
Evolution of Sun-Shades Outside Building Façades

DISSERTATION SUBMITTED FOR THE PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN

INFORMATION TECHNOLOGY IN THE DEPARTMENT OF COMPUTER SCIENCE

AT THE UNIVERSITY OF CAPE TOWN

by

Leon Coetzee

Supervised by:

Dr Geoff Nitschke

January 2023

Contents

1 Abstract 1

2 Introduction 3

3 Literature Review 8
3.1 Understanding and creating Form . 8
3.2 Computers in Architectural design . 11
3.3 Architectural Form-Finding (beginnings and theory) 18
3.4 Architectural Solar controls - shading devices (Sun-Shades) 25
3.5 Research on daylighting, solar radiation, energy efficient buildings and

form-finding . 28
3.5.1 Façade design optimisation for daylight with a simple genetic

algorithm . 28
3.5.2 Genetic optimization of external shading devices 29
3.5.3 Geometric optimization of fenestration 31
3.5.4 Optimal Building Envelope Design - History, current status, new

trends . 32
3.5.5 Shape optimization of free-form buildings 33
3.5.6 Robotic Form-Finding and Construction 36
3.5.7 Comments regarding the Research in daylighting, solar radiation,

building envelopes . 38
3.6 General Comments . 40

4 Methods 41
4.1 Introduction . 41
4.2 Background . 42

4.2.1 Solar Angles . 43
4.2.2 Solar values as an example . 45
4.2.3 Digital Solar Protractor . 48
4.2.4 The window opening and ‘bounding box’ 50
4.2.5 Calculating sun rays . 50

4.3 Evolutionary Algorithms . 55
4.3.1 General Outline . 56
4.3.2 Why Evolution Strategies for the algorithm? 56
4.3.3 Fitness . 57
4.3.4 Building façade . 57
4.3.5 Bounding box - point cloud . 58
4.3.6 Population . 58
4.3.7 Recombination . 58
4.3.8 Mutation . 58
4.3.9 Summary of ES . 59

4.4 Pseudocode - Evolution Strategies . 60
4.5 Point cloud to mesh . 61

1

4.6 Traditional Sun-Shade ‘fitness’ . 62

5 Experiments and Results 64
5.1 University of Cape Town - Data Management 64
5.2 Traditional Sun-shades Fitness results 64

5.2.1 Traditional Sun-shades Fitness - comments 66
5.3 Evolved Sun-shades mesh results . 66

5.3.1 Evolved Sun-shades meshes - comments 69
5.4 Evolution Strategies - fitness results . 70

5.4.1 Individual Fitness values . 70
5.4.2 Fitness values per Generation 71
5.4.3 Mean fitness per Evolution Strategies run compared to traditional

sun-shade . 71
5.5 Hypothesis testing - single sample T test (two tailed) 76

5.5.1 Comments and observations . 77

6 Discussion 78
6.1 Form-Finding . 78
6.2 Evolution Strategies . 79
6.3 General observations . 79

7 Conclusion and Future Work 81
7.1 Conclusion . 81
7.2 Future Work . 81

7.2.1 Explore other façade conditions 81
7.2.2 Changes to the Evolutionary Algorithm 81
7.2.3 Add simulation to improve upon the idea of fitness 82
7.2.4 Reconnecting to ‘original’ Form-finding principals 83
7.2.5 Meshing and surfacing of the point cloud 83

References 85

8 Appendix 1 - Source Code 90

9 Appendix 2 - Source Code cleaning output 101

10 Appendix 3 - Solar calculations (every 15s) 103

11 Appendix 4 - Individual fitness details 109

12 Appendix 5 - Fitness values per generation per ES run 111

13 Appendix 6 - Fitness per façade 115

1 Abstract

The research objective behind this study is to compare ‘traditional’ architectural
sun-shades with evolved sun-shades to determine which best blocks direct sunlight
from entering a window. Two geographical locations are tested along with two façade
conditions for each. The sun path on the summer solstice provides the projected
sun rays, measured every fifteen seconds. The sun-shades are made up of points in
three-dimensional space that form a ‘point cloud’. The points can be connected to form
a surface and from there a geometric form.

An Evolutionary Strategy, using self-adaptation, evolves the points within the point
cloud to generate the sun-shade.

Fitness for each point is determined by the number of sun rays the point can block
from striking the window surface; furthermore, the point may not obstruct the view from
the window given certain conditions. The mean fitness for ten ‘traditional’ architectural
sun-shade solutions, represented as point clouds, is compared to the mean fitness of the
evolved sun-shade point cloud.

This study provides two contributions to this field; firstly it provides a method with
which to measure the fitness of ‘traditional’ sun-shades solutions and compares them
with evolved solutions, secondly it provides a form for the solution. Architecturally, the
form this evolved sun-shade takes becomes interesting as an Evolutionary Algorithm is
employed as an approach to form-finding.

Finally, some possible improvements and modifications are further discussed.

1

Acknowledgements

I would like to thank:

� My Supervisor, Dr Geoff Nitschke, for his patience and guidance.

� My wife, Maggie for her mathematical advice and support together with our
children Maia and Louie.

� My brother, Derek and Vlad Constantinescu, for their assistance using R.

� My work colleagues for their understanding and input.

Copyright and License

Leon Coetzee is the author of this dissertation, and holds copyright in terms of the
University of Cape Town’s Intellectual Property Policy, 2011 (https://www.uct.ac.
za/administration/policies).

2

https://www.uct.ac.za/administration/policies
https://www.uct.ac.za/administration/policies

2 Introduction

This case study explores using an Evolutionary Algorithm to design an optimum
sun-shading device for application in Architecture. Sun-shading devices are external
elements on a building façade that typically shield a window opening with the intention
of blocking direct sunlight from entering and warming the interior. To assist in keeping
the work focused on evolutionary computation, the scope of the study shall be limited
to only consider the successful reduction of solar radiation on a surface. This research
does not consider light quality or comfort levels (glare) for building occupants. Over
time, various approaches and solutions have been shown to produce effective devices for
certain conditions. Both how to approach this design task (with assistance on how to
analyse the conditions under which such a device should function) and how to select a
solution from an existing set of ‘typical’ sun-shades have been well documented and are
typically used as architectural ‘precedent studies’ when determining a solution. This
case study sees these solutions as ‘traditional’ sun-shades, examples of which can be
seen in Figure 1.

Figure 1: Traditional sun-shades proposed in ‘Tips for Daylighting with Windows’

(O’Conner et al.)

Current research of a similar scope as that carried out in this case study considers,
among others; façade design optimisation, the optimisation of a given (pre-designed)
shading device, the geometric optimisation of fenestration (window layout) within a
façade, the optimal design of a building envelopei, the optimisation of the shape of a
free-form building and the optimised design of an energy efficient building façade.

Façade design optimisation: The optimisation of a façade design seeks to balance
allowing natural daylight to enter the building (to provide adequate internal lighting)
while also minimising the resultant glare which would cause discomfort for the users.
This research is based around creating a natural daylight system with the hope that
this can reduce the energy costs of the building. The optimisation solution is centred
on the design of a window with integrated sun-shades and uses a simulation of sky
brightness to determine internal luminance values.

iThe Building Envelope can be seen as the element that separates the interior from the exterior of

a building. The envelopes’ ability to function as a barrier to better manage the internal climate of a

building is what is of interest.

3

Optimisation of a (given) shading device: The optimisation of a given
sun-shading device looks to address the increase in heat build up within a building while
being restricted in following existing building regulation guidelines that concern the
placement together with a broad outline of a device but is lacking in details concerning
the choice of sun-shades that may be used. This research does not alter the form of
the device, instead, using the results from an energy simulation based on readings
from within a test space, the existing device is ‘optimised’ by altering the position of
components (relative to the building surface) - how the device may be rotated and
by how wide or thick the components may be (this needs to fit within the building
regulations).

Geometric optimisation of fenestration: The geometric optimisation of windows
on a façade is inspired by the fenestration of Notre Dame du Haut - Ronchamp Chapel
by Le Corbusier. The aim of this study being to reduce the size of window openings on
a façade to minimise heat build up within. This work looks at optimising the design of
a window layout by affecting the shape, amount and position of window openings. The
façade is divided into cells which drive the optimisation of openings, however, certain
constraints are implemented (window opening aspect ratios and amounts) to allow the
designer to exercise control over the solution. Examples of façade and sun-shading
device optimisation approaches can be seen in Figure 2.

(a) Façade design optimisation for

daylight (Torres & Sakamoto)

(b) External shading device

optimisation (Manzan & Pinto)

Figure 2: Optimisation of sun-shading façade and devices

Optimal design of a building envelope: Optimum building envelope design is
broader in scale - the building as a whole is considered within an environment. Typically
software simulation is used to mimic the performance of a building, the results of which
can be used to create a ‘Green Building’ (a high performance, energy efficient, low
environmental impact building). Given both the scale of the work (the entire building)
and the many variables to be considered in the optimisation solution, this research

4

tends to be rich and complex.
Optimisation of a free-form building shape: Research on the shape optimisation

of free-form buildings hopes to increase solar radiation within the building, set in a
cold climate, by optimising the shape of a free-form building where solar radiation,
the ‘shape coefficient’ and ‘space efficiency’ are considered. Parametricii modelling
creates the free-form building model while a genetic algorithm is used to maximise solar
radiation gain and space efficiency while minimising the shape coefficientiii this can be
visualised in Figure 3.

Figure 3: Optimum building envelope design - shape coefficient visualisation (Zhang et

al.)

This case study - Evolution of Sun-Shades Outside Building Façades - is unique in
that it considers the form the final, optimised sun-shade will take. Architecturally, this
is known as ‘form-finding’ and it is a valid design strategy employed by the Architect (or
designer) in a scenario where they cannot anticipate what shape the final product will
take when solving a given problem. Can the evolved form of a sun-shade perform
better than existing ‘traditional’ sun-shades? The Form-finding in this case study
is more mature when compared to other research in that other sun-shade optimisation
research typically modifies existing elements or alters a given layout by keeping parts
constrained and moving components - lengthening, shortening or rotating as needed.
Whereas this case study starts with a point cloud and evolves this volume to a final,
unknown, form. Furthermore, what makes this research unique is that it determines a
method with which to evaluate the fitness of traditional sun-shades and then uses this
fitness value to compare traditional sun-shades with the newer geometrically evolved

iiParametric refers to a software modelling method that allows the user to access parameters that

make up the model. This is often ‘dynamic’ as changes to parameters are immediately reflected in the

model.
iiiThe shape coefficient is the ratio between the area of a building’s external surface and its internal

volume.

5

sun-shade. Finally, the Evolutionary Algorithm, in this case study, is permitted to
function fully; no ‘designer’ intervention is made, no parameter tweaks are permitted and
the algorithm functions fully until the final generation is reached (no population ‘restart’
is required). This research uses a ‘pure’ Evolutionary Algorithm, not an implemented
‘plug-in’ or software generated solution. No limit is set on the evolutionary process
as it functions separately from an environmental simulation which typically require
simplified or pre-calculated data (often contained within a database).

Regarding ‘Form-finding’; this approach to architectural design has a strong heritage
going back to Antoni Gaud́ı’s ‘funicular’iv and being aptly demonstrated by Frei Otto’s
‘Soap Bubble’v experiments. Figure 4 illustrates these original methods of Form-finding.

(a) Antoni Gaud́ı Funicular for the

Colònia Güell chapel (Martinell)

(b) Frei Otto Experimenting with

Soap Bubbles (Zexin)

Figure 4: Architectural Form-finding: Antoni Gaud́ı and Frei Otto

While Evolutionary Algorithms are perfectly suited to the ‘form-finding’ design
method - where they evolve a solution to suit a set of given fitness parameters with
the resulting artefact being unknown - in architectural research they are typically
used to optimise a series of given parameters. However, these results see a general
‘re-arranging of existing elements’ rather than the creation of something new and

ivThe funicular was a series of chains suspended from the ceiling. The form the chains took on

visually illustrate the structural forces that would be experienced in his chapel design (shown upside

down). The structure can be designed from this knowing it can accommodate the distribution of forces.
vFrei Otto coined the phrase ‘Form-finding’, which he used to describe his method of using soap

bubbles to determine the shape the tensile roof would take given the structure and supports he designed

for the 1972 Olympic Stadium in Munich - Olympiastadion.

6

possibly unexpected.

7

3 Literature Review

3.1 Understanding and creating Form

One of the earliest discussions on Form is D’Arcy Wentworth Thompson’s On Growth
and Form [59]. In this work Thompson seeks to remove the ‘romantic’vi approach
to the study of organic life and replace it with the more ‘modern’ scientific method
underpinned by ‘mathematical processes’. He starts by indicating that the forms living
things take are constrained by physical laws while growth is to be studied in conjunction
with form and can be seen as either an increase in size - ‘magnitude’ - or a gradual
change over time (the slow development of a structure). When considering magnitude,
it is proposed that this be a scalar value (something represented by a number) and is
connected to the relationship between parts - most probably as a ratio. The ‘Principal
of Similitude’ is important - as originally noted by Galileo [58] - where the effect of
scale has limitations vii. Notably, as something increases proportionately in size it will
eventually collapse under its own weight. To address this - either proportions need to
be altered (often resulting in something ‘clumsy’ or inefficient) or the material used
needs to change (to something stronger). When considering growth, this can be seen as
a vector in that it is the change of magnitude in a direction, typically the magnitude
of one direction to a second; length to height. As these magnitudes vary across time
intervals you get growth. Where time is involved you see a ‘rate of growth’, this also
plays a part in determining the form an organism will take. Thompson wraps up by
concluding that, among things, “Every growing organism, and every part of such a
growing organism, has its own specific rate of growth, referred to a particular direction.
It is the ratio between the rates of growth in various directions by which we must account
for the external forms of all, save certain very minute, organisms.”

The Architect, Christopher Alexander, while reflecting on the state of the architectural

viThe approach to studying organic life at this time was to see ‘something more’ in natural artefacts

that neither physics nor mathematics could explain. Among the idea’s at that time were that pedigrees

and blood-relationships formed part of the classification system, embryology could define the life

history of a race or that bird migration patterns could reveal lost lands (islands or sunken continents).

This was all underpinned by the idea of ‘the final cause’, the ‘great design’ or ‘end purpose’.
viiRegarding the Principal of Similitude, Galileo is quoted as follows: “From what has already been

demonstrated, you will plainly see the impossibility of increasing the size of structures to vast dimensions

either in art or in nature; likewise the impossibility of building ships, palaces or temples of enormous

size in such a way that their oars, yards, beams, iron-bolts, and, in short, all their other parts will hold

together; nor can nature produce trees of extraordinary size because the branches would break down

under their own weight; so also it would be impossible to build up the bony structures of men, horses,

or other animals so as to hold together and perform their normal functions if these animals were to be

increased enormously in height; for this increase in height can be accomplished only by employing a

material which is harder and stronger than usual, or by enlarging the size of the bones, thus changing

their shape until the form and appearance of the animal suggests a monstrosity.” [32]

8

profession, sought to develop a ‘systematic’ approach to creating form, which he sees as
the ultimate goal of design. Alexander does not see the world as homogeneous but that
it is instead irregular. Consequently, as the world tries to fit this irregularity, form is
generated. Alexander underscores this by quoting D’Arcy Thompson where form is seen
as the ‘diagram of forces’ for these irregularities. In his early work [3], Alexander sets
about proposing an approach to creating form by incorporating Logic and Mathematics
into the architectural design process; he appreciates this is a difficult prospect for the
architectural profession and explains:

“It is not hard to see why the introduction of mathematics into design is likely
to make designers nervous. Mathematics, in the popular view, deals with magnitude.
Designers recognize, correctly, that calculations of magnitude only have strictly limited
usefulness in the invention of form, and are therefore naturally rather skeptical about
the possibility of basing design on mathematical methods. What they do not realize,
however, is that modern mathematics deals at least as much with questions of order and
relation as with questions of magnitude. And though even this kind of mathematics may
be a poor tool if used to prescribe the physical nature of forms, it can become a very
powerful tool indeed if it is used to explore the conceptual order and pattern which a
problem presents to its designer. Logic, like mathematics, is regarded by many designers
with suspicion. Much of it is based on various superstitions about the kind of force logic
has in telling us what to do.”

Alexander starts by understanding that the designer’s ‘intuition’ will not assist
very much in the creation of form and that, furthermore, this intuitive process has
essentially become guided by ‘general principals’ which, over time, have formed the
‘root’ of architectural theories. However, Alexander argues, these general principals are
no longer fit for purpose - if anything, they lead the designer further astray as new
concepts get developed to deal with more complex problems. Alexander sees these
concepts as being the result of ‘arbitrary historical accidents’ and consequently do not
help the designer to find a ‘well-adapted’ solution.

Alexander outlines this scenario:
“The modern designer relies more and more on his position as an ‘artist’, on

catchwords, personal idiom, and intuition - for all these relieve him of some of the
burden of decision, and make his cognitive problems manageable. Driven on his own
resources, unable to cope with the complicated information he is supposed to organize,
he hides his incompetence in a frenzy of artistic individuality. As his capacity to invent
clearly conceived, well-fitting forms is exhausted further, the emphasis on intuition and
individuality only grows wilder.”

Alexander’s ‘systematic’ approach to creating form is based in the mathematical
world of set theory where design criteria (‘misfits’) get abstracted into elements within
a mathematical set, this becomes more complex as designs increase in complexity
and includes nested sets. The way these elements interact with each other - interfere,
conflict, concur - determines the character of the system. Together with this original
set of design criteria is a second set that indicates the links between elements, this set
identifies the interaction between elements.

The two combined sets - elements and links - form a ‘linear graph’ the structure of
which is called a ‘field’. This can be broken down using a method called ‘decomposition’
to show subsets and hierarchies. This final diagram becomes ‘the program’ as it contains

9

the instructions to create the final form.
To understand how he extracts design criteria and creates connecting links, Alexander

does go into some detail discussing why creating form outside of this method fails
- he looks at how vernacular (similar to ‘community build’) architecture approaches
form-making and contrasts this with Modern architecture. He identifies ‘unselfconscious’
and ‘self-conscious’ approaches to design - where the first is generally successful while
the latter needs support. He creates ‘rules’ for using his system (what makes a fit
criteria and how sets work), he discusses methods for decomposing the structure and
ends with a final diagram - a pattern.

In his introduction to the revised edition, Alexander indicates he focused too much
on discussing processes while leaving the diagrams that supported this discussion to the
end. When revisiting this work the value of the diagrams struck him. These ‘patterns’
are an abstraction of components interacting within a system while at the same time
being isolated from other systems.

Using these diagrams allowed for multiple, small, independent systems to be
combined to form a whole by connecting their component ideas together. He had
the realisation that, because these systems are ‘abstract and individual’, they could
be combined in multiple ways for infinite designs. The power of his diagrams led him
to realise the content he had written was simply a ‘formal and complicated’ way to
get to his diagrams/patterns. He summarises; “If you understand the need to create
independent diagrams, which resolve, or solve, systems of interacting human forces, you
will find that you can create, and develop, these diagrams piecemeal, one at a time, in
the most natural way, out of your experience of buildings and design, simply by thinking
about the forces that occur there and the conflict between these forces.”

This idea of patterns has had a massive impact across multiple disciplines, such
that Alexander goes on to acknowledge that from the ‘method’ section in this work ‘a
whole academic field has grown up - Design Methods’. Alexander continues: “... and I
have been hailed as one of the leading exponents of these so-called design methods. I am
very sorry that this has happened, and want to state, publicly, that I reject the whole
idea of design methods as a subject of study, since I think it is absurd to separate the
study of designing from the practice of design.”.

Alexander next produced a three-set series of books further refining his idea of
patterns; The Oregon Experiment (1975), A Pattern Language: towns, buildings,
construction (1977) and The Timeless Way of Building (1979). Alexander sees ‘A
Pattern Language’ as the second ‘volume’ of a whole with ‘The Timeless Way of
Building’ forming the first ‘volume’ indicating that the second volume may be seen as a
‘sourcebook’ for the ‘timeless way’ while the first volume covers its practice and origin
[4].

Reception to this body of work within the architectural community has been mixed
- this is clear in recent studies hoping to revisit the theories. Calling for a balanced
re-evaluation of this work, Ritu Bhatt indicates how it was initially rejected as it was
seen to be ‘deterministic and authoritarian’ by academics [10]. Similarly, Dawes and
Ostwald indicate that while this is probably the most widely read architectural treatise,
the content is not discussed - there is a lack of critical engagement with the theory to
challenge the ideas and assumptions they contain [21]. Dawes and Ostwald go on to
indicate that the three-set series can be seen as ‘canonical texts’ and they identify this

10

work as Alexander’s ‘second theory’ of architecture.

3.2 Computers in Architectural design

In the early to mid 1990’s, two important works focused on connecting architectural
practice to computing. At that time computers were typically seeing use as drawing
aids allowing for an increase in the production of drawings but computationally saw
little use in the application of design (CAD)viii.

In the first work Mitchell [45] considered the ‘logic’ underpinning computer algorithms
and translated that to the ‘logic’ underpinning architectural theory. Where ‘rules’ could
be applied to generate architectural components (or designs), so too could they be
converted into algorithms for computer application. Mitchell considered the ‘Greek
Orders’ [29], specifically the construction of a classical column. An example of the Doric
order (after Fletcher) can be seen in Figure 5. Mitchell believed they can be classified
according to certain rules - originally extracted from the use of grammar (article noun
verb). He used this grammar to construct ‘a sentence’ which becomes ‘classical rules’.
The designer works down a hierarchy, from the abstract to the refined item (which, it
is hoped, can go on to become an architectural detail drawing). Mitchell clarifies this
idea: “All this works because a classic order is, like a sentence, a linear sequence of
elements (running bottom to top instead of left to right). Thus we can embed a grammar
in an algebra in which the sole operation is concatenation of sequences of elements.”
This is illustrated in Figure 6 and thereafter Figure 7. From this starting point, to
better address “two and three-dimensional form”, Mitchell expands what can be done
using algebra (with the introduction of parameters) and works through grammar tables
to increase the scope of work to include ‘sophisticated (architectural) grammar’ to
generate floor plans of entire (Palladio style) buildings. Here he incorporates Shape
Grammar and later Artificial Intelligence into architectural design and references the
seminal work of Stiny [56] and McCarthy [44].

viiiCAD has two meanings; originally meaning Computer Aided Design, later to also mean Computer

Aided Drawing (drafting). Computer Aided Drawing is the most common meaning today - this is

where drafting work has become digital, this term is not flattering. Computer Aided Design is an older

term and was used when computers were seen to be of assistance in the design process.

11

Figure 5: Greek Orders - Doric Order (Fletcher)

Figure 6: Recursive grammar for an architectural column (Mitchell)

12

Figure 7: Recursive grammar applied as a linear sequence of elements (Mitchell)

While Mitchell focused on logical application, in the second work Frazer [31] focused
on evolution. As part of a research module at the AA School (Architectural Association),
an incredible amount of research is showcased. The starting point was the design
and development of the tools they believed they needed to carry out their research
(at the time this was undertaken, computing power and software was limited and
computer graphics techniques were in their infancy). The idea was to ‘start from
first principals’ with the benefit that they could create solutions to support their
research (rather than use commercial software that may not quite assist as expected).
Frazer started by building a computer and logic circuits (after referencing the Turing
Machine, The Von Neumann Machine, Parallel Processors and finally Neural Networks).
Computer modelling was introduced - a virtual representation of an actual construction.
This allowed research ideas to be developed, described, visualised and evaluated for
environmental performance. When creating their environment for simulation, their
research found the understanding, and consequently the application, of solar geometry
by architects was erroneous. (This was due to the lack of an understandable mental
model). A family of solar tools (with physical models) was created and incorporated
as computer models. Researchers understood at this point that user input required
an upgrade; digitisers were considered along with using physical models as a means
of providing input. From this flowed the creation of a self-replicating computer and
out of that a machine-readable grid board. Figure 8 shows a three-dimensional version
created out of cubes (later to be reduced in size).

13

Figure 8: Three-Dimensional machine readable grid, 1980 (Frazer)

The ‘Generator Project’ was set up as a consequence of the three-dimensional machine
readable grid - here building components (‘a kit of parts’ - enclosures, walkways, screens,
services) could be re-arranged to meet changing client needs. A computer program was
used to drive the layout of the components to create new arrangements thereby satisfying
(changing) client needs. Importantly, each part had embedded electrical components
making the building a ‘reconfigurable array processor’ - where the processor and building
would have identical configurations. Frazer saw this as an Intelligent Building as it could
reconfigure itself to suit user needs (and even ‘got bored’ if there was an inadequate need
for change). ‘Embedded intelligence’ and ‘learning from ideas’ came out of the Generator
Project - consciousness. As Frazer indicates; “I am not interested in the argument about
whether computers are actually intelligent, alive or conscious, but as a mental exercise
it is interesting to consider a building to be conscious at least in the sense of being able
to anticipate the implications of its actions, as any good environmental control system
should.” ‘The Universal Constructor’ was the next ‘intelligent model’ - using cubes as
their constructor (cubes being more universal than building components.). The cubes
could have a ‘state’ and this could be mapped to an environmental aspect (sound, wind,
and so on), furthermore each cube could communicate with the other. The flow of logic
could pass through the cubes with the entire structure functioning as an input/output
device - input could be the location or configuration of the cube while output would
be a displayed message. Using this displayed message, the construction would speak

14

to an observer (who could add/remove cubes as requested by the constructor). It was
expected that this tool could be used as a new design method (it could function as
a three-dimensional cellular automata responding to a building site condition). “The
‘Universal Constructor’ was an interactive self-organising environment”, a working
model is shown in Figure 9.

Figure 9: Universal Constructor - a working model functioning as ‘interactive

self-organising environment’ (Frazer)

Frazer’s research group next looked at Polyautomata for use as a generative tool
(this was due to the simplicity they offered). Cellular Automata allowed researchers
to understand complex behaviour derived from simple rule sets. Wolfram’s cellular

15

automata [63] and Conway’s ‘Life Game’ [19] were studied and incorporated - cellular
automata as ‘finite state machines’ were seen as a class of computer with the ability to
simulate computational operations. Self-replicating automata (after Von Neumann’s
thought experiment [46]) were tested with the hope of increasing the complexity of
forms being developed. Strongly influenced by Conway’s ‘Life Game’, ‘Artificial Life’
was the next field the research group looked at, noting: “Our model of architecture
exhibits the characteristics of metabolism, epigenesis, self-reproduction and mutability,
which are generally agreed to be requirements of life”. Frazer makes it clear, this research
sees architecture as a form of artificial life while others were searching for behaviour to
consequently claim artificial life.

Next, Frazer looks at Evolutionary Methods; identifying a simple use - where
performances are measured and a slightly improved solution is selected, while all others
are rejected. He indicates this is useful when one plans to optimise “already satisfactory
solutions, where only a small variation of quality is required”. A more sophisticated
evolutionary method is required where, either a well developed solution does not exist
or where the possible improvement is radically different. Holland’s [36] adaptive model
is investigated where a series of artefacts are produced from a set of operators while the
environment influences the selections made. From this Holland developed generalised
reproductive and genetic operators resulting in Genetic Algorithms - giving researchers
the ability to determine solutions not ‘imagined’ or to solve problems that were not
initially fully understood.

Biomorphs - proposed by Dawkins [22] - were evaluated alongside genetic algorithms;
but Frazer determined that the latter would be more suitable for design applications.
As evolutionary processes could result in diverse products, so too could architectural
problems be subjected to these same mechanics and have varied solutions generated. In
the works published, an interesting design for a sun-shade was produced, see Figure 10.

16

Figure 10: Solar Study evolving a wrap-around sun-shade (Frazer)

Influenced by Biomorphs, researchers modified Genetic Algorithms to form ‘hierarchical
genetic algorithms’ where “one algorithm learned the criteria for selecting the outcome
of the next”, this was done as positive results were achieved when a researcher intervened
during selection where the initial selection process was either ill-defined or had conflicting
selection criteria.

Finally, Frazer ‘locates’ this research within the practice of Architecture and then
discusses the tools they developed and how to use them to generate ‘a new model of the
generative architectural process’. Speaking on how a CAD (Computer Aided Design)
methodology could be used, Frazer believes that the approach to architectural design
in general is unsatisfactory and should not be imitated. He also feels that to mimic a
human process (architectural design) via a machine is not using the machine to its full
potential. Finally, Frazer indicates his concern for designers who use programs they
feel are ‘useful’ as this software only addresses the designer’s ‘sensibilities’ and does not
explore problem solving and producing results.

While discussing the ‘Specific Model’ his new ‘generative architectural process’
will use, Frazer notes the establishment of a computer environment for the model;
an architectural genetic search space. The datastucture within this space is made
up of points - also called motes - that have metadata attached such that each point
understands its location and position relative to others. It is also made up of unique

17

properties (descriptions of forms it may map to) and a history of how it came to be where
it is and what it is. The mote does not move but instead the metadata moves across
‘a field of motes’. This field extends indefinitely and motes that surround a structure
have environmental properties (that could affect the behaviour and performance of the
structure).

Frazer notes that the advantage of these motes is in representation and visualization;
but this is also the disadvantage as they may be misunderstood to be simply geometrical.

3.3 Architectural Form-Finding (beginnings and theory)

Central to this case study is the architectural notion of form-finding. When considering
the idea of ‘form-finding’ as an architectural design method, Antoni Gaud́ı’s system
of constructing a funicular [43] may be considered a good starting point. In the late
1800’s, Gaud́ı [65] constructed his funicular - models made up of a series of connected
chains with weights suspended from the ceiling. Under the influence of gravity, the
various inter-connected chains - when settled (static) - would represent the final form
the forces in the building will take. This, in turn, dictates where structural elements
need to be, for example; columns to carry the load of domes or arches. Figure 11 shows
a reconstructed scale model of Gaud́ı’s hanging model for the Colònia Güell chapel.

Figure 11: 1:15 scale reconstruction of Gaud́ı’s hanging model (Burry)

Frei Otto, in the 1970’s, used a conceptually similar approach to find the final form
his tensile roof structure would take for the Munich Olympic Pavilion roofs; Figure 12
shows the final construction in situ. Otto notes that in the 1950’s, the mathematics
of hanging structures was quite complicated, forcing him to consider using a physical

18

Figure 12: Frei Otto and Günther Behnisch, Olympic Stadium, Munich, 1972 (Burry)

model. He created tensile supports as a model and used soap films to form the skin, in
essence reverse tension-loading the suspended forms. This allowed him to determine the
way the final roof structure would look given the support system he supplied. It was
Frei Otto who coined the phrase ‘form-finding’ and explained how it works as a design
method [34]. For Otto, form-finding is a design method using ‘practical processes’ that
make use of the ‘self-organisation of materials’ under ‘external forces’. (By practical
processes, Otto means built artefacts, self-organisation of materials refers to the natural
shape materials tend to take for equilibrium to become static - similar to the angle at
which a pile of sand settles.) The forms available as solutions are controlled by the
choice and definition of the conditions under which form-finding takes place. Otto
‘unites the logic of material’ and structure.

The work pioneered by Gaud́ı and Otto is now considered part of the more recent
‘architectural style’ of ‘Parametricism’ix. While Schumacher is credited with ‘discovering’
Parametricism (Parametric Architecture), Burry links Parametricism to the earlier
work of Gaud́ı and Otto [14]. Burry, who continued the work on Gaud́ı’s unfinished
‘Baśılica de la Sagrada Famı́lia’, sees Gaud́ı as a parametric thinker. By ‘parametric
thinker’, Burry means a “creative mind capable of thinking and acting parametrically”.
He draws similarities to the ‘Plastic Architecture’ of the 1920’s which he believes is
effectively ‘parametrically variable (‘plastic’) architecture’. Under plastic architecture,
the focus became that of ‘elements’ with the following given as examples; ‘function,
mass, plane, time, space, light, colour, material...’. ‘Elements’ here equate to ‘variables’

ixIn 2009, Schumacher wrote that the innovations produced by Parametricism would replace those

that had been generated by the Modernist movement. While taking care to clarify that Parametricism

is an architectural style the techniques used are interesting; they include ’animation, simulation,

form-finding, parametric modelling and scripting’ . [55]

19

in the parametric paradigm.
According to Burry, Van Doesburg’s 1924 Manifesto (Towards a Plastic Architecture)

[61] was talking about ‘parametrically variable architecture’ all along. This manifesto
shifts architecture away from (rigid architectural) styles and the imitations thereof and
instead proposes an approach to architecture in a fresh way; namely that architecture
is composed of building elements. Interestingly, in the Manifesto, Van Doesburg notes:
“The new architecture is formless and yet exactly defined; that is to say, it is not subject to
any fixed aesthetic formal type. ...The functional space is strictly divided into rectangular
surfaces having no individuality of their own. Although each one is fixed on the basis of
the others, they may be visualised as extending infinitely. Thus they form a co-ordinated
system in which all points correspond to the same number of points in the universe.
It follows from this that the surfaces have a direct connexion to infinite space.” Van
Doesburg is, in essence, discussing Euclidean space providing a link between ‘Plastic
Architecture’ and computer modelling.

Coates and Makris build upon the work of Mitchell using the shape grammar of form
and genetic programming [17]. They experiment with Le Corbusier’s ‘Domino House’x

as that conceptual house structure easily lends itself to shape grammar. The ‘house’
gets defined as an s-expression, the phenotype of which is then evolved to show the
various possibilities inherent in the morphology as supplied originally by Le Corbusier.
Representation is in the form of geometrical 3D objects - ‘blocks’, that get evolved
to form a Domino House prototype. Figure 13 illustrates Le Corbusier’s idea of the
Domino House and part of the evolved structural work. Pottmann provides a thorough
textbook on architectural geometry and would be a starting point when determining
how to represent geometry [51].

(a) Domino House (Le Corbusier) (b) Stick and Slab primitive objects

Figure 13: Shape Grammar of form with Genetic programming (Coates & Makris)

Again, using Le Corbusier because of his ‘distinct compositional techniques’, Asojo
converts elements that occur in the ‘White Villas’ to ‘program rules’ [5]. He scripts the
rules in CAD software to generate architectural 3D elements sequentially. He then also
converts the elements to shape grammar and follows Coates and Makris to use genetic
programming to generate 3D models. As Asojo explains: “In genetic programming the

xThe domino house was an idea Le Corbusier developed that was a concrete frame structure with

vertical columns and a reinforced slab (requiring no beams for support).

20

(a) Sketch Designs (Le Corbusier)

(b) Generated Prototype after Le

Corbusier sketch designs

Figure 14: Genetic Programming incorporating Le Corbusier’s techniques (Asojo)

basic idea is that architecture results from the multiplication of simple relationships. The
range of moves available when exploring by hand are limited. The use of a recursively
defined generative grammar using genetic programming allows for recombination and
embedding of morphological moves to any level of complexity required.” The results are
illustrated in Figure 14.

While Mitchell and Frazer have made significant contributions to introduce and
establish roles for computing in architectural design thereby allowing Coates and
Makris to explore this further (with all producing interesting 3D models and forms),
architectural theory still frowns upon this body of work. Broadly speaking, Evolutionary
Algorithms are not easily accommodated in both the practice and theory of architecture.
De Landa refers to Evolutionary Algorithms as ‘Genetic Algorithms’ and has attempted
to embed this approach to design within architectural theory using the work of Gilles
Deleuze as a starting point [25]. These ‘genetic algorithms’ are discussed in the context
of how they assist with artistic design. The concern De Landa addresses is the architect’s
concern that an algorithm can design and consequently (following from this), what
value (or burden) this could place on the architect as a (chief, artistic) designer. De
Landa goes on to determine where in the process of evolving an artistic design solution
the role of the designer is crucial; namely, the designer needs to consider the search
space ensuring it is rich enough to allow for surprising (or even shocking) solutions -
typically solutions the designer has not already considered. Da Landa believes that
by considering the philosophical work of Gilles Deleuze, the architect will be able to
establish a rich search space. The architect is required to consider ‘population thinking’,
‘intensive thinking’ and ‘topological thinking’ that Da Landa believes will together form
a ‘new conception of the genesis of form’.

At a similar time Kolarevic [39] was exploring the impact the ‘Information Age’ would
have on how architecture is designed, seeing it as a challenge that needed to be addressed.
This challenge is to move architecture away from its traditional (building construction)

21

technological underpinning to computational innovation where ‘digital media’ is used
as a generative tool (rather than as a representational tool) to generate form - digital
morphogenesisxi. Following Kolarevic, Computational Architecture is conceptually
divided into various categories, namely; Topological Architecture (topological space),
Isomorphic Architecture (isomorphic surfaces), Animate Architecture (motion kinematics
and dynamics), Metamorphic Architecture (keyshape animation), Parametric Architecture
(parametric design) and Evolutionary Architecture (genetic algorithms) - each of the
‘new, emergent dimensions of architecture’ is then discussed. Topological Architecture
is defined by its departure from Euclidean geometry, represented in the Cartesian space,
towards the geometry of continuous curves most typically found in Non-Uniform
Rational B-Splines (NURBS) where the topology is represented by parametric functions
(rather than equations). Isomorphic Architecture is also removed from Euclidean
geometry (and Cartesian space) and uses isomorphic surfaces (‘metaballs’ or ‘blobs’)
to create geometry (isomorphic surfaces have fields of influence that can attract/repel
- a surface is generated where the field intensity is equal). Animate Architecture
uses animation software to produce both force and motion simultaneouslyxii while
form is produced, this results in producing a change in form together with the forces
that shape it. Metamorphic Architecture uses ‘keyshape animation’ where the
state of the geometry is recorded per animation keyframe and software computes the
‘inbetween’ frame shape changes. The modelling forms that are keyframed vary; typically
bounding box deformations, spline curves or deformations along a path. Parametric
Architecture concerns itself with changing exposed parameters resulting in a final
shape. Equations can be used to link parameters to provide relationships between
parts or objects. Parametric design requires procedural (‘algorithmic’) descriptions of
geometry. Evolutionary Architecture follows the work of Frazer and he is quoted:
“architectural concepts are expressed as generative rules so that their evolution and
development can be accelerated and tested by the use of computer models. Concepts are
described in a genetic language which produces a code script of instructions for form
generation. Computer models are used to simulate the development of prototypical forms
which are then evaluated on the basis of their performance in a simulated environment.
Very large numbers of evolutionary steps can be generated in a short space of time and
the emergent forms are often unexpected.” Kolarevic concludes that computational
architecture provides strong design exploration coupled to a high level of unpredictability
which work well with form-finding, something this approach seems to be made for.
Figure 15 shows an example of the work produced by ‘Animate Architecture’.

xiDigital morphogenesis is also referred to as computational architecture where form generation

and transformations are derived through computational processes
xiiTypically animation software produces forces separately and they are fed into the final animation.

22

Figure 15: Animate Architecture: Greg Lynn’s work - Port Authority Bus Terminal,

New York (Kolarevic)

Written in 2010 as an historical overview and to strengthen the link between
experiments and architectural theory, Brian Holland [35] traces “Evolutionary Thinking”
in the field of Architecture. The original architectural approach, when looking at nature,
was to mimic biological systems; as he notes, the “strategic application of adaptive
biological design principals to man-made systems”. This has formed the basis for the
architectural theory of Biomimetics. Holland documents that at around the same
time as Darwin was publishing ‘On the Origin of Species’ [20] the ‘Revue Générale de
l’Architecture’ created the term ‘Organic Architecture’, now known in architectural
theory as Organicism. The direct connection to Darwin’s work is unclear; organic
architecture related architecture to ‘the organised life of animals and vegetables’.

The initial architectural approach to Evolution was to be analytical. It becomes a
metaphor within the history of architecture with which to classify designs and buildings
and chart their change over time. Interest is with growth, anatomy and classification
systems.

‘Contemporary’ interest in evolutionary systems starts with Frazer’s ‘An Evolutionary
Architecture’ - discussed previously. Here the focus is on form generation. Frazer is
credited as being the first to try and develop a conceptual and computational system
that could be used to design architectural forms.

Holland acknowledges the ‘subjective selection’ designers have incorporated in their
evolutionary selection methods and references De Landa’s discussion on the role of
the Architect in an evolutionary design model. He credits De Landa with locating
Genetic Algorithms in architectural theory and for establishing a theoretical framework
to discuss these algorithms.

Holland’s survey ends with the work done at MIT in 2001 on the Maya software
plug-in - Genr8. This plug-in incorporates evolutionary computation, generative
computation and an environmental model. Surface geometries are grown using three
dimensional L-systems under the effect of various forces (wind, gravity, and so on). The
evolutionary module allows for populations of surfaces to be examined over generations
and specifically allows the selection process to be automated or subjectively managed
by the user.

Agkathidis [1] looks at how Generative Design Methods can be implemented and
taught at an Undergraduate educational level as Biomorphicxiii Design, testing if
this is suitable for the Undergraduate Design Studio. It should be noted that the

xiiiAgkathidis describes the term Biomorphic as coming from the world of art and used when describing

the work of the sculptor Henry Moore. The term is connected to fluid, organic shapes in art, architecture

23

studio does encourage digital exploration and fabrication. Questions asked were; can
this design method be integrated into a studio course, what are the strengths and
weaknesses, does this methodology produce innovative solutions (and does this make
students more employable and does it help in developing their design skills) and is
this field appropriate for an Undergraduate level of study? The course follows three
phases; Analysis (group work with precedent studies focused on nature where the
intention of the design and appropriate parameters are defined), Morphogenesis
(group work where abstract generative models are produced referencing the parameters
defined previously) and Metamorphosis (where the abstract, generative prototypes are
translated into ‘traditional’ architectural content - floor plans, sections, details, models
and visualisations). Across various projects, Morphogenesis sees Grasshopperxiv used to
generate prototypes, the product of which is 3D printed, CNC milled or laser-cut, an
example of student work is shown in Figure 16.

(a) Generated Shell types

(b) Physical model - double curved

shell with suspended membrane

Figure 16: Student work, Design Experimentation 2: Bird’s Nest (Agkathidis)

Agkathidis concludes that using generative methods in an Undergraduate Studio
has a positive impact as high levels of design innovation was noted while keeping the
level of applied knowledge appropriate to Undergraduate students. It was felt that this
course was successful in moving students out of the ‘classical (architectural) curricula’
to explore more innovative design methods, this connects to the needs of the job

and design. Specifically in Architecture the term is mainly used to refer to nature inspired or naturally

occurring patterns and shapes.
xivGrasshopper - algorithmic modeling for Rhino http://www.grasshopper3d.com/. Grasshopper

started as a plug-in to Rhinoceros 3D (Rhino), but has since been built-in to the software. It is a visual

programming environment that allows various modules to be installed with each module performing

certain specialised tasks. As it is a visual programming environment, users can place components on a

canvas and plug-in various components to programme a solution, the result of which is shown in the

Rhino three-dimensional viewport. Among the top downloads are ‘Lunchbox’ for exploring machine

learning, mathematical shapes and panelling, ‘Kangaroo Physics’, a live physics engine and ‘Ladybug

Tools’ for environmental design (sun paths, shadow studies, wind and computational fluid dynamics).

24

http://www.grasshopper3d.com/

market. Agkathidis concludes: “the strict boundaries between terms such as biomimicry,
biomorphism, zoomorphism, geomorphism, anthropomorphism, organicism and bionics
are becoming ever blurrier. Emerging computational tools and design techniques, such as
generative, algorithmic and parametric design, in combination with digital technologies
like CNC fabrication and 3D printing, are embracing nature as a source of inspiration,
and will allow constructive new synergies between biology and architecture in the years
to come.”

A final observation on an architectural approach to form is by Bonnemaison [13]
while discussing the work of a Graduate Seminar serving to outline more recent research
on (Architectural) ‘Organicism’xv. Central to this work is the acknowledgement that
the whole is larger than the parts (consequently nature needs to be deeply understood).
This central theme is understood to be common in the scientific approach to organicism
where it is not enough to discuss the parts, one needs to understand the context of the
whole and how the parts function within it. To ‘locate’ Organicism within architectural
theory, D’Arcy Thompson’s work [59] on natural sciences is seen as the starting point as
this work is commonly referenced by architects when considering the growth of structure
and geometrical patterns. Frank Lloyd Wright is seen to be prominent in this movement
where, at the time, organicism was termed ‘organic’ architecture. Methods for using
wood and coloured glass, in combination, generated forms creating geometries that, in
turn, could be repeated at varied scales to create a whole. This is considered typical of
organic architecture (organicism) inspired by the natural sciences. Bonnemaison next
discusses additional examples where architects were inspired by nature and so, in effect,
practice organicism; Le Corbusier’s modular series (referencing the Fibonacci sequence),
Christopher Alexander (to create A Pattern Language [4]), Frei Otto’s ‘aesthetics’ (from
his soap film), Pier Luigi Nervi and Felix Candela (double curved concrete surfaces),
Santiago Calatrava (metal arches, animal bones) and Zaha Hadid (metal and glass,
complex shell forms). Bonnemaison believes the ‘philosophy of organicism’ offers ideas,
methods and practice that can be used within the field of architecture and beyond
(‘digital technologies’ and robotics) to transcend simply mimicking nature.

3.4 Architectural Solar controls - shading devices (Sun-Shades)

Managing the internal temperature of buildings has always been part of the architectural
design process; in summer the intention is to minimise internal heat build-up while in
winter this is desirable. The condition of the building envelope, the size of openings, the
building’s orientation on site together with consideration of local weather conditions play
a role in finalising the design of the building. This approach to design has recently gained
prominence in order to produce environmentally sound buildings - Green Architecture -
that typically have small energy footprints and incorporate more passive (as opposed
to mechanical) climate controls.

Solar controls play a central role in managing the impact of climate on buildings,
consequently passive climate controls and shading devices become important. Originally,

xvBonnemaison describes Organicism as “the art of learning from nature to create beautiful

architecture” and goes on to say that organicism can be seen as an approach to ‘invention’ and

‘interpretation’ that draws from nature.

25

solar charts were used to determine the solar angle (compass direction) and azimuth
(height above the horizon) of the sun at given times throughout the year; an example of a
solar chart and how it would be used is shown in Figure 17 (this information is from the
SKAT Climate Responsive Buildings [33] series). Using the chart for your geographic
location, you can look up the position of the sun on a certain day and at a particular
time (or across a time frame). You will receive the solar angle and azimuth for that
scenario and can design your building to manage sunlight accordingly. Initially these
charts were supplied in published tabular forms [53], but are now available electronically
with additional data (like weather patterns)xvi. Furthermore, this electronic dataset
can now be ‘piped’ into simulation software to test various design parameters or it can
be used to extract precise solar detailsxvii.

Figure 17: Typical Solar chart and its usage (example from SKAT Climate Responsive

Building)

Once the solar angle and azimuth is known, a shading device - or sun-shade - can
be determined for the given circumstances. In an important work, central to designing
shading devices, Olgyay and Olgyay [48] proposed a method that has the designer
colour in the solar chart and this, based on the resulting ‘pattern’, could be used to
determine which sun-shade type best suits their design needs. Typical patterns are
illustrated in Figure 18; sun-shade types (solutions) include the horizontal sun-shade
(similar to a roof overhang, but above the window opening), the vertical sun-shade (like
a vertical fin to the sun side of the window opening) and the ‘eggcrate’ sun-shade (a
combination of the previous two to form a box shape in front of the window).

xviEnergyPlus. Weather data. https://energyplus.net/weather
xviiLadybug: A plugin for environmental analysis. https://rhino.github.io/addons/ladybug.

html

26

https://energyplus.net/weather
https://rhino.github.io/addons/ladybug.html
https://rhino.github.io/addons/ladybug.html

Figure 18: Sun-shade solutions (Olgyay & Olgyay)

Olgyay and Olgyay define the effectiveness of a shading device as the proportion of
the vertical surface covered by the shading device during the ‘overheated’ times versus
the proportion of the vertical surface free from cover during the ‘underheated’ times.
‘Overheated’ times are essentially the summer periods when it is best to ensure no
solar radiation penetrates the building interior while ‘Underheated’ times are the winter
periods in which it is best that the building be heated passively through solar radiation.

It may be easier to visualise this by considering a north facing façade with a roof
overhang; of interest is the surface shaded by the overhang in summer versus that free
from shade in winter (when considering a building in the Southern Hemisphere).

After Olgyay and Olgyay, the effectiveness of a shading device (for summer shading)
can be described as:

Sp =
So

Ro
.100% (1)

Where: Sp is the summer shading performance So is the intercepted direct solar
radiation (Btu) during the overheated time Ro is the full amount of direct solar radiation
(Btu) to strike the surface during the overheated time

The yearly effectiveness of a shading device is described as:

He =
(So− Su)

Ro
.100% (2)

Where: He is heat efficiency. This is obtained by deducting direct solar radiation
losses, for the ‘underheated’ time (Su), from that of the ‘overheated’ time (So).

To evaluate a shading device for any locality and when facing any direction, we
are interested in the ‘shading effect’ (Se). This is a ratio between ‘heat efficiency’ and
‘shading performance’ where heat efficiency considers the yearly balance for the shading
device while shading performance is an optimum value for summer. This average value
gives the formula:

Se =
Sp+He

2
(3)

That gives us the final formula:

Se =
So− Su

2

Ro
.100% (4)

27

In the late 1990’s, a similar follow-up guide after Olgyay and Olgyay’s ‘Solar control
and Shading devices’ was published, titled ‘Tips for Daylighting with windows: The
Integrated Approach’ [47]; it was revised and published again in 2013 by Alastair
Robinson and Stephen Selkowitz. This guide, acting as a quick-reference, supports
designers with numerous topics of which ‘Shading Strategy’ is most relevant to this
research. Certain ‘Key Ideas’ are presented, namely; designers are encouraged to use
an external shading device to keep out unwanted solar heat, horizontal forms for
south facing windows (north facing in the southern hemisphere), attempts to be
made to design the building footprint to shade itself (if external shading devices are not
acceptable), using vertical forms on east and west windows, west and south
windows to receive priority with regards to shading (west and north in the
southern hemisphere) and finally ‘glare relief’ should also be considered when working
on shading. Their proposed shading options are illustrated in Figure 1, in this case
study referred to as ‘traditional’ sun shades.

3.5 Research on daylighting, solar radiation, energy efficient

buildings and form-finding

The work discussed in this section outlines research of an equivalent nature to this case
study where daylighting, solar radiation and energy efficient buildings are concerned.

3.5.1 Façade design optimisation for daylight with a simple genetic algorithm

Torres and Sakamoto [60] examine the applicability of a genetic algorithm to optimise a
daylight system both to maximise energy savings and provide adequate interior lighting.
The test is applied to a building façade where parameters can be changed - some
parameters are changed simultaneously.

The results are analysed in the Radiance software packagexviii. Fitness is evaluated
by how much of the annual lighting requirement can be replaced by daylight. Several
trials were run over 200 generations

To optimise the overall layout, components of the façade are predefined with values
extracted as parameters - typical parameters include; window width, ‘light-shelf’ depth,
number of windows and number of shades per window. Encoding sees each real-number
being an alleles and the real-parameter vector a chromosome. This is illustrated in
Figure 19.

Due to computational limitations, a subset of meteorological data is used together
with absolute elitism to achieve faster convergence in fewer generations. Additionally,
twenty one parameters were used as this allowed the search space to become overpopulated
which assisted in achieving a fitter model in a faster time frame.

Tokyo, Japan, was used for the daylight simulation model and four ‘observers’ took
simplified measurements for every time step. The control model featured random
blind positioning (open or closed) that could reasonably model a building occupant’s

xviiiRadiance - a validated lighting simulation tool. https://www.radiance-online.org/

28

https://www.radiance-online.org/

behaviour, the Radiance software calculation was taken for one in every twenty days
throughout the year.

Figure 19: Façade design

optimisation. (Torres & Sakamoto)

The Genetic Algorithm also saw simplification;
populations were limited to 10 individuals.
To avoid convergence to local maxima as a
consequence of absolute elitist selections, 3 random
individuals were included with the breeding group.
Fitness was the proportion of total lighting that
could be excluded (instead being replaced by
natural daylight).

Different breeding methods were used: initially
one parameter value was mutated. Three
recombination methods were tested. Simple
cross-over involved swapping one parameter
value between two individuals. Additionally,
interpolation and extrapolation cross-overs were
tested where one parameter value was replaced by
a value proportional to the fitness of individuals.

Results showed a fast increment of fitness
slowing after 100 generations. This translates to
the main elements of the façade changing initially
with small changes in size taking place later. As
daylight determined fitness, windows remained at the maximum height and width,
protection elements above the light shelf disappeared (as no glare was caused) while
vertical fins protected observers from lower altitude sun.

Torres and Sakamoto effectively use a genetic algorithm to re-arrange and resize
existing components on a façade. No new artefact is created, but interesting discoveries
are made (elimination of components above the light shelf). To assist with computation,
a number of simplifications are made - populations are small and studies are done
on certain days, rather than sequentially. Approaches within the Radiance software
package together with the daylight calculations also saw simplification.

3.5.2 Genetic optimization of external shading devices

Manzan and Pinto [42] use genetic optimisation to design an external shading device
for a window resulting in different optimal geometries for the panel. These devices were
evaluated in simulations performed using the Radiance software package.

The research aims to address an Italian building regulation that requires compulsory
external shading devices for buildings with over 1 000 square metres of total surface
area. The goal being to reduce energy usage required for lighting, heating and cooling.
Design of the shading device is not specified within the building regulations.

The following concerns need to be addressed in the design of the external shading
device; the orientation of the façade, size of the window(s), importance of heating
and cooling and the impact on internal lighting conditions together with the size and
position of the shading device.

Manzan and Pinto describe how, typically, climatic conditions are separated from

29

lighting analysis in that shading device design usually does not consider both aspects
simultaneously. Following Franzetti’s 2004 work [30], fourteen parameters are identified
to perform computations on within the simulation.

The test is on a room with a south facing window (direct sun); the window is 4
metres wide and 1.5 metres high while the room is 5 metres wide, 4 metres in depth
and 2.7 metres high, see Figure 20. Different glazing systems are used with 8 photocells
in the room for measurements (two rows of four). Six conditions are tested: standard
glass with no reveal (glass flush with outside surface of wall), standard glass with reveal
(glass set back in opening, not flush with outside wall) and standard glass with no
shading device - this is repeated with high performance glass characteristics.

Figure 20: Optimization of external

shading devices. (Manzan & Pinto)

The shading device itself is a flat panel running
the length of the room, inclined horizontally.
The genetic algorithm optimises the panel using
four parameters: shading height (start of panel
measured from floor surface), shading width (how
wide the panel can become - moving away from
the surface of the building), angle, distance to wall
surface.

The energy simulation software (ESP-r) [28]
required modification to work with inclined flat
panels. The simulation (ESP-r is connected to
the Radiance simulation) gets inserted into the
optimisation loop - this results in large numbers of
simulations being run. To assist with computation,
a user defined method is employed: measurements
of a defined shading device created in Radiance is
used to drive the artificial lighting calculation.

modeFRONTIER softwarexix using the ‘workflow designer’ tool (a visual programming
environment) allowed for optimisation algorithms to be selected and tweaked. The
optimisation method built-in to the modeFRONTIER software is the MOGA II
algorithm - considered strong when working with multi-objective problemsxx.

MOGA II is briefly discussed when being compared to the NBI algorithm [54] for
multi-objective optimisations. MOGA-II uses ‘smart multisearch elitism’ (for ‘robust’
and ‘directional crossover’) to allow for fast convergence. Encoding in MOGA-II is
the same as in classical genetic algorithms (binary encoding where each chromosome
is represented as a string of 1 or 0). For reproduction, an individual is selected - the
selection of individuals can use any schema but typically local tournament (with random
steps in a toroidal grid) is used. This initial individual then takes a ‘random walk’ (of an
assigned number of steps - the number of steps remaining fixed during the optimisation
run and proportional to the population size). Other individuals met in the first walk
are marked as candidates for first parents while a second random walk, again from

xixmodeFRONTIER is the leading software solution for simulation process automation and design

optimization. https://engineering.esteco.com/modefrontier/
xxMOGA II is implemented within the modeFRONTIER software and is an improvement on MOGA

- Multi-Objective Genetic Algorithm [50]. MOGA II follows a stochastic method.

30

https://engineering.esteco.com/modefrontier/

the starting point, creates a list of second parents. When the set of candidates are
established, the fittest is chosen for reproduction. At each step of reproduction, one
of four reproduction operators is chosen and applied to the current individual. The
four operators being; classical crossover, directional crossover (this assumes a ‘direction
of improvement’ that can be detected by comparing fitness values of two individuals -
the direction of improvement is evaluated by comparing the fitness of the individual (i)
from generation (t) with fitness of its parents (generation t-1)), mutation and selection.
A novel operator, ‘evolutionary direction crossover’, was introduced to replace the
classical crossover operator (this new operator showed good performance as a complex
multimodal function). A new individual is created by moving in a randomly weighted
direction that lies within those given by individual and its parents.

Optimisation considered 16 individuals in 100 generations. Limitations were placed
on the (horizontal) length of the shading device and view for the building occupants.
Fitness is based on the lowest value achieved for primary energy requirements - this
was in the order of 100 kWh/m2 kilowatts.

After a few generations convergence was achieved. The results indicated that a
wider shading device produced reduced energy consumption. If the panel width is
constrained, a higher angle (panel rotated downwards) offers the best solution.

Manzan and Pinto’s work is encased in a software application making it difficult to
explore the specific changes they experimented with (within the visual programming
environment) to better understand the changes they implemented as they ran their
experiment. Additionally, they optimise a pre-defined design rather than explore new
forms. They do, however, use simulations to verify results and as noted, include both
climatic and lighting conditions in their optimisation.

3.5.3 Geometric optimization of fenestration

Wright and Mourshed [64] consider window shape when working to reduce the impact
of energy use for heating and cooling a building. They believe most studies concern
themselves with ‘regular geometric shape and position’ of windows in a façade. Their
study uses a genetic algorithm to optimise the state of a cell on a façade to drive the
design of fenestration.

Optimisation considers the shape, amount and position of windows in a façade. To
achieve this, the façade is divided into rectangular cells each being either solid or glass.
It is hoped that solutions generated could be architecturally similar to the ‘wall of light’
(south façade) of Le Corbusier’s Chapel of Notre Dame du Haut.

While the genetic algorithm sets the number and location of cells on the façade the
user is given access to parameters than can assist in the design - they act as constraints
in the algorithm. The design constraints are: amount of windows, area of the window
surface, the window aspect ratio, density of windows on the façade and the ‘centre of
gravity’ for each window.

A façade 15 cells wide by 8 cells high is considered. A collection of adjoining cells is
considered a window - three such windows are identified in Figure 21.

The genetic algorithm features Gray binary encoding (variables are binary encoded),
tournament selection (with a stochastic ranking algorithm determining fitness), ‘uniform’
crossover (100% probability for chromosome crossover, 50% for binary gene crossover),

31

one gene mutation per chromosome and elitism (only the single best solution of the
previous generation is used for the new solution). The algorithm ends after 1 000
generations for unconstrained optimisation and 3 000 generations for constrained
optimisations (as they are considered more demanding); 30 individuals make up the
population size (population size is ‘re-initialised’ should a population collapse take place
before completion of the search).

Figure 21: Geometric optimisation

of fenestration. (Wright &

Mourshed)

To a greater or lesser degree, the optimisations
outlined above work within specific set boundaries
(parameters being predefined) going so far as to
include ‘control over the form’ - i.e. how the results
will look.

While Wright and Mourshed hope to consider
the design of the fenestration on a façade -
being unhappy with ‘regular geometric shape and
position’ - the grid system they place on the surface
enforces geometric shape and position. They fail
to open the façade to free-form, unconstrained
solutions. Instead, they choose to define a
window using certain metrics and then force
regular geometry onto the results. Furthermore,
they incorporate optimisations that allow the
user to control the form - not quite allowing for
form-finding with results that are unpredictable.

3.5.4 Optimal Building Envelope Design - History, current status, new

trends

Huang and Niu [38] provide a survey of optimal building envelope design (the design of
which is seen as important in Green buildings). Central to building envelope design is
energy consumption - by better managing energy consumption one can save on building
running costs, reduce the impact of the building upon the environment or address
comfort for the building occupants. As computing power has increased, so too has
simulation software improved, broadening the scope for further research. However,
the parameters that require testing during simulations are many - resulting in lengthy
simulation times. As a consequence of this, an interest in ‘systematic and effective
optimisation processes’ for sustainable building design has developed. The building
performance modelxxi together with the algorithms selected, play a role in optimisation.
In the survey, Huang and Niu outline the development of algorithms to optimise
building envelope design and highlight Evolutionary Algorithms as being the most used
optimisation method; found in 60% of the research surveyed with Genetic Algorithms
dominating. Huang and Niu go on to say: “The GA and its modifications are considered

xxiBuilding performance is interested in HVAC (Heating, ventilation and air conditioning) and

building envelope design; the latter having more parameters requiring optimisation. Furthermore, the

relationship between parameters and to the performance of the building envelope is complex.

32

to be the best choices for solving building design optimization problems.” A survey of
approaches to, and modifications of, Genetic Algorithms was undertaken and a table
drawn up, this is shown in Figure 22.

Figure 22: Table - approaches to and modifications of Genetic Algorithms (Huang &

Niu)

Huang and Niu conclude that for simple optimisation, gradient-deterministic direct
searches were used; while for complex optimisation, Evolutionary Algorithms were
used and were found to run faster and perform more accurately. Of the Evolutionary
Algorithms, Genetic Algorithms were most used as it was found they were widely
applicable and performed with high speed and accuracy. Most research conducted in
this field considered the optimisation of energy-related performance; similarly, most
research centred on single-objective optimisation. Visual and thermal comfort was less
researched. Less multi-objective optimisation was performed and this was mostly done
optimising thermal and energy performance.

It is clear, Evolutionary Algorithms play a role in architectural design - but from the
survey results - this seems mostly focused on performance optimisation. The exploration
of form, in the context of this survey, is not common.

3.5.5 Shape optimization of free-form buildings

Zhang et al. plan to heat buildings in a cold climate by using passive means [67].
They focus on shape optimisation to assist with this task. They start by generating a
‘free-form’ shape using controllable parameters - this allows the shape to be modified by
means of multi-objective optimisation. They use Rhinocerosxxii with the Grasshopper
plug-in as the software to generate the parametric free-form shape; Grasshopper grants

xxiiRhino (Rhinoceros3D) software https://www.rhino3d.com/

33

https://www.rhino3d.com/

access to the free-form model’s parameters. Ladybug (itself a Grasshopper plug-in)
opens the model to climatic simulation - the data of which is contained in an EnergyPlus
file (.epw). A Genetic Algorithm is used to perform multi-objective optimisation, the
GA is embedded as an additional Grasshopper plug-in - Octopusxxiii. As the authors
note: “Octopus applies evolutionary principles to parametric design and solution finding,
allows for a multi-objectives optimization process, and allows for the production of a set
of trade-off solutions among each objective. Importantly, Octopus still allows the whole
optimization process to be visual and controllable.”

Figure 23: Free-form building

shape optimisation. (Zhang et al.)

Zhang et al. work to shape-optimise a
community centre in Shenyang. They view the
community centre’s main function as that of a
sports centre/cultural space and consider this
the most important constraint around which
optimisation should take place. Secondary spaces
are arranged around this dominant space and
generally include movement. In addition, outdoor
spaces are required for activities; the area to the
west is for parking (as traffic dominates that side
of the site), to the south side an open space is
accommodated as both a playground and to keep
shadows created by neighbouring buildings away
from the new building design, see Figure 23. Taken
together, this information is used to generate the
variables that will govern shape generation. The building shape is made out of two
dominant curves, one to constrain the plan and one the form of the volume. Rhino
is used to generate the form which contains rectangular volumes that act as curve
control point limits (see Figure 3). Next, the form was tweaked; the west entrance
area was enlarged to create a vestibule and allow more traffic while the south side
surface (together with the forms generated on the roof) was modified to allow more
solar radiation to penetrate the building to increase heat build-up.

For optimisation, variable increment steps were set (to 0.1) and co-ordinate points
defined to match X, Y and Z Cartesian values. The time range was set to match
the months requiring heating (November to March). Overall, 20 variables controlled
the building shape generation, some with constraints applied (for example: the shape
co-efficient variable, when sufficiently decreased, will result in the control points for the
curve controlling the plan to approach a maximum and effectively become a constant).
An additional building, in the shape of a cube, is simulated and tested against as a
reference building.

Zhang et al., when discussing the advantages of Genetic Algorithms, go on to say;
“The genetic algorithm is often used in simulation-based optimization problems because it
presents several advantages: GA does not require the objective function to be continuous;
it is a global search technique that can escape from local optima more easily, and it can
find multiple Pareto solutions for a multi-objective optimization problem in one run.”

xxiiiGrasshopper plug-in: Octopus (multi-objective evolutionary optimization) https://www.

food4rhino.com/en/app/octopus

34

https://www.food4rhino.com/en/app/octopus
https://www.food4rhino.com/en/app/octopus

These observations themselves are taken from Wang, et al. [62]
The Genetic Algorithm had a population size of 50 with the maximum number of

generations being 100. The crossover rate was set to 0.8, mutation probability to 0.1,
mutation rate to 0.5 and elitism to 0.5 within the Grasshopper Octopus plug-in. The
Octopus plug-in uses algorithms based on SPEA-2 [68] and HypE [7] from ETH Zurich,
implemented using Pisa softwarexxiv [11].

It was found that after 100 generations, 84 non-dominated solutions were created
forming the Parento frontier and expressed as a curved surface, the Pareto frontier is
shown in Figure 24. Each solution had strengths and all were found to be valid final
designs. The best and worst solutions were compared resulting in 10 final solutions that
provided the best optimisation in terms of solar radiation, shape co-efficient and space
efficiency, together with the Cartesian values that make up the free-form shape - the
base control points.

Figure 24: Pareto Frontier of the optimization. (Zhang et al.)

The free-form building resulting from the optimisation was shown to have better
characteristics than the reference cube with improved solar radiation gain (53% more),

xxivPISA - A Platform and Programming Language Independent Interface for Search Algorithms:

https://sop.tik.ee.ethz.ch/pisa/

35

https://sop.tik.ee.ethz.ch/pisa/

a lower minimum shape co-efficient value (20% less; indicating better energy saving
related to the building shape) and higher space efficiency (more than 95%).

The results are clearly better, but the greatest advantage was found to be that the
Octopus plug-in generated three-dimensional models for each solution. A three-dimensional,
free-form shaped building was available for evaluation for every Pareto frontier solution;
every optimal shape could be visually evaluated. In architectural design this is found to
be very valuable; the ability to find the optimal building shape by balancing between
solar radiation gain, shape co-efficient and shape efficiency, then to have this shape
available as a three-dimensional model. This research links parameter optimisation
with shape optimisation and produces a series of artefacts for study.

3.5.6 Robotic Form-Finding and Construction

Zexin and Mei [66] revisit architectural form-finding and apply this to a robotic arm to
digitally generate the resultant shapes. Figure 25 shows the forms created when using
architectural projection as a generator of form-finding.

Figure 25: Cut foam following the

logic of architectural projection.

(Zexin & Mei)

Zexin and Mei start by discussing the
development of form-finding, from Gaud́ı to
Frei Otto, then proceed to discuss ‘traditional’
architectural representation (drawings) in this
context, noting: “From the ‘nonlinear system
theory’ to the ‘parametric design’, the computational
technology has brought a completely new medium to
the architectural design, and it’s even altering the
fundamental theories and thinking processes behind
it. With the popularization of digital software, the
mechanics of how architects work have changed; less
and less are using traditional architectural drawings
as a from-finding tool.” Interestingly, Zexin and
Mei add this of Gaud́ı’s work: “Through using this
completely new method – which is based on motion
dynamics [statics] and gravity, Gaud́ı invented
his own architecture languages and achieved his
greatest architectural goal - to perfect and go beyond
Gothic style.”

It is in this sense that ‘traditional architectural
drawings’ get discussed. Traditional architectural
drawings, using orthographic projectionsxxv, it is

xxvOrthographic drawings use parallel projections to transfer the building information to a plane.

Parallel projections project lines perpendicular to the drawing plane and use true shapes and sizes with

no distortion to represent surfaces. As each plane can only show one projection, ‘multiview drawings’

are used to show the building in three-dimensions creating ‘plan’ views (a ‘top’ orthographic projection

cast on the horizontal picture plane) and elevation views (front/side orthographic projections cast on

vertical picture planes). These conventions are well documented [52] [15] and are typically taught in

36

argued, have been in use since the Renaissance.
While architects were originally directly involved in building construction, since the
Renaissance this connection was removed instead seeing architects work on drawings
that connect to construction. Over time, the drawing methods of projection led to
influence the forms reproduced in architecture. Zexin and Mei propose there is a
disconnect between architectural drawings and the ability to express new, complex,
3D forms. They question how traditional drawings can be redefined or reused for
form-finding. Their solution is to analyse and consider the impact history and the
evolution of architectural drawings and paintings (specifically their projections) have
had on form. Working through parallel projections in a cubic space to perspectives with
vanishing points, they end with Stereotomy - a combination of parallel projection and
perspective projection, illustrated in Figure 26. It is believed this is a ‘multi-dimensional
composite’ projection which can lead to unpredictable forms as ‘the workspace has been
changed’.

Figure 26: Architectural projection - traditional and stereotomy with perspective.

(Zexin & Mei)

A six-axis, articulated, robotic arm is employed to ‘connect drawings with construction’.
The movement of the arm is controlled by computer instructions and these follow the idea
of inverse kinematics. Robotic arms are finding use in various architectural applications
where they lay components to create a parametric artefact - curved walls, domes, and
so on. Here the robotic arm is used with a hot-wire cutter to slice ruled surfaces from
foam cubes. The robotic arm is simulated in Rhino using a Grasshopper plug-in where
the trajectory of the arm creates a ‘ruled surface’, a straight line sweeping through
two curves. Manipulating these curves (the rails) is fundamental to this form finding
experiment. A cylindrical projection is used to control the curves; the curves are
mapped to an unrolled cylinder using a Cartesian co-ordinate system.

Zexin and Mei are not clear on what determines the rail shapes that get projected to
the cylindrical surface that in turn form the ruled surfaces cut from the foam. Similarly,

foundation courses.

37

after ‘deconstructing’ various architectural drawing projections and redefining a new
workspace, they return to the more predictable Cartesian co-ordinate system and a
relatively simple cylindrical projection.

3.5.7 Comments regarding the Research in daylighting, solar radiation,

building envelopes

Torres and Sakamoto blend using a genetic algorithm with daylight simulation
software to produce an architectural artefact with an optimised result. Their research
best demonstrates how an evolutionary algorithm can be combined with architectural
components and simulated results to modify architectural designs. This research
provides a sound introduction on how an architectural problem can be translated and
incorporated into an evolutionary algorithm. An architectural problem is converted
into a set of parameters which, in turn, are seen as real-number variables. In the
evolutionary algorithm these are seen as alleles where the ‘real-parameter’ vectors become
chromosomes. Unfortunately, given their computational demands - by incorporating
an environmental simulation - the complexity of the evolutionary algorithm suffers (21
parameters within a part of a façade, a population of 10 individuals, absolute elitism
where 3 individuals provide for more variation in breeding over 200 generations).

Manzan and Pinto, in a later study, also combine an evolutionary algorithm with
a daylight simulation but use a ‘software tool’ (modeFRONTIER) to implement the
evolutionary algorithm. This results in a more complex daylight simulation together
with better integration but at the expense of using a ‘pure’ evolutionary algorithm,
instead a ‘preset’ implementation is in place and a software interface guides the changes.
The Evolutionary Algorithm used in the software application is a multiobjective Genetic
Algorithm. Four input parameters are used initially covering a broad range that
are optimised to a narrower set, these are then optimised again for a final result (a
population of 16 individuals is used across 100 generations). This work is significant
for the complex simulation(s) used to optimise the shading device while the genetic
algorithm simply supports the different configurations allowing the designer to select
the best implementation given a set of circumstances.

Wright and Mourshed, like Torres and Sakamoto, combine a genetic algorithm
with an architectural optimisation problem (window layout and opening sizes). However,
unlike Torres and Sakamoto, they build in an aspect that allows the designer to control
the result. In the ‘unconstrained optimisation’ solution the genetic algorithm’s optimised
results indicated a bias to place windows high up and to the west of the façade. This
position makes sense, given the constraints supplied - optimum area, low energy use,
good natural light and a reduction in heating requirements. The ‘constrained aspect
ratio’ solution resulted in fewer windows but with them having a similar surface area.
The solution where the ‘number of windows’ in the façade is constrained does not
compete with solutions that generate the lowest energy use. The genetic algorithm
used random initialised variables with Gray binary encoding of these variables, binary
tournament selection (with fitness being assigned by a stochastic ranking algorithm),
uniform crossover (100% probability of chromosome and 50% probability of binary gene
crossover) resulting in 1 gene mutation per chromosome, elitist selection (the single
best solution of the previous generation included in the next). The population size

38

was of 30 individuals and the search continued until unique solutions were found (1000
for unconstrained optimisation and 3000 for constrained optimisation). Overall, the
research indicates that the genetic algorithm worked correctly, but the designer could
change the look of the layout if what was produced was seen as undesirable. This is
unfortunate as having unexpected results allows designers to interrogate why these
solutions could be best given the constraints supplied.

Huang and Niu provide a comprehensive survey of building envelope design
research focused on parameter optimisation combined with simulated performance.
What stands out is how dominant Genetic Algorithms are in this field together with
research concerning the performance of these algorithms within this field. This is
significant as typically building envelope design takes precedent; here Huang and Niu
indicate research done where the performance of the algorithm is important. This
indicates quite a mature research field where both the problem being studied is addressed
(building envelope design) together with the tools used to accomplish this research (in
this case, Genetic Algorithms).

Zhang et al. work to implement a ‘framework’ they call: Modelling - Simulation -
Optimization. Their idea is to move seamlessly between modelling a building while using
a genetic algorithm to optimise the resultant shape. They see this as ‘a performance
driven approach to find a solution’ to a given design problem. A consequence of this
approach is that they use ‘off the shelf’ softwarexxvi to implement their framework;
Rhinoceros with the Grasshopper plug-in (a visual programming environment) creates
the model and exposes parameters for shape optimisation. The model is ‘dynamic’ in
the sense that changes can take place ‘on the fly’ - this feeds into a simulation tool (using
the Radiance lighting software and the Grasshopper plug-in, Ladybug). The results
of the simulation are sent to another Grasshopper plug-in, Octopus, a multi-objective
genetic algorithm. This plug-in allows certain settings to be modified to drive the
genetic algorithm, however, the most impactful aspect is how this connects to the model
driving the parameters directly. This is due to how the plug-ins work together within
Grasshopper. Their ability to work directly with the genetic algorithm and manage the
evolutionary process is secondary to the integrated software producing an outputted
artefact.

Zexin and Mei discuss traditional architectural representation methods (drawings
with orthographic views) and work to ‘subvert’ them to explore form-finding using
a robotic arm. However, the method they finally use to produce an artefact is, in
essence, a ruled surface - one of the earliest modelling options available for initial solid
modelling CAD software programmes. Something in their work breaks down - it could
be the constraint imposed upon the work by the robotic arm. This work is difficult to
understand as the result produced seems to be unconnected to their initial discussion
on blending traditional and ‘modern’ drawing projection methods.

xxviOne is reminded of Frazer when he was starting his research and indicated his preference for

starting from first principals and avoiding commercial software was preferable.

39

3.6 General Comments

The potential use of computers in Architectural research has a long history that
references core design aspects starting with Thompson breaking form into mathematical
qualities to Alexander’s view of opposing design intuition with a mathematical approach
relying on the application of logic. This being further extended by Alexander in
his work to break down complex problems into interlinked subsystems (or patterns).
Mitchell, quite early on, powerfully connects computers to architecture by drawing
parallels between the logic underpinning algorithms and that of architectural languages
or ‘architectural grammar’. However, the iconic link to Evolutionary processes is centred
on the work by Frazer but detailed access to particular methods are lacking - instead
an overview of what was accomplished is noted. After Frazer research work seems to
become more conservative - the era of big ideas seems to have passed. More direct
approaches seem to follow; exploring Le Corbusier’s form grammar and connecting
his rather ‘formulaic’ approach to form by employing shape grammar, as shown by
Coates and Makris and later Asojo. Similarly, revisiting the original protagonists of
form-finding, Gaud́ı and Otto who explored form by creating, revived an interest
in computational form-finding and spawned associated architectural theories and
movements (Organicism, Computational and Parametric Architecture to name a few).
But architectural acceptance of this work seems rare, even after it was incorporated
into architectural theory (De Landa). Instead, it seems Evolutionary Algorithms at this
time are extensively used in architectural research where they dominate multi-objective
optimisation, as would be typically required in Building Envelope design and simulation.
There is far less traction in architectural design application - where they would be
ideally suited to support architectural form-finding.

40

4 Methods

4.1 Introduction

This case study hopes to answer the question concerning whether an evolved architectural
sun-shade can perform better than a traditional architectural solution when attempting
to block sun rays from entering a window opening.

This work considers the creation of an architectural sun-shading device by using an
Evolutionary Algorithm to evolve a point cloud to best protect a window opening within
a wall surface and is a more robust exploration of the initial work previously documented
[18]. Figure 27 demonstrates the result of applying an Evolutionary Algorithmxxvii to
a point cloud while Figure 28 represents the point cloud as a meshed surface (viewed
from below). This evolved solution is then compared to ten ‘traditional’ architectural
sun-shades to verify if an evolved sun-shade can produce a better performing sun-shade
compared to the forms currently in use. In addition, architecturally, this case study is
interesting as an Evolutionary Algorithm is used as a form-finding device.

Figure 27: Point cloud of an evolved sun-shade in MeshLab. (Author)

xxviiThis particular image was generated by the ‘Amsterdam East’ first run evolutionary algorithm. Of

particular interest is the curved area (to the left in the image) located furthest from the wall surface

(to the right) and towards the sunrise shielding the window opening against early horizontal direct sun

rays.

41

Figure 28: Surfaced point cloud of the evolved sun-shade (viewed from underneath) in

MeshLab. (Author)

The workflow to produce the meshed sun-shade can be outlined as follows; a
random point cloud (using Euclidean Cartesian co-ordinate values) is generated within
a ‘bounding box’ set outside a wall opening. Each point within the point cloud is then
evaluated by testing how it interacts with solar values (the altitude and the compass
direction of the sun). The point is ‘saturated’ with values as they are measurements
taken at fifteen second intervals across the Summer Solstice. The points that best keep
out the sun - the most values - are kept to finally produce a resultant point cloud.
Architecturally, MeshLab [16] can then be used to visualise the resulting meshxxviii,
allowing 3D printing. (This can be incorporated into a scaled architectural model
representing a building design or printed directly for installation in-situ, Figure 45
shows an evolved sun-shade in context).

This case study, however, focuses on the Evolutionary Algorithm required to evolve
the point cloud together with establishing a method with which to judge the fitness of
traditional sun-shades to compare fitness values.

4.2 Background

To determine if a point in space can block a ray of sunlight from striking a surface, we
need to consider how sunlight is approached in building design, specifically solar angles.

xxviiiAdditional meshed point clouds can be found in Experiments and Results for a visualisation of

other evolved sun-shades.

42

4.2.1 Solar Angles

Typically, in Architecture, the approach to working with Solar Angles starts by dividing
the solar angle (the sunlight penetrating the building) into two vectors, a horizontal
and vertical vector. Figure 29a labels these vectors A1 (horizontal) and A2 (vertical).
The goal behind visualising the solar angle as two vectors is to allow it to better fit
with architectural drawings; the horizontal axis (A1) correlates to a horizontal plane
and relates to the building floor plan drawing while the vertical axis (A2) correlates to
a vertical plane, most often a building side view (a drawing called an elevation) or a
vertical slice through the building (called a section).

To assist with the deconstruction of a solar angle into the horizontal and vertical
vectors, a solar protractor is used (this device would be comparable to using a logarithmic
table book to determine logarithmic values).

(a) Solar Angle as two vectors.

(Author)

(b) Solar protractor issued by the

South African National Building

Authority for use at latitude 34◦

south, i.e. Cape Town. (SANBA,

1981)

Figure 29: Solar angle vectors and the solar protractor

Figure 29b illustrates a solar protractor issued by the South African National
Building Authority (1981) [53] for use at latitude 34◦ South, i.e. Cape Town.

The protractor is often copied onto a transparency sheet and is then used by placing
the ‘crosshairs’ (the intersection of the North/South and East/West axis) at the area
under examination on a drawing floor plan; for example, the outer wall surface at the
centre of a window. The protractor is then swivelled around this ‘crosshair’ and aligned
to North on the floor plan.

43

The month containing the solar angle under review is noted and marked by the
horizontal curving bands within the protractor while the hours of the day are marked
by the vertical curved lines (as noted in the protractor) with midday coinciding with
the North/South axis.

The angle of the building, relative to North, determines the initial horizontal solar
angle (A1) for the side of the building in question. This gives a visual indication of
which part of the building will receive sunlight at the time under review. To determine
this starting angle, a line is extended along the building edge until it reaches the outside
rim of the solar protractor giving the horizontal solar angle. The hour line cut by the
building edge indicates the time from which that façade will experience direct sunlight.
The hours (where they connect with the month line) can then be marked and lines
drawn from the ‘crosshair’ through the hour marks will connect with the outside rim of
the protractor to indicate the horizontal angle which changes over time. (This is shown
in Figure 30 (represented by the line) and in Figure 34 in an application.)

To extract the vertical solar angle (A2), a compass is positioned at the intersection of
the ‘crosshair’ and the distance is set to the hour/month intersection. This radius, when
swivelled down, intersects a vertical ‘solar altitude scale’ value. This angle indicates
the height of the sun above the horizon at the given time (on the given month). This is
indicated by the circle in Figure 30.

Environmental factors, like neighbouring buildings or mountains will have an impact
on the solar altitude scale measurement. It may be that on the 22nd of December, at
4pm, the solar altitude scale indicates an angle of 37 degrees above the horizon while
the sun is at 95.5 degrees (5.5 degrees south of direct Westxxix). But this could coincide
with an external environmental factor and make the reading irrelevant. It’s useful to
work out pre-existing angles caused by environmental factors as this allows the study
to be constrained within limits.

xxixThe traditional solar protractor measures values in two halves. North is 0 degrees then going down

to East or West the protractor marks their values as 90 degrees. This differs from the digital reading

where the values are read clockwise with East as 90 degrees, South as 180 degrees and West as 270

degrees.

44

Figure 30: Solar protractor marked to indicate how the vertical solar angle is retrieved

(Author)

4.2.2 Solar values as an example

To illustrates the above method, while simultaneously providing a sample solution space,
the following example may be considered. This focuses on the Upper Campus at the
University of Cape Town, then a sample building and thereafter a space within this
building (an office). The sample building, as a floor plan, is shown in Figure 31 while
Figure 32 indicates the space within the floor plans - here we are only interested in the
West façade (or condition). In-situ measurements may be taken to ensure both the
general accuracy of the work and to supply constraints to the solution space.

Figure 31: Sample building, West façade is to the top. (Author, after work by MLH

Architects)

45

Figure 32: Office spaces within a sample building, Upper Campus, UCT. (Author, after

work by MLH Architects)

The sample building is located to the south of Upper Campus, with a higher storied
building to the West and then a mountain behind that. In-situ measurements confirm
that the higher storied building will restrict solar penetration while the mountain is
located further South West and does not affect the study as the building intervenes
earlier. The sample building is on a lower elevation as the University of Cape Town’s
Upper Campus is built on the slope of a mountain.

The building footprint is rectangular with the long axis running North/South
resulting in the longer façades being on the East and West side. Geographic Information
System (GIS) data indicates that the sample building is oriented 22.8-degrees North-East
(Figure 33). This results in the West façade receiving direct sunlight slightly before
midday when the sun would be directly North.

46

Figure 33: Sample building, Footprint and Orientation with GIS co-ordinate system.

(Author)

Using the Solar Protractor and the working method outlined above, measurements
can be taken of the sample building’s West façade (Figure 34).

Figure 34: Sample building with solar protractor superimposed. (Author)

The measurements considered in this example are those that occur on 22 December
in the Solar Protractor as the solar penetration is at its most extreme at that time.
Concentrating on the West façade, the solar protractor is positioned with the centre
on the wall surface where the window would be and aligned to North indicating that
the sun strikes the façade at approximately 11.40am with the solar altitude angle at

47

approximately 79 degrees. This rises to 90 degrees overhead at midday while being
at 22.8 degrees relative to the façade due to the building being oriented by this angle
relative to North on site. By 1pm the sun has dropped to 73 degrees in altitude at 57
degrees past north (79.8 degrees relative to the façade) - marked in red. By 2pm the
sun is lower at 62 degrees altitude and 76.5 degrees past north (89.3 degrees relative
to the façade - almost at a right angle) - marked in orange. By 3pm the altitude is
49 degrees at 87.5 degrees West (110.3 degrees to the façade) - marked in lime green
and by 4pm the altitude is at 37 degrees and 96.5 degrees West (118.3 degrees to the
façade) - marked in green. The higher storied building blocks the sun from 30 degrees -
so by 5pm the sun, at an altitude of 24.5 degrees, is behind the building and does not
penetrate the sample building. These readings are illustrated in Table 1.

Time: Altitude: Angle (to façade): Angle (compass):

11.40 am 79◦ 0◦ 22.8◦ North East

12 pm 90◦ 22.8◦ 0◦ North

01 pm 73◦ 79.8◦ 57◦ North West

02 pm 62◦ 89.3◦ 76.5◦ West North West

03 pm 49◦ 110.3◦ 87.5◦ West

04 pm 37◦ 118.3◦ 95.5◦ West

05 pm 24.5◦ 125.8◦ 103◦ West South West

Table 1: Table of values extracted from the Solar Protractor: West façade

Considering the data obtained from the Solar Protractor and the orientation of the
sample building on the site, we can conclude: the occupants of this building, with offices
along the West façade, will experience the sudden appearance of bright, sharp sunlight
entering their office at a high angle during the late morning. This light will recede
slightly as the sun moves closer to the vertical with window sills being illuminated and
then the sunlight will start entering deeper in to the office once again. Over time the
sun will move rapidly across the window opening with more direct light entering the
office space as the sun moves down towards the horizon. This will cause glare to the
occupants as the sun rays become more horizontal and the sun becomes perpendicular
to the façade - making these offices difficult to work in (due to glare and heat build-up).
Suddenly the office will be cooled and the glare removed as the sunlight is blocked by
the neighbouring building.

4.2.3 Digital Solar Protractor

‘Traditional’ solar protractors have been replaced by ‘digital’ solar protractors. It is no
longer necessary to print out and superimpose drawn protractors upon floor plans, as
noted in the example above.

48

Solar and weather data has been gathered over time and centralised for downloading
by the United States Department of Energy. African solar and weather data is available
and divided by region with ZAF representing South Africa. Within this region two
main geographical locations are represented, namely; Cape Town and Johannesburg.
The data sources are available as an IWEC file type and can be accessed at this
link: https://energyplus.net/weather-region/africa_wmo_region_1/ZAF Solar
and weather data for Amsterdam is also available at this link: https://energyplus.
net/weather-location/europe_wmo_region_6/NLD/NLD_Amsterdam.062400_IWEC

Various software packages can make use of this data source (it is most commonly
used to drive simulations) but, within Architecture, a three-dimensional modelling
package (Rhino3D) with a visual programming environment (Grasshopper) is typically
used.

The programming environment loads a module (or plug-in) that can deal with the
appropriate data provided. In this case study Ladybug is used within Grasshopper to
access the IWEC solar/weather file.

Using ‘nodes’ within Ladybug, it is possible to extract information from the file to
obtain a ‘Sun Azimuth’ and a ‘Sun Altitude’ - on the solar protractor this equates to
the compass direction and altitude, previously noted as A1 and A2. This is shown in
Figure 35.

Figure 35: A Digital Solar Protractor - Grasshopper with LadyBug. (Author)

This figure demonstrates how the IWEC file series is imported on the left and ‘piped
out’ as an EPW file. This is then fed into an importer to set the environment. A
‘sunpath’ element is added next and has the location (Amsterdam, off screen) fed to the
location attribute. Four numerical sliders are added to represent the hour, month, day
and time, they feed into appropriate attributes. From the Sun Path operator the Sun
Altitude and Sun Azimuth can be extracted, visible in the yellow text output boxes
shown on the right.

This method was used to extract solar data for Cape Town and Amsterdam. A
value for time was set to retrieve this information - altitude and azimuth - across a
selected day for every minute, this being the smallest value for extraction. This was
then converted to fifteen second intervals. Following this process it was possible to
determine the sun’s position at fifteen second intervals across the longest summer day in
each location. This information was stored in a CSV file for reading by a python script.
Appendix 3 contains the initial values extracted for Cape Town and Amsterdam from
sunrise. The values are considerable in length so only the first few readings are charted
- from 4am until 6.37am for Cape Town and from 3am until 5.27am for Amsterdam.

49

https://energyplus.net/weather-region/africa_wmo_region_1/ZAF
https://energyplus.net/weather-location/europe_wmo_region_6/NLD/NLD_Amsterdam.062400_IWEC
https://energyplus.net/weather-location/europe_wmo_region_6/NLD/NLD_Amsterdam.062400_IWEC

4.2.4 The window opening and ‘bounding box’

In setting up the parameters within which the point cloud could be generated, the
sample building on the Upper Campus of the University of Cape Town (as discussed
previously in 4.2.2) was referenced. A proposed single window opening was considered
where the measurements were taken in millimetres. A rectangle is imagined as the
office space with the window in the outer surface (apart from considering the internal
sill height for viewing, internal office details are not considered as this case study only
focuses upon external work with the window surface referenced). As two conditions
are studied, this office with window surface may be rotated such that the window
surface faces the appropriate direction. The width of the window was set to be 1 300
millimetres, the height set to 1 700 millimetres and the depth - representing the wall
thickness, was set to 200 millimetres.

External to the window is a slightly larger rectangular volume to contain the point
cloud - the ‘bounding box’. This is set to be 10% wider than the window area on either
side with the height extending above and below the window area by 20% and the depth
set to project away from the wall surface by two thirds of the bounding box height.
The bounding box values are set relative to the window area to allow for the point
cloud volume to be constrained to the window dimensions (should the window surface
be modified, the point cloud bounding box is updated accordingly). The dimensions
surround the window surface symmetrically so as not to affect form generation by
building in an ‘offset’ of some sort to one edge.

‘Standing within the office’ and ‘looking out the window’ would require an unobstructed
view. For the purpose of having a viewable lower area to the window, a measurement
of one third the window height was considered (so the base third of the window looking
through the point cloud was not to be obstructed by points as the viewing area would be
blocked). Similarly, some sun-shade types require running the vertical height of a window
(for example, a vertical fin). To allow for this potential form to be accommodated, each
vertical edge within the viewing area permits points to ‘encroach’ by a width of one
fifth of the total window width (this dimension space is further extended outwards by
the dimensions of the bounding box offset). In an architectural sense, to simplify point
generation and better visualise the values of the point cloud, zero is located at the
bottom left of the ‘bounding box’ and is considered flush with the wall surface, making
all values positive.

4.2.5 Calculating sun rays

The fitness of an individual (point within the point cloud) is based on the total number
of sun rays the point can intercept and block from striking the window surface with
the higher value being most fit. The Altitude and Azimuth readings derived from the
digital solar protractor are used as input values to determine the vector of the sun
ray. This vector is projected from the point to test if the sun would strike the window
surface, and as such, would be blocked by the point (i.e. project a shadow).

To determine this vector, the origin point of this Cartesian space remains the same
as that of the bounding box. In the Cartesian co-ordinate system, X has been used to
indicate the values running horizontally along this wall surface (looking perpendicularly
at the wall and increasing from left to right), Y is the height going up the wall while Z is

50

the value projecting directly away from the wall surface towards the viewer (‘outside’ as
a positive value). Two calculations are performed to determine the shadow projection;
first a horizontal calculation, thereafter a vertical calculation from this horizontal
location for the final position. Figure 36 considers this first calculation, where the XZ
co-ordinate values (or plane) represents an architectural ‘top’ view. The solar protractor
value of ‘Horizontal Angle’ (Azimuth) is represented by angle H.

Figure 36: Sunbeam triangulation calculation - XZ (Author)

The next figure, Figure 37, considers the vertical position following from the previous
horizontal position where Y Z co-ordinate values (or plane) represents an architectural
‘side’ view. The solar protractor value of ‘Altitude’ is represented by angle V (vertical).

51

Figure 37: Sunbeam triangulation calculation - YZ (Author)

Calculating the normal
Given values:
H – the angle to the façade
V – the altitude
r – the distance from the generated point to the centre of the Cartesian space
Regarding H - since the solar angle is provided in Cartesian space together with North
representing an angle of zero degrees, it is imperative to normalise this angle based on
the direction the façade is facing. Figures 38 – 41 demonstrate the basic calculation to
be performed based both on this facing direction as well as the hemisphere in which
the solar angle is observed.

The action to ‘normalise’ the solar angle is to provide a mathematical basis where
this angle has been cast into the same Cartesian plane. This allows the same fitness
test to be performed regardless of the building façades‘ facing.

52

Figure 38: Casting the solar angle from a Southern Hemisphere projection on a North

facing façade into a range between 0◦ and 180◦ (Author)

Figure 39: Casting the solar angle from a Northern or Southern Hemisphere projection

on an East facing façade into a range between 0◦ and 180◦ (Author)

53

Figure 40: Casting the solar angle from a Northern Hemisphere projection on a South

facing façade into a range between 0◦ and 180◦ (Author)

Figure 41: Casting the solar angle from a Northern or Southern Hemisphere projection

on a West facing façade into a range between 0◦ and 180◦ (Author)

54

Figure 36 calculates the projected shadow of the generated point in space, where a
successfully blocked ray of light would cast a shadow upon the window and therefore
fall within the ‘fit’ dimensions within the point cloud. To calculate the difference in X
to determine point Xn by using known values:

Xp – a straight projection of the generated point Xpr

Zp – the distance the generated point Zpr is away from the façade
H – the normalised solar angle as calculated in Figures 38 – 41, above

We can establish the equation of

tanH =
Zp

∆X
where ∆X = Xn −Xp (5)

It is therefore given that

Xn =
Zp

tanH
+Xp (6)

Figure 37 calculates the height of the projected shadow using a similar method.
Using the known variables to calculate the projected point:

Yp – a straight projection of the generated point Ypr

Zp – the distance the generated point Zpr is away from the façade
V – the solar altitude

We can establish the equation of

tanV =
∆Y

Zp

where ∆Y = Yp − Yn (7)

It is therefore given that

Yn = Yp −
tanH

Zp

(8)

The projected point Z will always be 0, as the Cartesian plane of projection is
located on the window where the shadow is cast.

It is now possible to consider the Evolutionary Algorithm that could be used to
evolved the point cloud (generated using ‘architectural’ values).

4.3 Evolutionary Algorithms

Evolutionary Algorithms, when employed in the Architectural profession for research,
tend to see Genetic Algorithms dominate [38]. It is understood this is connected to how
they represent Evolutionary processes, making it easier for Architectural Professionals to
understand in order to better adapt these processes to fit their building research criteria
[25]. Similarly, Evolutionary Programming and Evolution Strategies see less use in this
profession, this could be connected to their more complex methods (for example, the
use of self-adaptation). Some researchers have taken a specialised approach, dedicating
their work to explore the potential of certain specific algorithms (for example, Coates’
focus on Genetic Programming [17]).

55

4.3.1 General Outline

This case study looks at using Evolution Strategies to optimise Cartesian real-value
parameters that make up points within a point cloud with the final optimised result
producing a sun-shade that blocks the most direct sunlight from striking upon a window
surface. The sunlight values are taken on the Summer Solstice as this is the extreme
case for optimisation. Furthermore, two conditions (East and West) are optimised in
two locations, Cape Town and Amsterdam.

Following De Jong [23], a single, fixed-size population within a fixed environment
and using fixed methods for reproduction and mutation is tested. Each individual (a
point) is a fixed-length vector in the form [fitness, X co-ordinate (within the point
cloud), Y co-ordinate (within the point cloud), Z co-ordinate (within the point cloud),
self-adaptive value (for X), self-adaptive value (for Y), self-adaptive value (for Z),
individual ID, parent ID, generation ID]. Appendix 4 provides two sample tables
indicating the details of numerous individuals.

4.3.2 Why Evolution Strategies for the algorithm?

Thomas Bäck, in his Introduction to the Handbook of Evolutionary Computation [6] ,
identifies the following notable characteristics for each Evolutionary Algorithm:

Genetic Algorithms place the emphasis on recombination as the search operator
with mutation as a background operator and typically use proportional selection and
binary representation for individuals.

Evolution Strategies use normally distributed mutations to modify real-value
vectors with an emphasis on mutation and recombination as essential operators for
searching through the search space and strategy parameter space simultaneously. The
selection operator is deterministic with parent and offspring sizes usually differing from
each other. Regarding representation, Evolutionary Strategies need no encoding
step - the genotype space is the same as the phenotype space IRn.

Evolutionary Programming emphasises mutation but does not incorporate
recombination. When approaching real-valued optimisation problems, normally distributed
mutations are used and the evolutionary process is extended to strategy parameters
(this being similar to Evolution Strategies). The selection operator is probabilistic
with most applications involving real-valued vectors (even though the algorithm was
originally intended to evolve finite-state machines).

Like Bäck, Eiben and Smith [26] also note that Evolutionary Strategies are generally
useful for parameter optimisation where representation of object parameters
is obvious - in other words, no encoding step is needed between the genotype and
phenotype.

Eiben and Smith continue to indicate that the Evolutionary Strategies used by
Rechenberg and Schwefel started out as a shape optimisation algorithm. Initially
used to verify a flat plate as an expected global optimum and then being used to design
a bent pipe with the result being unexpected, but better, when compared to other
solutions [24].

This case study also centres around shape optimisation to determine the best
sun shade design for a given scenario and confirms an important aspect behind this
study, namely; to potentially produce an unexpected but better result when compared

56

to what is currently used in the field. In terms of shape optimisation, this case study
essentially undertakes the same task, shape exploration.

Eiben and Schoenauer [27] confirm Evolutionary Strategies were implemented in
experiments as they have a strong application to real-valued parameter optimisation
(making use of Gaussian mutation).

In summary, the ideal Evolutionary Algorithm for this case study was to have
understandable representation of object parameters (so no ‘encoding’); it would be best
to have a legacy of shape optimisation (seen as being similar to shape exploration)
where unexpected results could be produced; it was expected to be used on continuous
parameter optimisation (points saturated with solar values) and it was hoped that
the algorithm would have strong architectural form-finding potential - from this the
requirement would be that offspring mutation should be significant (possibly an
evolutionary algorithm where this is emphasised) and over time it may be best to
have these mutation values change. Following Eiben and Smith, Evolution Strategies is
clearly the best suited algorithm for application in this case study being strong in all
aspects noted above.

4.3.3 Fitness

Fitness for each individual is represented as an integer value recording the amount of
sun rays that the individual blocks from striking a window surface where the higher
value indicates higher fitness. As noted in 4.2.5, a sun ray is projected every 15 seconds
from the individual to test if this strikes the window surface. It should be noted that it
is not expected that every sun ray will be blocked as they vary significantly in their
projection - from the horizontal to vertical. Furthermore, it is not possible to achieve
100% fitness given the sun’s path through the point cloud placement (consider that the
sun rays are almost parallel to the façade at times).The values that make up the sun
rays were extracted using a digital solar protractor (as outlined in 4.2.3) with the total
amount of sun rays for the Summer Solstice collected into CSV text files, one for each
location, and read line by line to compute if the sun ray at that time is blocked from
striking the window surface, see Appendix 3. Under certain conditions a point in 3D
space was simply assigned a fitness value of zero, being totally unfit. This was done
where the point was located outside the point cloud bounding box or if it was located
within the ‘viewing area’.

4.3.4 Building façade

The the sample building, discussed in 4.2.2, was based on a building on the Upper
Campus of the University of Cape Town and was abstracted to provide the façade.
This building is considered singled storied, rectangular and cardinally aligned with
longer façades to the East and West. No terrain features (mountain slopes or nearby
buildings) are considered as this allows for all solar values to be assessed while also
permitting for better value correlation between the two geographical regions. This
building was ‘placed’ in both Cape Town and Amsterdam and the Summer Solstice in
both locations provide the solar values used for fitness. Summer Solstice is considered
to be 22 December for Cape Town and 21 June for Amsterdam. The window opening

57

of the original building was maintained (see 4.2.4) and flat wall surfaces are used (no
architectural decorations).

4.3.5 Bounding box - point cloud

As the first generation of the population forms a point cloud, this is contained and
then evolved within the bounding box that will also ultimately contain the evolved
sun-shades (discussed in 4.2.4). Consideration for the volume of the bounding box was
the need to be big enough to not limit potential forms resulting in unexpected sun-shade
solutions. Similarly it can accommodate vertical ‘fin’ forms while the depth could
accommodate various traditional sun-shade types (‘eggcrates’) and still be structurally
sound.

4.3.6 Population

The point cloud within the bounding box forms the total population. Consequently, the
population size was determined by considering the mesh density that could be created.
It was hoped that a higher value - a larger population - would result in a more detailed
(or ‘nuanced’) mesh; this is important considering the form-finding potential of the
geometry. A population of 20 000 individuals was considered acceptable for creating a
detailed mesh that, in turn, would be a visualisation of a sun-shade. To produce enough
data to evaluate the effectiveness of the Evolutionary Strategy, 100 generations were
considered adequate. The parent population is initialised randomly within the bounding
box. As noted in Table 3 and Table 4, each individual is assigned an object parameter,
a Cartesian co-ordinate value of X, Y and Z, together with an evolvable strategy
parameter for each co-ordinate. This initial generation is ranked by fitness and the top
half (50%) provides a pool of potential candidates that can be selected as parents. Of
this group, 2 000 individuals are randomly selected with each producing 10 offspring.
The offspring can receive negative evolvable strategy parameters. Selected parents and
offspring combine to form the next generation and are tested for and ranked by fitness.
Using elitist selection, the top half are once again made available as potential parents in
a selection pool with 2 000 randomly selected individuals producing the next offspring
(this repeats for 100 generations). Overall, this is done for two façade conditions, East
and West and in two geographical locations, Cape Town and Amsterdam. 10 ‘runs’ of
each generation is performed per façade condition in each location to gather enough
data to evaluate the Evolutionary Strategy.

4.3.7 Recombination

Recombination is additive as the parent object parameters are combined with the child’s
evolvable strategy parameter, this being subject to adaptive step mutation.

4.3.8 Mutation

Initially the object parameters were mutated using a normal distribution (with an
expected value of zero) through a random Gaussian vector, however the mutations

58

were too strong. Following this, self-adaptive mutation was implemented following the
guidelines as discussed by Beyer and Schwefel [9].

4.3.9 Summary of ES

Representation: Real-value vectors
Recombination: intermediary
Mutation: Self-adaptive, logarithmic normal
Parent Selection: Uniform Random
Survivor Selection: (µ+ λ)

59

4.4 Pseudocode - Evolution Strategies

The following Pseudocode outlines what the Evolutionary Strategy is required to do
(this follows from Beyer [8]).

(µ+ λ)− ES

1) g = 0
2) while g < 100;

a) if g == 0;

• initialise
(
P
(
(0)
P

)
:= {a1, ...a20000}

)
• test fitness

- if within view zone;
* fitness = 0

- else;
* read sun text data
* calculate sunray position on window surface

’ if on glass, fitness = fitness +1
’ else;

• sort by fitness
• save ALL numpy array
• g + 1

b) else;
• read in ALL numpy array
• slice top 50% from ALL numpy array

- save as allParents numpy array
• randomly select 2 000 individuals from allParents numpy array

- save as Parents numpy array
• duplicate Parents numpy array

- save as thisGen numpy array
• for each vector in Parents numpy array

- extract object parameters
- set counter = 0

* while counter ¡ 10;
’ extract evolvable strategy parameters (randomly set as neg. value)
’ calculate child evolvable strategy parameters
’ set evolvable child strategy parameters
’ mutate child object parameters
’ (test fitness) : if outside bounding box, set fitness = 0; else
’ (test fitness) : if within viewing zone, set fitness = 0; else
’ read sun text file
’ calculate sunray position on window surface
’ if on glass, fitness = fitness + 1;
’ append child to thisGen numpy array

- counter + 1
• save as final thisGen numpy array

60

• sort thisGen numpy array
• save thisGen numpy array to ALL numpy array
• g + 1

At (1) a generation counter is initialised and set to zero. (a) while the counter is
zero, generate parents. Each vector contains a fitness value, X, Y and Z Cartesian
co-ordinate values, X, Y and Z self adaptive values and three tracking/identity values -
individual ID, parent ID and generation ID (this is used to track who gave birth to the
individual, how they may vary and for troubleshooting and logging). Upon creation
each parent is tested for fitness and assigned a fitness value. They are all contained in
a Numpy array and sorted by fitness value. (b) focuses on subsequent generations. The
top half of the parents are selected to ensure a healthy variety of candidates. Of this
group, two thousand (10% of the total population) are randomly selected to produce
ten offspring. This group is duplicated as they form the next generation together with
their offspring. Each offspring has their object parameters and mutation adaptive
step calculated (these are inherited through generations). Each is tested for fitness by
reading in solar data from a text file and checking to see if the sun ray is blocked from
striking a window surface. Certain cases are tested first where zero fitness is applied,
these are; outside the bounding box and within the ‘view parameters’ (the view out the
window must not be obscured). The children are appended to the numpy array. This
full generation - parents and children - is sorted for fitness and saved to be used for the
next generation cycle. The generation counter is increased by one. After one hundred
generations the Evolutionary Strategy stops.

4.5 Point cloud to mesh

Various text files are logged while the Evolutionary Algorithm runs over the evolutionary
cycle of 100 generations. One text file captures every individual found in each generation,
another captures each individual making up every tenth generation and a third captures
the individuals within the initial and final generations. This allows the evolutionary
process to be ‘read’. The text files are ‘cleaned’ and ‘formatted’ and exported as CSV
files using a Python script. The CSV file is further processed to extract Cartesian
co-ordinate values, X Y and Z, for an entire generation. These values, converted to
a TXT file, can be read into MeshLab. Should the first generation of Cartesian
co-ordinate values be displayed in MeshLab a point cloud filling the bounding box will
be shown (see Figure 1 in a separate paper; second right image in the earlier work
[18]). The final generation Cartesian co-ordinate values form a point cloud representing
the final, evolved sun-shade (discussed further in the next section Experiments and
Results).

To convert these point clouds to surfaces within MeshLab, they need to be sampled -
Poisson Disk Sampling (with ‘Base Mesh Subsampling’ activated) was used. Thereafter
their normals needed to be set using ‘Compute Normals for Point Set’ (with ‘flip normals’
deactivated). Finally the mesh is generated using ‘surface reconstruction’ - Screened
Poisson Surface Reconstruction. Making it easier to view a complicated, highly detailed
mesh within MeshLab, certain visual cues are best set. ‘Show Axis’ is activated to orient
the view to suit the building surface. ‘Enable Shadow Mapping’ and ‘Enable Screen

61

Space Ambient Occlusion’ allows the 3D object to stand out from the environment.
Setting the material to ‘glass’ while deactivating ‘faces’ allows the sun-shade to be
visualised three-dimensionally with less distractions making for a clearer evaluation.

4.6 Traditional Sun-Shade ‘fitness’

As this case study seeks to determine if an evolved sun-shade can outperform a traditional
solution typically used in Architecture; a method was required to determine the ‘fitness’
of a traditional sun-shade such that it could be compatible with the Evolutionary
Strategy and allow for comparison. To accomplish this, existing initial random point
clouds were selected as a solution space for each traditional sun-shade. These initial
point clouds contain 20 000 random individuals with existing fitness values, this having
already been determined by the number of sun rays each point had blocked. Again,
using point cloud editing software, MeshLab, the points that make up a traditional
sun-screen can be isolated and extracted.

There are 10 sample ‘traditional’ sun screens under consideration; for each, an
Evolution Strategies’ initial population point cloud was chosen randomly. Thereafter,
points within this point cloud that do not make up the geometry of the sun screen are
deleted. This 3D point cloud is then saved as an XYZ file (a text file). Occasionally,
the point cloud may require several edits, each being saved as an XYZ file. These
files are then combined in a text editor where duplicates are removed, resulting in
a comprehensive 3D point cloud as a text file. This is then re-opened in MeshLab
where the software ‘cleans and repairs’ the point cloud by removing duplicate vertices.
Thereafter the point cloud is sampled (using ‘point cloud simplification’ and Poisson
disk sampling). The final result is saved as an XZY (text) file.

Figure 42 shows two views of the point cloud that make up the ‘Sloped Overhang’
traditional sun-shade within Meshlab while Figure 43 illustrates the traditional ‘Horizontal
Overhang’ sun-shade point cloud.

(a) Traditional sun-shade - sloped

overhang in MeshLab (Author)

(b) Traditional sun-shade - sloped

overhang in MeshLab side view

(Author)

Figure 42: Traditional sun-shade ‘Sloped Overhang’ - 3D point cloud in MeshLab

62

Figure 43: Traditional sun-shade ‘Horizontal Overhang’ - 3D point cloud in MeshLab

(Author)

Using the extracted points that make up the sun-shade, it is possible to determine
a fitness value for each traditional sun-shade. Experiments and Results outlines
which initial random point cloud was assigned to each traditional sun-shade and lists
the fitness values produced for each.

63

5 Experiments and Results

5.1 University of Cape Town - Data Management

The results produced in this case study follow the University of Cape Town’s approach
to Data Management and curation. The details can be found at this link: https://www.
uct.ac.za/research-support-hub/research-data/managing-research-data. At
the time of documenting this case study, the raw data produced by the Python scripts
as Numpy arrays together with traditional sun-shade fitness results is made available
for researchers. The data will be available, as the University of Cape Town determines,
via ZivaHub using this link https://zivahub.uct.ac.za/.

5.2 Traditional Sun-shades Fitness results

In their 1997 work, O’Conner et al. [47] discuss traditional sun-shades for use
in architectural design. Their illustrations of these sun-shades are combined and
presented in Figure 44. The following sun-shades can be noted: (top left to right)
Horizontal Overhang, Horizontal Overhang 3 louvres, Horizontal Overhang dropped
edge, Horizontal 15 sloped, Horizontal Overhang sloped and (bottom left to right)
Horizontal Overhang louvred edges, Horizontal Overhang of louvres, Vertical louvre-fin
4 angled and Horizontal 19 horizontal. A tenth sun-shade is added - the Vertical
louvre-fin (this is simply a vertical fin located to the sun side of the window opening).

Figure 44: Traditional window sun-shades - combined image (O’Conner et al.)

As noted previously, Figure 43 illustrates the traditional ‘Horizontal Overhang’
sun-shade, as show above, placed within a point cloud (using the dimensions of the
point cloud bounding box).

64

https://www.uct.ac.za/research-support-hub/research-data/managing-research-data
https://www.uct.ac.za/research-support-hub/research-data/managing-research-data
https://zivahub.uct.ac.za/

Each traditional sun-shade was randomly placed within the initial point clouds
generated during an Evolutionary Strategy run before any evolutionary changes were
effected but after having fitness per point calculated. The points that make up the
points clouds are randomly generated and vary between each run.

The following initial point clouds were used to sample points for the fitness values
of each traditional sun-shade:
1. ‘Horizontal Overhang’ - sampled in the Amsterdam East, third run
2. ‘Horizontal Overhang dropped edge’ - sampled in the Cape Town West, fifth run
3. ‘Horizontal Overhang louvred edges’ - sampled in the Cape Town East, first run
4. ‘Horizontal Overhang 3 louvres’ - sampled in the Amsterdam East, eighth run
5. ‘Horizontal 19 horizontal’ - sampled in the Amsterdam West, seventh run
6. ‘Horizontal Overhang of louvres’ - sampled in the Cape Town West, tenth run
7. ‘Horizontal Overhang sloped’ - sampled in the Amsterdam West, second run
8. ‘Horizontal 15 sloped’ - sampled in the Amsterdam East, tenth run
9. ‘Vertical louvre-fin’ - sampled in the Cape Town East, eighth run
10. ‘Vertical louvre-fin 4 angled’ - sampled in the Cape Town West, second run

The fitness value of the remaining points were calculated. This allowed for fitness
comparison between traditional and evolved sun-shades. The results are illustrated in
Table 2.

‘Traditional’ sun-shade system Normalised Fitness Mean

Fitness

Full Fitness

1 Horizontal Overhang 0,32 634,27 1984,00

2 Horizontal Overhang dropped edge 0,28 470,69 1711,00

3 Horizontal Overhang louvred edges 0,27 468,57 1710,00

4 Horizontal Overhang 3 louvres 0,22 442,12 1984,00

5 Horizontal 19 horizontal 0,03 57,76 1985,00

6 Horizontal Overhang of louvres 0,27 456,01 1711,00

7 Horizontal Overhang sloped 0,34 673,86 1985,00

8 Horizontal 15 sloped 0,08 149,99 1984,00

9 Vertical louvre-fin 0,25 432,53 1710,00

10 Vertical louvre-fin 4 angled 0,26 442,56 1711,00

Table 2: Traditional Sun-shades - fitness values.

‘Full’ fitness indicates the total amount of sun-rays that pass through the point cloud
and strike the window surface and that can be blocked for the given scenario (East/West
and Cape Town/Amsterdam). The total amount of sun-rays available for blocking. The
‘mean’ fitness value indicates the mean value of run rays that are blocked by the point

65

cloud population - this is the ‘typical’ best fitness value that can be expected under
the circumstances. The ‘Normalised’ fitness value is a range between zero (no sun rays
blocked) and one (all sun rays that pass through the point cloud and could be blocked).

It can be seen that the traditional ‘Horizontal Overhang sloped’ sun-shade has the
highest normalised fitness value of 0,34 followed closely by the traditional ‘Horizontal
Overhang’ with a normalised value of 0,32. (The overhang being a common solar
shading device).

5.2.1 Traditional Sun-shades Fitness - comments

As Olgyay and Olgyay noted, and as is common practice in Architecture, sun-shades
with horizontal forms are best for direct sun facing façades (South/North - as per
hemisphere). Similarly, vertical sun-shades are expected to be prominent solutions
where the sun rays are anticipated to be at a low angle to the façade, typically East/West
and at sunrise/sunset. Furthermore, the vertical shades are situated to the side of the
window where the sun is expected to reach the the highest point (the North side of a
window opening in the Southern Hemisphere). As this case study is limited to East
and West façades, it is expected that vertical fins would be the prominent solution.
However, as Table 2 indicates, the Horizontal Overhang sloped, followed closely by the
‘traditional’ Horizontal Overhang (or roof eave) are found to be the most fit sun-shades
of the Traditional types.

5.3 Evolved Sun-shades mesh results

Figure 45 shows an evolved sun-shade in context. The view is from the direction of the
sun and the sample window opening is lightly indicated as a background. The view is
composited from a MeshLab scene.

66

Figure 45: Evolved sun-shade in-situ. (Author)

MeshLab was used to surface point clouds in order to better visualise the sun-shades
that were evolved. The Red (X) axis runs along the wall surface while the Green (Y)
axis indicates ‘up’ and the Blue (Z) axis ‘outwards’. The following images, below,
indicate four typical evolved solutions.

Figure 46: MeshLab generated sun-shade for the Cape Town East first run. (Author)

67

Figure 47: MeshLab generated sun-shade for the Cape Town East fourth run. (Author)

Figure 48: MeshLab generated sun-shade for the Amsterdam East second run. (Author)

68

Figure 49: MeshLab generated sun-shade for the Amsterdam East third run. (Author)

5.3.1 Evolved Sun-shades meshes - comments

The evolved meshes do not neatly align with the traditional categories of vertical fins,
horizontal overhangs or ‘eggcrates’. Instead, more organic, ‘shell like’ shapes emerge.
Surprisingly, most evolved sun-shades are strongly horizontal. Figure 45 is purely
horizontal but contains a ‘leading edge’ towards the sunlight to possibly track sun rays
as they swing North.

East façades: All sun-shades in this section need to deal with sunrise where
sun rays typically enter the building horizontally and then rise in altitude to angle
down through the window openings into the interior (as the angle increases the light
penetration is decreased in the interior).

Figure 46 combines both vertical and horizontal elements with a lower ‘overhang’
(the horizontal form being lower) and a vertical shield to prevent sun rays entering.
A bulged, rounded area is present on the vertical surface in the direction of the sun,
then curves in and re-appears in the direction of the sun forming vertical fins that are
rounded but connected to the whole. An organic ‘eggcrate’.

Figure 47 uses a different display setting in MeshLab and indicates a high horizontal
‘overhang’ with a ‘bulb’ below and towards the sunlight to possibly block out the early
rising sun.

Figure 48 displays the evolved sun-shade in an ‘x-ray’ view to better indicate the
details of the mesh. This is a largely horizontal sun-shade but again has a lower bulge
that appears cylindrical. The density in the mesh, shown as concentrations in white,
indicate where points within the point cloud localised. This could be a visual indication
of a local maxima within the evolved solution space. (The mesh contains more detail
as more points are present in that position).

69

Figure 49 illustrates a vertical surface at a higher level but that this then extends
horizontally and in the most outward facing area is ‘snapped’ to form an inverted ‘V’
where a vertical screen of sorts rises then falls across the window so as not to obstruct
the view. There is a certain ‘bias’ towards one side of the ‘vertical’ screen.

5.4 Evolution Strategies - fitness results

As noted previously, the fitness for each individual is represented as an integer value
and indicates the number of sun-rays the individual blocks from striking a window
surface. In Cape Town, on December 22nd, this equates to 3 241 tests (where the sun
rises at 5am and sets at 7.52pm). In Amsterdam, on June 21st, this equates to 3 969
tests (where the sun rises at 4am and sets at 8.59pm). It should be noted that it is not
expected that every sun ray will be blocked as they vary significantly in their projection
- from the horizontal to vertical. In Cape Town, of the 3 241 tests performed, only
1 710 were eligible (meaning they could strike the window surface through the point
cloud) for the East façade and 1 711 for the West façade. In this case study, these
values are labelled ‘Full Fitness’. Similarly, in Amsterdam, of the 3 969 tests preformed,
only 1 984 were eligible for the East façade and 1985 for the West façade. In addition,
given the placement of the point cloud and the individual points within, relative to the
window surface, it is not possible to achieve 100% fitness even within the ‘Full Fitness’
value.

There are three levels of detail to consider when focusing on the Evolution Strategies
results. The first, available in Appendix 4, notes individual fitness values within
a generation. This is a ‘detailed’ view of the Evolutionary Strategy at the individual
level. Table 3 indicates a sample from the initial population for the Cape Town West
façade 6th run while Table 4 indicates the same sample at the final generation. Both
Tables show a small selection of the individuals rather than the whole population (which
numbers several thousand, the raw results being available in the data repository).

Next, Appendix 5 summarises mean initial fitness values per generation.
This indicates a broader view of the fitness results and maps the mean value from the
initial generation until full fitness for that location is achieved and tracks this across all
the sample runs. Table 5 reflects the results for Amsterdam East.

Lastly, the final mean fitness value achieved per Evolutionary Algorithm
run is examined (section 5.4.3). This is illustrated in both graphical and Tabular form
(Appendix 6).

5.4.1 Individual Fitness values

The results that track the entire run (Appendix 4) indicate varied and healthy fitness
among initial individuals. This first generation seems highly diverse - enough to indicate
a large range of points scattered within the point cloud, as one would expect. However,
over time certain parents and their offspring dominate - this is evident when tracking
the parent/individual identities. At most, a parent is present for approximately five
generations before being entirely replaced by the offspring. Final generations are made
up of individuals produced within that generation with an occasional immediate parent
among them. Looking at Table 4, offspring of parent 669 dominate the top fitness values

70

together with the offspring of parent 670. Additionally, there seems to be a convergence
to a local maxima as points converge in the search space and small changes take place
(reading this via object parameters of Cartesian values). Reflecting on these co-ordinate
values, parents and offspring are located closely together while sets of parent/offspring
groups, 669 and 670, are also located close to each other within the point cloud with
only the Z value showing a difference.

This was also noticed in the initial test runs and modifications were made at that
time, this Evolutionary Algorithm reflecting the updated changes (see 4.3.8).

This ‘granular’ view also provides an indication of the evolvable strategy parameters
(here as self-adaptive values) used as the mutation strength. The first generation
contains larger and generally positive values while the final generation reflects smaller
increments with a combination of negative and positive values. Evolvable Strategy
Parameters are further discussed in 4.3.7.

5.4.2 Fitness values per Generation

Appendix 5 displays the results across the first 10 generations (out of 100) and compares
the performance of the algorithm over 10 runs (to ensure the results are consistent).
The table indicates the mean fitness achieved per generation. The top of this table
indicates mean and the normalised version across the 10 runs.

The fitness values are constant across the different runs - where each optimise
a newly generated point cloud. Consistently, among the various runs, full fitness is
achieved by the tenth generation with the normalised value effectively being achieved
by the fifth generation.

Architecturally the first five generations are extremely valuable as this is where
‘form-finding’ seems to take place. Using MeshLab to visualise the point cloud across
each of these early generations and then animating the images makes it possible to
understand what appears to be ‘self-organisation’ as the points shift and the surface of
the sun-screen appears. By the tenth generation (and increasing in ten generations),
the animated sun-screen hardly changes. Small movements are noticed but the form is
already set by the tenth generation.

This does, however, indicate how effective the Evolutionary Strategy is at optimising
form, confirming the reason why this algorithm was selected initially.

5.4.3 Mean fitness per Evolution Strategies run compared to traditional

sun-shade

The following figures graph the normalised fitness achieved per generation to provide an
overall reading of how the Evolutionary Strategy performed in each scenario where the
mean fitness is constant and reached by each run. The normalised value indicates total
fitness that could be achieved (‘full fitness’). The red bar running horizontally across
the graph indicates the best fitness achieved by the ‘traditional’ sun shades (refer to
Table 2).

71

Figure 50: Evolutionary Strategy - Amsterdam East fitness. (Author)

72

Figure 51: Evolutionary Strategy - Cape Town East fitness. (Author)

73

Figure 52: Evolutionary Strategy - Amsterdam West fitness. (Author)

74

Figure 53: Evolutionary Strategy - Cape Town West fitness. (Author)

In each instance, the Evolution Strategies’ mean fitness surpasses that of the best
‘traditional’ sun-shade before the fifth generation, indicating the extreme efficiency of
this algorithm for shape optimisation. The fitness values continue to climb rapidly,
and as confirmed previously, reach peak fitness by the tenth generation. The level of
fitness achieved by the evolved sun-shades are significantly higher than the ‘traditional’
sun-shades. It is interesting to note that both the Amsterdam normalised fitness values
are higher than those found in Cape Town. Torres and Sakamoto noted in their research
that by overpopulating the search space, they managed to achieve a fitter model. It
could be that as Amsterdam could test fitness across a longer time frame they could
achieve a similar result (‘overpopulation’) and hence produce the higher normalised
fitness values.

Architecturally the case study is interesting during the high fitness climb as most
‘form-finding’ takes place at this time. Thereafter the changes are small enough to be
insignificant.

The tables in Appendix 6 indicate the comparative fitness values between the two
conditions in the case study. Tables 9 and 10 outline the values found for the East
façade while Tables 11 and 12 outline the values for the West façade. As noted above,
both Southern Hemisphere façade’s have lower fitness values but are similar in total,
while the Northern Hemisphere values are generally higher - this could be the result

75

of both a longer period of sun being experienced at the summer solstice and a larger
spread of solar values (i.e. solar angle - the compass value).

Again, all values are normalised where zero indicates no fitness value and one
indicates complete fitness (‘full fitness’). Using these values, we can test the fitness of
evolved sun-shades against the fitness of ‘traditional sun shades.’

5.5 Hypothesis testing - single sample T test (two tailed)

To determine if the evolved sun-shades perform better than the traditional sun-shades,
a single sample T test is employed. This case study starts with the assumption that
the traditional sun-shades are the best - the null hypothesis - until there is evidence
that indicates otherwise (the alternative hypothesis). A two tailed test is applied as
the Critical Value (c) may appear on either side of the bell-shaped distribution being a
‘less than’ or ‘greater than’ value (α

2
).

Normalised fitness values for the ten traditional sun-shades are compared to the
normalised fitness values for the ten evolutionary algorithm runs for each condition.

The Traditional sun-shades produce the following values; the (normalised) Mean
for the 10 ‘traditional’ sun-shades is 0,23 (with 0.100 as the standard deviation). This
leads to:
H0 (the null hypothesis) µ = 0, 23
Ha (alternate hypothesis) µ ̸= 0, 23

A significance value of 5% is used.
α = 0.05

A sample size of 10 is used.
N = 10

The following values are the mean fitness values per condition:
Amsterdam East: x = 0.56
Cape Town East: x = 0.47
Amsterdam West: x = 0.56
Cape Town West: x = 0.47

Standard deviation:
s = 0 for all samples

Following the single sample T test

t =
x− µ

s√
n

(9)

The following may be evaluated:
Amsterdam East:

t =
0, 56− 0, 23

0√
10

(10)

76

Cape Town East:

t =
0, 47− 0, 23

0√
10

(11)

Amsterdam West:

t =
0, 56− 0, 23

0√
10

(12)

Cape Town West:

t =
0, 47− 0, 23

0√
10

(13)

Critical value (c) = 2,262 (positive and negative values)
This value from a Table where α

2
is 0,025 and df (degrees of freedom) is sample size - 1

or (n− 1)) resulting in n = 9.

Comparison to the Critical Value (c): t ∼ c
Where t > c reject H0 in favour of Ha at 95% significance level.

5.5.1 Comments and observations

The evolved sun-shades produce a standard deviation of zero as after 100 generations
the final values are so refined that there is no variance in fitness. While the sample
standard deviation (s) is zero, t will be undefined. What affect this has on the bell curve
is that the value will be very much increased with the curve being quite narrow. This
indicates a statistically significant difference. I would conclude that as t is a higher value
(t > c) it falls within the ‘rejection’ range of the distribution. This test statistic is so
extreme that it makes it improbable if the null hypothesis is true. Consequently, I reject
the null hypothesis at a 95% significance level; namely, that traditional sun-shades have
the best fitness for task. The evolved screens are fitter by over two standard deviations.
This indicates that it is extremely likely that our evolved sun-shade fitness values will
surpass those of the traditional sun-shades. It would be worth noting that having a
standard deviation of zero could be an anomaly (possibly due to rounding errors in
the graphing software) but is most likely the result of continued evolution resulting in
maximum fitness.

77

6 Discussion

6.1 Form-Finding

When the initial parameters were set, a rectangular volume with a rectangular opening
in the base was envisaged. However, results from the case study indicate forms along
the top of the volume dominate. This was unexpected. Furthermore, vertical fins seem
to be replaced by smooth curves bulging out from the horizontal sun-shade, a far subtler
solution than a dedicated ‘device’ or surface.

These form-finding results may point to the fact that horizontal sun rays change
rapidly over time with points lower in the point cloud (that would block rapidly changing
sun rays) not having particularly high fitness values as less rays pass through those
points when striking the window surface given how fast the sun moves. Instead, it
seems that horizontal forms dominate as those points intercept and block more (near
vertical) sun rays as the sun at a higher angle moves slower, indicating more rays are
available to be blocked and hence a higher fitness is achieved.

From the above, it would seem reasonable to imagine the points that make up
vertical fins effectively block less sun rays simply because the sun path moves rapidly
where they function with the consequence that fewer sun rays provide lower fitness
values.

Could it be that the points within the point cloud do not experience the same
potential to block the sun rays as the movement of the sun is not constant, given how
variably the sun altitude changes (fast at sunrise, slower at midday)? From this, an
amended approach could be proposed. Or will this amendment significantly alter the
existing results and produce a more predictable solution; are we interfering with the
design process?

An amended approach to address the domination of horizontal forms could be
to focus on points not having the ‘same potential’ to block sun rays. This could be
accomplished by ‘grading’ the points within the point cloud with regards to their ability
to participate in blocking sun rays. One may see this as a ‘heat map’ where points that
experience rapid sun ray change could be ‘colder’ while those who block the sun as it
lingers at the noon apex would be ‘hotter’. From this, after establishing ‘bands’ (or
ranges) for grading the ‘heat map’, one could determine fitness levels per band or ‘grade’
as a relative value. For example, the ‘green’ band (or grade) would have high fitness
while blocking less sun rays and could compete equally with the ‘red’ band where more
sun rays are present allowing for more opportunities to block the sun rays on a window
surface and hence have higher fitness values as a whole. A ‘weighting’ or ‘equalisation’
system of some sort would assist in distributing these new relative high fitness values
across the point cloud.

Interestingly, this observation could lead to ‘metadata’ being connected to each
point within the point cloud harking back to the ‘motes’ discussed by Frazer [31], the
work that originally inspired the creation of the point cloud in the first place.

The converse is also applicable, namely, that the above ‘heat map’ interferes with
a perfectly functional approach and is, instead, forcing the ‘form-finding’ result back
to more familiar territory. This view would advocate that the implemented solution is
entirely valid with one needing to realise that more sun rays tend to be near vertical

78

and generate this resulting form as a consequence.

6.2 Evolution Strategies

As discussed briefly (5.4.2), when using MeshLab on one run, every tenth generation was
used to create a surface mesh and was saved as an image. These ‘static’ rendered images
were combined to create an animated file where every image is ‘held’ and duplicated as
an animation frame to create the animated clip. From this, it was visually possible to
understand how the sun-shade was formed using the Evolution Strategies.

The initial evolution was too rapid to follow (this is confirmed by the graphs in
Experiments and Results in Figures 50, 51, 52 and 53, where full fitness is achieved
within ten generations). To better understand the initial evolution, a change was
implemented in the animated image to, in effect, ‘slow down’ the first few generations.
Each of the first twenty generations were saved and rendered as static MeshLab images.
This was then combined with the other images saved for every tenth generation thereafter
and was used to create a second animated clip.

From this clip it is possible to see an interesting evolution in the sun-shade, almost
resembling a ‘self-organising entity’ over the initial generations. Thereafter the main
form settles and lots of rapid, but very small, changes take place. These final changes
appearing inconsequential.

This seems to confirm the graphed results that indicate rapid changes in fitness
initially and then less in later generations. This was present in the first implementation
of the Evolutionary Strategy where the top 10% of the population would be selected
to reproduce. It was felt that this elitism rushed to a local optimum too soon with
the solution space not being sufficiently explored. To address this, the top half of the
parents were made eligible for selection to improve upon diversity. In addition, mutation
was initially based upon a normal distribution (around zero) with a random Gaussian
vector; this was also adjusted to be more inline with Beyer Schwefel’s [9] proposed values
for strategy parameters with attention paid to self-adaptation with the recommended
learning parameter. While an improvement, it still seems the solutions are too narrow.
Effectively generating a working solution within the first ten generations out of one
hundred seems premature. Either the search space could have been explored further or
the number of generations required could have been reduced.

6.3 General observations

Architecturally, in order to generate an artefact (a surface mesh) this case study
required being located within a Cartesian co-ordinate system. From this starting point,
real-value vectors would be evolved requiring no encoding. In addition, visualising the
solution space when working with a point cloud, seems intuitive. Similarly, intermediary
recombination is understandable as it applies to real-value parameters and allows for
offspring to be near or around parental variable values. The produced artefact saw
improvement when self-adaptation was incorporated making Evolution Strategies well
suited to this case study.

However, again architecturally, the exploration of the solution space seemed to

79

have narrowed after the tenth generation. As Eiben Smith [26] note, (µ, λ) is generally
preferred for Evolution Strategies where this case study instead uses (µ + λ). It
could have been better to discard all parents in order to leave the local optima and
in addition, discard outdated solutions (because the fitness optimum moves). This
could explain the multiple small and insignificant changes that the animation indicates
takes place in later populations. Eiben Smith also go on to note how (µ+ λ) hinders
self-adaptation as ‘misadapted’ strategy parameters may survive across a number of
generations, exacerbated where there are children with bad strategy parameters and
selection is elitist. Elitism was recognised as a concern once 10% of the parents were
initially selected - hence the modification to 50% of parents later being considered
eligible for selection. Looking at both the results printed for each generation and the
visual representation contained within the animation, mutation and recombination could
be reconsidered. Of course, this must be seen in combination with survivor selection as
that would have a significant impact. It seems children are rather close to their parents.
In later generations this is visible as a large group of individuals ranked by fitness
alongside each other - essentially a successful parent alongside successful offspringxxx.
However, as noted previously, the generation count does not go far back indicating
that most individuals are recent; this being clearly seen in Appendix 4 ‘Individual
Fitness values’, specifically Table 4, the last three columns. These columns represent
the individual, the parent and the generation. What is clearly demonstrated for this
final generation is how many children are ranked side by side - Parent 669 and Parent
670 having many offspring present.

xxxIn the point cloud, this would be a cluster of individual points which, in MeshLab, do not

significantly contribute towards generating a mesh surface.

80

7 Conclusion and Future Work

7.1 Conclusion

This case study clearly demonstrates it is possible to use an Evolutionary Algorithm to
Architecturally explore and generate form. Where previous studies typically consider
surface elements that are ’re-arranged’ [60] [64] or have their geometry ’transformed’
(lengthened, rotated and so on) [42], what makes this work stand out is that it explores
’pure’ Evolutionary Algorithms that, when combined with open source meshing software,
explore form to produce artefacts that can be examined three-dimensionally or to scale
as printed three-dimensional models. No pre-coded proprietary software solutions are
required where the user is removed from how the Evolutionary Algorithm functions.
Furthermore, meshed solutions can be dynamically studied as they can draw directly
upon the evolved point cloud; in more recent studies this dynamic link with software
to produce an artefact was considered a strong point to promote the use of propriety
solutions [67]. In addition, this case study determined a method that could be employed
to ascertain the fitness values of ’Traditional’ sun-shades to allow for their assessment
alongside those generated by the Evolutionary Algorithm within a Cartesian co-ordinate
system. This allowed for both the Traditional and Evolved sun-shade to be evaluated
in terms of fitness to determine the best form required to block direct sunlight under
the same conditions.

7.2 Future Work

Given the above, a number of changes can be suggested and indeed additional avenues
of exploration can be considered in future work, outlined below.

7.2.1 Explore other façade conditions

In this case study, the East and West façades conditions were explored, however, the
characteristics of the sun path in these circumstances are fairly similar. Namely, the sun
starts low and horizontal then rotates to the North/South façade until almost directly
overhead but flush with the wall surface with the inverse taking place on the other
façade. Studies of the North/South façade would require a different solution as the
sun starts at a high angle overhead but flush with the wall surface then twisting to
be directly perpendicular to the façade but at a higher angle before lowering again
and moving past the façade. Typically horizontal overhangs dominate these traditional
solutions, it would be interesting to compare this with the evolved solutions; are they
similar or have vertical fins of some sort been added too?

7.2.2 Changes to the Evolutionary Algorithm

The algorithm itself may see modification; the number of individuals per generation is
sufficient (the points that make up the point cloud is good) but it may be that exploration
within the solution space is too abrupt. It could be that the shape optimisation strength

81

of the Evolution Strategies implementation does not require a large number of generation
to achieve a result - this is a strength as a large amount of solutions may be explored in
a shorter time. Or it may be that there was a convergence to a local maxima, typically
a consequence of elitism. If this is the case, solutions could include over populating the
search space or increasing variation in the breeding group. As noted above, discarding
parents could also address this.

Parameter settings could require modification. Kramer [40], in his survey of
self-adaptive parameters, discusses ‘adequate parameter settings’ and notes the impact
this has on the success of the optimisation process. Following this survey, it would seem
that self-adaptive control of mutation strength is still an optimal approach.

7.2.3 Add simulation to improve upon the idea of fitness

What makes this case study differ significantly from those considered, is the connection
to an environmental simulation. To determine the fitness of an individual, an alternate
method of counting sun-rays blocked was used. This worked well within the context of
the Evolutionary Algorithm but is a less mature solution that can be improved upon by
linking the Evolutionary Algorithm to a simulation. Architecturally, this makes more
sense but does require a more ‘architecturally’ accurate model, as noted previously, to
incorporate an energy and lighting simulation that could produce in-situ results allowing
these to be interpreted in an architectural way (a good example of this would be heat
efficiency [30]). An approach to connecting the evolved sun-shade to a simulation would
be to set up a three-dimensional environment that functions within an active simulation
engine. The environment can be set up to contain objects that would be architecturally
relevant to the simulation; this may be neighbouring buildings as block models, the
building wall surface with the window opening, possibly a volume behind this opening
to represent a room to allow for measurements to be taken (this follows the approach
used by Manzan and Pinto [42]). This environment can be established to allow for
the evolved sun-shade 3D mesh model to be imported such that certain values remain
consistent (the direction of the wall surface and position of the window opening relative
to the evolved sun-shade). This will allow for consistency in results and the rapid
exploration of multiple sun-shades as they are all located in the correct position and
orientation. Pre and post sun-shade measurements can be taken and compared. The 3D
environment could be established within Rhino 3D or Trimble SketchUp software, both
allow for mesh models to be imported. For Rhino 3D, the simulation would typically be
driven by Grasshopper plug-ins (as noted in the studies investigated). For SketchUp,
OpenStudioxxxi takes the place of Grasshopper plug-ins and allows for simulations to
be active. Using SketchUp and OpenStudio is another common approach and is further
explored by Al-Zubayi [2] and Bojic et al. [12]. Once the environment is set, solutions
may be tested and measured against various parameters, namely solar heat gain, glare
and so on.

xxxiOpenStudio: An open source integrated analysis platform https://openstudio.net/

82

https://openstudio.net/

7.2.4 Reconnecting to ‘original’ Form-finding principals

This case study was inspired by, and is an interpretation of, the idea of ‘a field of
motes’ as initially described by Frazer [31]. This conceptual idea was then applied to
implement the Architectural notion of form-finding. Where there is significant scope for
future work would be to ‘reconnect’ to the original idea of form-finding, as discussed by
Burry [14], by working to incorporate physics and material properties (also referred to
as the ‘self-organisation of materials’) into future case studies. This, in turn, connects
to the original work of Antoni Gaud́ı and Frei Otto where the characteristics of the
material used in the construction combine with gravity to play a role in determining
the final form. Piker [49] appreciated this connection between gravity and form-finding
by making use of the Grasshopper plug-in, Kangaroo, to introduce physics into the
Rhinoceros 3D modelling world. This case study could be progressed by locating the
point cloud within a physics engine. Nvidia’s PhysX could be a platform on which to
build this research [37] with Havok offering another option [41]. It should be noted
that there are several physics engines with the web-based company, G2 inc, ranking
the software xxxii. In addition, the points may be modified to better fit Frazer’s idea
of motes where each mote could be a point containing metadata of some sort. Frazer
mentions each mote being aware of others, in a sense this could be a development of
‘meta-ball’ surfaces (briefly summarised by Pottmann et al. [51]) but now contained
within an environment that applies an effect (Templet [57] could be a starting point).

7.2.5 Meshing and surfacing of the point cloud

MeshLab [16] was used to create a surfaced model from the final, evolved point cloud;
this being the form-finding artefact (the sun-shade). However, this surface model
requires slight modification to allow for 3D printingxxxiii and rendering in visualisations.
The MeshLab product is a single skinned, triangular surface mesh where the surface
normal plays a role (typically making the product ‘invisible’ when viewed ‘from behind’
- in the direction of the normal vector). To resolve this, Architectural 3D modelling
would attempt to ‘add thickness’ to the surface to create a ‘solid volume’ where there
is a surface viewable in all directions. Architecturally this also allows for additional
consideration regarding dimensions (the thickness) and construction methods - this
rapidly goes beyond making the object visible and crosses into considering how it
would be constructed and with what materials. Furthermore, triangular meshes are
no longer preferred being replaced by polygon meshes where subdivision surfaces are
preferred and are dominating the modelling tasks. Pottmann et al. [51] again provides
a significant overview of this field. Future work would possibly include revisiting the use
of MeshLab: in this case study, duplicate points were removed within the software to
reduce complexity and certain surface sampling techniques were implemented but this
could be more thoroughly explored. In addition, future work can be focused on maturing

xxxiihttps://www.g2.com/categories/physics-engine
xxxiiiWikiversity provide a good sample ‘step-by-step’ process to follow. That can be found at

this link: https://en.wikiversity.org/wiki/MakerBot/Cleaning_Up_Point_Cloud_Meshes_in_

Meshlab_For_3D_Printing.

83

https://www.g2.com/categories/physics-engine
https://en.wikiversity.org/wiki/MakerBot/Cleaning_Up_Point_Cloud_Meshes_in_Meshlab_For_3D_Printing
https://en.wikiversity.org/wiki/MakerBot/Cleaning_Up_Point_Cloud_Meshes_in_Meshlab_For_3D_Printing

a solution that can take a point cloud and produce a simpler polygon surface mesh.
This would need to include the reduction of points (possibly using a distance threshold),
and a robust method to create polygon surfaces (that may require the addition of
certain points to better form a surface; possibly starting with a large polygon surface
and subdividing this).

84

References

[1] Agkathidis, A. Implementing biomorphic design. In The 34th International
Conference on Education and Research in Computer Aided Architectural
Design, eCAADe (2016), pp. 291–298.

[2] Al-Zubaydi, A. Y. Building models design and energy simulation with Google
SketchUp and OpenStudio. Journal of Advanced Science and Engineering
Research 3, 4 (2013), 318–333.

[3] Alexander, C. Notes on the Synthesis of Form, vol. 5. Harvard University Press,
Cambridge, MA, USA, 1964.

[4] Alexander, C. A Pattern Language: towns, buildings, construction. Oxford
University Press, Oxford, UK, 1977.

[5] Asojo, A. O. Design algorithms after Le Corbusier. CumInCAD, ACADIA
Quarterly, Vol. 19, 4 (2000), 17-24.

[6] Back, T., Fogel, D. B., and Michalewicz, Z. Handbook of Evolutionary
Computation. IOP Publishing Ltd., Bristol, UK, 1997.

[7] Bader, J., and Zitzler, E. Hype: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary computation 19, 1 (2011), 45–76.

[8] Beyer, H.-G. The Theory of Evolution Strategies. Springer Science & Business
Media, Dordrecht, Netherlands, 2001.

[9] Beyer, H.-G., and Schwefel, H.-P. Evolution strategies - a comprehensive
introduction. Natural computing 1, 1 (2002), 3–52.

[10] Bhatt, R. Christopher Alexander’s Pattern Language: an alternative exploration of
space-making practices. The Journal of Architecture 15, 6 (2010), 711–729.

[11] Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E. Pisa - a
platform and programming language independent interface for search algorithms.
In International Conference on Evolutionary Multi-Criterion Optimization (2003),
Springer, pp. 494–508.

[12] Bojic, M., Skerlic, J., Nikolic, D., Cvetkovic, D., and Miletic, M. Toward future
positive net-energy buildings. EXPRES 2012 (2012), 49.

[13] Bonnemaison, S. Resurgence of Organicism. Dalhousie Architectural Press,
Halifax, Nova Scotia, Canada, 2019.

[14] Burry, M. Antoni Gaudı́ and Frei Otto: Essential precursors to the parametricism
manifesto. Architectural Design 86, 2 (2016-03-01), 30,35.

[15] Ching, F. D. Architectural graphics. John Wiley & Sons, Hoboken, NJ, USA,
2015.

85

[16] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and
Ranzuglia, G. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics
Italian Chapter Conference (2008), V. Scarano, R. D. Chiara, and
U. Erra, Eds., The Eurographics Association.

[17] Coates, P., and Makris, D. Genetic programming and spatial morphogenesis. AISB
Symposium on Creative Evolutionary Systems, Edinburgh College of Art and Division of
Informatics (AISB'99), University of Edinburgh, March 1999

[18] Coetzee, L., and Nitschke, G. Evolving optimal sun-shading building
façades. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (New York, NY, USA, 2019), GECCO ’19, Association for Computing
Machinery, p. 393–394.

[19] Conway, J. The Game of Life. Scientific American 223, 4 (1970), 4.

[20] Darwin, C. The Origin of Species: by Means of Natural Selection or the
Preservation of Favored Races in the struggle for Life, vol. 2. Modern library, New
York City, NY, USA, 1872.

[21] Dawes, M. J., and Ostwald, M. J. Christopher Alexander’s a Pattern Language:
analysing, mapping and classifying the critical response. City, Territory and
Architecture 4, 1 (2017), 1–14.

[22] Dawkins, R. Blind watchmaker biomorphs. In The Pattern Book: Fractals, Art,
And Nature. World Scientific Publishing, Hackensack, NJ, USA, 1995, pp. 9–11.

[23] De Jong, K. Evolutionary computation: a unified approach. MIT Press,
Cambridge, MA, USA, 2006.

[24] De Jong, K., Fogel, D. B., and Schwefel, H.-P. A history of evolutionary
computation. Handbook of Evolutionary Computation A 2 (1997), 1–12.

[25] DeLanda, M. Deleuze and the use of the genetic algorithm in architecture.
Architectural Design 71, 7 (2002), 9.

[26] Eiben, A., and Smith, J. Introduction to Evolutionary Computing (natural
computing series). Springer-Verlag, Berlin, Germany, 2008.

[27] Eiben, A., and Schoenauer, M. Evolutionary computing. Information
Processing Letters 82, 1 (2002), 1–6.

[28] Energy Systems Research Unit, Glasgow, S. ESP-r (a general purpose, multi-
domain simulation environment).

[29] Fletcher, B. A history of Architecture on the Comparative Method. T Batsford
Ltd., London, UK, 1958.

[30] Franzetti, C., Fraisse, G., and Achard, G. Influence of the coupling between
daylight and artificial lighting on thermal loads in office buildings. Energy and
Buildings 36, 2 (2004), 117–126.

[31] Frazer, J. Themes VII: An Evolutionary Architecture. Architectural Association,
London, UK, 1995.

86

[32] Galilei, G. Dialogues concerning two new sciences. Dover Publications, Mineola,
New York, USA, 1914.

[33] Gut, P., and Ackerknecht, D. Climate responsive buildings: appropriate
building construction in tropical and subtropical regions. SKAT Foundation,
Gallen, Switzerland, 1993.

[34] Hensel, M., Menges, A., and Weinstock, M. Emergence: morphogenetic design
strategies, 2004.

[35] Holland, B. Computational organicism: Examining evolutionary design
strategies in architecture. Nexus Network Journal 12, 3 (2010), 485 – 495.

[36] Holland, J. H. Genetic algorithms. Scientific American 267, 1 (1992), 66–73.

[37] Hongpan, N., Yong, G., and Zhongming, H. Application research of
PhysX engine in virtual environment. In 2010 International Conference on Audio,
Language and Image Processing (2010), pp. 587–591.

[38] Huang, Y., and Niu, J.-l. Optimal building envelope design based on simulated
performance: History, current status and new potentials. Energy & Buildings, 117
(2016), 387–398.

[39] Kolarevic, B. Digital morphogenesis and computational architectures.

Construindo n (o) espaço digital, PROURB, Universidade Federal do Rio de
Janeiro, Rio de Janeiro (2000), 98–103.

[40] Kramer, O. Evolutionary self-adaptation: a survey of operators and strategy
parameters. Evolutionary Intelligence 3 (2010), 51–65.

[41] Mac Mathuna, D. Playing Havok with physics. Physics World 16, 8 (2003), 10.

[42] Manzan, M., and Pinto, F. Genetic optimization of external shading devices. In
Proceedings of 11th international IBPSA conference, Glasgow, Scotland (2009),
pp. 27–30.

[43] Martinell, C. Gaud́ı - His Life. His Theories. His Work., 1975 ed. The MIT Press,
Cambridge, MA, USA, 1967.

[44] McCarthy, J. Generality in artificial intelligence. Communications of the ACM 30,
12 (1987), 1030–1035.

[45] Mitchell, W. J. The Logic of Architecture. Design, computation and cognition.
The MIT Press, Cambridge, MA, USA, 1990.

[46] Neumann, J., Burks, A. W., et al. Theory of self-reproducing automata, vol.
1102024. University of Illinois Press, Urbana, IL, USA, 1966.

[47] O’Conner, J., Lee, E., Rubinstein, F., and Selkowitz, S. Tips for
daylighting with windows: The integrated approach. Technical Report, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA, No. PUB-790. 1997.

87

[48] Olgyay, A., Olgyay, V., et al. Solar control and shading devices. Princeton
University Press, Princeton, NJ, USA, 1976.

[49] Piker, D. Kangaroo: form-finding with computational physics. Architectural
Design 83, 2 (2013), 136–137.

[50] Poloni, C., and Mosetti, G. Aerodynamic shape optimization by means of a
genetic algorithm. In the 5th international symposium on computational fluid
dynamics (1993), Japan Society of computational fluid dynamics, pp. 279–284.

[51] Pottmann, H. Architectural Geometry, vol. 10. Bentley Institute Press, Exton,
PA, USA, 2007.

[52] Reekie, R. F. Draughtsmanship. Edward Arnold & Co., London, UK, 1961.

[53] Richards, S. J. Solar Charts for the Design of Sunlight and Shade for Buildings in
South Africa. National Building Research Institute, CSIR, Brummeria, Pretoria,
RSA, 1981.

[54] Rigoni, E., and Poles, S. NBI and Moga-II, two complementary algorithms for
multi-objective optimizations. In Dagstuhl Seminar Proceedings (2005), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[55] Schumacher, P. Parametricism: A new global style for architecture and urban
design. Architectural Design 79, 4 (2009), 14–23.

[56] Stiny, G. Introduction to shape and shape grammars. Environment and planning B:
planning and design 7, 3 (1980), 343–351.

[57] Templet, R. M. Game Physics: An Analysis of Physics Engines for First-Time
Physics Developers. PhD thesis, California State University, Northridge, 2020.

[58] Thompson, D. W. Galileo and the principle of similitude. Nature 95, 2381 (1915),
426–427.

[59] Thompson, D. W. On Growth and Form, vol. 2. Cambridge University Press,
Cambridge, UK, 1942.

[60] Torres, S., and Sakamoto, Y. Façade design optimisation for daylight with a simple
genetic algorithm. Building Simulation Proceedings (2007).

[61] Van Doesburg, T. Towards a plastic architecture. de Stijl, vol. 12 Studio Vista
London, 6/7 (1924), 78-83.

[62] Wang, W., Rivard, H., and Zmeureanu, R. An object-oriented framework for
simulation-based green building design optimization with genetic algorithms. 5–
23.

[63] Wolfram, S. Universality and complexity in cellular automata. Physica D:
Nonlinear Phenomena 10, 1-2 (1984), 1–35.

[64] Wright, J. A., and Mourshed, M. Geometric optimization of fenestration.
Building Simulation conference (2009).

88

[65] Zerbst, R. Antoni Gaudı́, Architecture and Design series ed. Taschen Publications,
Cologne, Germany, 1993.

[66] Zexin, S., and Mei, H. Robotic form-finding and construction based on the
architectural projection logic. In IOP Conference Series: Materials Science and
Engineering (2017), vol. 216, IOP Publishing, p. 012058.

[67] Zhang, L., Zhang, L., and Wang, Y. Shape optimiszation of free-form
buildings based on solar radiation gain and space efficiency using multi-objective
genetic algorithm in the severe cold zones of china. Solar Energy, 132 (2016),
38–50.

[68] Zitzler, E., Laumanns, M., and Thiele, L. Spea2: Improving the strength pareto
evolutionary algorithm. TIK-report 103 (2001).

89

8 Appendix 1 - Source Code

Python Source Code for Evolutionary Strategy written for Python 3 with Python 2.7
compatibility. (Comments outlining tests code and log files for evaluating results and
testing the script have been removed to keep the content clearer.)

EVOLUTIONARY STRATEGY

This code run: Amsterdam Sun: South Facade

Supervisor: Geoff Nitschke

May 2017 implementation

This was written in Python 3 but as the

HPC only supports Python 2.7, has been rewritten

to include Python 2.7 compatibility

General implementation:

Parents randomly selected from top half of

population (top 10 percent too elitist)

Sun angle read in for every 15s

More complexity - ES works better with more complexity

Test run: 9 500 pop , 100 Generations

Actual run: 20 000 pop , 100 Generations

this to create finer , smoother results

Generate Point Cloud (adults)

Evaluate fitness - each ray , each 15s

(Most rays blocked = higher fitness)

(Certain positions - obstructing view - auto unfit)

Rank them

OLD --- Keep top 10 percent of parents - (too elite) ---

CURRENT Keep top half of parents

Randomly select 200 parents from top half , discard rest

For each parent , generate 10 mutated offspring ,

mutations based on normal distribution (Gaussian)

[Normal Distribution] The horizontal value ranges

from -150 to +150 , this value is

added/subtracted from X Y Z value

New population ranked by fitness , repeat

sample = int(np.random.normal(loc=0.0,scale=150))

90

** the number 150 can change ,

tweak as needed (Its based on

the smallest measurement halved ,

thinking 200mm/2)

Do it for each X,Y and Z

Amsterdam , Cape Town , mid -summer ,

15 seconds over 1 day

100 generations

Mesh model (we want to see the mesh changes)

Evaluate temperature

Originally , replaced ’guessed ’ value

in gaussian mutation

Imports

import random

from random import randint

import sys

import math

import numpy as np

import csv

from datetime import datetime

import functools , random , itertools

Written Output files:

The final Point Cloud file (matrix; x, y, z)

output = open(’ES -3v7_output.txt’, ’w’)

A file to time the algorithm

timer = open(’ES-3v7_timer.txt’, ’w’)

A file to create 3D mesh , every X (10th) generation

outputXgen = open(’ES-3v7_outputXgen.txt’, ’w’)

Numpy to show full values in matrix

91

np.set_printoptions(threshold=np.nan , precision=3, suppress=True ,

linewidth=200)

Variables

gen_count = 100 # 100 (Generation Count)

pop_size = 20000 # 9 500 OR 20 000 (Population Size)

xGen = 10 # The number of children each parent spawns

xGen3Dcounter = 10 # Write every 10th generation to outputXgen file

x1 = 0 # a counter (X can be anything)

USER MEASUREMENTS , bounding box and fitness created from it

’Window Surface ’: actual measurements are (millimetres):

x = 650x2 (1300), y = 850x2 (1700), z = 200

width = 1300 # range for width (X)

height = 1700 # range for height (Y)

depth = 200 # range for depth (Z)

’Bounding Box’ of point cloud:

actual measurements increased on each side

boundingWidth = int(width + (width/10)*2) # 10 precent on either side

boundingHeight = int(height + (height/5)*2) # 20 percent either side

boundingDepth = int((boundingHeight/3)*2) # two thirds bounding height

surfaceOffset = int(boundingDepth/10) # keep points off surface window

sampleScale = int(boundingDepth/3) # scale value - bell curve (depth/3)

Window Fitness range (0,0 is located on corner of bounding box ,

this offsets it inwards)

startX = int(boundingWidth - width)/2 # 10 percent inwards

endX = int(startX + width) # length of window width (+ ’offset ’)

startY = int(boundingHeight - height)/2 # 20 percent inwards

endY = int(startY + height) # height of actual window height

third = int(startY + (height/3)) # 1/3 of window height

ES IMPLEMENTATION

N = 10 # N variances vary individually (Global learning Rate)

c = 1 # Beyer Swefel , section 27, pg 29; c=1 a reasonable choice

tau_0 = (c/math.sqrt(2*N)) # Global Learning Rate

92

tau = (c/math.sqrt(2*(math.sqrt(N)))) # Child Learning Rate

Global Learning Rate (Tau0) 1/square root of 2 * n

Child Learning Rate (Tau) 1/square root of 2 square root of n

Symbols for easier use in algorithm

g = 0

p = pop_size

w = int(boundingWidth + 1) # width (X)

h = int(boundingHeight + 1) # height (Y)

d = int(boundingDepth + 1) # depth (Z)

t = int(pop_size / 10) # Original setting - top 10 percent

t = int(pop_size / 2) # To select 50 percent of population

tminus = t-1

tenth = int(pop_size / 10)

Code to not randomly select same row number again

def random_no_repeat2(random_func):

already_returned = set()

while True:

i = random_func ()

if i not in already_returned:

already_returned.add(i)

yield i

Initialise the 2D Numpy Array (0 = row , 10 = columns)

Format: column 1: fitness | column 2: X | column 3: Y | column 4: Z

| (step size) column 5: mutation strength sigmaX | column 6: sigmaY

| column 7:sigmaZ | column 8: Individual | column 9: which x10 cycle

| column 10: generation

database = np.empty ((0, 10), int)

currentdatabase = np.empty ((0, 10), int)

To read in a file and making that compatible with Python 2.x and 3.x

if sys.version_info[0] == 2: # Not named on 2.6

access = ’wb’

kwargs = {}

else:

93

access = ’wt’

kwargs = {’newline ’:’’}

FITNESS FUNCTION

def fitness(x, y, z):

fitness = 0

Read in text

V, vertical | H, horizontal

for row in sunPosition:

currentline = str(row[0]) # read lines return list of strings

V, H = currentline.split(",") # string split to two values

V = V.replace(’,’, ’’) # format string remove comma

V = V.replace(’ ’, ’’) # format string remove whitespace

H = H.replace(’,’, ’’) # format string remove comma

H = H.replace(’ ’, ’’) # format string remove whitespace

V = float(V) # convert V (string) to V float

H = float(H) # convert H (string) to H float

X Fitness

cannot divide TAN by 0

if z == 0:

xOnSurface = x

else:

xDifference = z / math.tan(math.radians(180-H))

xOnSurface = int(x + xDifference)

Y Fitness

if z == 0:

yOnSurface = y

else:

yDifference = math.tan(math.radians(V)) * y

yOnSurface = int(y - yDifference)

if (startX <= xOnSurface <= int(endX) and startY <= yOnSurface

<= int(endY)):

fitness = fitness + 1

94

else:

fitness = fitness + 0

return fitness

get current time stamp

print(str(datetime.now().strftime(’%Y-%m-%d %H:%M:%S’)))

timer.write(str(datetime.now().strftime(’%Y-%m-%d %H:%M:%S’)))

timer.write(’\n’)

Generate parents

while g < gen_count:

if g == 0: # PARENTS GENERATED

while x1 < p:

Fitness - cut from here and placed in test function

rw = random.randrange(0, w) # Random int 0 to width+1

rh = random.randrange(0, h) # as above , 0 to height+1

rd = random.randrange(1, d) # as above , 1 to depth+1

(tangent in fitness calculation cannot div by 0)

mutation strengths

sigma_0w = math.exp(tau_0*(np.random.normal(0,1)))

sigma_0h = math.exp(tau_0*(np.random.normal(0,1)))

sigma_0d = math.exp(tau_0*(np.random.normal(0,1)))

if rd < surfaceOffset:

fitt = 0

elif (rh <= third) and (int(startX + width/ 10) <= rw

<= int(endX - (width / 10))):

if below a 1/3, to be on edges (10 percent)

fitt = 0

else:

sunPosition = csv.reader(open(’Amst15_Sun -EAST.txt’,

** kwargs), delimiter=’ ’,

quotechar=’|’) # read in sun location file

fitt = fitness(rw , rh , rd)

95

empty array appended w a parent as generated

database = np.append(database , np.array([[fitt , rw, rh,

rd, sigma_0w , sigma_0h , sigma_0d , x1, g, g]]), axis=0)

x1 = x1 + 1

sort parents by first value in array (fitness)

database = database[database[:, 0].argsort ()[::-1]]

For troubleshooting , keep track of original parents

original_database = database

output.write(’Starter generation (sorted initial parents)\n’)

output.write(str(original_database))

output.write(’\n’)

output.write(’Numpy Array details: (ROWS ,COLUMNS) - ’

+ str(original_database.shape) + ’\n’) # for checking

output.write(’Numpy Array dimension details: ’

+ str(original_database.ndim) + ’ dimension\n’) # for checking

output.write(’\n’)

slice array to keep top X percent (now set to 50 precent)

database = database[0:t]

outputXgen.write(str(original_database))

outputXgen.write(’\n’)

write out database content to numpy propriety file

np.save(’array.npy’, database)

else: # OFFSPRING = PARENTS

random_gen = random_no_repeat2(functools.partial(random.randint

, 0, tminus)) # from top half the population

values = list(itertools.islice(random_gen , t))

select 50 percent of whole population as parents

for i in range(tenth):

96

Each parent creates a tenth of total pop offsping

database = np.load(’array.npy’)

steps = i - 1

r50 = values[steps]

currentParent = database[r50 , None , :]

choose from the random selection generated at the start ,

10 parents

I have an individual parent now to pull out their values

X, Y and Z

parentX = currentParent[0, 1]

parentY = currentParent[0, 2]

parentZ = currentParent[0, 3]

I have an individual parent now to pull out their

sigma_0 values

parentSigmaX = currentParent[0, 4]

parentSigmaY = currentParent[0, 5]

parentSigmaZ = currentParent[0, 6]

thisGen = np.empty((0, 10), int)

ADAPTIVE

for a in range(xGen):

50 percent chance of negative value

switch1 = randint(0, 1)

if switch1 == 1:

parentSigmaX = parentSigmaX * -1

switch2 = randint(0, 1)

if switch2 == 1:

parentSigmaY = parentSigmaY * -1

switch3 = randint(0, 1)

if switch3 == 1:

parentSigmaZ = parentSigmaZ * -1

97

child sigma x parent sigma

childSigmaX = parentSigmaX*

(math.exp(tau*(np.random.normal(0,1))))

childSigmaY = parentSigmaY*

(math.exp(tau*(np.random.normal(0,1))))

childSigmaZ = parentSigmaZ*

(math.exp(tau*(np.random.normal(0,1))))

X Y Z values changed by adaptive step

childX = parentX + childSigmaX

childY = parentY + childSigmaY

childZ = parentZ + childSigmaZ

if (childZ < int(surfaceOffset)) or (childZ >

int(boundingDepth)):

fit = 0

elif (childX != abs(childX) or childX >

int(boundingWidth)) or (

childY != abs(childY) or childY >

int(boundingHeight)):

fit = 0

elif (childY <= third) and (int(startX + width / 10)

<= childX <= int(endX - (width / 10))):

if below a 1/3, needs to be on edges (10 percent)

fit = 0

else:

sunPosition = csv.reader(open(’Amst15_Sun -EAST.txt’

, ** kwargs), delimiter=’ ’, quotechar=’|’)

read in sun location file

fittest.write(’X Y and Z are valid

- fitness function can run\n ’)

fit = fitness(childX , childY , childZ)

Children collected into an array

- this array is new every time per adult

98

thisGen = np.append(thisGen , np.array([[fit , childX ,

childY , childZ , childSigmaX , childSigmaY , childSigmaZ ,

a, i, g]]), axis=0)

parentChilddatabase = np.concatenate ((currentParent ,

thisGen), axis=0)

currentdatabase = np.concatenate ((currentdatabase ,

parentChilddatabase), axis=0)

sort

sorteddatabase = currentdatabase[currentdatabase[:, 0]

.argsort ()[::-1]]

currentdatabase = np.empty ((0, 10), int)

clear database for each cycle

if g % xGen3Dcounter == 0:

outputXgen.write(str(g) + ’\n’)

outputXgen.write(str(sorteddatabase[0:p]))

outputXgen.write(’\n’)

output.write(’Next generation of parents and children ,

generation ’ + str(g) + ’\n’)

output.write(str(sorteddatabase[0:p]))

output.write(’\n’)

output.write(’Numpy Array details: (ROWS ,COLUMNS) - ’

+ str(sorteddatabase[0:p].shape) + ’\n’) # for checking

output.write(’Numpy Array dimension details: ’

+ str(sorteddatabase.ndim) + ’ dimension\n’) # for checking

output.write(’\n’)

finaldatabase = sorteddatabase

np.save(’array.npy’, finaldatabase)

g += 1

99

f.write(repr(database))

print(’Done’)

output.write(’Done’)

print(str(datetime.now().strftime(’%Y-%m-%d %H:%M:%S’)))

timer.write(str(datetime.now().strftime(’%Y-%m-%d %H:%M:%S’)))

100

9 Appendix 2 - Source Code cleaning output

This Python script cleans the input file to produce a CSV file for processing and
evaluation.

This python program reads in the output file of the script above

and cleans the formatting , outputting a CSV file. This file is used

to evaluate the algorithm and graph results. This script is clumsy

and could be refined - it does produce the required results.

import re

Read in generated file

inputFile = open("input.txt")

contents = inputFile.read()

remember to close the file

inputFile.close ()

#print(contents)

clean white space on both sides

content1 = contents.replace(’[[’,’’)

content2 = content1.replace(’ ’,’,’)

content3 = content2.replace(’]]’,’’)

content4 = content3.replace(’]’,’’)

content5 = content4.replace(’[’,’’)

content6 = content5.replace(’,,,,,’,’,’)

content7 = content6.replace(’,,,,’,’,’)

content8 = content7.replace(’,,,’,’,’)

content9 = content8.replace(’,,’,’,’)

#content6 = re.sub(’],’,’’, content4)

Could clean white spaces if software requires it

#content6 = re.sub(’ ’, ’’, content5)

content = content9

print(content)

Write out clean file

101

outputFile = open("output.csv", "w")

outputFile.write(content)

remember to close the file

outputFile.close ()

102

10 Appendix 3 - Solar calculations (every 15s)

Cape Town 22-Dec
Time stamp Azimuth Solar Angle
4am no data no data
5am
0 0.128775 118.558356
0.15 0.17431 118.5235305
0.3 0.219845 118.488705
0.45 0.26538 118.4538795
1 0.310915 118.419054
0.15 0.35651 118.3843065
0.3 0.402105 118.349559
0.45 0.4477 118.3148115
2 0.493295 118.280064
0.15 0.5389495 118.2453938
0.3 0.584604 118.2107235
0.45 0.6302585 118.1760533
3 0.675913 118.141383
0.15 0.7216265 118.1067893
0.3 0.76734 118.0721955
0.45 0.8130535 118.0376018
4 0.858767 118.003008
0.15 0.90453925 117.9684903
0.3 0.9503115 117.9339725
0.45 0.99608375 117.8994548
5 1.041856 117.864937
0.15 1.0876865 117.8304948
0.3 1.133517 117.7960525
0.45 1.1793475 117.7616103
6 1.225178 117.727168
0.15 1.2710665 117.6928008
0.3 1.316955 117.6584335
0.45 1.3628435 117.6240663
7 1.408732 117.589699
0.15 1.454678 117.5554058
0.3 1.500624 117.5211125
0.45 1.54657 117.4868193
8 1.592516 117.452526
0.15 1.638519 117.4183068
0.3 1.684522 117.3840875
0.45 1.730525 117.3498683
9 1.776528 117.315649
0.15 1.82258775 117.2815025
0.3 1.8686475 117.247356

Time stamp Azimuth Solar Angle
0.45 1.91470725 117.2132095
10 1.960767 117.179063
0.15 2.006883 117.1449893
0.3 2.052999 117.1109155
0.45 2.099115 117.0768418
11 2.145231 117.042768
0.15 2.19140325 117.0087658
0.3 2.2375755 116.9747635
0.45 2.28374775 116.9407613
12 2.32992 116.906759
0.15 2.37614775 116.8728283
0.3 2.4223755 116.8388975
0.45 2.46860325 116.8049668
13 2.514831 116.771036
0.15 2.56111375 116.737176
0.3 2.6073965 116.703316
0.45 2.65367925 116.669456
14 2.699962 116.635596
0.15 2.74629975 116.6018063
0.3 2.7926375 116.5680165
0.45 2.83897525 116.5342268
15 2.885313 116.500437
0.15 2.93170525 116.4667165
0.3 2.9780975 116.432996
0.45 3.02448975 116.3992755
16 3.070882 116.365555
0.15 3.1173285 116.3319035
0.3 3.163775 116.298252
0.45 3.2102215 116.2646005
17 3.256668 116.230949
0.15 3.303168 116.1973658
0.3 3.349668 116.1637825
0.45 3.396168 116.1301993
18 3.442668 116.096616
0.15 3.4892215 116.0631005
0.3 3.535775 116.029585
0.45 3.5823285 115.9960695
19 3.628882 115.962554
0.15 3.6754885 115.9291058
0.3 3.722095 115.8956575
0.45 3.7687015 115.8622093

103

Cape Town 22-Dec
Time stamp Azimuth Solar Angle
20 3.815308 115.828761
0.15 3.86196725 115.7953793
0.3 3.9086265 115.7619975
0.45 3.95528575 115.7286158
21 4.001945 115.695234
0.15 4.0486565 115.6619183
0.3 4.095368 115.6286025
0.45 4.1420795 115.5952868
22 4.188791 115.561971
0.15 4.23555425 115.5287205
0.3 4.2823175 115.49547
0.45 4.32908075 115.4622195
6am
0 4.375844 115.428969
0.15 4.422659 115.3957835
0.3 4.469474 115.362598
0.45 4.516289 115.3294125
1 4.563104 115.296227
0.15 4.60997025 115.2631055
0.3 4.6568365 115.229984
0.45 4.70370275 115.1968625
2 4.750569 115.163741
0.15 4.79748625 115.1306833
0.3 4.8444035 115.0976255
0.45 4.89132075 115.0645678
3 4.938238 115.03151
0.15 4.98520575 114.9985153
0.3 5.0321735 114.9655205
0.45 5.07914125 114.9325258
4 5.126109 114.899531
0.15 5.17312675 114.8665988
0.3 5.2201445 114.8336665
0.45 5.26716225 114.8007343
5 5.31418 114.767802
0.15 5.36124775 114.7349315
0.3 5.4083155 114.702061
0.45 5.45538325 114.6691905
6 5.502451 114.63632
0.15 5.54956825 114.6035108
0.3 5.5966855 114.5707015
0.45 5.64380275 114.5378923

Time stamp Azimuth Solar Angle
7 5.69092 114.505083
0.15 5.7380865 114.4723345
0.3 5.785253 114.439586
0.45 5.8324195 114.4068375
8 5.879586 114.374089
0.15 5.92680125 114.3414005
0.3 5.9740165 114.308712
0.45 6.02123175 114.2760235
9 6.068447 114.243335
0.15 6.11571075 114.210706
0.3 6.1629745 114.178077
0.45 6.21023825 114.145448
10 6.257502 114.112819
0.15 6.304814 114.080249
0.3 6.352126 114.047679
0.45 6.399438 114.015109
11 6.44675 113.982539
0.15 6.49410975 113.9500273
0.3 6.5414695 113.9175155
0.45 6.58882925 113.8850038
12 6.636189 113.852492
0.15 6.68359625 113.820038
0.3 6.7310035 113.787584
0.45 6.77841075 113.75513
13 6.825818 113.722676
0.15 6.8732725 113.690279
0.3 6.920727 113.657882
0.45 6.9681815 113.625485
14 7.015636 113.593088
0.15 7.06313725 113.5607478
0.3 7.1106385 113.5284075
0.45 7.15813975 113.4960673
15 7.205641 113.463727
0.15 7.25318875 113.4314428
0.3 7.3007365 113.3991585
0.45 7.34828425 113.3668743
16 7.395832 113.33459
0.15 7.44342625 113.3023613
0.3 7.4910205 113.2701325
0.45 7.53861475 113.2379038
17 7.586209 113.205675

104

Cape Town 22-Dec
Time stamp Azimuth Solar Angle
0.15 7.633849 113.1735008
0.3 7.681489 113.1413265
0.45 7.729129 113.1091523
18 7.776769 113.076978
0.15 7.8244545 113.0448583
0.3 7.87214 113.0127385
0.45 7.9198255 112.9806188
19 7.967511 112.948499
0.15 8.01524175 112.9164328
0.3 8.0629725 112.8843665
0.45 8.11070325 112.8523003
20 8.158434 112.820234
0.15 8.20620975 112.7882208
0.3 8.2539855 112.7562075
0.45 8.30176125 112.7241943
21 8.349537 112.692181
0.15 8.3973575 112.6602203
0.3 8.445178 112.6282595
0.45 8.4929985 112.5962988
22 8.540819 112.564338
0.15 8.58868375 112.5324293
0.3 8.6365485 112.5005205
0.45 8.68441325 112.4686118
23 8.732278 112.436703
0.15 8.78018675 112.4048455
0.3 8.8280955 112.372988
0.45 8.87600425 112.3411305
24 8.923913 112.309273
0.15 8.97186525 112.277466
0.3 9.0198175 112.245659
0.45 9.06776975 112.213852
25 9.115722 112.182045
0.15 9.163718 112.1502885
0.3 9.211714 112.118532
0.45 9.25971 112.0867755
26 9.307706 112.055019
0.15 9.35574475 112.0233118
0.3 9.4037835 111.9916045
0.45 9.45182225 111.9598973
27 9.499861 111.92819
0.15 9.54794275 111.8965318

Time stamp Azimuth Solar Angle
0.3 9.5960245 111.8648735
0.45 9.64410625 111.8332153
28 9.692188 111.801557
0.15 9.74031225 111.769947
0.3 9.7884365 111.738337
0.45 9.83656075 111.706727
29 9.884685 111.675117
0.15 9.9328515 111.643555
0.3 9.981018 111.611993
0.45 10.0291845 111.580431
30 10.077351 111.548869
0.15 10.12555925 111.517354
0.3 10.1737675 111.485839
0.45 10.22197575 111.454324
31 10.270184 111.422809
0.15 10.318434 111.3913408
0.3 10.366684 111.3598725
0.45 10.414934 111.3284043
32 10.463184 111.296936
0.15 10.51147525 111.2655135
0.3 10.5597665 111.234091
0.45 10.60805775 111.2026685
33 10.656349 111.171246
0.15 10.70468125 111.139869
0.3 10.7530135 111.108492
0.45 10.80134575 111.077115
34 10.849678 111.045738
0.15 10.898051 111.014406
0.3 10.946424 110.983074
0.45 10.994797 110.951742
35 11.04317 110.92041
0.15 11.09158325 110.889122
0.3 11.1399965 110.857834
0.45 11.18840975 110.826546
36 11.236823 110.795258
0.15 11.28527675 110.764014
0.3 11.3337305 110.73277
0.45 11.38218425 110.701526
37 11.430638 110.670282
0.15 11.47913125 110.6390808
0.3 11.5276245 110.6078795

105

Amsterdam 21-June
Time stamp Azimuth Solar Angle
3am no data no data
4am
0 0.08324 49.574323
0.15 0.1123735 49.62370625
0.3 0.141507 49.6730895
0.45 0.1706405 49.72247275
1 0.199774 49.771856
0.15 0.22899225 49.821189
0.3 0.2582105 49.870522
0.45 0.28742875 49.919855
2 0.316647 49.969188
0.15 0.34595 50.01847175
0.3 0.375253 50.0677555
0.45 0.404556 50.11703925
3 0.433859 50.166323
0.15 0.463246 50.215557
0.3 0.492633 50.264791
0.45 0.52202 50.314025
4 0.551407 50.363259
0.15 0.580878 50.412444
0.3 0.610349 50.461629
0.45 0.63982 50.510814
5 0.669291 50.559999
0.15 0.69884525 50.60913525
0.3 0.7283995 50.6582715
0.45 0.75795375 50.70740775
6 0.787508 50.756544
0.15 0.817145 50.8056315
0.3 0.846782 50.854719
0.45 0.876419 50.9038065
7 0.906056 50.952894
0.15 0.9357755 51.0019335
0.3 0.965495 51.050973
0.45 0.9952145 51.1000125
8 1.024934 51.149052
0.15 1.0547355 51.19804325
0.3 1.084537 51.2470345
0.45 1.1143385 51.29602575
9 1.14414 51.345017
0.15 1.17402325 51.3939605
0.3 1.2039065 51.442904

Time stamp Azimuth Solar Angle
0.45 1.23378975 51.4918475
10 1.263673 51.540791
0.15 1.29363725 51.58968725
0.3 1.3236015 51.6385835
0.45 1.35356575 51.68747975
11 1.38353 51.736376
0.15 1.41357525 51.785225
0.3 1.4436205 51.834074
0.45 1.47366575 51.882923
12 1.503711 51.931772
0.15 1.53383625 51.98057425
0.3 1.5639615 52.0293765
0.45 1.59408675 52.07817875
13 1.624212 52.126981
0.15 1.65441725 52.17573675
0.3 1.6846225 52.2244925
0.45 1.71482775 52.27324825
14 1.745033 52.322004
0.15 1.77531775 52.3707135
0.3 1.8056025 52.419423
0.45 1.83588725 52.4681325
15 1.866172 52.516842
0.15 1.896536 52.5655055
0.3 1.9269 52.614169
0.45 1.957264 52.6628325
16 1.987628 52.711496
0.15 2.01807025 52.760114
0.3 2.0485125 52.808732
0.45 2.07895475 52.85735
17 2.109397 52.905968
0.15 2.13991775 52.9545405
0.3 2.1704385 53.003113
0.45 2.20095925 53.0516855
18 2.23148 53.100258
0.15 2.26207825 53.14878575
0.3 2.2926765 53.1973135
0.45 2.32327475 53.24584125
19 2.353873 53.294369
0.15 2.38454875 53.342852
0.3 2.4152245 53.391335
0.45 2.44590025 53.439818

106

Amsterdam 21-June
Time stamp Azimuth Solar Angle
20 2.476576 53.488301
0.15 2.50732875 53.5367395
0.3 2.5380815 53.585178
0.45 2.56883425 53.6336165
21 2.599587 53.682055
0.15 2.63041625 53.73044975
0.3 2.6612455 53.7788445
0.45 2.69207475 53.82723925
22 2.722904 53.875634
0.15 2.75380925 53.92398475
0.3 2.7847145 53.9723355
0.45 2.81561975 54.02068625
23 2.846525 54.069037
0.15 2.87750575 54.1173445
0.3 2.9084865 54.165652
0.45 2.93946725 54.2139595
24 2.970448 54.262267
0.15 3.00150425 54.3105315
0.3 3.0325605 54.358796
0.45 3.06361675 54.4070605
25 3.094673 54.455325
0.15 3.125804 54.50354675
0.3 3.156935 54.5517685
0.45 3.188066 54.59999025
26 3.219197 54.648212
0.15 3.25040225 54.6963915
0.3 3.2816075 54.744571
0.45 3.31281275 54.7927505
27 3.344018 54.84093
0.15 3.37529725 54.8890675
0.3 3.4065765 54.937205
0.45 3.43785575 54.9853425
28 3.469135 55.03348
0.15 3.500488 55.08157575
0.3 3.531841 55.1296715
0.45 3.563194 55.17776725
29 3.594547 55.225863
0.15 3.625973 55.27391725
0.3 3.657399 55.3219715
0.45 3.688825 55.37002575
30 3.720251 55.41808

Time stamp Azimuth Solar Angle
0.15 3.75175 55.4660935
0.3 3.783249 55.514107
0.45 3.814748 55.5621205
31 3.846247 55.610134
0.15 3.877818 55.65810675
0.3 3.909389 55.7060795
0.45 3.94096 55.75405225
32 3.972531 55.802025
0.15 4.004174 55.8499575
0.3 4.035817 55.89789
0.45 4.06746 55.9458225
5am
0 4.099103 55.993755
0.15 4.1308175 56.0416475
0.3 4.162532 56.08954
0.45 4.1942465 56.1374325
1 4.225961 56.185325
0.15 4.25774675 56.233178
0.3 4.2895325 56.281031
0.45 4.32131825 56.328884
2 4.353104 56.376737
0.15 4.38496025 56.424551
0.3 4.4168165 56.472365
0.45 4.44867275 56.520179
3 4.480529 56.567993
0.15 4.5124555 56.615768
0.3 4.544382 56.663543
0.45 4.5763085 56.711318
4 4.608235 56.759093
0.15 4.64023125 56.8068295
0.3 4.6722275 56.854566
0.45 4.70422375 56.9023025
5 4.73622 56.950039
0.15 4.76828575 56.9977375
0.3 4.8003515 57.045436
0.45 4.83241725 57.0931345
6 4.864483 57.140833
0.15 4.89661775 57.18849375
0.3 4.9287525 57.2361545
0.45 4.96088725 57.28381525
7 4.993022 57.331476

107

Amsterdam 21-June
Time stamp Azimuth Solar Angle
0.15 5.0252255 57.37909925
0.3 5.057429 57.4267225
0.45 5.0896325 57.47434575
8 5.121836 57.521969
0.15 5.1541075 57.5695555
0.3 5.186379 57.617142
0.45 5.2186505 57.6647285
9 5.250922 57.712315
0.15 5.2832615 57.759865
0.3 5.315601 57.807415
0.45 5.3479405 57.854965
10 5.38028 57.902515
0.15 5.41268675 57.95002875
0.3 5.4450935 57.9975425
0.45 5.47750025 58.04505625
11 5.509907 58.09257
0.15 5.54238075 58.140048
0.3 5.5748545 58.187526
0.45 5.60732825 58.235004
12 5.639802 58.282482
0.15 5.67234225 58.3299245
0.3 5.7048825 58.377367
0.45 5.73742275 58.4248095
13 5.769963 58.472252
0.15 5.8025695 58.5196595
0.3 5.835176 58.567067
0.45 5.8677825 58.6144745
14 5.900389 58.661882
0.15 5.93306125 58.709255
0.3 5.9657335 58.756628
0.45 5.99840575 58.804001
15 6.031078 58.851374
0.15 6.0638155 58.89871275
0.3 6.096553 58.9460515
0.45 6.1292905 58.99339025
16 6.162028 59.040729
0.15 6.1948305 59.08803375
0.3 6.227633 59.1353385
0.45 6.2604355 59.18264325
17 6.293238 59.229948
0.15 6.32610525 59.2772195

Time stamp Azimuth Solar Angle
0.3 6.3589725 59.324491
0.45 6.39183975 59.3717625
18 6.424707 59.419034
0.15 6.457638 59.4662725
0.3 6.490569 59.513511
0.45 6.5235 59.5607495
19 6.556431 59.607988
0.15 6.589426 59.655194
0.3 6.622421 59.7024
0.45 6.655416 59.749606
20 6.688411 59.796812
0.15 6.72146925 59.84398575
0.3 6.7545275 59.8911595
0.45 6.78758575 59.93833325
21 6.820644 59.985507
0.15 6.85376525 60.032649
0.3 6.8868865 60.079791
0.45 6.92000775 60.126933
22 6.953129 60.174075
0.15 6.98631275 60.2211855
0.3 7.0194965 60.268296
0.45 7.05268025 60.3154065
23 7.085864 60.362517
0.15 7.11910975 60.40959675
0.3 7.1523555 60.4566765
0.45 7.18560125 60.50375625
24 7.218847 60.550836
0.15 7.25215475 60.59788525
0.3 7.2854625 60.6449345
0.45 7.31877025 60.69198375
25 7.352078 60.739033
0.15 7.385447 60.78605225
0.3 7.418816 60.8330715
0.45 7.452185 60.88009075
26 7.485554 60.92711
0.15 7.51898375 60.9740995
0.3 7.5524135 61.021089
0.45 7.58584325 61.0680785
27 7.619273 61.115068
0.15 7.6527635 61.16202825
0.3 7.686254 61.2089885

108

11 Appendix 4 - Individual fitness details

Table 3 indicates a sample from the initial population for the Cape Town West façade
6th run while Table 4 indicates the same sample at the final generation. Both Tables
show a small selection of the individuals rather than the whole population (which
numbers several thousand).

Fitness X Y Z X self-ad. Y self-ad. Z self-ad. Indiv. Parent Gen.

804. 1030. 2041. 603. 0.989 0.998 1.167 19999. 0. 0.

804. 347. 2042. 296. 1.11 0.78 1.23 8606. 0. 0.

804. 1288. 2038. 817. 1.411 1.07 1.11 4845. 0. 0.

712. 879. 1141. 1282. 0.963 1.315 1.217 6426. 0. 0.

711. 514. 1135. 553. 0.713 1.084 1.079 17916. 0. 0.

711. 1476. 1325. 394. 1.004 1.282 0.587 14954. 0. 0.

6. 313. 1140. 1568. 0.841 1.026 1.121 11108. 0. 0.

5. 254. 1660. 1556. 0.96 0.686 1.426 18128. 0. 0.

5. 222. 1778. 1242. 0.703 1.044 0.778 8395. 0. 0.

5. 233. 967. 744. 0.931 1.113 0.881 11494. 0. 0.

5. 201. 2116. 1126. 0.735 0.593 0.691 12015. 0. 0.

5. 1511. 2276. 178. 1.323 1.273 0.829 19921. 0. 0.

5. 222. 2094. 1452. 0.97 0.837 0.851 14818. 0. 0.

5. 188. 1407. 618. 0.966 1.033 0.717 8585. 0. 0.

4. 213. 1441. 911. 0.848 0.954 1.037 15996. 0. 0.

4. 236. 747. 575. 1.16 1.186 0.961 19214. 0. 0.

4. 193. 2131. 1008. 0.705 1.297 0.906 17313. 0. 0.

3. 163. 1044. 261. 1.443 0.979 0.861 16900. 0. 0.

3. 209. 1720. 1042. 1.115 0.97 1.105 7980. 0. 0.

3. 356. 919. 1557. 1.029 0.952 0.781 5219. 0. 0.

2. 213. 2366. 1498. 0.977 1.178 0.833 16682. 0. 0.

2. 239. 1655. 1389. 0.708 0.856 1.106 6755. 0. 0.

Table 3: Fitness Ranked sample of individuals - 1st Gen, Cape Town West, 6th run

(Author)

109

Fitness X Y Z X self-ad. Y self-ad. Z self-ad. Indiv. Parent Gen.

804. 879.8 2036.9 936.8 0.42 -0.046 0.539 9. 1999. 99.

804. 851.8 2035.9 547.9 -0. 0.005 0.133 8. 669. 99.

804. 851.8 2035.9 547.6 -0. 0.005 -0.149 0. 669. 99.

804. 851.8 2035.9 547.9 -0. 0.006 0.119 1. 669. 99.

804. 851.8 2035.9 547.6 0. -0.005 -0.191 2. 669. 99.

804. 851.8 2035.9 548.1 -0. 0.003 0.361 3. 669. 99.

804. 851.8 2035.9 548.0 -0. 0.003 0.27 4. 669. 99.

804. 851.8 2035.9 547.8 0. -0.004 0.076 5. 669. 99.

804. 851.8 2035.9 547.6 0. 0.006 -0.124 6. 669. 99.

804. 851.8 2035.9 547.8 -0. -0.002 0.079 7. 669. 99.

804. 851.8 2035.9 547.5 -0. -0.003 -0.267 9. 669. 99.

804. 849.7 2036.5 726.6 0.51 0.001 -7.978 8. 670. 99.

804. 849.2 2036.5 734.6 -0.44 -0. 11.941 9. 977. 98.

804. 848.9 2036.5 746.1 -0.23 -0. 11.477 0. 670. 99.

804. 849.6 2036.5 747.9 0.46 0.001 13.325 1. 670. 99.

804. 849.5 2036.5 719.1 0.29 0. -15.468 2. 670. 99.

804. 848.9 2036.5 745.6 -0.27 -0.001 11.034 3. 670. 99.

804. 849.9 2036.5 720.0 0.71 -0. -14.613 4. 670. 99.

804. 849.6 2036.5 721.1 0.48 0. -13.501 5. 670. 99.

804. 848.7 2036.5 743.9 -0.41 0. 9.343 6. 670. 99.

804. 851.8 2035.9 547.8 0. 0.005 0.17 6. 568. 98.

804. 476.6 2039.6 205.3 -0.25 -0.001 0. 9. 668. 99.

804. 476.7 2039.6 205.3 -0.15 0.001 0. 8. 668. 99.

804. 476.6 2039.6 205.3 -0.26 0.002 0. 7. 668. 99.

804. 940.4 2043.0 1077.0 -11.42 0.001 -102.229 1. 667. 99.

Table 4: Fitness Ranked sample of individuals - Final Gen, Cape Town West, 6th run

(Author)

110

12 Appendix 5 - Fitness values per generation per

ES run

One hundred generations were tested for fitness across ten separate run cycles. For
Amsterdam East a total of 1 984 sun rays could be blocked, this would achieve full
fitness, but this amount would be unlikely for points making up the point cloud of a
sun-shade. Instead, as Table 5 shows, a maximum fitness of 1 111 was achieved. This
represents a normalised value of 0,56. This maximum fitness was achieved by the tenth
generation and maintained until the final one hundredth generation.

AMST. E

Full Fit. 1984

Gen. 0 1 2 3 4 5 6 7 8 9 10

Norm. 0,22 0,44 0,52 0,54 0,55 0,56 0,56 0,56 0,56 0,56 0,56

Mean 435 876 1023 1075 1096 1104 1108 1110 1110 1111 1111

Run 1 431 880 1030 1080 1097 1104 1108 1109 1110 1110 1111

Run 2 437 874 1020 1073 1093 1101 1106 1108 1109 1110 1111

Run 3 438 877 1028 1078 1097 1105 1108 1110 1110 1111 1111

Run 4 439 879 1022 1075 1096 1103 1107 1109 1110 1111 1111

Run 5 428 863 1011 1065 1091 1102 1107 1109 1110 1111 1111

Run 6 437 879 1023 1074 1095 1104 1108 1110 1111 1111 1111

Run 7 433 876 1027 1078 1097 1105 1108 1109 1110 1111 1111

Run 8 438 881 1028 1078 1097 1104 1108 1110 1110 1111 1111

Run 9 432 870 1018 1073 1096 1105 1109 1111 1111 1111 1111

Run 10 437 883 1026 1077 1098 1105 1109 1110 1111 1111 1111

Table 5: Amsterdam East - Mean Fitness value per generation.

111

Table 6 indicates the results achieved for the Amsterdam West condition where 1
985 sun rays represents complete fitness. A maximum of 1 113 sun rays were blocked,
a normalised value of 0,56. This was accomplished by the thirteenth generation and
maintained until the final one hundredth generation.

AMST. W

Full Fit. 1985

Gen. 0 1 2 3 4 5 6 7 8 9 10

Norm. 0,22 0,44 0,51 0,54 0,5524 0,56 0,56 0,56 0,56 0,56 0,56

Mean Fit. 436 875 1021 1075 1096,6 1106 1110 1111 1112 1112 1112

Run 1 437 880 1020 1077 1099 1108 1111 1112 1112 1112 1112

Run 2 437 882 1022 1075 1097 1105 1109 1111 1112 1112 1112

Run 3 438 876 1024 1076 1097 1106 1109 1111 1112 1112 1112

Run 4 437 876 1024 1078 1096 1105 1109 1111 1112 1112 1113

Run 5 435 871 1017 1069 1093 1102 1107 1110 1111 1112 1112

Run 6 436 870 1014 1070 1095 1106 1111 1112 1112 1112 1113

Run 7 436 883 1029 1077 1098 1106 1110 1111 1112 1112 1113

Run 8 436 870 1020 1075 1096 1106 1110 1111 1112 1112 1112

Run 9 433 868 1022 1077 1097 1106 1110 1112 1112 1112 1112

Run 10 431 873 1022 1076 1098 1107 1111 1112 1112 1112 1112

Table 6: Amsterdam West - Mean Fitness value per generation (first 10 generations

shown).

112

Cape Town saw less sun rays being blocked as a result of a shorter summer solstice.
As table 7 indicates, full fitness required 1 710 sun rays to be blocked for the East façade.
The highest fitness evolved blocked 803 sun rays - a normalised value of 0,47. This
was accomplished by the eighth generation and maintained until the one hundredth
generation.

CT EAST

Full Fitness 1710

Generation 0 1 2 3 4 5 6 7 8 100

Norm. Fitness 0,19 0,4 0,45 0,46 0,467 0,47 0,47 0,47 0,47 0,47

Mean fitness 324,8 689 773 791 797,9 801 802 803 803 803

Run 1 321 681 772 791 797 800 802 802 803 803

Run 2 328 688 771 790 797 801 802 803 803 803

Run 3 328 693 774 792 799 801 802 803 803 803

Run 4 324 692 774 792 798 801 802 802 803 803

Run 5 326 694 774 791 798 801 802 803 803 803

Run 6 320 681 771 791 798 801 802 803 803 803

Run 7 325 683 772 791 798 801 802 803 803 803

Run 8 325 688 773 792 798 801 802 802 803 803

Run 9 324 691 773 791 797 801 802 803 803 803

Run 10 327 696 777 793 799 801 802 803 803 803

Table 7: Cape Town East - Mean Fitness value per generation across 10 runs.

113

Cape Town West required a total of 1 711 sun rays to be blocked to achieve full
fitness. As Table 8 indicates, the best achieved fitness value was 804 sun rays blocked for
a normalised value of 0,47. This was achieved by the eighth generation and maintained
until the one hundredth generation.

CT WEST

Full Fitness 1711

Generation 0 1 2 3 4 5 6 7 8 100

Norm. Fitness 0,19 0,40 0,45 0,46 0,47 0,47 0,47 0,47 0,47 0,47

Mean fitness 324,5 689 774 792 798,7 802 803 803 804 804

Run 1 324 687 773 792 799 802 803 803 804 804

Run 2 326 695 775 792 799 802 803 803 804 804

Run 3 327 688 771 791 798 801 803 803 804 804

Run 4 325 692 775 792 798 802 803 803 804 804

Run 5 321 689 774 792 799 802 803 804 804 804

Run 6 324 687 774 792 799 802 803 803 804 804

Run 7 324 687 774 793 799 802 803 803 804 804

Run 8 326 699 776 792 799 802 803 803 804 804

Run 9 322 679 771 792 799 802 803 804 804 804

Run 10 326 691 772 792 798 801 803 804 804 804

Table 8: Cape Town West - Mean Fitness value per generation across 10 runs.

114

13 Appendix 6 - Fitness per façade

The following tables indicate the comparative fitness values between the two conditions
in the case study. Tables 9 and 10 outline the values found for the East façade while
Tables 11 and 12 outline the values for the West façade. Both Southern Hemisphere
façade’s have lower fitness values but are similar in total, while the Northern Hemisphere
values are generally higher - this is connected to both a longer period of sun being
experienced at the summer solstice and a larger spread of solar values (i.e. solar angle -
the compass value).

Amsterdam East

run Normalised Fitness Mean Fitness Full Fitness

1 0.56 1111.00 1984.00

2 0.56 1111.00 1984.00

3 0.56 1111.00 1984.00

4 0.56 1111.00 1984.00

5 0.56 1111.00 1984.00

6 0.56 1111.00 1984.00

7 0.56 1111.00 1984.00

8 0.56 1111.00 1984.00

9 0.56 1111.00 1984.00

10 0.56 1111.00 1984.00

0.56 MEAN

0.00 Standard Deviation

Table 9: Amsterdam East façade - comparison between façade fitness values.

115

Cape Town East

run Normalised Fitness Mean Fitness Full Fitness

1 0.47 803.00 1710.00

2 0.47 803.00 1710.00

3 0.47 803.00 1710.00

4 0.47 803.00 1710.00

5 0.47 803.00 1710.00

6 0.47 803.00 1710.00

7 0.47 803.00 1710.00

8 0.47 803.00 1710.00

9 0.47 803.00 1710.00

10 0.47 803.00 1710.00

0.47 MEAN

0.00 Standard Deviation

Table 10: Cape Town East façade - comparison between façade fitness values.

116

Amsterdam West

run Normalised Fitness Mean Fitness Full Fitness

1 0.56 1113.00 1985.00

2 0.56 1113.00 1985.00

3 0.56 1113.00 1985.00

4 0.56 1113.00 1985.00

5 0.56 1113.00 1985.00

6 0.56 1113.00 1985.00

7 0.56 1113.00 1985.00

8 0.56 1113.00 1985.00

9 0.56 1113.00 1985.00

10 0.56 1113.00 1985.00

0.56 MEAN

0.00 Standard Deviation

Table 11: Amsterdam West façade - comparison between façade fitness values.

117

Cape Town West

run Normalised Fitness Mean Fitness Full Fitness

1 0.47 804.00 1711.00

2 0.47 804.00 1711.00

3 0.47 804.00 1711.00

4 0.47 804.00 1711.00

5 0.47 804.00 1711.00

6 0.47 804.00 1711.00

7 0.47 804.00 1711.00

8 0.47 804.00 1711.00

9 0.47 804.00 1711.00

10 0.47 804.00 1711.00

0.47 MEAN

0.00 Standard Deviation

Table 12: Cape Town West façade - comparison between façade fitness values.

118

	Abstract
	Introduction
	Literature Review
	Understanding and creating Form
	Computers in Architectural design
	Architectural Form-Finding (beginnings and theory)
	Architectural Solar controls - shading devices (Sun-Shades)
	Research on daylighting, solar radiation, energy efficient buildings and form-finding
	Façade design optimisation for daylight with a simple genetic algorithm
	Genetic optimization of external shading devices
	Geometric optimization of fenestration
	Optimal Building Envelope Design - History, current status, new trends
	Shape optimization of free-form buildings
	Robotic Form-Finding and Construction
	Comments regarding the Research in daylighting, solar radiation, building envelopes

	General Comments

	Methods
	Introduction
	Background
	Solar Angles
	Solar values as an example
	Digital Solar Protractor
	The window opening and `bounding box'
	Calculating sun rays

	Evolutionary Algorithms
	General Outline
	Why Evolution Strategies for the algorithm?
	Fitness
	Building façade
	Bounding box - point cloud
	Population
	Recombination
	Mutation
	Summary of ES

	Pseudocode - Evolution Strategies
	Point cloud to mesh
	Traditional Sun-Shade `fitness'

	Experiments and Results
	University of Cape Town - Data Management
	Traditional Sun-shades Fitness results
	Traditional Sun-shades Fitness - comments

	Evolved Sun-shades mesh results
	Evolved Sun-shades meshes - comments

	Evolution Strategies - fitness results
	Individual Fitness values
	Fitness values per Generation
	Mean fitness per Evolution Strategies run compared to traditional sun-shade

	Hypothesis testing - single sample T test (two tailed)
	Comments and observations

	Discussion
	Form-Finding
	Evolution Strategies
	General observations

	Conclusion and Future Work
	Conclusion
	Future Work
	Explore other façade conditions
	Changes to the Evolutionary Algorithm
	Add simulation to improve upon the idea of fitness
	Reconnecting to `original' Form-finding principals
	Meshing and surfacing of the point cloud

	References
	Appendix 1 - Source Code
	Appendix 2 - Source Code cleaning output
	Appendix 3 - Solar calculations (every 15s)
	Appendix 4 - Individual fitness details
	Appendix 5 - Fitness values per generation per ES run
	Appendix 6 - Fitness per façade

