nodes and 2 output nodes. Input nodes include
distance and angle values from 3 radar sensors (red, orange and yellow), distance and
angle values from a target zone sensor (green) and a static bias value (blue). Output nodes
include the dog’s translation and rotation values (purple).

maximum rotation speed to the left and +1 is maximum rotation speed to the right). The
tanh activation function is used between network layers.

3.2.2 Sheep

These are the heuristic agents that wander around the arena and should be herded into
the target zone. The same circular morphology employed by the dog agents is also used
by the sheep agents. Additionally, the same radar-type proximity sensor is used, although
different range (set to 50px) and field of view (set to [-180°, 180°]) values are configured.
A 360° field of view enables the sheep to detect dogs from behind them and to, thereby,
continue moving away when chased.

A variation of the “boids” algorithm for flocking behaviour [116] is implemented for
each sheep’s controller. This controller remains static throughout the evolutionary process
and guides the movement of the sheep using simple avoidance and flocking rules. Avoid-
ance rules are based on proximity thresholds for each type of object, ordered by priority
(i.e., avoiding dogs is more important than avoiding the target zone). Flocking rules are
configured with the coherence and alignment parameters. Coherence controls the rate at
which sheep steer towards each other, while alignment controls the rate at which sheep
match the average direction of other surrounding sheep. Unlike the dogs which can vary
their translation speed, sheep move at a constant speed throughout their lifetime.
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Figure 3.4: Overview of evolutionary algorithms implemented. SHOM (a) and
MHOM (c) both evolve homogeneous swarms using SSGA and MAP-Elites, respectively.
SSGA converges on similar solutions (represented by different colour shades of the same
dog) whereas MAP-Elites ensures behavioural uniqueness between solutions (represented
by different dogs). ASHET (a) and AMHET (c) both evolve (using SSGA) heterogeneous
swarm allocations of solutions pre-evolved by SHOM and MHOM, respectively. Solutions
generated by SHOM are projected into a MAP-Elites archive before running ASHET.
SHET (b) and MHET (d) both evolve heterogeneous swarms in a single step using SSGA
and MAP-Elites, respectively.

3.3 Evolutionary Algorithms

The evolution of robot swarms for our collective herding task is achieved through two
primary approaches that are referred to herein as “behaviour evolution” and “allocation
evolution”. These are then further subdivided into variations of the SSGA (see section
2.3.3.1) and MAP-Elites (see section 2.3.4.1) algorithms which either evolve homogeneous
or heterogeneous swarms. Figure 3.4 provides an overview of these evolutionary approaches,
with the relevant algorithms explained in the subsections that follow.
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Figure 3.5: Behaviour genome mapping. Each behaviour genome consists of C'
floating point numbers in the range [-1, 1]. These numbers correspond with the weights
for the C' connections in an ANN controller which drives dog behaviour.

3.3.1 Behaviour Evolution

For behaviour evolution, the ANN controllers governing dog behaviour are directly encoded
as genomes of floating point weights, each in the range [-1, 1] (see Figure 3.5). These
genomes are optimised for high task performance (see section 3.4.1) using either SSGA
or MAP-Elites. The algorithms are applied to the evolution of both homogeneous and
heterogeneous swarms as detailed in the following.

3.3.1.1 SHOM: SSGA Homogeneous

In this approach, a population of genomes (set to 100 individuals) is randomly initialised
and evaluated for the first generation. Thereafter, for each generation, individuals are
selected from the population by tournament selection with a tournament size of 3, keeping
the population size constant (as per SSGA). These individuals undergo two-point crossover
and Gaussian mutation, each with a specific probability, before being evaluated. Each indi-
vidual genome is evaluated as a homogeneous team of dogs (i.e., every dog in the simulation
task environment has the same ANN weights applied to it). The newly evaluated individual
genomes then become the offspring population for the next generation. Evolution continues
in this way until the maximum number of generations is completed.

3.3.1.2 SHET: SSGA Heterogeneous

This method is similar to SHOM (see section 3.3.1.1), except that each genome consists
of floating point weights for N dog ANN controllers. Therefore, each individual genome is
evaluated as a heterogeneous team of dogs, with each dog using a unique subset of ANN
weights from the genome.
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3.3.1.3 MHOM: MAP-Elites Homogeneous

Similar to the SSGA-based algorithms (see sections 3.3.1.1 and 3.3.1.2), a population of
genomes (set to 100 individuals) is randomly initialised and evaluated for the first gen-
eration. However, during evaluation, a set of three behavioural characteristics is also
measured: (1) average distance between each dog and its nearest neighbouring dog, (2)
average distance between each dog and its nearest neighbouring sheep, and (3) average
distance between each dog and the target zone. These behavioural characteristics are nor-
malised in the range [0, 1], where 0 is an average distance of 0 and 1 is the maximum
distance observed for that characteristic in a calibration test run (see section 4.3.1). Indi-
vidual genomes are, as with SHOM, evaluated as a homogeneous team of dogs. Evaluated
solution genomes are stored in a multi-dimensional archive, positioned in bins based on
their behavioural characteristic values (as per the MAP-Elites algorithm). If there already
exists another solution genome at the assigned bin, the new solution is only inserted if it
has a higher fitness score (otherwise it is discarded and only the elite solution for that bin
is retained). For every subsequent generation, individuals are selected from this solution
archive by tournament selection with a tournament size of 3. Crossover and mutation is
carried out in the same way as for the SSGA-based algorithms, and evolution continues
until the maximum number of generations is completed.

3.3.1.4 MHET: MAP-Elites Heterogeneous

This method is similar to MHOM (see section 3.3.1.3), except genomes consist of floating
point weights for N dog ANN controllers. Therefore, each individual genome is evaluated
as a heterogeneous team of dogs, with each dog using a unique subset of ANN weights
from the genome. In the same way as for MHOM, elite solutions are stored in a multi-
dimensional archive, positioned based on their behavioural characteristic values. Evolution
continues until the maximum number of generations is completed.

3.3.2 Allocation Evolution

For allocation evolution, the heterogeneous swarms are encoded as genomes of integer
indices for dog ANN controllers (see Figure 3.6). These ANN controllers are pre-evolved
in the behaviour evolution stage and placed in MAP-Elites archives to ensure behavioural
uniqueness. Initially, the N indices in a genome (for the N dogs in the swarm) are randomly
selected from the range [0, M — 1], where M is the number of controllers in the reference
archive. Indices are assigned with replacement, allowing for duplicate dogs in a swarm.

3.3.2.1 ASHET: Allocate SSGA Heterogeneous

In this approach, the objective is to optimise a swarm allocation of ANN controllers pre-
viously evolved by SHOM (see section 3.3.1.1). Since SHOM is based on SSGA, its final
population contains the same number of individuals as the initial population (set to 100
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Figure 3.6: Allocation genome mapping. Each allocation genome consists of N
integers in the range [0, M —1]. These integers represent indices in a reference MAP-Elites
archive of M behaviourally diverse ANN controllers (or behaviour genomes). The sequence
of integers represents the allocation of these controllers to a heterogeneous swarm of dogs.

individuals). These individuals are not guaranteed to be unique and are likely to demon-
strate behavioural similarities due to the tendency for SSGA to converge on variations of
the same high-performing solution. Therefore, before commencing with allocation evolu-
tion, the final SHOM populations (from multiple experimental runs) are projected into
MAP-Elites archives based on the tracked behavioural characteristics (see section 3.3.1.3)
for each individual. These archives are aggregated into a single reference archive containing
only the elite solutions across all populations. The M individuals in this reference archive
are each assigned a unique index.

Using this reference archive of ANN controllers, a population (set to 100 individuals) of
random allocation genomes is initialised. Each genome consists of N indices selected, with
replacement, from the range [0, M — 1]. The number of dogs in the swarm, N, depends
on the task environment difficulty being simulated (see section 3.1.1). These genomes
are evaluated as heterogeneous swarms in which each dog is allocated an ANN controller
from the reference archive based on its index. Thereafter, for each generation, individuals
(i.e. allocation genomes) are selected from the population by tournament selection with a
tournament size of 3, keeping the population size constant (as per SSGA). These individuals
undergo two-point crossover and uniform integer mutation, each with a specific probability,
before being evaluated. The newly evaluated individual genomes then become the offspring
population for the next generation. Evolution continues in this way until the maximum
number of generations is completed.
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3.3.2.2 AMHET: Allocate M AP-Elites Heterogeneous

As with ASHET (see section 3.3.2.1), the objective for this approach is to optimise a swarm
allocation of pre-evolved ANN controllers. However, in this case, the controllers being
allocated are pre-evolved by MHOM (see section 3.3.1.3). Since MHOM is based on MAP-
Elites, its final population is already contained in a MAP-Elites archive of behaviourally
unique individuals. To produce a reference archive for AMHET, the final MHOM popula-
tion archives from multiple experimental runs are aggregated together. The M individuals
in this reference archive are each assigned a unique index.

Using this reference archive of ANN controllers, a population (set to 100 individuals) of
random allocation genomes is initialised. Thereafter, evolution of these allocation genomes
continues in the same manner as for ASHET (using SSGA) until the maximum number of
generations is completed.

3.4 Solution Evaluation

There are two perspectives from which the evolved solutions are evaluated and compared.
Firstly, individual and population performance (or fitness) in the task environment is as-
sessed and serves as the primary objective to be maximised through evolution. Secondly,
individual and population behavioural diversity is measured for correlation with task per-
formance and comparison between methods.

3.4.1 Task Performance Metrics

The quality of generated solutions is measured based on their performance in the collective
herding task environment. This fitness scoring represents the objective-based function
which drives the evolution of improved swarm behaviour.

3.4.1.1 Individual Fitness

The task performance of solution genomes is evaluated based on the number of sheep
captured, ¢, out of the total number of sheep, ¢, during a simulation lifetime. Therefore,
an evaluation score of 0 corresponds with none of the sheep captured and an evaluation
score of 1 corresponds with all of the sheep captured. Due to the stochastic nature of
the task environment, final genome fitness is averaged across n evaluation trials (set to 3
trials). Equation 3.1 summarises this fitness calculation for an individual.

F:g (‘;—) ) (3.1)
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3.4.1.2 Maximum Fitness

To assess the performance of a population over evolutionary time, the fitness score of the
best-performing individual in the population is used as a reference value. Since multi-
ple experimental runs are completed for each algorithm, these maximum fitness values
are averaged across runs for each generation. Equation 3.2 summarises the maximum fit-
ness calculation at a particular generation for a population of P individuals (in a single
experimental run).

Fmax:maX<F1,F2,F37...,FP) (32)

3.4.2 Behavioural Diversity Metrics

The diversity of generated solutions is measured based on their ability to present distinct
behavioural characteristics in the collective herding task environment. These metrics are
used drive greater exploration of the search space in quality diversity algorithms (see section
2.3.4) which aim to produce multiple possible solutions, rather than optimising only one
high-performing solution.

3.4.2.1 Archive Size

Archive size refers to the number of solutions (or individuals) in the population displaying
unique behavioural characteristics. The MAP-Elites algorithm implicitly tracks this metric
by ensuring that only the elite solution for each demonstrated behaviour is stored in the
archive.

3.4.2.2 Quality Diversity Score

Quality Diversity (QD) score, as introduced in [113], refers to the sum of fitness scores for
all individuals stored in the MAP-Elites archive. This value is maximised by increasing
both the fitness (or quality) of solutions and the number (or diversity) of solutions.

3.4.2.3 Unique Behaviours in Swarm

The behavioural diversity of a single heterogeneous swarm produced through allocation
evolution (see section 3.3.2) is measured based on the number of unique behaviours allo-
cated to dogs in the swarm. For example, a swarm of five dogs with an allocation “14 8 14
14 3”7 has three unique behaviours (i.e. 3, 8 and 14).
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3.5 Summary

In this chapter, the implementation of our simulation environment, robotic agents and
evolutionary algorithms has been presented. The problem being investigated is a collective
herding task (see section 3.1) in which a swarm of “dog” robots has the objective to
capture a dispersed flock of “sheep” agents in a central target zone. The dogs’ behaviour is
governed by ANN controllers which have their connection weights evolved to maximise task
performance (or solution quality). Specifically, it is of interest whether or not behavioural
diversity in heterogeneous swarms can provide a performance advantage over homogeneous
swarms.

The evolutionary process is conducted by algorithms which are extensions of either
SSGA (optimises solutions for quality) or MAP-Elites (optimises solutions for quality and
diversity). Both homogeneous and heterogeneous swarms are generated through the ap-
proaches of either behaviour evolution (see section 3.3.1) or allocation evolution (see section
3.3.2). In behaviour evolution, the connection weights of ANN controllers are optimised.
The algorithm extensions referred to as SHOM and MHOM are used to evolve homoge-
neous swarms, whereas SHET and MHET are used to evolve heterogeneous swarms. In
allocation evolution, the assignment of pre-evolved ANN controllers to dogs in heteroge-
neous swarms is optimised. The algorithm extensions called ASHET and AMHET are
used to evolve these heterogeneous swarm allocations. To evaluate the evolved solutions,
various metrics are used to assess both task performance (including individual fitness and
maximum fitness) and behavioural diversity (including archive size, quality diversity score
and unique behaviours in swarm).

The following chapter describes the procedure by which these algorithms are system-
atically evaluated and compared. This includes the specific simulation configurations,
experimental design and hyperparameter tuning.
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Chapter 4

Experiments

This chapter outlines the structured procedure by which our proposed evolutionary algo-
rithms (introduced in chapter 3) are simulated and assessed in the collective herding task
environment. We start by providing the customised simulator configuration used for our
experiments. Thereafter, the overall experiment set-up is described, including the various
experimental runs and parameters being compared. Finally, the approach taken for tuning
the values of notable hyperparameters is explained.

4.1 Simulator Configuration

As mentioned in section 3.1, an extended version of the Roborobo! multi-agent simula-
tion framework [20] is used for these experiments. The evolutionary process, environment
layout, agent morphology and controller options are all configured via a .properties file
for each experiment run, which includes both built-in and custom framework parameters.
The majority of parameters are assigned the same values across all experiments, besides
the group size and translation speed for agents (i.e. dogs and sheep) which are different
for each task difficulty. All parameter values are presented in Table 4.1.

With the exception of the algorithm being used (i.e. either SSGA or MAP-Elites),
the neuro-evolution parameters are held constant for all experiments. There are 20 runs
performed for each experiment to ensure statistical significance for results, with each run
consisting of 200 generations for solution convergence. The population is always initialised
with 100 random genomes in the first generation and every individual undergoes 3 trial
evaluations (i.e. separate task simulations) per generation to determine an average fitness
score. This to account for the stochastic nature of the task environment and provide a more
reliable performance measure (as suggested for a very similar herding task environment in
a 2016 study by Brulé et al. [22]). The dimensions for the dog ANN controllers are set to 9
input nodes, 10 hidden nodes and 2 output nodes, as further explained in section 3.2.1. For
the MAP-Elites archives, each of the 3 dimensions (corresponding with the 3 behavioural
characteristics) is assigned 9 bins for elite solutions, resulting in a total of 729 bins in every
archive. A total of 9 bins was selected along each dimension to provide sufficient capacity
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Neuro-Evolution Parameters

Replications per experiment (runs) 20
Generations per experiment run 200
Trial evaluations per individual 3
Initial population size 100
ANN dimensions (nodes): input / hidden / output 9/10/2
MAP-Elites archive: dimensions / bins 3/ 729
Crossover probability 0.5
Mutation probability 0.2
Simulation Parameters
Time steps per trial evaluation 800
Initial agent positions Random (outside target zone)
Dog team size: easy / medium / difficult 20 /15 /10
Sheep flock size: easy / medium / difficult 10 /15 /20
Dog translation speed: easy / medium / difficult 1/0.75 /0.5
Sheep translation speed: easy / medium / difficult 0.5/0.75/1
Arena size (width x height) 600px x 600px
Target zone size (radius) 100px
Dog radar proximity sensor: range / FOV (Opx, 100px] / [-90°, 90°]
Sheep radar proximity sensor: range / FOV (Opx, 50px] / [-180°, 180°]

Sheep object avoidance (radius): wall / dog / sheep 15px / 50px / 5px

Sheep target zone avoidance: radius / strength 50px / 0.25

Table 4.1: Neuro-evolution and simulation parameters. Configuration options used
for the neuro-evolution process and all experimental simulations of the collective herding
task.

to explore a spectrum of different behaviours, rather than potentially over-simplifying the
search space. Finally, the evolutionary crossover and mutation probabilities are set to 0.5
and 0.2, respectively, as further explained in section 4.3.2.

Simulation parameters, which define the environment and agents, are also held constant
(except for task difficulty changes, as previously mentioned). The environment is set as
a 600px by 600px arena, surrounded by walls and containing a circular gathering pen
(or “target zone”), with a radius of 100px, in the centre. All agents are randomly placed
outside of the target zone at the start of each simulation which then runs for 800 time steps.
Dogs are assigned a 180° field of view (FOV) with a 100px sensory range, while sheep have
a 360° field of view with a 50px sensory range. Sheep avoid walls, dogs and other sheep
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i Task Environment
Evolution Swarm Type Algorithm - -
Type Easy Medium | Difficult
SSGA shom-e shom-m shom-d
Homogeneous -
. MAP-Elites | mhom-e | mhom-m | mhom-d
Behaviour
SSGA shet-e shet-m shet-d
Heterogeneous -
MAP-Elites mhet-e mhet-m mhet-d
. ashet-e ashet-m ashet-d
Allocation | Heterogeneous | SSGA
amhet-e amhet-m | amhet-d

Table 4.2: Experiment run configuration. There are 18 different experiments which
are differentiated based on evolution type (behaviour or allocation evolution), swarm type
(homogeneous or heterogeneous swarms), algorithm (SSGA or MAP-Elites) and task en-
vironment (easy, medium and difficult). Both sets of allocation evolution experiments use
SSGA to evolve solutions, but differ based on the origin of their reference archive (ASHET
uses archives generated by SHOM and AMHET uses archives generated by MHOM).

within radii of 15px, 50px and 5px, respectively. They also actively avoid entering the
target zone (unless pursued by a dog) within a radius of 50px and an avoidance strength
25% of the maximum. Finally, the task difficulty is configured based on the ratio of dogs
to sheep (20 : 10 for easy, 15 : 15 for medium and 10 : 20 for difficult) and translation
speed of dogs compared to sheep (1 : 0.5 for easy, 0.75 : 0.75 for medium and 0.5 : 1 for
difficult).

4.2 Experiment Set-Up

To investigate our research questions (see section 1.1), several experiments have been de-
signed which evaluate and compare the capabilities of SSGA and MAP-Elites to evolve
homogeneous and heterogeneous swarms in three task environment difficulties. These are
primarily divided into the behaviour evolution and allocation evolution experiments. All
experiments and the key differences between them are listed in Table 4.2.

4.2.1 Behaviour Evolution

We conducted four sets of behaviour evolution (see section 3.3.1) experiments with the sim-
ulation framework, each using a different evolutionary algorithm (SHOM, SHET, MHOM
and MHET). SHOM and MHOM each evolved homogeneous swarms, while SHET and
MHET each evolved heterogeneous swarms. Three difficulties of task environment (easy,
medium and difficult) were tested and results averaged over 20 runs per experiment.

The three behavioural characteristics (see section 4.3.1) were tracked and recorded for
evaluated individuals across all experiments. Although not used in SSGA, these values al-
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low for post-processing the evolved populations and projecting them into three-dimensional
solution archives which can be directly compared with those produced by MAP-Elites for
behavioural diversity.

4.2.2 Allocation Evolution

We conducted two sets of allocation evolution (see section 3.3.2) experiments, each us-
ing a variation of the same evolutionary algorithm (ASHET and AMHET). Both ASHET
and AMHET make use of SSGA to evolve and optimise swarm controller allocations, but
use different reference archives of pre-evolved controllers. ASHET uses aggregate archives
produced by SHOM (using SSGA) whereas AMHET uses aggregate archives produced by
MHOM (using MAP-Elites). In the same manner as for the behaviour evolution exper-
iments (see section 4.2.1), three difficulties of task environment were tested and results
averaged over 20 runs per experiment.

In addition to task performance, the number of unique behaviours in evolved swarm
allocations (see section 3.4.2.3) was tracked as measure of behavioural diversity across all
allocation evolution experiments.

4.3 Parameter Tuning

Several tuning experiments were performed to determine appropriate values for important
simulation hyperparameters. These include both the behavioural characteristics being
monitored as well as the crossover and mutation probabilities which configure the evolu-
tionary process.

4.3.1 Behavioural Characteristics

To assess behavioural diversity between solutions, three behavioural characteristics are
monitored over the course of each trial evaluation:

1. Dog-Dog Distance: Average distance between each dog and its nearest neighbour-
ing dog.

2. Dog-Sheep Distance: Average distance between each dog and its nearest neigh-
bouring sheep.

3. Dog-Pen Distance: Average distance between each dog and the target zone.

These behavioural characteristics correspond with the dimensions for the solution archives
populated by the MAP-Elites algorithm. Since the archives are divided into a finite num-
ber of evenly-spaced bins along each dimension, the range of possible values needs to be
known (or estimated) in advance to ensure the correct placement of solutions. Although
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Behavioural Theoretical Observed Practical
Characteristic Maximum (7)) Value (O) Maximum (P)
Dog-Dog Distance V2 x 6002 (0.06+0.03) x T | 0.1 x T ~ 85px
Dog-Sheep Distance V2 x 6002 (0.3+£0.05) x T | 0.4 x T ~ 339px
Dog-Pen Distance V2 x 3002 -100 | (04+0.2) xT | 0.8 x T = 259px

Table 4.3: Behavioural characteristic maximum values. Each behavioural charac-
teristic has a theoretical maximum value (7') determined by the dimensions of the task
environment. The observed values (O) are those produced in a calibration test run. The
practical maximum values (P) are derived from the observed values and represent realistic
upper limits for the behavioural characteristics in practice. The dimensions for the MAP-
Elites archives are configured using these P values.

each characteristic has an easily determined range of theoretically possible values, the
maximum values of these ranges are exceedingly unlikely to occur in practice. Therefore,
to more fully utilise the bins available in the solution archives, it makes sense to rather
estimate a practical maximum value for each characteristic.

The theoretical maximum values for these characteristics can be calculated based on the
dimensions of the simulated task environment. For both dog-dog distance and dog-sheep
distance, the theoretical maximum is the furthest possible distance between two points in
the environment (which is between two diagonally opposite arena corners). For dog-pen
distance, the theoretical maximum is the furthest possible distance from the perimeter of
the target zone (or “pen”) to the perimeter of the environment (which is between an arena
corner and the target zone).

To estimate practical maximum values, a calibration test run was performed which
measured the behavioural characteristics for 100 individuals over 100 generations in the
easy task environment using SHOM. The observed mean values and standard deviations
were calculated in relation to the theoretical maxima and used to calculate practical maxi-
mum values as approximately two standard deviations above the mean. These theoretical,
observed and practical values are all presented in Table 4.3.

4.3.2 Variation Operators

Two significant tunable hyperparameters for the evolutionary process are the probabilities
for crossover and mutation events. Crossover is the genetic operation whereby two parent
genomes in the population are recombined to produce two offspring genomes, each contain-
ing components from both parents. Mutation is the genetic operation whereby singular
genes in a genome are randomly changed to a different value. Higher probabilities for both
crossover and mutation correspond with faster exploration of the search space, but also
with a greater replacement rate of existing solutions.

To optimise these hyperparameters, three different values for each (see Table 4.4) were
tested in separate runs of an allocation evolution experiment (i.e. allocation of solutions
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Hyperparameter Value 1 Value 2 Value 3
Crossover probability 0.0 0.5 1.0
Mutation probability 0.05 0.1 0.2

Table 4.4: Variation operator values for tuning experiments. Values tested for
both crossover and mutation probabilities in separate runs of an allocation evolution ex-
periment using AMHET in the easy task environment. The bold values are the default
values used when not testing that parameter.

Parameter Tuning: Crossover Probability Parameter Tuning: Mutation Probability
10 Allocation of mhom-e solutions Allocation of mhom-e solutions
X 1.00
—— param-cxpb-0.0 (a) —— param-mutpb-0.05 (b)
—— param-cxpb-0.5 0.95 4{ —— param-mutpb-0.1
—— param-cxpb-1.0 —— param-mutpb-0.2
091 0.90
0.85
« «
3 0.8 1 @
5 S 0.80
= =
c c
3 8 0.751
= =
0.7
0.70 1
0.65
0.6 1
0.60
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Figure 4.1: Variation operator tuning experiment results. Mean solution fitness
score during evolution with different parameter values for crossover probability (a) and
mutation probability (b). Crossover probability was held at 0.5 for all mutation probability
tuning runs and mutation probability was held at 0.2 for all crossover probability tuning
runs. All experiments were performed using AMHET in the easy task environment over
100 generations.

from MHOM using AMHET in the easy task environment) over 100 generations. A default
value was applied when not testing a specific parameter. The mean fitness of solutions was
tracked during evolution and compared between parameter configurations to select the best
value for each.

As presented in Figure 4.1a, the crossover probability value of 0.0 produced the lowest
scoring solutions, while the values 0.5 and 1.0 performed comparably. For the mutation
probability tuning experiments (see Figure 4.1b), the value 0.1 produced the lowest scor-
ing solutions, while the values 0.05 and 0.2 produced similar results. Since the default
probability values used by the DEAP library [49] for crossover and mutation are 0.5 and
0.2, respectively, and they demonstrate good performance in our tuning experiments, these
values were selected for all other experiments.
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4.4 Summary

In this chapter, the simulator configuration, experimental set-up and methods for parame-
ter tuning have been described. Regarding simulator configuration, the specific parameter
values used for neuro-evolution and simulation environment were outlined. This includes
the arena layout, agent morphology, sensory configuration and task difficulty definitions.
Then, in terms of experimental set-up, the two categories of behaviour and allocation evo-
lution experiments were explained along with the relevant algorithms being tested. These
were broken down into 18 separate experiment runs, differentiated by evolution type, swarm
type, underlying algorithm and task environment difficulty. Lastly, the approaches taken
for tuning two sets of important hyperparameters, namely behavioural characteristics and
variation operators, were detailed as well as their final selected values.

The following chapter presents the results produced from these behaviour and alloca-
tion evolution experiments, using the task performance and behavioural diversity metrics
(see section 3.4) as a means of evaluation. Thereafter, a detailed discussion analyses the
significance of these results in the context of our research questions and related work.
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Chapter 5

Results and Discussion

In this chapter, the final experimental results are presented and interpreted. This includes
independent analyses of the behaviour evolution experiments and the allocation evolution
experiments, followed by a comparative evaluation of both methods. Lastly, we discuss the
significance of these results in line with our research questions and previous work.

5.1 Results

The presentation of results is divided into three subsections, starting with the behaviour
and allocation evolution experiments and ending with an overall comparison of evolutionary
algorithms. For each experiment, the progressive change in metric values is visualised over
evolutionary time. The primary metrics being measured include archive size, maximum
fitness and QD score (see section 3.4). Algorithms are contrasted on the basis of whether
they evolve homogeneous or heterogeneous swarms, whether they are based on SSGA or
MAP-Elites, and whether they implement behaviour or allocation evolution. Pairwise t-
test results are also provided to determine the statistical significance of any differences
between experiments.

5.1.1 Behaviour Evolution

As described in the experiment set-up for behaviour evolution (see section 4.2.1), four
alternative evolutionary algorithms (SHOM, MHOM, SHET and MHET) are tested in
three difficulties of task environment (easy, medium and difficult). Connection weights
for ANN controllers are evolved for homogeneous swarms by SHOM and MHOM, and for
heterogeneous swarms by SHET and MHET.

5.1.1.1 Metric Trends

Figure 5.1 presents the archive size, maximum fitness and QD score over evolutionary time
for each behaviour evolution algorithm across task difficulties, averaged over 20 runs.
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Figure 5.1: Behaviour evolution metric trends. Archive size (a and b), max fit-
ness (¢ and d) and QD score (e and f) results are presented over 200 generations. The
algorithms which evolve homogeneous swarms (SHOM and MHOM) are on the left, while
the algorithms which evolve heterogeneous swarms (SHET and MHET) are on the right.
Results from the easy (green), medium (blue) and difficult (red) task environments are
provided for each algorithm, averaged over 20 runs.
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Archive size (see Figure 5.1a and 5.1b) is seen to rapidly increase and then taper off
over time for MAP-Elites algorithms (MHOM and MHET) whereas it gradually decreases
over time for SSGA algorithms (SHOM and SHET). It is also notable that the maximum
archive size reached for heterogeneous swarms (SHET and MHET) is substantially lower
than that for homogeneous swarms (SHOM and MHOM).

Maximum fitness results (see Figure 5.1c and 5.1d) demonstrate similar trends be-
tween SSGA and MAP-Elites algorithms, with both achieving increased fitness over time
which begins to plateau in later generations. These results again favour the homogeneous
swarms which both produce considerably fitter solutions for the final generation than the
heterogeneous swarms.

Finally, the QD score (see Figure 5.1e and 5.1f) quantifies the interplay between solution
quality (or fitness) and solution diversity (or archive size) over time. A general increase
in QD score over time is witnessed across all algorithms (except for SHOM in the difficult
environment), with MAP-Elites algorithms outperforming SSGA algorithms. This is to be
expected since SSGA only optimises for solution quality, while MAP-Elites optimises for
both quality and diversity. As with previous metrics, the homogeneous swarms achieve far
greater QD scores than the heterogeneous swarms.

5.1.1.2 Solution Archives

Since the fundamental objective of these algorithms is to generate a high-performing pop-
ulation of solutions at the end of the evolutionary process, it is natural to assess the
effectiveness of each algorithm by examining the quality (and diversity) of solutions in the
final generation. To this end, the final populations generated by each algorithm (over 20
replication runs) have been aggregated together to produce a “swarm map” (or solution
archive) for every experiment that can be compared. These swarm maps are MAP-Elites
archives which hold the behaviourally unique solutions generated by all runs of each ex-
periment. Only the elite solutions are stored in the swarm map, meaning that if multiple
runs produce a solution located in the same archive cell then only the one with the highest
fitness score is stored. The SSGA algorithms (SHOM and SHET) do not produce MAP-
Elites archives and so their final populations are first projected into archives (based on the
tracked behavioural characteristics) before being aggregated.

Figure 5.2 presents the flattened swarm maps for each behaviour evolution algorithm
across task difficulties. It is evident from the more populated archives that the be-
haviour search space is more adequately explored for the homogeneous swarms (SHOM
and MHOM) than the heterogeneous swarms (SHET and MHET). Additionally, when
comparing SSGA algorithms to MAP-Elites algorithms within each type of swarm (i.e.
SHOM vs. MHOM and SHET vs. MHET), it seems that the MAP-Elites algorithms
populate a greater proportion of the archive cells than SSGA. This is to be expected since
MAP-Elites is an “illumination algorithm” (see section 2.3.4.1) specifically designed to
explore the search space more effectively. It is also evident from this figure that certain
regions of the behaviour space correspond with higher performing solutions than other
regions, which suggests the useful ranges of behavioural characteristics to select solutions
from.
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Figure 5.2: Behaviour evolution solution archives. Projected MAP-Elites solution
archives for the behaviour evolution algorithms (SHOM, MHOM, SHET and MHET) in the
easy (e), medium (m) and difficult (d) task environments at generation 200. Each archive
is aggregated over 20 runs where, for each cell, the best solution at that position from any
run is selected. Tracked behavioural characteristics are dog-dog distance (D), dog-sheep
distance (S) and dog-pen distance (P). The three-dimensional archives are flattened on
each plane (taking the best solution along the hidden axis at each position) and presented
as two-dimensional grids (DxS, PxS and PxD).

5.1.1.3 Statistical Tests

To properly compare these algorithms, statistical tests are necessary for evaluating sig-
nificant differences between measured metric values. As such, pairwise t-tests have been
performed between algorithms using the final generation from all 20 runs of each exper-
iment. These t-test results are presented in tables which highlight the significant and
insignificant differences between algorithms for each metric. Firstly, a comparison between
SSGA algorithms and MAP-Elites algorithms for both homogeneous and heterogeneous
swarms is presented in Table 5.1. Thereafter, a comparison between homogeneous swarms
and heterogeneous swarms for both SSGA and MAP-Elites algorithms is presented in Table
5.2.

When comparing SSGA and MAP-Elites algorithms (see Table 5.1), we find that MAP-
Elites (MHOM and MHET) achieves significantly greater (p < 0.05) archive sizes and QD
scores than SSGA (SHOM and SHET) across all task environment difficulties. Maximum
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Homogeneous Heterogeneous
Metric SHOM vs. MHOM SHET vs. MHET

Easy Medium | Difficult Easy Medium | Difficult
. . MHOM 4 | MHOM 4 | MHOM 1 | MHET+ | MHET+ | MHET 4

Archive Size v v Y, v v %
Max Fitness | MHOM | SHOM{ | MHOM{ | SHETt | MHET{ | MHETt

X v v v X v
MHOM + | MHOM 1t | MHOM+{ | MHET+{ | MHET+ | MHET 1

QD Score Y, Y, v Y % %

Table 5.1: Behaviour evolution (SSGA vs. MAP-Elites) statistical test results.
Pairwise t-test results for independent samples at generation 200 from 20 runs of each
algorithm. Swarms evolved via SSGA are compared to those evolved via MAP-Elites, for
both homogeneous and heterogeneous swarms (i.e. SHOM vs. MHOM and SHET vs.
MHET). Comparisons are made across each task environment difficulty and the algorithm
with the greater metric value is indicated. Those with a significant difference between
values (p < 0.05) are indicated with a tick (green), while those with an insignificant
difference (p > 0.05) are indicated with a cross (red).

SSGA MAP-Elites
Metric SHOM vs. SHET MHOM vs. MHET

Easy Medium | Difficult Easy Medium | Difficult
. . SHOM t+ | SHOM{ | SHOM+ | MHOM{ | MHOM t | MHOM ¢

Archive Size v Y v Y, Y v
. SHOM 1+ | SHOM{ | SHOM+ | MHOM+ | MHOM t | MHOM ¢

Max Fitness Y v Y Y Y v
SHOM ¢ | SHOM+t | SHOM+t | MHOM{ | MHOM { | MHOM t

QD Score Y Y Y v Y, v

Table 5.2: Behaviour evolution (homogeneous vs. heterogeneous) statistical
test results. Pairwise t-test results for independent samples at generation 200 from 20
runs of each algorithm. Homogeneous swarms are compared to heterogeneous swarms, for
both those evolved via SSGA and those evolved via MAP-Elites (i.e. SHOM vs. SHET
and MHOM vs. MHET). Comparisons are made across each task environment difficulty
and the algorithm with the greater metric value is indicated. Those with a significant
difference between values (p < 0.05) are indicated with a tick (green).

fitness results, however, are not unanimous in favouring MAP-Elites. For homogeneous
swarms, MAP-Elites produces fitter solutions in both the easy and difficult environments,
but only significantly fitter (p < 0.05) in the difficult environment. SSGA significantly
outperforms MAP-Elites in the medium environment. For heterogeneous swarms, MAP-
Elites again produces significantly fitter (p < 0.05) solutions in the difficult environment,
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but only insignificantly fitter (p > 0.05) solutions in the medium environment. Here, SSGA
significantly outperforms MAP-Elites in the easy environment.

When comparing homogeneous and heterogeneous swarms (see Table 5.2), it is evident
that the evolved homogeneous swarms achieve significantly higher (p < 0.05) scores than
heterogeneous swarms for all metrics and across all task environment difficulties. This holds
true for both SSGA algorithms (SHOM vs. SHET) and MAP-Elites algorithms (MHOM
vs. MHET).

5.1.2 Allocation Evolution

As described in the experiment set-up for allocation evolution (see section 4.2.2), two
variations (ASHET and AMHET) of the same evolutionary algorithm are tested in three
difficulties of task environment (easy, medium and difficult). For both experiments, swarm
allocations of pre-generated ANN controllers are evolved for heterogeneous swarms using
SSGA. ASHET and AMHET differ based on the method used to produce their reference
controller archives, with ASHET using controllers generated by SHOM and AMHET using
controllers generated by MHOM.

5.1.2.1 Metric Trends

Figure 5.3 presents the archive size, maximum fitness, QD score and unique behaviours in
swarm over evolutionary time for each allocation evolution algorithm across task difficulties,
averaged over 20 runs.

Archive size (see Figure 5.3a) appears to decrease over time for all experiments, starting
steeply before levelling out. For evolved populations using reference archives generated by
MAP-Elites (AMHET), both initial and final archive sizes are greater than those using ref-
erence archives generated by SSGA (ASHET). This holds true across all task environment
difficulties.

Maximum fitness results (see Figure 5.3b) display different trends between ASHET and
AMHET. For all ASHET experiments, maximum fitness only increases slightly from the
starting generation and then plateaus for the remainder of evolution with little improve-
ment. On the other hand, for all AMHET experiments, we observe a substantial increase in
maximum fitness over the first 25 to 50 generations before flattening out at approximately
the same level as for ASHET in each task difficulty.

QD score results (see Figure 5.3¢) also follow alternative trends between ASHET and
AMHET. Although both seem to plateau quite early in the evolutionary process (around
generation 25), QD score for ASHET tends to decrease from the first generation whereas
QD score for AMHET tends to increase from the first generation. This is evident in
the medium and difficult task environments, but does not seem to hold in the easy task
environment for AMHET.

Finally, in addition to the above metrics which were also monitored for the behaviour
evolution experiments, the number of unique behaviours allocated to a swarm (see Fig-
ure 5.3d) was tracked for the allocation evolution experiments. This metric is constrained
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Figure 5.3: Allocation evolution metric trends. Archive size (a), max fitness (b), QD
score (c) and unique behaviours in swarm (d) results are presented over 200 generations.
Results from the easy (green), medium (blue) and difficult (red) task environments are
provided for each algorithm (ASHET and AMHET), averaged over 20 runs.

by the size of the robot swarm being evolved, which differs between task environment dif-
ficulties. Teams of 20 dogs are evolved for the easy task environment, teams of 15 dogs
for the medium task environment and teams of 10 dogs for the difficult task environment.
AMHET appears to allocate more unique behaviours to swarms than ASHET, although
there is a trend for this number of behaviours to gradually decrease over the course of
evolution.

5.1.2.2 Solution Archives

As with the behaviour evolution experiments, the final populations generated by each algo-
rithm (over 20 replication runs) have been aggregated together to produce solution archives
for every allocation evolution experiment. Since both ASHET and AMHET evolve solu-
tions using SSGA as the underlying algorithm, they do not produce MAP-Elites archives.
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Figure 5.4: Allocation evolution solution archives. Projected MAP-Elites solution
archives for the allocation evolution algorithms (ASHET and AMHET) in the easy (e),
medium (m) and difficult (d) task environments at generation 200. Each archive is aggre-
gated over 20 runs where, for each cell, the best solution at that position from any run
is selected. Tracked behavioural characteristics are dog-dog distance (D), dog-sheep dis-
tance (S) and dog-pen distance (P). The three-dimensional archives are flattened on each
plane (taking the best solution along the hidden axis at each position) and presented as
two-dimensional grids (DxS, PxS and PxD).

Therefore, the final populations are projected into archives using the tracked behavioural
characteristics for solutions before being aggregated.

Figure 5.4 presents the flattened solution archives for each allocation evolution algo-
rithm across task difficulties. Despite using different reference archives for evolving swarm-
controller allocations, ASHET and AMHET both appear to produce solutions which occupy
similar regions of the behaviour search space. A large portion of this behaviour space is
left unexplored for both algorithms, although this is to be expected since SSGA only seeks
to optimise for solution quality rather than diversity.

5.1.2.3 Statistical Tests

To effectively compare these algorithms, pairwise statistical t-tests have been performed
between ASHET and AMHET using the final generation from all 20 runs of each experi-
ment. These t-test results are presented in Table 5.3 which highlights the significant and
insignificant differences between algorithms for each metric.

When comparing ASHET and AMHET, we find that AMHET achieves a significantly
greater (p < 0.05) archive size and number of unique behaviours in evolved swarms than
ASHET across all task environment difficulties. AMHET also outperforms ASHET with a
greater QD score across all task difficulties, although not significantly (p > 0.05) in the dif-
ficult task environment. For maximum fitness results, AMHET only produces significantly
fitter (p < 0.05) solutions in the easy task environment, while ASHET marginally outper-
forms AMHET in the medium and difficult environments (although not significantly, with
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Heterogeneous
Metric ASHET vs. AMHET
Easy Medium Difficult
Archive Size AMHET 7t AMHET 1 AMHET 1
v v v
Max Fitness AMHET 7t ASHET 7t ASHET 1
v X X
QD Score AMHET 1 AMHET 1 AMHET 1
v v X
Unique AMHET 7t AMHET 1 AMHET 1
Behaviours v v v

Table 5.3: Allocation evolution (SSGA vs. MAP-Elites) statistical test re-
sults. Pairwise t-test results for independent samples at generation 200 from 20 runs of
each algorithm. Heterogeneous swarm allocations evolved from SSGA-generated reference
archives (ASHET') are compared to allocations evolved from MAP-Elites-generated refer-
ence archives (AMHET). Comparisons are made across each task environment difficulty
and the algorithm with the greater metric value is indicated. Those with a significant
difference between values (p < 0.05) are indicated with a tick (green), while those with an
insignificant difference (p > 0.05) are indicated with a cross (red).

p > 0.05). Overall, it is worth noting that in all cases where there are observed significant
differences between the algorithms, AMHET produces higher metric results than ASHET.

5.1.3 Algorithm Comparison

Having already reviewed the behaviour and allocation evolution experiments separately in
the previous sections, this section continues to compare the results between evolutionary
methods and between all experiments. We start by evaluating the performance differ-
ences between the behaviour evolution algorithms and the allocation evolution algorithms.
Thereafter, we assess the performance of all algorithms together by ranking their relative
metric scores.

5.1.3.1 Behaviour vs. Allocation Evolution

There are two meaningful comparisons to be made between the behaviour evolution algo-
rithms and the allocation evolution algorithms. In the first case, it makes sense to assess the
differences between the heterogeneous behaviour evolution algorithms (SHET and MHET)
and the allocation evolution algorithms (ASHET and AMHET). This pairing allows us
to determine which evolutionary method (i.e. behaviour evolution or allocation evolu-
tion) performs better in generating effective heterogeneous swarms. In the second case,
we can evaluate the differences between the homogeneous behaviour evolution algorithms
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SSGA MAP-Elites
Metric SHET vs. ASHET MHET vs. AMHET

Easy Medium | Difficult Easy Medium | Difficult
. . SHET 4 SHET 4+ SHET 1 MHET 4+ | MHET+ | MHET ¢

Archive Size v v Y v v v
. ASHET 1 | ASHET+ | ASHET 1+ | AMHET + | AMHET 4 | AMHET 1

Max Fitness v v v v v v
ASHET 1+ | ASHET+ | ASHETt+ | AMHET + | MHET+ | MHET 1

QI seie v v v v v v

Table 5.4: Heterogeneous behaviour evolution vs.

heterogeneous allocation

evolution statistical test results. Pairwise t-test results for independent samples at
generation 200 from 20 runs of each algorithm. Heterogeneous swarms evolved directly via
behaviour evolution are compared to those evolved via allocation evolution (i.e. SHET vs.
ASHET and MHET vs. AMHET). Comparisons are made across each task environment
difficulty and the algorithm with the greater metric value is indicated. Those with a
significant difference between values (p < 0.05) are indicated with a tick (green).

(SHOM and MHOM) and the heterogeneous allocation evolution algorithms (ASHET and
AMHET). Since ASHET and AMHET evolve swarm allocations of controllers previously
evolved by SHOM and MHOM, respectively, this comparison allows us to deduce whether
optimised allocations of different controllers (i.e. heterogeneous swarms) perform better
than the same controllers in isolation (i.e. homogeneous swarms).

Table 5.4 presents the pairwise t-test results for the comparison between the hetero-
geneous behaviour evolution experiments and the allocation evolution experiments. It is
evident that the behaviour evolution algorithms (SHET and MHET') produce significantly
greater (p < 0.05) archive sizes than the allocation evolution algorithms across all task
environment difficulties. Conversely, in terms of maximum solution fitness, the allocation
evolution algorithms significantly outperform (p < 0.05) the behaviour evolution algo-
rithms for all task difficulties. For QD score results, ASHET achieves significantly higher
(p < 0.05) scores than SHET across all task difficulties. On the other hand, AMHET only
achieves significantly higher (p < 0.05) QD scores than MHET in the easy task environ-
ment, while MHET achieves significantly higher (p < 0.05) scores in both the medium and
difficult task environments.

Table 5.5 presents the pairwise t-test results for the comparison between the homo-
geneous behaviour evolution experiments and the allocation evolution experiments. We
find that the behaviour evolution algorithms (SHOM and MHOM) achieve significantly
greater (p < 0.05) archive sizes and QD scores than the allocation evolution algorithms
(ASHET and AMHET) across all task environment difficulties. However, for maximum
fitness results, the allocation evolution algorithms significantly outperform (p < 0.05) the
behaviour evolution algorithms in all task difficulties (with the exception of AMHET in
the difficult environment, which only marginally surpasses MHOM in that case).
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SSGA MAP-Elites
Metric SHOM vs. ASHET MHOM vs. AMHET

Easy Medium | Difficult Easy Medium | Difficult
. . SHOM + | SHOM{ | SHOM+ | MHOMt | MHOM 1+ | MHOM ¢

Archive Size Y Y Y v v v
Max Fitness | ASHET T | ASHET 1 | ASHET t | AMHET f | AMHET { | AMHET ¢

v v v v v X
SHOM 1+ | SHOM+ | SHOM{ | MHOM+ | MHOM 4+ | MHOM 1

QD Score Y Y v Y, v v

Table 5.5: Homogeneous behaviour evolution vs. heterogeneous allocation
evolution statistical test results. Pairwise t-test results for independent samples at
generation 200 from 20 runs of each algorithm. Homogeneous swarms evolved via behaviour
evolution are compared to heterogeneous swarms evolved via allocation evolution (i.e.
SHOM vs. ASHET and MHOM vs. AMHET). Comparisons are made across each task
environment difficulty and the algorithm with the greater metric value is indicated. Those
with a significant difference between values (p < 0.05) are indicated with a tick (green),
while those with an insignificant difference (p > 0.05) are indicated with a cross (red).

5.1.3.2 Overall Algorithm Ranking

To provide a comprehensive comparison between evolutionary algorithms, the metric re-
sults for all experiments are summarised and presented in Table 5.6. This table displays
the mean metric values for each algorithm in its final generation, ordered from highest to
lowest, for every task environment difficulty.

Starting with archive size, it is evident that the two MAP-Elites behaviour evolution
algorithms (MHOM and MHET) produce the highest results. Across all task difficulties,
MHOM generates solution archives which are two to four times the size of its closest com-
petitor, MHET. In second position, MHET similarly outperforms the remaining SSGA-
based algorithms. This is to be expected since MAP-Elites uses an archive during the
evolutionary process to explicitly retain solutions which are behaviourally unique, while
SSGA does not maintain such an archive and rather tends to converge on similar solu-
tions. It is worth noting that, in general, the allocation evolution algorithms (ASHET and
AMHET) produce the smallest archives.

Conversely, for maximum fitness results, the allocation evolution algorithms outperform
all of the behaviour evolution algorithms. However, in the difficult task environment,
MHOM does still achieve similar maximum fitness to the allocation evolution algorithms.
At the other end of the spectrum, the heterogeneous behaviour evolution algorithms (SHET
and MHET) generate the worst-performing solutions compared to other methods for all
task difficulties.

QD score results follow a similar pattern to the archive size results with the MAP-
Elites algorithms (MHOM and MHET) generally outperforming other algorithms. MHOM
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Archive Size Max Fitness QD Score

Rank
E M D E M D E M D
41 MHOM | MHOM | MHOM | AMHET | ASHET | ASHET | MHOM | MHOM | MHOM
(130.90) | (130.85) | (109.05) (1.00) (0.68) (0.34) (52.59) (24.44) (13.34)
42 ASHET | AMHET | AMHET | SHOM
(0.99) (0.65) (0.34) (10.31)
43 SHOM SHOM SHOM MHOM | SHOM | MHOM | AMHET | SHOM SHOM
(17.85) (13.80) (18.60) (0.91) (0.61) (0.32) (9.16) (4.85) (2.86)
44 AMHET | SHET SHET SHOM | MHOM | SHOM | ASHET | AMHET | AMHET
(9.70) (11.95) (14.50) (0.91) (0.47) (0.30) (7.39) (4.32) (2.61)
45 SHET | AMHET | AMHET ASHET | ASHET
(9.40) (8.90) (12.60) (3.32) (2.41)
46 ASHET | ASHET | ASHET SHET SHET
(8.40) (5.95) (9.90) (2.04) (1.65)

Table 5.6: Comparative ranking of evolutionary algorithms. The mean values of
archive size, max fitness and QD score at generation 200 are presented for all six evolu-
tionary algorithms, averaged over 20 runs. Results are sorted from highest to lowest value
in the easy (E), medium (M) and difficult (D) task environment difficulties. Homogeneous
behaviour evolution algorithms (SHOM and MHOM) are highlighted in red, heterogeneous
behaviour evolution algorithms (SHET and MHET) in green, and heterogeneous allocation
evolution algorithms (ASHET and AMHET) in purple. Algorithms based on MAP-Elites
are highlighted in a darker shade and those based on SSGA in a lighter shade.

achieves the highest QD score across all task difficulties, ranging from two to five times
the score of the algorithm in second position. SHOM achieves a relatively high QD score
in the easy environment, but this drops in the medium and difficult environments where
MHET achieves higher scores. SHET unanimously achieves the lowest QD score for all
task difficulties.

Overall, it is observed that the allocation evolution algorithms (ASHET and AMHET)
produce the highest quality solutions for the collective herding task out of all the algo-
rithms. The homogeneous behaviour evolution algorithms (SHOM and MHOM), which
ASHET and AMHET both use for generating their reference archives, just slightly under-
perform in comparison. Finally, the heterogeneous behaviour evolution algorithms (SHET
and MHET) produce the lowest quality solutions. In terms of behavioural diversity, al-
gorithms based on MAP-Elites (MHOM and MHET) produce significantly more diverse
solution populations (i.e. higher archive sizes) than those based on SSGA. QD score results
also reflect this pattern, although with a modest improvement in ranking for the allocation
evolution algorithms due to their comparatively high fitness scores.
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5.2 Discussion

This section provides an analysis of the results from our experiments in relation to the
stated research questions, as outlined in section 1.1. Furthermore, the significance of these
results alongside previous work is discussed.

5.2.1 Research Question 1

Does the use of MAP-FElites for the evolution of a homogeneous swarm result
in higher task performance compared with SSGA?

The SHOM (based on SSGA) and MHOM (based on MAP-Elites) algorithms were evalu-
ated as part of the behaviour evolution experiments for generating homogeneous swarms.
In these experiments, easy, medium and difficult environments were simulated to assess
algorithm performance under increasing task complexity.

Inspecting the fitness trends during evolution for these algorithms (see Figure 5.1¢), we
observe a similar pattern across task environment difficulties. For both SHOM and MHOM,
the final task performance is highest in the easy environment followed by the medium and
difficult environments as would be intuitively expected. There is an initial period of rapid
improvement in solution quality (steeper for MHOM in the first few generations) before
flattening out over the remainder of evolution for all experiments. This is especially evident
in the easy environment, where both algorithms reach approximately 80% maximum fitness
in the first 100 generations. It is also worth noting that MHOM produces a steadier,
strictly increasing change in maximum fitness over time, whereas SHOM experiences both
upward and downward jitters around a similar trend line. The smooth increase for MHOM
is due to the MAP-Elites algorithm maintaining an archive of elite solutions which are
only replaced with fitter solutions. SSGA, on the other hand, maintains a population of
solutions in which the fittest solutions have a chance (albeit low chance) of being mutated
and replaced with worse solutions between generations.

The difference in final task performance between algorithms demonstrates inconsistent
results across task difficulties (see Table 5.1). It is observed that both SHOM and MHOM
perform comparably in the easy environment, while SHOM performs significantly better
in the medium environment and MHOM performs significantly better in the difficult en-
vironment. From these results, there is inconclusive evidence to suggest that MAP-Elites
generates higher-performing solutions than SSGA for a homogeneous swarm. However,
this is likely a consequence of the behaviour search space for this collective herding task.
Assessing the final solution archives produced by MHOM (see Figure 5.2), it appears that
there is only one region of the explored behaviour space where the best solutions are found
(as opposed to multiple, discrete regions) across task difficulties. Therefore, although the
pressure for increased diversity in MAP-Elites leads to faster initial gains in task perfor-
mance, SSGA is also able to evolve similarly high-performing solutions over time without
the problem of premature convergence on a local (rather than global) maximum. De-
spite previous research having discussed the challenging complexity of search spaces for
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shepherding and swarm control tasks in general [56, 82, 84], our experiments simulate a
simplified variation of the task with no obstacles in the environment, a central target zone
that can be entered from any direction, and an objective of capturing each sheep only once
rather than also retaining them inside the target zone. As such, it is hypothesised that
MAP-Elites will provide performance benefits in more elaborate task environments where
high-performing solutions can be found in separate regions of the behaviour space.

5.2.2 Research Question 2

Does the use of MAP-FElites for the evolution of a heterogeneous swarm result
in higher task performance compared with SSGA?

Heterogeneous swarms were generated as part of both the behaviour evolution experi-
ments (via SHET and MHET) and the allocation evolution experiments (via ASHET and
AMHET). SSGA is used to evolve robot controllers in the SHET and ASHET algorithms,
while MAP-Elites is used in the MHET and AMHET algorithms. Easy, medium and dif-
ficult environments were simulated to assess algorithm performance under increasing task
complexity.

Fitness trends for the behaviour evolution experiments (see Figure 5.1d) display a
slightly different pattern between algorithms. SHET (using SSGA) demonstrates a slow,
almost linear, increase in maximum fitness over 200 generations, which is more notice-
able in the easy environment. However, despite these results, it is likely that SHET is in
fact following a gradual logarithmic growth curve which has not yet converged by the final
simulated generation. Conversely, for MHET (using MAP-Elites), the maximum fitness in-
creases quickly in the first few generations before plateauing for the remainder of evolution.
The greatest task performance is achieved in the easy environment for both algorithms,
followed by the medium and difficult environments as expected. Overall solution fitness
amongst these algorithms is underwhelming with none exceeding 50% maximum fitness by
the final generation. However, there does seem to be a trend for MHET to perform better
than SHET as task difficulty increases, with MHET significantly outperforming SHET in
the difficult environment after worse and comparable performance in the easy and medium
environments (see Table 5.1). As with the homogeneous behaviour evolution algorithms
(see section 5.2.1), MAP-Elites produces a smooth, increasing fitness curve whereas SSGA
produces an irregular curve.

The allocation evolution experiments also exhibit contrasting fitness trends between
algorithms (see Figure 5.3b). AMHET follows a logarithmic growth curve (as with MHET),
whereas ASHET remains almost entirely flat after some very minor fitness gains in the first
few generations. Even though ASHET and AMHET both evolve controller allocations
using SSGA, the reference controllers themselves are evolved by either SSGA or MAP-
Elites, respectively. These results, therefore, suggest that controllers evolved via MAP-
Elites are more suitable for heterogeneous allocation than those evolved via SSGA. This
makes sense since the MAP-Elites controllers are more likely to be behaviourally varied
than those evolved by SSGA. However, maximum fitness starts much lower for AMHET
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compared with ASHET, probably due to the presence of poor-performing controllers in
the MAP-Elites archives which were never replaced with fitter controllers. ASHET and
AMHET appear to achieve comparable maximum fitness in their final generations, with
AMHET only significantly outperforming ASHET in the easy environment (see Table 5.3).

Overall, our results indicate task performance differences between SSGA and MAP-
Elites for the evolution of heterogeneous swarms. In the behaviour evolution experiments,
MAP-Elites is observed to provide a performance benefit in environments of increasing
task complexity. However, in the allocation evolution experiments, controllers generated
using SSGA and MAP-Elites seem to provide mostly comparable performance across task
environment difficulties.

5.2.3 Research Question 3

Does a heterogeneous swarm elicit any advantage over standard homogeneous
swarm-behaviour evolution for a collective herding task, given increasing task
complexity?

To produce heterogeneous swarms, the SHET and MHET algorithms were applied in our
behaviour evolution experiments and the ASHET and AMHET algorithms were applied in
our allocation evolution experiments. Homogeneous swarms were evolved via the SHOM
and MHOM algorithms as part of the behaviour evolution experiments. As previously
mentioned, algorithm performance was assessed under increasing task complexity in easy,
medium and difficult environments.

Starting with the behaviour evolution experiments, we observe considerably different fit-
ness trends between homogeneous swarms (SHOM and MHOM) and heterogencous swarms
(SHET and MHET) over the course of evolution (see Figure 5.1c and 5.1d). Although
both approaches follow the same expected pattern of performing best in the easy en-
vironment followed by the medium and difficult environments, the homogeneous swarms
achieve significantly greater maximum fitness results than the heterogeneous swarms across
all difficulties (see Table 5.2). Archive size and QD score results present a similar assess-
ment, with homogeneous swarms obtaining significantly higher values than heterogeneous
swarms in all task environments (see Table 5.2). An important distinction between the
algorithms evolving homogeneous swarms (SHOM and MHOM) and those evolving hetero-
geneous swarms (SHET and MHET) is that the heterogeneous swarms have significantly
more ANN connection weights (as part of their behaviour genomes) to optimise than the
homogeneous swarms. This is due to SHET and MHET simultaneously evolving multiple
controllers for a single swarm, while SHOM and MHOM only evolve one controller per
swarm. Consequently, there exists a substantially larger search space for heterogeneous
swarm optimisation, which explains the much slower increase in fitness observed during
evolution when compared with homogeneous swarms (see Figure 5.1d). This is also evi-
denced by the final solution archives which reflect the limited exploration of the behaviour
search space for SHET and MHET (see Figure 5.2).
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For the allocation evolution experiments, it is important to note that the algorithms
evolving heterogeneous swarms (ASHET and AMHET) are seeded with the final controller
solutions produced by the algorithms evolving homogeneous swarms (SHOM and MHOM).
In this way, ASHET and AMHET represent extensions of SHOM and MHOM, respectively,
which seek to further optimise pre-generated solutions by combining them in novel swarm
allocations. It therefore makes sense that when comparing fitness trends from SHOM and
MHOM (see Figure 5.1c) with those from ASHET and AMHET (see Figure 5.3b), we
see that the heterogeneous swarms start evolution with already high-performing solutions
whereas the homogeneous swarms all begin with near zero fitness. Despite ASHET and
AMHET not modifying the controllers generated by SHOM and MHOM, both produce
heterogeneous swarms with significantly greater task performance than their homogeneous
counterparts (see Table 5.5), with the exception of AMHET in the difficult environment
(which still performs comparably to MHOM in that case). Final solution archives pro-
duced by ASHET and AMHET (see Figure 5.4) demonstrate minimal exploration of the
behaviour space in comparison with those produced by SHOM and MHOM (see Figure
5.2). This is reflected in the archive size and QD score results, which are significantly
lower across task difficulties for ASHET and AMHET (see Table 5.5). The decreased di-
versity of solutions is likely due to both allocation algorithms being based on SSGA which
tends to converge on similar high-performing individuals. Altogether, these results suggest
that heterogeneous swarm allocations of controllers can indeed achieve better performance
than separate homogeneous swarms using the same controllers, despite lower behavioural
diversity in the population.

To summarise in answering the research question, there is evidence suggesting that
heterogeneous swarms can provide a task performance benefit over homogeneous swarms.
However, only heterogeneous swarms produced via allocation evolution demonstrate this
advantage, with those produced via behaviour evolution most likely requiring far longer
convergence time to achieve high fitness. There also seems to be a sacrifice to population
diversity experienced with heterogeneous swarm evolution (i.e. less variation in behavioural
characteristics between heterogeneous swarms compared with homogeneous swarms), but
this overlooks the fact that individual heterogeneous swarms are inherently more function-
ally diverse (and likely more adaptive to environment changes) than homogeneous swarms.

5.2.4 Research Question 4

When evolving a heterogeneous swarm for a collective herding task with increas-
ing task complexity, does a multi-step evolutionary process which optimises the
allocation of pre-evolved controllers to robots produce higher-performing swarms
than the single-step direct evolution of a diverse swarm?

The ASHET and AMHET algorithms were applied in our allocation evolution experiments
to generate heterogeneous swarms by optimising the allocation of pre-evolved controllers to
robots. Heterogeneous swarms were also generated by the SHET and MHET algorithms in
our behaviour evolution experiments, but instead through the single-step direct evolution
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of multiple controllers. Easy, medium and difficult environments were simulated to assess
algorithm performance under increasing task complexity.

As discussed for the previous research question, SHET and MHET demonstrate a grad-
ually increasing trend in maximum fitness during evolution starting from near zero (see
Figure 5.1d) while ASHET and AMHET also follow a slight increase in maximum fitness
(more so for AMHET than ASHET) but from a higher initial value (see Figure 5.3b). As
a result, ASHET and AMHET both achieve significantly better task performance in their
final generations than SHET and MHET, across all task difficulties (see Table 5.4). Despite
their relatively high solution quality, it is evident from the final solution archives that the
allocation evolution algorithms (see Figure 5.4) explore a substantially lower proportion of
the behaviour space than the behaviour evolution algorithms (see Figure 5.2). This is also
exhibited in the archive size results, which are significantly lower for ASHET and AMHET
when compared with SHET and MHET in all environments (see Table 5.4). However, even
with lower population diversity, the QD score results (which provide a combined measure of
both solution fitness and diversity) still favour the allocation evolution algorithms over the
behaviour evolution algorithms. This is shown in Table 5.4 where the allocation evolution
algorithms achieve significantly higher QD scores across all task difficulties, highlighting
their considerably greater solution quality (even outweighing their lower solution diversity)
when compared with the behaviour evolution algorithms.

Overall, our results strongly support the hypothesis that multi-step evolution of het-
erogeneous swarms via the allocation of pre-generated controllers produces significantly
greater task performance than single-step evolution of multiple controllers. Even with
lower population diversity, the combined QD score for allocation evolution algorithms still
exceeds that of behaviour evolution algorithms.

5.2.5 Previous Work

To assess the significance of this research in relation to prior work, we will review the
methods and results alongside those presented in the 2018 paper by Hart, Steyven and
Paechter [61] which introduced the EDQD algorithm as well as the 2020 paper by Bossens
and Tarapore [15] which introduced the QED algorithm. These two studies, inter alia,
provided the primary motivation for our research questions.

The EDQD study [61] focused on applying a novel decentralised algorithm to evolving
heterogeneous swarms for a static token gathering task. This is in contrast to the centralised
approach used for our evolutionary algorithms, and the dynamic environment simulated for
our collective herding task. Furthermore, despite evolving much larger individual swarms
consisting of 200 robots (compared with our 10 to 20 robots per swarm), EDQD employs
a smaller MAP-Elites archive size of 225 bins (compared with our 729 bins). In this way,
our method enables a more comprehensive exploration of the solution space to generate a
library of possible behaviours for later use in our allocation evolution experiments. This
concept of a “behaviour library” was alluded to as an avenue for future work in the EDQD

paper.
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A significant difference in the results between EDQD and our allocation evolution al-
gorithm is the observed trend in the number of unique behaviours within the swarm over
time. In our experiments, the number of unique behaviours tends to decrease over time
during allocation optimisation (see Figure 5.3d), while in EDQD, it shows an increasing
trend. This contrasting behaviour indicates potentially divergent mechanisms at play in
generating behavioural diversity within a swarm. Additionally, while both studies aim to
reduce the computational cost of generating behavioural diversity, there are differences
in the evaluation strategies employed. EDQD utilises 200 robots in the population (as
well as 200 robots in each simulated swarm) evolved over 1000 generations, whereas our
approach achieves convergence on high performance results with even fewer evaluations,
using a population of 100 robots (simulated in swarms of 10 to 20 robots) evolved over 200
generations. This distinction showcases our success in optimising computational efficiency
while maintaining effectiveness in generating diverse behaviours. Importantly, our research
also supports the findings of Hart et al., as both studies provide evidence that behavioural
diversity can be generated without specific speciation mechanisms or geographical isolation
in the task environment.

The QED study [15] investigated the use of a novel centralised algorithm to evolve
homogeneous swarms for multiple collective behaviour tasks, including aggregation, dis-
persion and flocking. Archives of diverse behaviours based on six environmental charac-
teristics (as opposed to the three behavioural characteristics used in our approach) were
generated to assist in adapting robots for fault recovery. Although similar sized swarms
cach consisting of 10 robots were simulated (in line with our 10 to 20 robots per swarm),
QED employed a significantly larger archive size of 4096 bins and conducted evolution
over 30,000 generations (compared with our 729 bins and 200 generations). Given that
the attributes of their simulated environments could be freely manipulated, the entire en-
vironment search space could be systematically explored for QED, unlike our behaviour
search space requiring the nondeterministic discovery of new behaviours through mutation
and recombination. It is also worth noting that the use of behaviour archives for later
adaptation in QED is similar in nature to our approach of pre-evolving controllers for later
allocation.

Results indicate that maximal coverage of the solution archives was achieved for QED
within approximately 10,000 generations. This is in contrast to our algorithms which
were unable to reach major coverage of the behaviour space. However, not only could the
shortened evolutionary period for our experiments (200 generations) be a factor behind
this outcome, but also the use of behaviour descriptors for archive dimensions rather than
environment descriptors makes it more challenging to effectively explore the search space, as
previously mentioned. Furthermore, the use of archived behaviours for robot adaptation
in QED demonstrated high robustness to induced faults, which is congruent with the
improved task performance achieved for swarm allocations of archived behaviours in our
experiments.

In summary, there are some marked similarities and differences between our evolution-
ary approach and those implemented for EDQD and QED. While EDQD evolves hetero-
geneous swarms via a decentralised algorithm and QED evolves homogeneous swarms via
a centralised algorithm, our research makes use of centralised algorithms to generate so-
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lution archives for both homogeneous and heterogeneous swarms. Furthermore, our use
of behavioural characteristics to define the search space is similar to that of EDQD, but
unlike that of QED which instead uses environmental characteristics. Also, although our
experiments are all conducted in the same general environment set-up (similar to EDQD),
there is some degree of alternative environment exploration (similar to QED) in that we
simulate a dynamic environment under three levels of task complexity. Finally, comparing
experimental results, we note that our research supports the findings of the EDQD study
and extends the evidence presented by the QED study, demonstrating that an archive of
diverse behaviours can enhance performance and adaptation in dynamic environments.

Overall, the main contribution of our research is the introduction of a novel evolution-
ary approach for generating heterogeneous swarm allocations of pre-evolved, behaviourally
diverse robot controllers. This method has been demonstrated to achieve significantly
improved task performance when compared with the same controllers in isolation (i.e. sep-
arate homogeneous swarms), substantiating that there are ways to optimise how a library
of behaviours is utilised in practice. We have also showed this allocation evolution strategy
to be significantly more effective than the direct evolution of heterogeneous swarms.
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Chapter 6

Conclusion

In this thesis, we have investigated the impact of behavioural diversity in the evolution of
multi-agent systems robust to dynamic environments. A collective herding task was sim-
ulated under varying degrees of complexity for this purpose, requiring evolved robots (or
“dogs”) to capture a dispersed flock of heuristic agents (or “sheep”) in a centrally located
target zone. The SSGA (promoting solution quality) and MAP-Elites (promoting solution
quality and diversity) evolutionary algorithms were alternatively applied to generate both
homogeneous and heterogeneous swarms in what were termed our behaviour and allocation
evolution experiments. Connection weights for robot ANN controllers were optimised in
the behaviour evolution experiments (using the SHOM, MHOM, SHET and MHET algo-
rithms), while heterogeneous swarm assignments of pre-evolved controllers were optimised
in the allocation evolution experiments (using the ASHET and AMHET algorithms).

Our results demonstrate the capability of MAP-Elites to produce a set of solutions
with enhanced behavioural diversity compared with a traditional evolutionary approach,
namely SSGA. This was achieved in the absence of specific speciation mechanisms or geo-
graphical isolation in the task environment, supporting similar findings by Hart, Steyven
and Paechter [61]. This alignment strengthens the validity of our research and contributes
to the growing body of evidence in support of this notion. Furthermore, we have exhibited
significantly improved task performance for heterogeneous swarms generated by our novel
allocation evolution approach. This supports the hypothesis that there are benefits to be
gained from using behavioural allocation as opposed to the direct evolution of heteroge-
neous swarms. Finally, we provide some evidence suggesting that increased behavioural
diversity emerges in response to increased task difficulty, although further study is still
necessary.

The investigation of our research questions has provided several notable insights, as
described above. However, specifically the third and fourth research questions have yielded
the most significant contribution to the larger research field. Along these lines of enquiry,
our results demonstrate the capacity of heterogeneous swarms to outperform separate
homogeneous swarms, using identical controllers, when generated by a novel allocation
evolutionary method. As such, the introduction of our multi-step approach for evolving
swarm-controller allocations (via the ASHET and AMHET algorithms) represents the main
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contribution of this work.

In light of this research, there are several recommendations for the direction of fu-
ture work. Firstly, having already demonstrated the potential for behavioural allocation
approaches, it would be valuable to conduct more comparative experiments with similar
algorithms evolving heterogeneous swarms (such as EDQD) in different task environments.
There should also be a deeper focus on analysing the differences in computational cost and
scalability between these algorithms. Secondly, the capabilities of pre-evolved heteroge-
neous swarms to adapt and perform under changing environmental conditions should also
be tested, possibly implementing similar environment generation strategies to those em-
ployed by Bossens and Tarapore [15] in their QED study. Lastly, an interesting extension to
our allocation evolution approach could involve using QED to generate solution archives
based on environmental characteristics rather than using explicitly-defined behavioural
characteristics.
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