Gaining Perspective with an Evolutionary

Cognitive Architecture for Intelligent Agents

e‘c;\‘\/ OF Cope
N

, L]
Wsoaun\

A dissertation submitted in satisfaction of the requirements for the degree

Master of Science in Computer Science

David Griffin Jones

Supervised by Dr. Geoff Nitschke

Department of Computer Science, 2022

I'would like to acknowledge a special thanks to my supervisor Dr. Geoff Nitschke
for his insight, patience, understanding and support that has made the

completion of this thesis possible.

Contents

ADSETACE ...ttt ettt et e e te e et e e et e e aa e e bee e baesabe e aaeetaeenbeeeateesareeraeenneas 5
Chapter 1 INtrodUCtiONcocvieiieieeieeieee ettt st 6
1.1 Problem Statement...........coccoviriiiiininiiiiineneee e 10
1.2 Research Goals & Hypothesiscccccovciiiniiiniiniiiiiieeeceeeee 12

y Ui SR @07 Vs u 101 Lo V-0 RSP 14
L4 SCOPE ..ttt ettt et e et e e et e e e na e e e e eneaees 15
Chapter 2 Literature ReVIEWccccoiiviiriiriiiiinieiceeteeneeeeese et 17
21 Artificial Intelligence..........cocoviiriiiiiiii e 17
2.1 Aspects of Intelligence..........cocoeeeriiiiiiiiniiieeeeeeee e 18
212 Cognitive ArChiteCtures.ccceevuervieriiiriierieriereteeeeee e 24
2.1.3 Learning Approaches..........ccocevceriiiniinienienieeeeee e 28
2.1.4 Intelligent AGENtScooviieiiiiiiieieeeee e 31
2.1.5 Intelligent Agents in Mars EXplorationc..cceccecevveevenienieneneenne 35
2.1.6 Reinforcement Learning...........cocceeveriiiniiiniieniiiniineeeceeeeeee 38
2.1.7 Section DiSCUSSIONuviiiiiiiiieiiiiiieeee e e e e e e e e e e e e eeaees 42

2.2 MeEtaREUIISLICS ...ocvvieeiiie ettt ettt eere e e ereeeeans 46
2.21 Evolutionary Algorithmsccccoevieriiiniiiniinieeeeeeee e, 50
2.2.2 Evolutionary Selection Methods..........cccceeviriiiiiiiniinienieeceee, 52
2.2.3 Multi-Objective Evolutionary Algorithmsccceceviiniiniinenncne. 54
2.2.4 Hyperparameter OptimizZationcccccceerreeerriierniiieeniieeeieeeeeeeeaee 57
2.2.5 REVAC ... ettt e e s 59

2.2.6 SeCLION DISCUSSION - cunneeeeeeee et e e e e ee e e e eeae e e e eeaeeanaeeen 60

2.3 Artificial Neural Networks.........ccccoevieriiiiniiiiiicieceeeeee e 62
2.3.1 Convolutional Neural Networkscccceeveriiniiniiiniiinienieceeee, 65
2.3.2 Gradient DeSCONtcceevuerierieiienieriete et 66
2.3.3 Neuroevolutionccccveeiieiieeiiecieecieeee e ees 68
2.3.4 NEAT Lttt et e e s 69
2.3.5 HYPerNEAT ..ot 72
2.3.6 DeEePNEATo 72
2.3.7 Spiking Neural Networkscccceeveriiiniiiniiiniinieieeeceeee e 74
2.3.8 Section DISCUSSIONccivruuiiiiiiiiiieeeeiite ettt et e e s 78

2.4 Gaining Perspective.........ccccccoviiiiiiiiiiiiiiiiiiiiceccce e 81
2.4.1 Hierarchical Learning.......c.cccocceeveriienienienieneeseeeeiee e 84
2.4.2 Meta Learning Shared Hierarchies..........ccccoccoeiiniininniiniinenne. 85
. W AN a i 1 L () o AP PSPPSRI 88
2.4.4 Section DiSCUSSIONuuviiiiiiiiieciiiiiieeee e et e e e e e e carrre e e e e e e e eeeees o1

2.5 General Discussion of Lite€rature..........ccccecueevveerieecieeeireesieesie e e 93

Chapter 3 MethodS......coouiiiiiiiiieeeeee e 101

3.1 Module One: DNE.........oooiiieeeeeeee e 105

3.2 Module Two: REVAC ..ot 110

3.3 Module Three: MLSH.......c.coooiiiiieieeeeeeeeee et 111

3.4 Module Four: Attention UNitcccoeceerieeniieenieeie e 13

3.5 Module Five: SNINS.......coociiiiieeteceeeeeeee et 115

3.6 Module Six: EXploration.........cccceevieriiieiiieiiieieeeecieeeieesee e 116

3.7 Section DISCUSSIONcciiiiiiiiiiiiiiiiieiteee ettt e e 17

Chapter 4 Experiments and Results...........cccoevuveriieiiieiieeieeeeceeee e 120

4.1 EXPEIIMENTES ...ueiiiiiiiiiieieiiiee ettt ettt e et e e ettt e e et e e e e saeeeeeeaas 120
411 TeSt FUNCHIONS...ccciiiiiiiiiieeee ettt e e e e e e e 121
4.1.2 B-Suite ENvIronments........ccccoeeiiieiiiiiiiiiiniiiee et 125
4.1.3 Mars Rover Test ENvIronments...........ccceeeeeieeinniiieeniniiieeeenieeeeens 130
4.1.4 Experimentation Process and Data Gathering.........ccccecceveenienne. 132

4.2 RESUIES oottt en 138

4.3 Section DiSCUSSIONccccevuiiiiiiiiiieieiiieeeeritee et et e et e e e e aeee e 143

Chapter 5 DiSCUSSION ...cueeruiiiiiiiieieeieeieeee ettt sttt 145
5.1 OVEIVIEW ..ottt ettt ettt e e st e s e e nne 145
5.2 Discussion and Analysis of Resultscccccoooeeriiiiininiiniiiieieeeee 146

Chapter 6 ConcluSIONSc..coviiriiiiiiieeeeeeeeee et 159
5. Potential Future Research...........ccccoceeviiiniiiniiiiieeeeeee e 166

REfEIENCES ...ttt st s 168

APPEINAIX ..ttt et sttt et sb et e e beete et s 169

A Brain Evolver Software Structurecccoecueeeeeecieeieeeieeeee e 169
A1 Environment INterface........cccocevvieriiieiiienieecie ettt 169
A2 Graphics ENginecoooiiiiiiiiiiiiiiieeeeeeeeeeee e 171
A3 File SYStemMi....ccceiieiieeieeeeeeee e 172
A4 PerfOrmMancCeccceeciieeiieiiiecieeee ettt 173
A.5 Parameters and SEttingscccceeeerieriiniineereeeeeee e 175
A.6 Graphical User INterface.........cccoeveeeieeniiinieeiieceeceeeee e 180

Abstract

This thesis targets the boundary surrounding the creation of strong Al using
AutoML through the development of a general cognitive architecture called Brain
Evolver. To do this, the notion of what intelligence is in the context of machines
and how it can practically be applied to physical intelligent agents is explored.
Some core components that make up what a potentially strong Al system must
possess are identified and are outlined as basic task completion, exploration,
scalability, noise reduction, generalization, memory, and credit-assignment. A
wide set of tests that target these components are used to test the general
capabilities of Brain Evolver as well as some more high-level tests that abstractly
simulate space rover mission tasks. The notion of perspective and how it pertains
to solving problems using appropriate levels of generalisation and historical
information without explicitly storing all memory is also a subtle focus. Brain
Evolver was developed using hypothetical reasoning from the literature reviewed
and uses a modular design. All modules are implemented with evolutionary
approaches and include Deep Neural Evolution, Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters, Meta Learning Shared
Hierarchies, Attention, Spiking Neural Networks, and Guided Epsilon Exploration
(a novel method). The relevance of these components in different combinations
are analysed in the varying contexts of each test environment in order to gain
insights and contribute to the body of evolutionary research targeted towards
general problem solvers. The predictions made regarding thelaffect each module
would have on each type of tasks proved to be unreliable and the program
struggled with efficiency. However, Brain Evolver was still able to successfully and
adequately solve all but one of the test environments in a completely

autonomous way.

effect

Chapter1

Introduction

Throughout modern history, the progress of technology and development of
machines has shaped and defined our society (Nadikattu, 2016). Since Charles
Babbage’s development of the Analytical Engine in the mid-1830s and Alan
Turing’s conception of the Universal Computing Machine an entire century later
to the devices of today, information processing has grown to become an integral
part of our lives, economy, and creation of other new technologies (Mahoney,

1988; Yudowsky, 2008; Nadikattu, 2016).

One particular fascination of many researchers is the concept of the thinking
machine; the idea that machines can compute information in a similar capacity
to a human (Oke, 2008). This idea gives rise to the field of Artificial Intelligence
(AI). Al stems from advancements in cognitive science (the study of intelligent
thought) with the realization that our own intelligence is actually rather
computational in nature and can be broken down into definable sub-processes
and patterns (Clarke and Sternberg, 1986; Cooper et al., 1996; Oke, 2008; Holland
and Gamez, 2009). Al therefore encompasses the area of research pertaining to
the creation of machines that behave in a way that we perceive as intelligent

(Minsky, 1961; Yudowsky, 2008).

Most Al models of today are highly concerned with the practicality of their
applications and their ability to solve very specific problems. This makes these
solutions unviable for different and varying tasks and are hence referred to as
implementations of weak Al (Holland and Gamez, 2009; Brinton and Atm, 2017).

However, the elusive goal of creating a generalised Al that is competitive with our

6

own brains in all respects has not been lost on Al researchers. This is known as
true Al or strong Al and would be capable of advanced human-like reasoning with
adaptive problem-solving skills (Yudowsky, 2008; Holland and Gamez, 20009;

Nadikattu, 2016).

One way of approaching Al research is by copying intelligent processes found in
nature. This, as well as the study of the human brain and its application to
methods in Al, is called the cognitive modelling approach (Cooper et al., 1996;
Holland and Gamez, 2009). Any theoretical model pertaining to how intelligence
and its various components work in relation to each other is called a cognitive
architecture. One of the main goals of a cognitive architecture is to define a
general computer model that has the ability to produce strong Al for any complex
environment given to it (Cooper et al., 1996; Langley, Choi and Shapiro, 2004;

Laird, 2008).

A particularly significant challenge that Al solutions face is in their ability to
demonstrate a high-level sense of perspective and generality (Long et al., 2007;
Holland and Gamez, 2009; Belani, Vukovi¢ and Car, 2019). The Oxford Dictionary
definition of “perspective” is given as “the ability to think about problems and
decisions in a reasonable way without making them seem worse or more important
than they really are” (Perspective, 2020). This is something that humans can easily
achieve by efficiently utilizing our cumulative experience when making
decisions. We can generalise solutions to a problem by looking at the problem as
a whole and maintaining a high-level understanding of it (Clarke and Sternberg,
1986). To truly be competitive with humans, Al solutions must adequately

address this “perspective problem”.

A key issue around the idea of perspective is temporal generality which deals with
making decisions based on information that spans across time. This pertains to
the concept of memory and how to effectively manage it (Vezhnevets et al., 2017;

Fujimoto, Meger and Precup, 2018; Ke et al.,, 2018; Bhandarkar et al., 2019).

7

Figure 1

An early diagram of Amazon’s autonomous delivery drone created for a patent that was filed
in 2015 (Daniel Buchmueller, 2017).

Furthermore, it is also important to consider what information in memory must
be used when making a decision. Recalling an entire history of events for a single
decision can sometimes become infeasible. Humans address this by only
remembering what is relevant for their current task (Clarke and Sternberg, 1986).
This is known as the credit-assignment problem and is at the heart of the
perspective problem. Effectively dealing with credit-assignment can become very
challenging when relevant information is dispersed over temporally distant
horizons and is an issue that Al research is currently grappling with (Frans et al.,
2018; Ke et al., 2018; Bhandarkar et al., 2019; Tavanaei et al., 2019; Osband et al.,

2020).

The merging of Al and physical machines gives way to the creation of automated
agents. Examples of some simple automated agents can be seen in the
automation of industries (such as production lines) and the use of unmanned
vehicles and drones as seen i a et al., 1995; 32007;

et al., 2020; Badue et al., 2021). Agents that exhibit their own autonomy in an

8

environment are called intelligent agents (see chapter 2.1.4) and are the next step
beyond remote controlled or pre-programmed agents (Tambe et al., 1995; Long

et al., 2007).

One application of intelligent agents is in the use of rovers for space exploration
(see chapter 2.1.5). A space rover is a vehicle that is able to explore the surface of
an extra-terrestrial body such as a moon or planet (Sandra May, 2021). Space
rovers are remotely controlled and cannot be operated in real-time due to the
delay of the speed of light across the vast distances of space. Effective use of
autonomy can therefore significantly increase the efficiency of a mission as the
rover can act without having to wait for commands. As the number of
autonomous decisions increase, there is a greater demand on a raver’s system to
be able to handle unpredictable, dynamic, and time-dependant scenarios.
Therefore, demonstrating a sense of perspective to an objective or set of
objectives can drastically improve the capabilities of a rover’s autonomy and
progression of a mission (Maimone, Leger and Biesiadecki, 2007; Joyeux,

Schwendner and Roehr, 2014).

A prominent approach to training intelligent agents is with the use of
Reinforcement Learning (RL) (see chapter 2.1.6). RL is inspired by how biological
organisms naturally learn about their surroundings. It allows agents to learn how
to act rationally in an environment by balancing exploration of what is not known
and exploitation of what is already known. An agent perceives input from its
environment which it uses to decide what action to take. The agent then receives
a positive or negative feedback from its environment which facilitates its learning
nt for itself even if we

process. This also allows an agent to learn in an environ

.G. and R.S,,

don’t know much about the environment 999; Tokic, 2010;

Fujimoto, Meger and Precup, 2018). cutton and barto..

Another approach to training intelligent agents is through the use of Evolutionary

Algorithms (EAs). An EA is a heuristic-based algorithm inspired by the process

9

dent

Need to
define a
reward
function...

of evolution as seen in nature (Olague, 2016). EAs are an approach to solving
problems that avoid the use of gradient-descent based methods (see chapter
2.3.2). They are therefore less susceptible to the short-comings of gradient-
descent which include getting stuck in locally-optimal solutions or struggling to

deal with multiple objectives (Branke, Kauf3ler and Schmeck, 2001; Ruder, 2016).

You may haver a better balanced discussion of pros and cons...

1.1 Problem Statement

As technology advances, there is an ever-growing need for intelligent agents to
complete more challenging tasks in more complex environments (Schatten, 1995;
Tambe et al., 1995; Belani, Vukovi¢ and Car, 2019). These tasks often entail
multiple objectives that must be tackled in a dynamic, time-sensitive way. A
simple example of this can be seen in how a self-driving car must achieve the goal
of reaching its destination while doing it in an efficient yet hazardless manner.
Its environment is unpredictable and always changing and previously observed
moving objects that are temporarily hidden from view must still be considered

when making new decisions (Badue et al., 2021).

Most approaches to solving problems like this involve trying to manually identify
possible scenarios with more manageable sub-goals that are trained separately
before being put together, as seen i@re 2 (Helman, 1986). The problem with
this is that often one cannot account and train an agent for every conceivable
situation, even if it is able to be general within a sub-goal (Langley, Choi and
Shapiro, 2004; Long et al., 2007; Badue et al., 2021). There is hence a need for a
more general approach or cognitive architecture for building robust intelligent
agents, regardless of their target environment. This reduces the human influence

in an agent’s creation and leaves a system to find general and complete solutions

10

Mssion Paramelers
RDDF

Road Lanes

Traffc Signs
Tratic Lights Stata

Pedestrians

Goal (uy.yaw.v),
Path ({xyyaw) luples list)

LA AL
row pitch

fling Map
Painl Cloud

images —w =
Paint Cloud
g Paint Cloud
Point Cloud

Offing Map

WY

xyzroll.pilch yawv.phi

Signals,
Lights.
Hom

xyrollplich yaw

GM
rafor | ODGM

Figure 2

Diagram of how different software modules combine in the IARA self-driving car (Badue et
al., 2021).

for itself. The result of this is to limit the potential for mistakes or development
of rigid architectures (due to human design errors) and is a step towards a general

Al problem solver. This process of automating the development of Al from top

P—

to bottom is known as Automated Machine Learning (AutoML) (Hutter, 2014). In

,,_,_r-—-—v—-
practice, this general approach may initially yield suboptimal results, however,

the progress of general Al research may eventually lead to greater results than
what were previously possible (Cooper et al., 1996; Langley, Choi and Shapiro,

2004; Laird, 2008).

Most intelligent agent systems struggle at approaching tasks with perspective. In
this context, perspective abstractly refers to the challenge of temporal generality,
credit-assignment, and adaptability to environmental changes (Fujimoto, Meger

and Precup, 2018; Ke et al., 2018; Osband et al., 2020). Furthermore, manually

A little inaccurate... n

dividing an agent’s objective (or objectives) into sub-goals may be suboptimal as
better results could potentially be achieved by letting a system learn to decide
sub-goals for itself through intelligently balancing exploration and exploitation

of its environment (Tokic, 2010; Frans et al., 2018; Gupta et al., 2018).

Another potential limitation of many intelligent agent systems is that they are
often trained using gradient-descent based methods (see chapter 2.3.2). While
gradient descent methods can sometimes be fast and accurate for certain
problems, they often guide towards a single solution and struggle to account for
adaptability and intelligent exploration (Ruder, 2016). An alternative approach to
learning that does not use gradient descent is to use EAs (Branke, Kaufiler and

Schmeck, 2001).

So, the title being problem statement, what problem did you state?

1.2 Research Goals & Hypothesis

The main goal of this research is to use evolutionary methods with RL to develop
a cognitive architecture that provides a general model for the creation of
intelligent agents that can behave sufficiently well in any potential environment.
The architecture is presented in the form of a program called Brain Evolver (BE)
which is structured in a modular way so that the user has full control over all of
its parameters. The intention is to have a single system that can be used by other

people to create intelligent agent models regardless of their target environment.

The purpose of BE is to take a step towards general intelligence, or strong, true
Al In order to do this, the first sub-goal of this thesis is to explore the idea of

what it means to be intelligent from a cognitive modelling perspective. The aim

12

is to break the idea of intelligence down into identifiable components so that

they can be directly addressed by BE’s architecture.

One component of intelligence that many current intelligent agents struggle with
is generality across time and the credit-assignment problem as encapsulated by
the perspective problem (Ke et al., 2018; Osband et al., 2020). A subtle focus and
additional sub-goal of this thesis and the implementation of BE is hence to
explore solutions to these memory and recall-based challenges without explicitly

storing every piece of information ever received.

In order to effectively test BE’s ability to create intelligent agents that are able to
perform sufficiently well in different types of environments, the program
includes a set of focused tests that target specific types of general problems
(Osband et al., 2020). Beyond this, tests are conducted on environments that
abstractly represent the kinds of problems an agent would confront in a real-
world scenario. In this case, the use of intelligent agents in space-rover
exploration is explored by constructing environments that cover some of the

basic tasks that these agents may encounter.

BE’s cognitive architecture is built from the following components: Deep
Neuroevolution (DNE), Attention Matrices, Meta Learning Shared Hierarchies
(MLSH), Spiking Neural Networks (SNNs) and Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters (REVAC). All components are
implemented using evolutionary methods. The details regarding the
implementation of these components, what they are, and the reasons behind

their selection are discussed throughout the rest of this thesis.

The hypothesis proposed for this thesis is that, using evolutionary RL, the
culmination of all the aforementioned components should be sufficient as a
cognitive architecture for BE to produce intelligent agents that can behave

sufficiently well in any type of environment. The focus is hence on generality

13

rather than performance. A subsequent goal of this hypothesis is to then find out
if all the components are actually necessary and how much of an impact using
them in different combinations has on the performance of the agents created for

different environments.

1.3 Contributions

The main contribution of this thesis is the creation of a cognitive architecture
(BE) that is focused on the general development of intelligent agents. BE makes
use of evolutionary approaches and its contribution is hence also extended to
include the further study and analysis of evolutionary methods as a means to

address the elusive goal of a general Al problem solver.

BE’s effectiveness at training robust intelligent agents without human
intervention (AutoML) is demonstrated by evaluating its ability to create
intelligent agents on a wide set of disparate environments. These test
environments broadly target different components of intelligence. The analyses
of these components and the Al methods used to address them are hence also
contributions of this thesis. The Al methods used (DNE, Attention, MLSH, SNNs
and REVAC) are all implemented using evolutionary approaches. The individual
analyses of applying evolution to each of the methods are also valid
contributions, particularly as there is little research on the use of Attention,

MLSH or SNNs using evolutionary methods.

The decision to use these particular Al methods as sub-components of BE'’s
architecture was not definitive and there were many other approaches that could

have been used instead or in addition. However, whether optimal or not, a model

14

for BE was settled upon based on hypothetical reasoning. It can therefore be said
that the exploration of BE’s architecture in its current state and the success or

failure of its components only serves to assist other future studies in the same

field.

An example of a real-world task environment that would benefit from a generally
intelligent solution with an improved sense of perspective is in the use of space-
rover missions (Bresina et al., 2003; Bresina and Morris, 2007). This thesis hence
continues to explore the potential advantages of using BE in such an environment
by running further tests on a set of simulated tasks that abstractly represent what

d Space rover may encounter.

The intention of BE is not to create intelligent agents that are able to achieve
extremely accurate, cutting-edge results in highly complex, large-scale
environments. Rather, the tests run on BE serve as small-scale proofs of concepts
and an opportunity to further study what it means to be generally intelligent. For
this reason, BE and its components are analysed and compared using different
internal configurations (rather than being compared to other state-of-the-art
methods). The contribution of this is an evaluation of how useful each
component’s model is (individually or in conjunction with other components) in

the context of creating generally intelligent agents.

At first glance, the scope should come before the specific goals

and the contributions. But here you describe limitations to
1’4 SCOpe the experimental approach rather than the general scope

of the work.

The scope of this thesis is quite broad as it explores the expansive topic of
creating a general Al problem solver. The intelligent agents created by BE are

meant to represent how real robotic agents may operate in real environments,

15

however, due to physical, financial, and time limitations, no tests will be done
with actual robotic agents. The tests conducted only involve simulated agents
and target certain types of sub-tasks that agents might be required to do in a real-

world situation.

Due to scope constraints, BE will not be tested in comparison to other potentially
more common or state-of-the-art methods. As already mentioned, the intention
of BE is not to produce better results than other implementations but rather to
develop a cognitive architecture in the pursuit of studying general intelligence.
The testing environments for BE are highly focused and simplified since they only
test specific criteria. Furthermore, the model complexities of the agents created
are also scaled to be very small. This means that environments only operate for a
short number of time-steps in a limited virtual space and the size of the Neural
Networks (see chapter 2.2) evolved remains small. This keeps processing times

down as there are a large number of tests.

The tests conducted for this thesis are implemented on 15 different environments
that have been chosen to target specific kinds of fundamental tasks that reflect
different aspects of generally intelligent behaviour. A further four environments
are also used to test certain kinds of tasks an intelligent agent operating as Mars
rover may encounter for a total of 19 test environments. Each set of tests is run
using different configurations of BE’s internal architecture in order to isolate the
efficacy of each of the individual components and their ability to work in
conjunction with other components. The details regarding the testing

environments and the tests themselves are outlined in chapter 4.1.

16

Chapter 2

Literature Review

2.1 Artificial Intelligence

Artificial Intelligence (Al) is the broad study of machines or computer systems
that are able to perform tasks and solve problems in a way that seems intelligent
by our own human standards (Minsky, 1961; Oke, 2008; Holland and Gamez,
2009). The term was coined by John McCarthy in 1955 and has since grown to
become one of the most highlighted fields of research in the 2ist century
(McCarthy et al., 2006; Nadikattu, 2016). Research into Al can be divided into
many subfields. These include the theoretical and mathematical concepts behind
Al practical uses and social implications of Al, and philosophical questions that
Al raises (Minsky, 1961; Helman, 1986; Armstrong, 2004; Yudowsky, 2008;

Nadikattu, 2016).

In today’s age, the practical realization of Al predominantly manifests as Machine
Learning (ML). ML is a subcategory of Al that focuses on the creation of systems
that learn to improve their behaviour over time at doing a certain task (with
access to relevant training data) while still being able to generalize about the
problem at hand. Since ML is targeted at doing specific tasks, it is classified as
weak Al It is hence more useful to refer to general intelligence as Al instead of
ML (Donald Michie, 1968; Stevens and Soller, 2005; Holland and Gamez, 20009;

Mnih et al., 2013; Brinton and Atm, 2017).

17

2.1.1 Aspects of Intelligence

One particular goal of many researchers is to develop true, general Al. However,
as society’s confidence in what computers are capable of increases, our standard
for what is considered to be true Al shifts. When Deep Blue beat the World Chess
Champion of 1997 Garry Kasparov, many people considered what had been
achieved to be true Al until the algorithm employed was better understood and
the standard for true Al was pushed back (Yudowsky, 2008; Nadikattu, 2016;
Hassabis, 2017). Another common metric for true Al is the Turing Test for which
an Al passes if a human is unable to distinguish an interaction with the Al from
areal human. A further extension of the Turing Test sometimes includes the goal
of creating Al that is physically indistinguishable from humans. However, most
research is not concerned with the anthropomorphic development of machines
but rather Al’s practical uses through the development of ML (Long et al., 2007;

Oke, 2008; Holland and Gamez, 2009).

With today’s advancements in Al research, we recognize that there are many
aspects to strong, true Al beyond being good at a board game or fooling a human
with convincing natural language processing. Intelligence can manifest in a
multitude of different ways that are sometimes not obvious to us as our own
understanding of what intelligence is comes from a human perspective (Minsky,
1961; Holland and Gamez, 2009; Mnih et al., 2013). It is hence useful to explore
what it actually means to be generally intelligent. This allows certain goals to be
framed that can be used to define a general cognitive architecture (see chapter

2.1.2) or Al solutions able to solve problems that are useful to us (Cooper et al.,

1996).

The question of what makes something truly intelligent or even what the notion
of intelligence actually is has challenged humans ever since ancient Greek

philosophers such as Plato tried to reason about our own existence in life

18

Dendrites

Terminal Bulb

Figure 3

A diagram of a neural connection found in the brain (Taylor, 2017) which inspired the design
of Artificial Neural Networks (see chapter 2.3)

(Armstrong, 2004). If a machine can solve a given problem efficiently but it is
only following a set algorithm, is it really intelligent? Even the concept of
consciousness and its potential relevance to Al is an important question that
needs to be asked in order to begin to tackle the elusive idea of general
intelligence. It may be that the emergence of consciousness or self-awareness is
imperative to perform extremely advanced tasks as it implies introspection and
internal evaluation (Oke, 2008; Omohundro, 2008; Holland and Gamez, 2009).
However, since the concept of consciousness is one that is so philosophically
controversial, its practical use in our current understanding of general Al and the

research of this thesis is not particularly relevant.

The best example of true intelligence that we know of is exhibited by human
beings, so naturally Al research often aims to copy the human mind through the
cognitive modelling approach (Clarke and Sternberg, 1986; Cooper et al., 1996;
Yudowsky, 2008). Beyond simply looking at our brains, many Al approaches use
other processes that occur in nature as their inspiration. Two examples of this

are in the development of RL methods as well as many metaheuristics (see chapter

19

2.2) such as EAs. Another example can be seen in the attempt to replicate the

systems in our own brains (see chapter 2.3) as seen in figure 3 (Taylor, 2017).

A further important question centres around the notion of rationality. The goal
of many Al systems implemented today is to always act rationally. Acting
rationally means that the best output is always given in every scenario to
maximise an Al’s solution to its task at hand. However, the idea of rationality
implies that there exists some over-arching, objectively optimal goal
(Omohundro, 2008; Gupta et al., 2018). Intelligent life in nature does not conform
to this idea as even the emergence of life itself can be argued to be arbitrary and
without goal or purpose. Hence, many biologically intelligent organisms often do
things that seem irrational. It is this irrational behaviour that is in fact very
important to the learning process as it allows for the exploration of the problem
space (see chapter 2.1.3) of an organism’s environment (Minsky, 1961; Stevens and
Soller, 2005; Omohundro, 2008; Tokic, 2010; Olague, 2016). Irrationality can be
represented as stochasticity, which implies randomly deviating from what is
currently believed to be optimal with some probability in order to find new

possible solutions or goals (Gupta et al., 2018).

Exploration of one’s environment can be represented in humans as curiosity
(Minsky, 1961). There is no obvious reason why we would be interested in
learning about things like math from an evolutionary perspective, however, in
the long term our curiosity has driven the development of modern society and
hence put us at the top of the food chain. Curiosity also allows us to learn through
experience. By trying different actions, we determine what is dangerous and what
is useful. This is how RL learning shapes our behaviour (see chapter 2.1.6)
(Turney, Whitley and Anderson, 1996; McLeod, 2007; Jabri et al., 2019). However,
there are other aspects to human knowledge that we know intuitively. Among
many other things, some examples of this include breathing, responding to pain

or hunger, an innate fear of things like fire and other creatures and a natural

20

propensity to believe what our parents say as children. These skills are useful as
if we had to learn that predators are dangerous by first experiencing being
attacked, we would rarely live to tell the tale. This common theme in biologically
intelligent creatures can be referred to as instinct (Turney, Whitley and

Anderson, 1996; Omohundro, 2008).

While the concept of intelligence can be seen as being quite abstract or
informally defined, the attempt of cognitive science to break intelligence down
into definable parts helps guide research into general Al (Cooper et al., 1996;
Langley, Choi and Shapiro, 2004). It is evident from the distinction between the
concepts of curiosity and instinct that there is an allusion to two separate aspects
of intelligence; one being the ability to learn new things through exploration and
exploitation using RL, and the other being the development of set and pre-
trained knowledge which comes about in nature through the evolution (see
chapter 2.2) of cognitive behaviours. The emergent intelligent behaviours that
these learning methods naturally produce in humans can be further broken down
into a set of core components. This is not to say that these components are
supposed to be a universally perfect summation of what it means to be intelligent,
but rather that they signify useful goals that a general cognitive architecture may

need to address.

One theory of intelligence is the Triarchic Theory of Intelligence which was
proposed by Sternberg in 1984 and divides general intelligence into analytical,
creative, and practical intelligence. Sternberg defined intelligence as the "mental
activity directed toward purposive adaptation to, selection, and shaping of real-
world environments relevant to one's life” (Clarke and Sternberg, 1986). On the
other hand, Thurstone breaks intelligence into memory, numerical ability,
perceptual speed, reasoning, spatial visualization, and verbal comprehension
(Thurstone, 1962). While these analyses are useful to some degree, they are more

applicable to biological entities and less applicable to practical implementations

21

of Al It is hard to identify achievable goals in Sternberg’s analysis and Thurstone
uses many metrics that are trivial for digital machines such as numerical ability
and perceptual speed. Furthermore, neither analysis considers the ability to be

general.

In order to bridge the gap between biological, human intelligence and practical,
general Al, Minsky identifies five aspects of intelligence. These include the ability
to search for possible solutions, learn over time, recognize patterns, plan, and use
inductive reasoning (Minsky, 1961). The concept of intelligent agents is also
useful when dealing with the idea of intelligent machines (see chapter 2.1.4). An
intelligent agent allows for an Al to express itself in an environment by receiving
input before acting in the environment using some output (Tambe et al., 1995;
Langley, Choi and Shapiro, 2004; Long et al., 2007). Osband offers a more detailed
analysis of intelligence in machines by looking at how an Al performs through
the use of intelligent agents. The analysis targets definable metrics that can be
used for specifically evaluating Al in intelligent agents before going on to outline
seven core components of intelligence that an effective Al must be capable of

(Osband et al., 2020). The details of these core components are given below.

¢ Basic Task Completion: The ability to solve any type of basic task given

valid and accurate input (Osband et al., 2020).

o Exploration: The ability to intelligently try different unknown solutions
to potentially find better solutions. This entails being able to weigh up the
possible benefits of exploring (with the possibility of not finding anything
of value) against exploiting what is currently known (Gupta et al., 2018;

Osband et al., 2020).

e Scalability: Scalability is the idea that as the complexity of a task or size

of an environment increases, an Al's performance should remain

22

sufficiently accurate compared to when it learned to solve the task on a

small scale (Lozano, Molina and Herrera, 2011; Osband et al., 2020).

Noise Reduction: Noise reduction is the ability to deal with random,
superfluous, and inaccurate input data by filtering out what is not needed
and using what is relevant to the problem at hand. This is especially
important when it comes to real-world environments where information
is rarely precise or clean (Jakobi, Husbands and Harvey, 1995; Osband et

al., 2020).

Generalization: A significant factor that differentiates Al from other
solutions is that Al is able to generalise. This means that Al can learn rules
that govern an environment or problem and can act rationally given input
from the same problem even if it has never explicitly seen or been
programmed to deal with that exact input configuration (Minsky, 1961;

Osband et al., 2020).

Memory: Memory is the ability to effectively store and recall past actions
and events. Memory can become difficult when dealing with long periods
of time or large amounts of information as knowing what is important to
remember and what can be forgotten is challenging. A further aspect of
memory that can be explored is temporal generality and the ability to
abstractly represent events in memory rather than storing every single

detail (Cooper et al., 1996; Osband et al., 2020).

Credit-Assignment: Credit-assignment is the ability to attribute
importance to certain inputs or actions across time. It is the ability to
understand what specific actions in the past led to a current positive or

negative state (Ke et al., 2018; Osband et al., 2020).

23

Generalization .

Memory

" Scale

Figure 4

agent

actor_critic_rnn
boot_dqn

dgqn

random

Diagram of the performance of different intelligent agent methods in the seven core

capabilities of intelligence (Osband et al., 2020).

2.1.2 Cognitive Architectures

The purpose of defining what makes something intelligent and what it means in
the context of machines is relevant in developing a systematic, general approach
to building Al systems. The construction of a unified theory of cognition or
structure of intelligence is referred to as a cognitive architecture (Cooper et al.,
1996; Langley, Choi and Shapiro, 2004). The benefit of a cognitive architecture is
in its ability to provide a general framework for intelligence so that useful Al
solutions can be created regardless of the target environment or problem. This

removes the need for humans to have to redesign separate Al approaches to

24

individual problems (AutoML). Furthermore, a reliable cognitive architecture

also mitigates the potential for mistakes introduced by independent designs.

Practically, the implementation of a particular cognitive architecture to software
is informal as the process of coding requires assumptions about the expression of
certain cognitive processes. These assumptions are not robust in the same way a
mathematical proof is and any attempt to build a cognitive architecture is a
hypothetical claim to its effectiveness that must be tested and evaluated (Cooper
et al., 1996). Hence, a cognitive architecture in the context of computer science
is not only a theory about cognition but also a theory about how cognition may

be ported to machines.

Michie offers a simplistic but fundamental look at how intelligence might be
expressed in the context of machines and introduces the idea of memo functions.
Although he never refers to his idea as a cognitive architecture, its general
principle around how Al works aligns with the basic principles of many Al
solutions today. The idea is based around the simple ability to learn through
experience as in the definition of ML. If a machine can do this, then it is
considered intelligent. This is extended to categorise all decisions as having a rule
processing part and a generalized look-up stack. Experiences that occur often
take priority in the stack and things that hardly happen are eventually forgotten.
Every time input is received, the stack is searched and if nothing is found, a new
experience is stored at the top by receiving feedback from processing the input
using currently known rules (Donald Michie, 1968). Although this analysis may
seem over-simplified, it identifies a few main points that define a machine as
being intelligent. These include the ability to learn through trial and error
(exploration), utilize (exploit) memories of generalized experiences, and

prioritise important memories.

One of the most popular long-term cognitive architecture projects that is still

being developed today is called Soar and was first created in 1983 by John Laird.

25

Symbolic Long-Term Memories

Procedural Semantic Episodic
- —
——
S x 3
Reinforcement | Chunking | Semantic Episodic
Learning Learning Learning
* | k4 ¥ 1 3 I
J | I
B Symbolic Short-Term Memory ¥ o
o 2 -y
<= 5 3
—

LT Visual Memory
(vt e]

i ,
Perception [ST Visual Imagery Jq—.i\l:!io“ |

| Body |

Figure 5

Diagram representing the general structure of the Soar cognitive architecture (Laird, 2008).

The goal of Soar is to develop a structured system of all the computational
components that make up any generally intelligent agent. This is essentially what
this thesis is trying to achieve so it is useful to look at Soar’s own architecture

(Laird, 2008).

Soar’s over-arching structure works by utilizing what is currently known in order
to define goals for itself so that a global goal can eventually be obtained. At each
step of the way, if Soar does not have sufficient knowledge or experience to find
a solution to reach its current goal, it recursively creates hierarchies of sub-goals
using any information available until it is able to proceed (Cooper et al., 1996).
The process of breaking down a global task into sub-goals is known as problem
decomposition (Helman, 1986). Soar’s approach to problem-solving is based on
the assumption of the Problem Space Hypothesis (see chapter 2.1.3) which asserts

that any search for a solution to a goal can be expressed as a search through a set

26

of possible states known as the problem space. This is a fundamental idea that

underpins most modern Al and ML research (Newell, 1990).

Soar differentiates between procedural, working, semantic and episodic memory
and maintains the idea that knowledge is stored through a structured
representation of symbols. Procedural memory is knowledge about how to do
things and working memory is contextual information of recent events in an
environment. Semantic memory is a very long-term structure of essentially fact-
like knowledge while episodic memory keeps track of working memory in a time-
related stream. It then uses the combination of these four sources of information
when making decisions about how to act within a goal or whether to create a new
goal (Cooper et al., 1996; Laird, 2008). This system of knowledge is then built up
using RL (see chapter 2.1.6) which is Soar’s primary method of learning (Laird,

2008). An overview of Soar’s architecture can be seen in figure 5.

Another prominent modern cognitive architecture is called ACT-R (Adaptive
Control of Thought - Rational). Unlike Soar which is more concerned with how
to apply Al to intelligent agents (machines), ACT-R is more concerned with
directly replicating the cognitive functions of the human brain. The goal of ACT-
R is to reduce human cognition down to irreducible functions (Scerri, 2006).
ACT-R identifies knowledge as either being declarative (explicit) or procedural
(implicit). Declarative knowledge is conscious long-term memory while
procedural knowledge is unconscious long-term memory. Like Soar, ACT-R also
proposes that knowledge is purely symbolic (Squire and Dede, 2015). This is in
opposition to another cognitive architecture called CLARION (Connectionist
Learning with Adaptive Rule Induction On-line) which proposes that knowledge
is emergently represented through connections between nodes of structured
information (Cooper et al., 1996; Scerri, 2006; Oke, 2008). An example of a
connectionist approach can be seen in the development of Artificial Neural

Networks (see chapter 2.3) (Agatonovic-Kustrin and Beresford, 2000).

27

2.1.3 Learning Approaches

It is important to note that there is a difference between the resultant behaviours
of certain cognitive components that make an entity intelligent and the processes
that led to the acquisition of the entity’s knowledge (through learning).
Furthermore, it is evident that there is a disparity between approaching
knowledge and intelligent behaviour from a biological point of view and the
practical application of these concepts to machines. It is therefore necessary to
define certain broadly categorical ways that machines can go about developing

knowledge.

The practical objective of Al is to find or learn the optimal solution to a given
problem or task. The ability of a machine to learn over time (as in the definition
of ML) is what separates Al from hard-coded solutions. There are four main
categories of approaches to learning. These approaches are defined as being
Supervised, Unsupervised, Semi-Supervised or RL based (Stevens and Soller, 2005;

Jabri et al., 2019).

Supervised learning relies on training an Al with the use of examples in the form
of labelled data while unsupervised learning is when a machine is trained using
unlabelled data. Unsupervised learning is useful when humans do not know
much about the problem or what to look for in the data, whereas supervised
learning requires humans to understand the learning environment and hence, in
some way, take on the role of the AI's teacher. Semi-supervised learning is simply
when only some of the data is labelled (Jabri et al., 2019). The details regarding

the last learning approach listed (RL) can be seen in chapter 2.1.6.

As already defined, Al learns by striving to find the optimal set of outputs to give
for any set of inputs in an environment. In order to better understand this, we
expand on the Problem Space Hypothesis outlined in chapter 2.1.2. The relation

between an Al’s inputs and outputs is simply some function that can be described

28

(o)

Figure 6

The problem space surfaces of two common test functions; the Sphere Function (left) and the
Ackley Function (right) (Mirfenderesgi and Mousavi, 2015) which were also used in the testing
phase of this thesis (see chapter 3.8.1).

mathematically. The learning process can therefore be seen as simply being
function optimization. Considering this, it is useful to think of a task or problem
as an x-dimensional surface, known as the problem space (Goldberg and Holland,
1988; Scerri, 2006; Brinton and Atm, 2017). If the number of input dimensions for
a given environment is x, and the number of output dimensions is y, then for
every combination of inputs and outputs there is some level of behavioural
optimality z which represents the surface of the problem space. The
dimensionality of a single-objective problem space is hence x + y + 1 (Brinton and

Atm, 2017).

Finding a function that maps inputs x to outputs y such that z has a maximal or
minimal (depending on the problem) value out of all possible z values for x is
called finding a globally optimal solution. If a function maps x to y with an
optimal z value for all y values in the vicinity of z’s location in the problem space,
then we have found a locally optimal solution as there may still be a greater z
value for the set of inputs x elsewhere in the problem space (Dietterich, 2000;

Mishra, 2011; Gobeyn et al., 2019).

29

Each combination of inputs can be thought of as a state. If the set of possible
input states are discrete and not too extensive, then finding the optimal function
may be trivial. However, this is not the case for sets that have a high
dimensionality with complex, continuous problem spaces (Goldberg and
Holland, 1988). This issue is known as the curse of dimensionality which
essentially says that as the number of dimensions in the problem space increases,
the volume increases so exponentially fast that the availability of data to fill it
becomes sparse, requiring ever higher levels of generalisation to act optimally

with unseen input (Poggio et al., 2017).

One response to solving problem spaces with high dimensionality is to use what
is called Deep Learning (DL). DL is an approach to Al that entails creating models
that are capable of learning multiple levels of hierarchies and structures in data.
This approach may also assist in the navigation of an unlabelled problem space
(unsupervised learning). Due to the nature of real-world environments, practical
applications of Al often require DL approaches in order to perform sufficiently

well (Minsky, 1961; Poggio et al., 2017; Tavanaei et al., 2019; Gupta, 2020).

An important concept when dealing with DL is the idea of a latent space. The
word “latent” means “hidden” and a latent space can be thought of as an abstract
representation of the characteristics of some data (Tiu, 2020). Latent spaces have
the ability to show generality with regards to some information by reducing the
dimensionality of the information or compressing it in some way (Shen et al,,
2019). An analogy of how latent spaces store information can be shown in the way
humans express knowledge. If we describe the appearance of another person, we
use abstract terms like “height” or “hair colour” to convey meaning. Someone else
can then use this information to reconstruct a mental image of what this person
may look like in their mind. Latent spaces work similarly as they are able to hold
information about the relevant features of some data. These features can then be

used in what is called feature extraction to generalize about what the important

30

aspects of a problem are as well as improve processing times due to the
dimensional reduction or compression of data (Pan, Kwok and Yang, 2008; Shen

et al., 2019; Tiu, 2020).

2.1.4 Intelligent Agents

Since we have defined some ways that knowledge and intelligent behaviour can
be represented and obtained, it now becomes useful to have some paradigm to
express these concepts. The acquisition of Al is useful if it can be demonstrated
by a machine, but a concept in Al has little practical use if it remains just a

collection of theoretical and mathematical ideas.

This makes way for the introduction of intelligent agents. Intelligent agents are
systems that are capable of autonomous action in an environment. Agents are
said to be autonomous if their behaviour is dictated by their own experience.
Intelligent agents possess the ability to learn and adapt and are entities that allow

an Al to be implemented in an environment (Tambe et al., 1995; Bansall, 2019).

The effective implementation of intelligent agents has the potential to drastically
improve many aspects of modern society as well as assist in further scientific
advancements (Yudowsky, 2008; Nadikattu, 2016). There is a continuing demand
for intelligent agents to tackle increasingly challenging tasks (Belani, Vukovi¢
and Car, 2019). Some examples of uses of intelligent agents in real-world
environments that are becoming more prominent include (but are not limited

to) the following list.

31

Figure 7

Robotic agent for firefighting and clearing debris (Matrossov et al., 1992).

Space rover missions (Bresina et al., 2003; Bresina and Morris, 2007;
Maimone, Leger and Biesiadecki, 2007; Yliniemi, Agogino and Tumer,
2014; Boukas et al., 2017)

Self-driving cars (Badue et al., 2021)

Automated medical procedures and operations (Schatten, 1995;
Agatonovic-Kustrin and Beresford, 2000)

Unmanned military drones (Long et al., 2007; Qiu et al., 2020)
Automated farming (Bryndin, 2020)

Exploration drones (Boukas et al., 2017)

Automated completion of hazardous tasks (Matrossov et al., 1992)
Automated delivery drones (Daniel Buchmueller, 2017)
Manufacturing processes (Tambe et al., 1995)

Entertainment (Tambe et al., 1995)

Education and training (Tambe et al., 1995)

Automated maintenance of infrastructure (Joyeux, Schwendner and
Roehr, 2014)

Pollution control (Oke, 2008)

32

Agents perceive their environment by gathering input data through the use of
sensors and perform actions with the use of actuators such as a robotic arm or
wheels on a car (Daniel Buchmueller, 2017; Badue et al., 2021). Agents that operate
in physical environments through the use of robotics are always bound by the
dimension of time and hence must consider actions that may have long-term,
delayed rewards (A.G. and R.S., 1999; Gupta et al., 2018; Ohnishi et al., 2019).
Other potential requirements of intelligent agents that operate in real-world
environments involve the ability to adapt to change and the ability to create and
pursue goals (Cooper et al, 1996). An agent must therefore learn to map
functions from its histories of perceptions to actions and potential rewards (A.G.
and R.S., 1999; Scerri, 2006; Mnih et al., 2013). It is also important to note that
agents need not only be applied to robotics as many problems have environments
that can be simulated or may only exist digitally or conceptually (Schatten, 1995;

Tambe et al., 1995).

Agents need to know information about their environment and there are two
ways that this can happen. Agents are either able to observe (know) everything
about their environment at once (known as fully observable environments) or
they are only able to partially observe their environment. In partially observable
environments, agents interact with their surroundings and keep track of what
they have perceived and what has happened (Oke, 2008; Ohnishi et al,, 2019).
This updates an internal model (known as a belief state) of what the agent thinks
about their environment (Badue et al., 2021). Agents also have a set of variables
representing the agent’s own internal state. By considering an agent’s current
belief state and internal state, the agent can update its actions or current goal

based on what needs to be achieved (Ke et al., 2018).

Some simple approaches to agents include Finite State Machines and Bayesian
Networks. Finite state machines simply map every state an agent is in with

regards to its environment to a predefined action. Bayesian Networks work

33

similarly but operate on probabilities that certain states will occur given certain

actions which then directs the agent to choose the action that yields the highest

probable return (Long et al., 2007; Oke, 2008; Badue et al., 2021). The state an

agent is in is simply the combination of internal and environmental variables that

exist at a particular time.

Agents can be categorized into four groups based on their perceived level of

intelligence or capabilities.

Simple Reflex Agents: Agents only act based on their current input

(Belani, Vukovi¢ and Car, 2019).

Model-Based Agents: Agents act by finding a rule to follow that matches
the conditions of the current situation. These agents can handle partially
observable environments and keep track of an internal state based on their

perception history (Belani, Vukovi¢ and Car, 2019).

Goal-Based Agents: Agents that are able to make decisions based on their
current desires and goals. This makes the agent more flexible as its desires
and goals can change based on what is needed (Belani, Vukovi¢ and Car,

2019).

Utility-Based Agents: Sometimes taking the quickest route to a goal may
not be the best choice as there may be other factors that affect an agent’s
internal state. When there are multiple possible alternative actions that
may still lead to the desired goal, a utility agent chooses actions that take

these factors into consideration (Belani, Vukovi¢ and Car, 2019).

34

There are 4 classes of learning agents corresponding to the 4 classes above. Most RL agents are reflex agents,
but some have memory and learn in POMDP, goal-conditioned RL agents also exist, etc.

¢ Learning Agent: A learning agent is simply any agent that is able to learn
from its past experiences and hence act more optimally over time (Belani,

Vukovi¢ and Car, 2019).

2.1.5 Intelligent Agents in Mars Exploration

Since the goal of this thesis is to produce a general cognitive architecture for the
development of intelligent agents, it seems prudent to demonstrate any agents
created on at least one practical example of an abstracted real-world scenario,
which in this case is use of intelligent agents in space rovers for Mars exploration.
One of the current forefronts of human technological advancement is space
exploration and an important aspect of space exploration includes the
implementation of intelligent agents through the use of space rovers. Space
rovers are remotely operated machines that enable the exploration of other
worlds and are necessary due to the fact that humans cannot feasibly accompany
most space missions, particularly distant ones (Sandra May, 2021). It is inefficient
to directly control a rover due to the time delays in the speed of light over space,
therefore, delegating tasks and certain decision-making responsibilities to a rover
itself can drastically improve the likelihood of a mission’s success (Yliniemi,
Agogino and Tumer, 2014). This means that rovers must operate as intelligent
agents with varying levels of autonomy. Additionally, following the rise of
companies such as SpaceX, there has been a recent growing interest in the
exploration of our neighbouring planet Mars and, as a consequence, research into

intelligent agents as Mars rovers (Zheng, 2020).

In the case of Mars rover missions, it takes a signal up to twenty minutes to reach

Mars one-way. Furthermore, humans are usually only able to interact with a rover

35

Figure 8

A computer-generated image of a NASA space rover exploring the surface of the planet Mars
(Sandra May, 2021).

when it is on the side of the planet facing Earth. This means that for half a Mars
sol (a planet’s single solar day) contact is not an option which is time that

automation could save (Maimone, Leger and Biesiadecki, 2007).

Arguably the most significant rover mission to Mars was conducted by NASA and
saw the launch of the Mars Exploration Rovers (MER) Spirit and Opportunity in
2003. The system used by these rovers was built from multiple components that
worked in a hierarchical way. These components were divided up in order to
tackle certain aspects of one of the MER rover’s current tasks. Some of these
components handled more common ML tasks such as image and pattern
recognition as well as locomotive adjustments for efficient movement. Other Al
driven components that handled goal-based tasks such as navigation, obstacle
avoidance and sample gathering were hierarchically at a higher level as they
relied on lower level systems (such as identifying objects or moving while
compensating for drag or slip) to operate effectively (Bresina et al., 2003; Bresina

and Morris, 2007; Maimone, Leger and Biesiadecki, 2007).

Most high-level autonomous planning that MER implemented pertained to

navigation and task selection. These are the kinds of tasks that would usually

36

need to be delegated to mission control and are hence bigger, more
consequential decisions that often require a human-level sense of perspective.
Furthermore, the development of these high-level problem-solving skills may
assist in other space rover missions. Some navigational-based tasks that a rover
may encounter (depending on the mission) include gathering sample data,
collecting and returning resources to a base location, avoiding dangers (such as
rocks, loose sand or sheltering from bad weather) and being aware of power
usage. Since navigation is an important aspect to high-level autonomy in space
rovers, it is worth analysing how MER implemented its autonomous navigation

system (Bresina et al., 2003; Cheng et al., 2004; Bresina and Morris, 2007).

Over the course of the MER mission lifespan, multiple software updates were
introduced that gave the rovers increased levels of autonomy. These were
predominantly seen in the development of the rovers’ navigation through the
categorization of drive modes. Firstly, the directed drive mode would predefine a
rover’s path without any ability to adapt while the visual odometry mode
introduced positional awareness. The terrain assessment mode was able to look
for obstacles while the local path selection mode combined the benefits of all
modes over short distances. Lastly, the global path selection mode was able to
provide autonomous navigation over long distances by utilizing other drive
modes in a hierarchical way (Cheng et al., 2004; Maimone, Leger and Biesiadecki,

2007).

The local path selection mode worked by converting the rover’s internal model
of its environment (based on visual sensory input) into a 10 x 10 meters* grid
world with each block being roughly o.2 meters®>. This method was called
GESTALT (Grid-based Estimation of Surface Traversability Applied to Local
Terrain). The global path selection mode built upon this by using a larger grid of
50 x 50 meters® with each block being roughly 0.4 meters* and greatly improved

the rovers’ navigational efficiency (Maimone, Leger and Biesiadecki, 2007). The

37

global path selection mode also used the Field D* planner algorithm to guide its
movement. The Field D* algorithm simply finds a path from a starting point to a
goal point in a 2D grid-world before converting the grid-based path to an
optimally smooth gradient that can be executed in a real-world environment

(Ferguson and Stentz, 2007).

Despite the addition of local and global path selection, a significant portion of
the important decisions and actions were still issued by the team back on Earth
(Maimone, Leger and Biesiadecki, 2007). NASA then introduced a system called
MAPGEN (Mixed Initiative Activity Plan Generator) which assisted scientists on
Earth in plotting out planned routines for the rovers that could then be
autonomously executed in a somewhat intelligent manner. MAPGEN ensured
that all goals and actions taken would be as low-risk as possible and within any
constraints specified by the user. It could hierarchically organise and optimise
sequences of sub-goals and hypothesise about what may happen should a rover
execute a plan in a certain way. Despite this, MAPGEN still remained heavily
reliant on the user and its behaviour was more rigid than anything one may
consider to resemble truly intelligent or general Al (Bresina et al., 2003; Bresina
and Morris, 2007). This is exemplified by the fact that Bresina and Morris
identified three major issues in MAPGEN. They pointed out that the plan
commands were very broken up and required too many safety confirmations.
Furthermore, all high-level planning initiatives had to be directed by the user,
and the system lacked a sense of its own ability to be aware of the intent of the

user’s plan (Bresina and Morris, 2007).

Agent

State Reward Action
St Rt At

RelEnvironment |«g—

St-t

Figure g

The basic components of RL as applied to intelligent agents (Shyalika, 2019).

2.1.6 Reinforcement Learning

Intelligent agents that make use of Al begin to move away from the rigidity of
predefined algorithmic implementations. However, this introduces a certain
level of risk as one cannot be perfectly sure exactly how an agent may respond to
a certain situation. It is therefore important to ensure that an agent is able to
learn how to effectively act in a rational manner in its environment. Expanding
on the learning approaches discussed in chapter 2.1.3, a common method of
learning that lends well to intelligent agents (particularly those operating in
environments that we do not know everything about) is the method of

Reinforcement Learning (RL).

igs learn through feedback by interacting with an

1999). An agent that learns using RL gathers
observations by exploring its environment and then learns through Skinnerian

conditioning which dictates that positive feedback is received for doing

39

something desirable and negative feedback is received for doing something
undesirable. An agent then uses this information to update its internal state

(belief state) of the environment that it is in (McLeod, 2007).

an The goal o@L algorithm is to learn how to map environmental states to actions
to maximise rewards over time. This can be achieved by following what is called
a Markov Decision Process (MDP). An MDP uses the Markov Property which
states that “the future is independent of the past given the present”. This essentially
means that the past events leading up to a current state are encoded in the
current state itself, and hence, all that is needed to make an optimal decision for

the future is the current state (Hunt, 2010).

One of the issues with dynamic and changing environments (which is often the
case in real-world environments) is that the current state that an agent is in
might be related to a sequence of environmental variables stretching back over a
period of time. Using this data can often provide more context or perspective to
an agent’s decision. In this case, the current state in the MDP can be represented
by all the sensor inputs over that window of time (Oke, 2008; Gupta et al., 2018;

Ke et al., 2018).

A . .
" @MDP considers four aspects. These include the states that encode the

environment configuration, actions made by the agent, transition functions that
map how the environment changes under a given action, rewards fed back to the
agent, and a discount factor y for future rewards (Minsky, 1961; Watkins and
Dayan, 1992; Hunt, 2010). A policy is a particular mapping of states to actions
while the optimal policy is the action taken from a particular state that has the
highest expected long-term reward. The expected reward after following a policy
is known as the value function (V) and the expected reward after acting optimally
is known as V* which can be applied recursively (Dietterich, 2000; Mnih et al.,
2013; Frans et al., 2018). Bellman’s Principle of Optimality (BPO) says that an agent

should make an action that yields V*. This works well in a deterministic, fully

40

observable environment, but like many real-world scenarios, this is not always

the case (Helman, 1986).

When an agent first enters an environment, it may not know anything about it.
The agent may also only be able to observe part of the environment at once and
would hence be using a Partially Observable Markov Decision Process (POMDP)
(Oke, 2008; Ohnishi et al., 2019). The agent must therefore explore and learn
about its environment before it can start to act optimally (Gupta et al., 2018). One
of the problems with the BPO is that, if an agent only knows about one optimal
reward in an environment, it will always act so as to achieve that reward and may
miss out on a potentially greater reward (Gupta et al., 2018). This is a fundamental
issue surrounding the idea of exploration vs exploitation. Another problem is that
agents in large environments can only practically look a certain number of states
ahead when considering expected future rewards. This is called having a finite

horizon (Kocsis and Szepesvari, 2006).

An agent is said to act rationally when it always acts in a way to achieve the best
expected outcome, such as in the case of the BPO. However, acting randomly or
irrationally adds an element of exploration (Gupta et al., 2018). Monte Carlo
methods take random actions (known as a Bandit Based approach) to previously
unexplored states in order to find more optimal solutions. This notion of random
exploration is useful when not much is known about the underlying dynamics of

an environment (Kocsis and Szepesvari, 2006).

Q-Learning (QL) makes use of Monte Carlo methods and introduces a new
function known as the Q-Function which finds the Q-Value for any given state.
The Q-Value is the expected return from starting in a particular state and
following some action before acting optimally from the resulting next state
(Watkins and Dayan, 1992; Ohnishi et al., 2019). The initial action need not be
optimal. QL uses an e-greedy policy which means that at each state, the agent

chooses a random action with a probability €, otherwise it acts optimally

41

according to what it knows so far (Tokic, 2010). QL exhibits what is called an off-
policy which means that the Q-Value is evaluated by calculating the expected
future returns based on the assumption that all actions will be greedy. An on-
policy means that the actual actions of the agent (whether greedy or explorative)

are taken into consideration (Fujimoto, Meger and Precup, 2018).

The Q-Function makes use of BPO and is expressed by Equation (1). The
calculation of the Q-Value takes in two parameters, the current state s and an
action a. R(s,a) is the reward for state s and action a while P(s,a,s’) is the

probability of moving to state s’ given action a and the current state s.
0,0 =Rs+7) (Pas) ™ e6,a)) (D)
Sl

QL can take a lot of computational time when Q-Values are calculated over long
horizons. One solution to this is to build a generalized understanding of the
problem space and learn policies that act upon this latent representation. This
can be done through Deep Q-Learning (DQL) (Mnih et al., 2013; Ohnishi et al.,
2019). An example of DQL is a Deep Q-Network (DQN) where an Artificial Neural
Network (see chapter 2.3) is used to take in all sensory information defining an
agent’s current state before learning to map this information to an expected

return for each possible action (Ohnishi et al., 2019).

DQL is good at dealing with high-dimensional inputs from sensors, which is
often the case when a state is defined by a time-based window. DQL can be useful
in abstracting multiple related states down to a single type of action so that it can
behave appropriately when the agent is in an unseen but similar state (Mnih et

al., 2013).

42

OK... Maybe "Local discussion"?

2.1.7 Sectian Discussion

Understanding what makes something generally intelligent is important as it
directs how to go about building a general cognitive architecture that allows for
the development of multiple potentially strong Al for any environment. This “one
solution fits all” (AutoML) approach mitigates humans having to rebuild and

debug new Al solutions for every new task.

Mimicking nature has often been a starting point for the development of many
approaches to Al. Through the analyses of fundamental intelligent processes in
nature, it is evident that biologically intelligent entities all exhibit some common
traits. These include learning through experience, exploring through curiosity,
exploiting knowledge that is already known, and the ability to develop

fundamental generational knowledge as demonstrated through instinct.

The goal of this thesis is to construct a general cognitive architecture (BE). By
following the cognitive modelling approach, these four aspects of biological
intelligence need to be directly addressed in the construction of BE. Learning
through experience, and the idea of exploration vs exploitation can be summed
up as RL while the notion of instinct is representative of cognitive evolution (see
chapter 2.3.3) (@ 1999; Tokic, 2010; Miikkulainen and Lehman, 2013).
Furthermore, the idea of exploration can also be expressed through Monte Carlo
methods which use randomization to try new paths in a problem space (Kocsis

and Szepesvari, 2006).

For a more fine-grained analysis of the emergent behaviours that intelligent
entities must poses, both Sternberg and Thurstone attempt to define intelligence
as the sum of some components but fail to offer definable targets that can be
applied to software (Thurstone, 1962; Clarke and Sternberg, 1986). Minsky’s

analysis is more applicable to Al, however, Osband’s identification of seven core

43

capabilities that intelligent agents must possess offers the most useful and clear
set of targets for BE to address in order to create generally adequate agents

(Minsky, 1961; Osband et al., 2020).

The cognitive architectures Soar and ACT-R also promote the effectiveness of
reducing cognition down to a set of components. Their approaches to analysing
intelligence also draws many parallels to Minsky’s analysis with regards to
learning in a problem space, planning, and using inductive reasoning in order to
use structured knowledge in deriving sub-goals to solve global ones. Both ACT-
R and Soar also categorize memory (or knowledge) into different components.
The common theme differentiates between current and short-term knowledge
(working and episodic memory) from long-term and factual knowledge

(procedural and semantic memory). ACT-R further defines this knowledge as

insky, 1961; Scerri, 2006; Laird, 2 owever, the

concept of memory and how knowledge across time relates to each other is a
common challenge in Al and is a limiting factor of Q-learning (over distant

horizons) as well as the credit-assignment problem (with regards to long-term,

delayed rewards). [t is hence evident that memory is a key issue that must be
addressed by BE (Watkins and Dayan, 1992; Ke et al., 2018). It is also relevant to
note that neither Soar nor ACT-R have yet to explore evolutionary approaches.
Furthermore, CLARION introduces the contrasting idea of representing
knowledge using connectionist methods as opposed to symbolic ones (Scerri,

2006).

The widespread and complex demands of modern intelligent agents highlight the
importance of BE being capable of learning in an unsupervised manner and
dealing with POMDPs as humans do not always know all the details about an
intelligent agent’s target environment. Secondly, due to the potentiality for high-
dimensional problem spaces, there is an inevitability that some approach to DL
You missed that a lot of modern RL algorithms use a replay buffer which can be related to a form
of episodic memory. And before reading what's next, let me stress that in principle, RL is better

at solving the temporal credit assignment problem4han Evo approaches, as it individualy evaluates
all actions in all states, where evo methods only evaluate full trajectories.

is necessary in the construction of BE (Mnih et al., 2013; Poggio et al., 2017;

Ohnishi et al., 2019).

This thesis focuses on Mars rovers as a real-world example of intelligent agents
operating in a dynamic, unpredictable and unknown environment. The need for
high-level, time-sensitive planning skills and the ability to easily find solutions
for new and different tasks (through the use of a cognitive architecture) is very
evident in the challenges that faced the MER mission. Even the later software
updates that included MAPGEN lacked a sense of autonomous perspective. Most
of these tasks required some level of goal-driven navigational ability. One useful
approach taken by the system in place was to break down sensory input of the
environment into a grid-world representation (Bresina and Morris, 2007;
Maimone, Leger and Biesiadecki, 2007; Boukas et al., 2017). This abstracts the
information at hand and renders any higher-level decisions easier to make. A
similar approach can also be used when simulating tests for potential tasks that

a Mars rover may encounter (see chapter 3.8.3).

45

Very weird sentence, the term "Al" is too generic for such a sentence to make sense...

2 Metaheuristics

he strength of Al methods over predefined algorithms is in their abi arn,
afapt, and figure out solutions for themselves, even if we don’t know exactly how
e might go about implementing a solution ourselves. It is important to note

t along-side the benefits that any Al solution might have, there are also

—

draqwbacks in the sense that Al is not perfectly reliable like a predefined algorithm

might be. An Al solution traverses a problem space trying to find the Bestsolation
that it can, but there is no guarantee that the best solution it finds will be the
globally optimal solution. This alludes to the concept of heuristics, as
fundamentally, Al approaches are heuristic in nature. A heuristic is a method of
finding a solution to a problem that exploits the nature of the problem by taking
shortcuts that yield potentially viable solutions in a shorter period of time
(Glover, 1986). Alternatively, one could perform a brute-force search of the
problem space to find the most optimal solution, but this is usually far from being
a feasible solution. Think of this: what would be the "globally optimal solution" for strong Al?
You are missing many developmental concepts to arrive at the right perspective
(open-endedness, etc.)
As previously discussed in chapter 2.1, there are multiple paradigms of knowledge
acquisition to address when considering how to approach the construction of a
general cognitive architecture. Not only do many problem domains often require
an understanding of multiple hierarchies of information (as tackled by DL), but
the methods used to solve these problems are problems within themselves as
their configurations affect their performances. If a cognitive architecture can be
applied to any situation using AutoML, it needs to make use of some kind of
general problem-solving mechanism that can be applied in a layered way from a
fine-grained scope to a course-grained one. These issues are directly tackled by
what are called metaheuristics. Metaheuristics are simply methods of general

problem-solving and are approaches or frameworks that guide the development

of other processes (Vof$, 2001; Lozano, Molina and Herrera, 2011).

46

The resultant solutions produced by a metaheuristic algorithm are hence
heuristics themselves, which is to say that they are not guaranteed to be globally
optimal solutions, but rather ensure some reliability that they will be at least
adequately good (Glover, 1986; Vof3, 2001). Metaheuristics are also well suited to
finding solutions that would otherwise be missed if only a search for a local

optimum was conducted (Glover, 1986).

Since metaheuristics can be seen as a master strategy to solving problems, they
can be applied in many various situations or problem spaces (Vof3, 2001).
However, since metaheuristics just approximate good solutions, they are
generally only used if there exists no exact feasible solution for the problem

(Glover, 1986).

Metaheuristics are often inspired by real processes in nature. A common idea is
that individual components can self-organise through interactions to produce a
good global solution (Gobeyn et al., 2019; Bryndin, 2020). Some of the most
commonly used metaheuristics are EAs (as discussed later in this chapter),

however, a few other well-known metaheuristics are listed below.

e Simulated Annealing (SA) (see figure 10) is modelled after the way
heuristically optimal solutions can be found when moving from high
entropy (chaos) to low entropy (order). This process comes from physics
where particles in a system settle into more stable states as they go from a

high system energy to a low one (Odziemczyk, 2020).

47

local minimum

objective function f(x)

A

global minimum

Figure 10

Diagram showing how SA traverses a 1D problem space by progressively making smaller
randomized exploratory jumps (Odziemczyk, 2020).

AN

/\ /
*\\/

>§
N

Figure 11

Diagram showing how ACO finds an optimal path from A to B. Different entities (ants)
explore in varying directions, but the shortest paths leave the strongest “ant pheromone” trails
and hence become more predominantly used (Dréo, 2006).

inertia individual best
ol f
pL(new direction \‘:/ -
1_\\- ;
4

twarm best

Iteration # 0 Iteration # N

Figure 12

Diagram showing how PSO will converge over time to optimal solutions (right) by adjusting
its momentum through a problem space using the locations of the best solutions found so far

by the swarm and itself as well as its current inertia (left) (Adyatama, 2019).

What is "itself", if not the swarm?
48

e Ant Colony Optimization (ACO) (see figure 1) is based on the idea that
intelligent behaviour emerges from the coordination of multiple less
intelligent entities. It is inspired by the way ants are able to construct
complex societies and structures through many simple workers making

many simple interactions (Utzle et al., 2010).

e Particle Swarm Optimization (PSO) (see figure 12) is centred around the
idea that systems can self-organise whilst remaining decentralized. These
systems are then able to find emergent, heuristically optimal solutions. An
example of this kind of behaviour in nature is in how migrating birds or
swimming shoals of fish can seem to move in coordination without
explicitly communicating with each other (Mishra, 2011; Mirfenderesgi and

Mousavi, 2015).

Naturally, as the dimensionality of a problem space increases, a metaheuristic
solution will often take an exponentially long time to find a good solution in
accordance with the curse of dimensionality (Poggio et al., 2017). One issue with

metaheuristics is that they can be seen as black-box approaches. In other words,

it is often unclear how or why a metahegristic algorithm produced a particular

solution or even why it may be a ggod solution (Belani, Vukovi¢ and Car, 2019;

Gobeyn et al., 2019).

Two notions here:

- black box as they do not know anything about the problem they solve,
apart from "running it"

- black box as their output is hard to interpret...

49

2.2.1 Evolutionary Algorithms

Arguably some of the most popular metaheuristic approaches are Evolutionary
Algorithms (EAs). EAs are universal methods for finding solutions to problems
that are inspired by the principle of Darwinian evolution as seen in nature. EAs
are a subset of algorithms in the broader category of Evolutionary Computing
(EC) which is itself just a classification of metaheuristic approaches (Turney,

Whitley and Anderson, 1996; Olague, 2016).

For the process of evolution to work, certain conditions must be met. There must
exist a set of potential solutions to a problem or task. This represents a population
of individuals in a single generation. Each of these individuals must have varying
characteristics which must be passed on through each successive generation.
There must also exist a selection pressure in which the individuals that possess
characteristics that perform better in their environment are more likely to be
selected to produce offspring. Such individuals are said to have a higher fitness.
The process of passing on emerging characteristics due to environmental
pressures is called the Baldwin effect (Turney, Whitley and Anderson, 1996;
Gobeyn et al., 2019).

For each successive generation, new individuals (children) are produced from the
parent individuals that have been selected from the previous generation. The
traits from the parents of a child must be recombined in the child. Mutation of
characteristics is also important to ensure genetic diversity and exploration of
the problem space. Both recombination and mutation are referred to as genetic

operators (Zelinka, Senkerik and Pluhacek, 2013; Olague, 2016).

A common approach to recombination is to use what are called crossover
operators. Crossover is a process of recombination whereby the information

defining a solution from two or more parents is divided and then reassembled in

50

old population

@ ‘ Select parents by ﬁtnessl

‘ Generate initial population ‘ | Crossover to produce offspring |

Calculate fitness lMutate small number of offspring ‘

Calculate fitness

Stopping condition met? o

new population

Figure 13

Diagram showing a general overview for an EA (Wilde, Knight and Gillard, 2020).

the resultant child using various methods. Different portions of the data in the
child are randomly assigned from each of the parents. Recombination operators
mimic the way genes from parent animals or humans are combined in their
children in nature (Goldberg and Holland, 1988; Champrasert, Suzuki and Otani,

2009; Olague, 2016).

The expression of an individual can be divided into its phenotype and its
genotype. The phenotype is an individual’s physical manifestation and is what the
parent selection process operates on. This can be seen in the individual’s
appearance or its behaviour and response to its environment. The genotype of an
individual is its actual genetic encoding and is passed on through reproduction
and altered through recombination and mutation (Turney, Whitley and

Anderson, 1996; Hadjiivanov and Blair, 2016).

51

Each individual’s varying characteristics (genetic code) are represented by
different data structures depending on what kind of EA is being used. The EA
also affects the choice of approach to recombination and mutation. Some

common types of EAs are listed below (Vof3, 2001; Olague, 2016).

¢ Genetic Algorithms represent genotypes using binary strings (Goldberg
and Holland, 1988).

¢ Evolutionary Programming uses Finite State Machines (Olague, 2016).

¢ Evolutionary Strategies represent genotypes using real-valued strings

(Rubenstein 1982). You can even cite Rechenberg 1973

e Genetic Programming makes use of tree structures (Olague, 2016).

Selection pressure is generated by testing each individual’s ability to solve the
problem at hand as they all compete to see whose solution performs better. The
task or problem is represented by the individual’s environment and how well an
individual does is defined by the fitness function for that environment. After
multiple generations, an evolutionary process should result in the adaption of
the population to its environment and a general increase in fitness (Jakobi,

Husbands and Harvey, 1995; Turney, Whitley and Anderson, 1996; Olague, 2016).

2.2.2 Evolutionary Selection Methods

EAs can either be generational or steady-state. In a generational EA, all the
individuals for each successive generation are newly created children and all
parents from the previous generation are replaced. This can also just be done on

a significant portion of the population instead of its entirety. In a steady-state EA,

52

only one child is created each generation which replaces only one parent from

the previous generation (Branke, Kauf3ler and Schmeck, 2001; Olague, 2016).

There are various ways to perform selection. Selection can either be deterministic
or stochastic. A fitness based deterministic method ranks both parents and
children by their fitnesses and then simply carries over the fittest percentage of
individuals to the next generation. An age based deterministic method allocates
a finite number of generations for an individual to exist in its population before
it is replaced, regardless of its fitness (Blickle and Thiele, 1996; Eiben and Smith,

2015).

In stochastic selection, parents are only selected to produce offspring based on
probability. This probability is defined by the individual’s fitness where the fitter
an individual is, the more likely it is to be selected. The idea of elitism can also be
implemented where the fittest individuals from one generation are kept for the

next generation unchanged (Eiben and Smith, 2015; Gupta et al., 2018).

Stochastic selection methods have the benefit of promoting exploration of the
problem space. If the selection pressure is too high or too deterministic, an EA
may quickly converge to a solution and settle on a local optimum whilst missing
out on better solutions. Stochasticity is good at mitigating this. Some common
approaches to stochastic selection are listed below (Turney, Whitley and

Anderson, 1996; Gupta et al., 2018).

e Linear Selection ranks individuals based on their fitness and then selects
parents with a probability based on their ranking. The highest ranked
individuals are more likely to be selected. This prevents very dominant
solutions from becoming the pervasively selected parent (Blickle and

Thiele, 1996).

53

e Exponential Selection works the same way as linear roulette-wheel
except that lower ranking individuals have an exponentially diminishing
probability of being selected. The rate of this exponential decay is

controlled by adjusting the base of the exponent (Blickle and Thiele, 1996).

e Proportional Selection directly assigns the probability of an individual
being selected as its fitness over the total fitness of the population (Blickle

and Thiele, 1996).

e Tournament Selection randomly selects n individuals from the
population and places them in a tournament pool. The fittest individual
from this pool is then selected. The larger n is the greater the selection

pressure (Blickle and Thiele, 1996).

2.2.3 Multi-Objective Evolutionary Algorithms

EAs have been demonstrated to be strong universal problem-solving heuristics.
They have also been shown to be well suited for multi-objective problems as well
as being particularly good at being Pareto-optimal in such environments (Zitzler
and Thiele, 1999). A Pareto-optimal solution means that if an improvement is
made to the solution for any one of its objectives, it is accompanied by a
degradation of the solution for one or more of any of the other objectives. A
solution can also dominate another solution if it is no worse than the other
solution for all objectives and better than the other solution in at least one
objective. The set of all Pareto optimal solutions is called the Pareto front and is
shown in figure 14 (Branke, Kaufller and Schmeck, 2001; Zitzler, Laumanns and

Thiele, 2001). The ability of EAs to find any given Pareto front makes them useful

54

A Non-dominated particle
o) Dominated particle

O
O O

Pareto Front

F2 (x}

F1 (x)

Figure 14

Diagram showing the difference between dominated and non-dominated solutions as well as
the Pareto front (Mahesh, Nallagownden and Elamvazuthi, 2016).

tools to use when modelling intelligent agents that have to complete complex,
multi-objective tasks, which is often the case in real-world environments

(Branke, Kaufiler and Schmeck, 2001; Belani, Vukovi¢ and Car, 2019).

One of the main challenges of multi-objective EAs is determining how an
individual’s fitness is evaluated. Another challenge is ensuring that there is
sufficient population diversity to cover all possible objective solutions (Zitzler
and Thiele, 1999). Diversity begins by randomly generating the initial population
for a particular run of an EA. This initial population needs to be sufficiently large
and random enough to cover a significant spread of the problem space.
Sometimes EAs can get stuck in local optima, however, this can be mitigated by
altering certain parameters of the EA such as (but not limited to) decreasing the
elitism factor or increasing the mutation rate. Mutation promotes exploration of
the problem space and lowering elitism decreases selection pressure (Eiben and

Smith, 2015; Olague, 2016; Gupta et al., 2018; Gobeyn et al., 2019).

55

In multi-objective evolution, there are varying approaches to deal with Pareto-
optimality for all different objectives of an environment. A simple method is to
aggregate an agent’s fitness into a single value by scaling each fitness value for
each objective by the importance of the objective before adding them together.
However, constructing a good fitness function becomes difficult when not much
is known about the problem space or the importance of each sub-objective

(Lozano, Molina and Herrera, 2011; Olague, 2016).

Any method that aims to find multiple peaks in a problem space (multiple
objectives) while maintaining a global fitness diversity is called niching. One
method proposed by Goldberg called fitness sharing scales the fitness of an
individual by how close it is to other solutions in the problem space. Good
solutions in highly populated areas will have decreased fitnesses compared to
worse solutions in less populated areas. This encourages exploration of new

regions (Goldberg and Holland, 1988; Gobeyn et al., 2019).

Another approach that utilizes niching is called speciation. In speciation, the data
defining an individual is represented as a vector or array of vectors. A distance
function is then constructed that can be used to calculate a single real valued
distance between two different individuals (Stanley and Miikkulainen, 2002). All
individuals are assigned to a species based on the distance function before the
selection process begins. Each individual is compared to a representative
individual from each species (which is commonly chosen at random for each
generation) before being assigned to the first species that is closer than some
threshold value. If the individual does not fit into any species, a new species is
created. During the selection process, each species must select a certain number
of parents from its sub-population based on the species’ cumulative fitness as a
portion of the entire population’s cumulative fitness (Stanley and Miikkulainen,

2002; Hadjiivanov and Blair, 2016).

Speciation can be performed dynamically at each generation and can be useful
when not much is known about the fitness landscape. Speciation also allows new
directions in potential solutions that have not had time to evolve the chance to
expand without having to compete with older, more established solutions
(Hadjiivanov and Blair, 2016). Some more advanced applications of speciation
utilize clustering algorithms such as the K-means clustering algorithm to

organise individuals into species (Aspinall and Gras, 2010).

Some other niching techniques include crowding, Evaluated Genetic Algorithm
(VEGA) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). In crowding,
children are paired with parents based on some similarity metric before being
evaluated by a replacement rule that decides their selection (Eiben and Smith,
2015). VEGA works similarly to speciation and uses a vector containing
evaluations for all objectives for a particular individual before splitting the
population into sub-populations that each optimize to different parts of the
vector (Zitzler and Thiele, 1999). Lastly, SPEA2 works by utilizing an archive of
all non-dominated solutions from both the archive and population of the
previous generation. The archive is then reduced or filled to maintain its size for

each generation (Zitzler, Laumanns and Thiele, 2001).

2.2.4 Hyperparameter Optimization

At the highest level of AutoML problem-solving stands the overall
parametrization of an architecture. Any algorithmic approach to Al is defined by
its own set of global parameters. In an EA these could be (among many other
parameters) the mutation or crossover rate. The parameters that govern the way

an algorithm runs are called hyperparameters. Any meta-algorithm or

57

metaheuristic that converges on optimal values for a set of hyperparameters is
called a hyperparameter optimization (HPO) algorithm (Hutter, 2014). HPO is a
useful tool as algorithms (such as EAs) can yield very poor results if they have
ineffective hyperparameter settings and potentially very good results if set
correctly (Hutter, 2014; Gobeyn et al., 2019). HPO is a sub-problem of AutoML
and is an essential component in covering all aspects of a cognitive architecture’s

hierarchy (Cooper et al., 1996; Hutter, 2014).

HPO can be done with an offline or online approach. An offline approach
(parameter tuning) adjusts the hyperparameter values of an algorithm and then
runs it to evaluate the performance of the current configuration. Online adaption
(parameter control) is done at runtime and can be heuristically determined using
three different approaches. A deterministic approach uses static heuristics to
modify parameters over time while an adaptive approach uses heuristics that are
based on monitoring the current progress of the algorithm being optimized.
Lastly, a self-adaptive approach includes the hyperparameters to be adjusted into
the algorithm itself which the hyperparameters govern (Glover, 1986; Utzle et al.,

2010; Eiben and Smith, 2015).

When evaluating a potential hyperparameter configuration, multiple runs should
be done. A good configuration should yield a statistically similar result over
different runs. There are multiple performance evaluation measures that one can

use. Some of the main metrics are listed below (Smit and Eiben, 2010).

¢ Best Solution: The best solution obtained across all runs of the algorithm.

e Average Evaluations to Solution (AES): The number of fitness
evaluations before a specified minimum highest fitness is reached.

e Success Rate (SR): The percentage of fitness evaluations that are above a
specified minimum highest fitness.

e Mean Best Fitness (MBF): The average best fitness found across all runs
of the algorithm.

58

2.2.5 REVAC

Relevance Estimation and Value Calibration of Evolutionary Algorithm
Parameters (REVAC) is an offline HPO algorithm that utilizes an evolutionary
strategy. REVAC is designed to converge rather quickly as computational time is
more of an issue in offline HPO algorithms as opposed to online ones (Smit and

Eiben, 2010).

REVAC works by initiating a population of potential parameter configurations.
These configuration solutions are evaluated by running them n times before
averaging their evaluated performance (which is usually done using MBF).
Parents for the next generation are selected deterministically. A predefined
portion of the population with the highest utility values are selected to be parents

(Smit and Eiben, 2010).

Children solutions are created by using a multi-parent crossover operator across
all the selected parents. Each parameter value assigned to a child is chosen
randomly from one of its parents’ corresponding parameter values (Smit and

Eiben, 2010).

The next step is to implement mutation which is independently applied to each
parameter for every child. All parameters are randomly assigned new values
within a given range above and below their original values. This range is found
by ordering all parents by the specific parameter in question and then finding the
lower bound value at the n‘" lowest neighbour below the parent that holds the
child’s original value and the upper bound value at the n*" highest neighbour. All
individuals in a previous generation are replaced by the children for the next

generation (generational selection) (Smit and Eiben, 2010).

59

Local ?

2.2.6 Section Discussion
T N\,

Metaheuristics are powerful tools when it comes to general problem-solving.
Furthermore, the idea of meta problem-solving is also very useful in analysing
the development of general intelligence as biologically intelligent entities are
able to learn how to solve new problems by developing higher level skills that
utilize the assumption that the underlying mechanics of a problem hold true
(Hutter, 2014). This concept of meta-learning has similarities with the concept of

hierarchical learning which is explored later in chapter 2.4.1.

Some of the most popular metaheuristic approaches include EAs. Biologically
intelligent entities are themselves emergent through the process of evolution
which is a genetic metaheuristic process. Such entities then further learn how to
act optimally in their environment through RL during their lifespans. Evolution
can also be evident in the development of instinct as evolution does not only
apply to a creature's phenotype but also moulds neural structures so that
creatures are born with some level of a pre-trained ability to do things (Turney,
Whitley and Anderson, 1996; Miikkulainen and Lehman, 2013). Furthermore, due
to the ability of metaheuristics to be master strategies, they may prove to be a

necessary tool in the construction of general cognitive architectures.

EAs ability to solve multi-objectives is also relevant as intelligent agents
operating in complex real-world environments often encounter such situations
(Zitzler and Thiele, 1999; Badue et al., 2021). EAs are also good at solving tasks in
POMDPs as they are able to explore the problem space in an unsupervised
manner (Miikkulainen et al., 2018). However, due to the fact that, by definition,
heuristic methods can only guarantee adequately good solutions, they are likely
not strong enough on their own to produce convincing general intelligence and
may need to be coupled with other learning methods such as RL (as is the case

with biologically intelligent entities).

60

Evolutionary approaches can often take extended amounts of time to converge
(Branke, Kaufller and Schmeck, 2001). However, it may be that these longer
processing times are necessary for the emergence of strong solutions (as evident
in the billions of years of biological evolution) and that algorithmic shortcuts may
ultimately limit the potentiality of a solution by encouraging the convergence of
local optima. Furthermore, since there are so many parameters that may govern
an evolutionary metaheuristic algorithm, the need to find some optimal set of
hyperparameters is also prevalent (Hutter, 2014). This optimization of
hyperparameters can be extended to be a potentially fundamental requirement
of BE’s cognitive architecture. HPO, or some kind of meta-metaheuristic may

hence be an important step in the development of generally intelligent agents.

REVAC is a strong and fast (relative to other generic EA methods) off-line HPO
algorithm. Online adaptive approaches are much faster but if implemented
deterministically these methods can often be suboptimal. On the other hand,
self-adaptive implementations can drastically increase the dimensionality of the
problem space, thus also potentially hindering the evolutionary process (Smit

and Eiben, 2010; Utzle et al., 2010).

The process of selection in an EA is also important. According to Blickle and
Thiele, stochasticity is crucial and linear, exponential, and tournament selection
are good methods to use depending on the problem at hand, but proportional
selection seems to perform consistently worse (Blickle and Thiele, 1996). One of
the strengths of exponential selection is that it can behave in a similar way to
other methods if its parameters are set in a particular manner as well as being
able to exert far greater selection pressure than other methods. This makes it a

very versatile method of selection.

The presentation of RL and Metaheuristics would have benefited from being a little more formal.
Besides, | would have put them at the same level in the structure of the manuscript, because they
are two tools to solve the same problem.

61

2.3 Artificial Neural Networks

In the effort to cover all aspects of a comprehensive cognitive architecture, we
have explored intelligence and how it can be expressed in machines, outlined
different approaches to learning, and highlighted some methods to higher-level
problem-solving through the use of metaheuristics, EAs and HPO. Since any
problem can essentially be reduced to function-mapping, methods that enable a
machine’s knowledge to be directly exploited at a lower, fine-grained level of
problem-solving need to be explored (Minsky, 1961; Scerri, 2006). By following
the cognitive modelling approach, these methods would represent the basic task
completion abilities that biological brains are capable of. Arguably the most
popular approach to dealing with these kinds of problems involve solutions that

use Artificial Neural Networks (ANNSs).

ANN s, or Neural Networks (NNs), are approaches to Al that are based on the way
neurons fire signals between each other in biological brains. ANNs are a
connectionist approach to processing data and can be thought of as universal
function approximators which means that they can learn to approximate any
function that produces optimal outputs for a set of given inputs in a problem
space (Agatonovic-Kustrin and Beresford, 2000; Bre, Gimenez and Fachinotti,

2018).

An ANN contains nodes that simulate neurons. Each node receives a collection
of input signals before sending a corresponding output signal based off the sum
of its inputs with the use of some function (known as the activation function).
Some of the most commonly used activation functions are shown in figure 15

(Agatonovic-Kustrin and Beresford, 2000; Gupta, 2020).

The nodes in an ANN are linked through weighted connections. The signal fired

by a node is sent down one or more connections and its value is multiplied in

62

f(x) =1, %0
=0, x<0

fi{x) =Ax

f(x) = x, x>=0
=0, %<0

f(x) = x, xs=0
= 0.01x, x<0

1(x)=1/(14e*x)

1(x) = 2/ (1ee*(-20)) -1

Figure 15

Common activation functions from top-left to bottom-right; Binary, Linear, Rectified Linear

Unit (RELU), Leaky RELU, Sigmoid, and TanH (Gupta, 2020).

each connection path by that connection’s weight. At first, all weights are

randomized, but as the ANN learns it adjusts all its weights so as to perform

optimally for the task at hand (Agatonovic-Kustrin and Beresford, 2000). A

diagram of a basic ANN can be seen in figure 16.

The nodes of an ANN are structured in layers. The first layer is called the input

layer and the last layer is the output layer while all the layers between are called

hidden layers. ANNs are good at generalizing about problems once they have

been trained and as a result can be used to give good results on new unseen,

similar data. ANNs are also good at dealing with noise and are hence suited for

real world problems where noise is almost an inevitability (Agatonovic-Kustrin

and Beresford, 2000; Bre, Gimenez and Fachinotti, 2018).

63

Input layer | Hidden layers i Output layer

i h, h, h, : 0

Figure 16

Diagram depicting the structure of a typical FFNN (Bre, Gimenez and Fachinotti, 2018).

ANN:Ss can either be cyclic or acyclic. A cyclic ANN simply implies that there is at
least one connection path within the network of the ANN that can be traced from
a node back to itself. Networks that include input from the previous output of
the same ANN are called Recurrent Neural Networks (RNNs). Acyclic ANNs
simply contain no cycles and non-RNN based acyclic ANNs are called Feed-
Forward Neural Networks (FFNNs) (Bhandarkar et al., 2019). Furthermore, when
all neurons in one layer of a network are connected to all neurons of an adjacent

layer, the two layers are said to be fully connected (Tavanaei et al., 2019).

Most implementations of ANNs today combine the application of ANNs with DL
to give way to Deep Neural Networks (DNNs). Networks that are not DNNs are
called shallow networks (Poggio et al., 2017). DNNs cover all networks that consist
of more than one hidden layer and are hence able to learn multiple levels of
hierarchies and structures in data and is a necessity in solving more complex

tasks. This is because the number of hidden neurons defines the upper-limit of a

network’s search space and hence the maximum complexity of a task that it can

solve (Hadjiivanov and Blair, 2016; Tavanaei et al., 2019).

2.3.1 Convolutional Neural Networks

Building on the concepts introduced by ANNs, Convolutional Neural Networks
(CNNs) assist in the ability of a network to extract features from data by
structurally mapping an n-dimensional input to a latent space. CNNs are often
used in image classification to extract potential features of an image before
sending the feature data to an ANN to be classified (Karpathy and Leung, 2014).
A CNN has an architecture that is partitioned into definable layers. The first layer
(known as the convolutional layer) divides the image into equal regions and
applies a filter function to each region. The next layer simply applies an activation
function (usually RELU) to each region’s output before the pooling layer down-
samples the image, thus creating features in the newly formed latent space. This
cycle can be repeated any number of times before the image is passed on to a

fully connected ANN (Vedaldi and Lenc, 2015).

CNNs work well with n-dimensional images, however, many problems can be
transformed to be made to look like an image (Karpathy and Leung, 2014). In the
case of an agent operating in an environment, the image created would be the
agent’s current interpretation of the world from its input sensors. The
dimensionality of this image can be increased if we include previous sensory data
into the input (Mnih et al., 2013; Vedaldi and Lenc, 2015). Another benefit of
CNNs is that they can decrease computational times as the latent representation
of any input data has a lower dimensionality once compressed and hence does

not require as much processing by a fully connected ANN (or any other further

65

— CAR
— TRUCK
— VAN

|j |j — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION
Figure 17

Diagram depicting how a CNN processes and classifies image data (Saha, 2018).

architectural components) to achieve accurate results (Karpathy and Leung,

2014).

2.3.2 Gradient Descent

One method that is often used to train ANNSs is through a process called gradient
descent which is achieved through an optimization algorithm. A gradient descent
optimization algorithm aims to find a local (or potentially global) minimum of a
differentiable function. It is important to note that gradient descent optimization
need not only be used in the context of ANNs and can be applied to many other
Al approaches since any continuous problem space is differentiable (Ruder,

2016).

There are numerous optimization algorithms and many of them employ different
strategies to perform gradient descent without getting stuck in local optima. One

of the most well-known and straight-forward gradient descent algorithms is

66

Initial Gradi
g t
Weight ,l radien
Cost l/

!
!
/
]

Incremental

Step \ ’
1

I

1

//

]

¥ :

!

/ / Minimum Cost
Derivative of Cost /

Weight

>

Figure 18

Diagram depicting the fundamental process of gradient descent. Note that “cost” is another
term for “loss” (M, 2019).

called backpropagation which simply propagates the error difference between an
ANN’s output and its expected or optimal output (known as the loss function)
back through the network (Agatonovic-Kustrin and Beresford, 2000; Poggio et
al., 2017; Tavanaei et al., 2019; Fil and Chu, 2020). Gradient descent can be
mathematically described by Equation (2) where w, is the current weight of an
ANN connection, w; is the new weight, and a is the learning rate. A visual

depiction of gradient descent is also given by figure 18.

dloss

(2)

Wi =wo—a——
Some other commonly used gradient descent optimization algorithms include
Stochastic Gradient Descent, Resilient Propagation, Root Mean Squared
Propagation, the Adam algorithm, and Adamax. Each of these methods uses their
own techniques to avoid terminating on local optima, such as exploiting
stochasticity or the statistical averages of a batch’s result to promote exploration

of the problem space (Ruder, 2016).

The issues involved with using gradient descent optimization algorithms don’t
only end at getting stuck in local optima. One of the difficulties associated with
error propagation is that it becomes a very challenging task in unsupervised and
semi-supervised learning environments since examples of optimal outputs need
to be known before-hand (Agatonovic-Kustrin and Beresford, 2000).
Furthermore, if the end-goal or resultant behaviour of a sequence of actions is
evaluated, it is difficult to attribute what actions contributed negatively or
positively to the result. This is often the case in dynamic environments as
opposed to problems such as classification tasks (Belani, Vukovi¢ and Car, 2019).
Multi-objective tasks are also difficult to optimize through gradient descent as
the network must usually find a Pareto-optimal solution that may not be the

optimal solution for any one of the individual objectives (Zitzler and Thiele,

1999).

2.3.3 Neuroevolution

One way to escape the pitfalls of gradient descent is to leverage the problem-
solving abilities of EAs as defined in chapter 2.2 through the implementation of
neuroevolution. Neuroevolution is the study of applying EAs to ANNs.
Neuroevolution can be applied in two ways: using direct or indirect encoding.
Indirect encoding entails evolving the topology of a network (the number of
layers and number of nodes per layer), activation functions used, as well as
various hyperparameters governing the network. The process of finding optimal
connection weights is then left up to another optimization process such as

gradient descent. Direct encoding evolves the network itself from the weights of

68

the connections to the organisation of the nodes in the layers themselves

(Miikkulainen and Lehman, 2013; Hadjiivanov and Blair, 2016).

One simple implementation of neuroevolution is a direct encoding approach
called Conventional Neuroevolution (CNE). When using CNE, the topology of the
network is predefined and only the weights of the network are evolved (Gomez

and Miikkulainen, 2006).

2.3.4 NEAT

One of the most popular neuroevolutionary algorithms that uses both indirect
and direct encoding to evolve the weights and topology of an ANN is called Neuro
Evolution of Augmenting Topologies (NEAT). NEAT encodes the details
pertaining to an ANN in its genome. There are no longer hidden layers, just nodes
in-between the input and output layers that have connections to any number of

other nodes (Stanley and Miikkulainen, 2002).

The information stored in a network’s genes consists of the data pertaining to all
of its connections. This data includes a connection’s start node, end node,
connection weight, an enabled or disabled flag, and something called an
innovation number. The innovation number is just a global variable that allows
NEAT to keep track of all new connections made. NEAT aims to produce minimal
topologies and hence starts with very small networks that consist of exclusively
their input and output layers. These networks only grow if an augmenting

mutation is evolutionary advantageous. (Stanley and Miikkulainen, 2002).

There are five mutation operators that can be used in NEAT. These mutations

consist of:

69

¢ adding a new connection with a random weight,
¢ adding a new node along an existing connection,
e disabling or enabling a connection,

e multiplying a weight by a random factor,

¢ and randomizing a completely new connection weight.

When performing crossover, genes are lined up between parent networks
according to each gene’s connection innovation number. Crossover is then
applied over the matching genes by randomly choosing the child gene’s
connection weight from one of the parents. If the gene in at least one of the
parents is disabled, there is an increased chance that the inherited gene will also
be disabled. Due to networks evolving differently, the length of the chromosomes
between two parents may not match. If there are genes from parent A that are
not in parent B, but parent B holds genes with a higher innovation number, then
these genes are called disjoint genes and are simply carried over to the children
produced. If there are genes in parent A that are not in parent B and parent B
does not contain genes with a higher innovation number, then these genes are
called excess genes. Excess genes are carried over to any children produced if they
are held by the fitter parent and dropped if they are not. A diagram depicting
how crossover works in NEAT can be seen in figure 19 (Stanley and Miikkulainen,

2002; Hadjiivanov and Blair, 2016).

Newly augmented topologies have a higher chance of being culled by the
evolutionary process because the weights associated with their new connections
have not had time to evolve, however, the fact that the connection is there may
be valuable in the long run. To combat this, NEAT makes use of speciation to
niche individuals with newly expanded topologies. Individuals that have similar
topologies then have a better chance when competing against each other.

Individuals within a species also make use of fitness sharing in order to ensure

70

Parent1 Parent?

1 [s 4 5 | 5 1| 2 3|4 5
14| 224 [324 | 25| 5=4[15| | 14|24 34 2>5 524

[DISAB] [DISAH]

10

disjoint
1 [3 5 8
Parentl|; -4]2-4|3-4|2>5]| 54 T -
DISAB
, 1 | e 3 |4 s | s 7 9
Parent2l , © 1574 3oa] 25 [5t | 56 64 35
DISAB DISAB
disjointdisjoin EXCEesSs excess
- 1 [3 |4 s | 6| 7] 8| o
Offspringl =y 1oy 34| 25 |54 | 56 | 64| 15| 35
[DISAB DISAB

Figure 19

Diagram depicting crossover in NEAT (Stanley and Miikkulainen, 2002).

that it is unlikely a single species dominates the rest of the population (Stanley

and Miikkulainen, 2002; Hadjiivanov and Blair, 2016; Acton et al., 2020).

Speciation in NEAT is defined by a distance algorithm that accumulates the
differences in the parameters of two networks. The distance function is
calculated as shown in Equation (3). E is the number of excess genes, D is the
number of disjoint genes, N is the number of connections, and W is the average
weight difference between genes with the same innovation number. Additionally,

¢, €2, and c; are simply tuneable parameters (Stanley and Miikkulainen, 2002).

71

§=—— 424 W 3)

2.3.5 HyperNEAT

Another popular approach to neuroevolution is called HyperNEAT. HyperNEAT
extends from NEAT to be well adapted to evolving large scale neural networks
and no longer uses direct encoding like NEAT does. Instead, HyperNEAT makes
use of an indirect encoding method called Compositional Pattern Producing
Networks (CPPNs) which exploits geometric patterns in the topology of an ANN’s
network. This is compared to the often sporadic and disorganised networks that
are usually produced by NEAT (Stanley, D’Ambrosio and Gauci, 2009).
HyperNEAT becomes useful when dealing with larger networks as its use of
traditional gradient descent methods makes it much faster than NEAT while still
utilizing the benefits of EAs to explore a problem space through the adaption of

its topology (Stanley, D’Ambrosio and Gauci, 2009; Hadjiivanov and Blair, 2016).

2.3.6 DeepNEAT

An overarching issue with NEAT is the fact that its effectiveness quickly
diminishes as network sizes increase. This is because the dimensionality of the
network’s own optimization space drastically increases as it mutates to become
bigger. Secondly, NEAT is designed to aim for minimal complexity. This may

unfortunately result in it settling on a suboptimal architecture that is smaller

72

than a more optimal one. NEAT may get stuck in this local optimum or take an
unreasonable number of generations to begin to properly explore larger
networks. Furthermore, with advancements in modern-day computing power,
the development of larger networks is becoming less of an issue from a
computational standpoint so the need to create minimally complex networks is

no longer critical (Stanley and Miikkulainen, 2002; Acton et al., 2020).

DeepNEAT strives to solve these issues by more extensively applying DNE with
NEAT to DNNs. The idea centres around using a higher-level evolutionary
process to optimize the parameters and structure of multiple low-level
evolutionary processes. The first main difference between DeepNEAT and NEAT
is that it encodes layers of nodes in its chromosomes instead of single neurons,
thus moving away from the more seemingly random structures produced in
NEAT to a multi-layered approach. This helps increase the efficiency of the
evolutionary process as allowing arbitrary connectivity between any neurons
adds additional complexity. It also makes it more likely for larger networks to
develop as multiple neurons are added in a single mutation instead of just one

(Miikkulainen et al., 2018).

DeepNEAT further extends this idea by allowing each layer to be expressed by a
different kind of network. Layers can either be convolutional, fully connected, or
recurrent. Each layer also has numerous evolvable properties that include
(among others) the size of the layer and activation functions used. Evolution is
then applied at a higher level to the structure of the layers and simultaneously at
a lower level to the weights within the layers (Miikkulainen et al., 2018; Acton et

al., 2020).

In the same way that NEAT struggles to deal with the growing complexity of its
neurons, the networks of DeepNEAT struggle to deal with the growing
complexity of linked Ilayers. To address this, Coevolution DeepNEAT
(CoDeepNEAT) was developed. CoDeepNEAT splits the evolutionary process by

73

Blueprint Module Assembled Network

<D,

Figure 20

Diagram depicting crossover in NEAT (Stanley and Miikkulainen, 2002).

evolving populations of modules and blueprints separately. Each module is a
small DNN consisting of a few layers developed in the same way as DeepNEAT
while blueprints are chromosomes that map the entire network’s inputs to a tree
structure of different modules. This also allows certain modules to be evolved
once and then used multiple times by a blueprint and hence enables the easy
development of useful repeating structures (Miikkulainen et al., 2018; Acton et

al., 2020). An illustration of how CoDeepNEAT works can be seen in figure 20.

2.3.7 Spiking Neural Networks

As effective as ANNs might be, they are subject to a few limitations and are
ultimately abstract representations of more complex systems that take place in
biological brains. A significant issue with ANNSs is that they are often rigid with
regards to subtle dynamic environmental changes. This is usually a significant
issue when dealing with real-world agents or when trying to port a model that
has been trained in a simulation to a physical environment (Jakobi, Husbands

74

and Harvey, 1995; Qiu et al,, 2020). To address these issues, Spiking Neural
Networks (SNNs) try to replicate the dynamic way biological entities can respond
to change by mimicking biological brains in a more direct way (Tavanaei et al.,

2019).

Unlike traditional ANNSs, biological brains send signals between neurons using
trains of discrete action potentials (spiking voltage signals) where the frequency
and timing of the spikes is significant to the neuron on the receiving end. Due to
the time-sensitivity of incoming signals, SNNs have the ability to perform better
than normal ANNs in time dependant environments. Furthermore, SNNs are
very resilient to noise as a few erroneous spikes of information are unlikely to
significantly change the average spike rate across a connection path (Tavanaei et

al., 2019).

The nature of SNNs makes them very well suited to real-world environments as
they are time sensitive and possess the ability to deal with the dynamic nature of
physical environments by being able to adapt to changes. SNNs also exhibit
natural Transfer Learning (see chapter 2.4.1) capabilities as an agent trained in a
simulated environment with an SNN is more likely to be able to adapt when
moved to the real world. This ability to adjust to environmental differences or
changes is known as online adaption as the agent is adjusting its behaviour during

run-time (Qiu et al., 2020).

Another benefit of SNNs is that, due to the fact that not all neurons always fire,
network pathways are sparsely activated. This results in computational
processing being more time and energy efficient as portions of the network that
are not activated need not be evaluated (Wu et al., 2019). However, this requires
that the hardware or software running a SNN be implemented in such a way that

it can utilize these optimizations.

75

integration

+leakage \, ¥~ spike
x1 1.1 3 1 <"'m.. . : l .
refractory perio
xz 11 1
x3 —1 L : . » Binary events

x4 1 1 1 11 /

Figure 21

Diagram showing how signals are sent in SNNs (Clarke, 2018).

In a biological brain, a neuron emits a signal spike when the sum of charges in
the action potential across its membrane is above a certain threshold. This
process can be simulated in a SNN. There are multiple different models that
approximate the complex biological process of real neurons. Some of these
models include (among others) the Spike Response model, the Izhikevich Neuron

model, and the Leaky Integrated-and-Fire (LIF) model (Tavanaei et al., 2019).

One of the most popular approaches is the LIF model. In the LIF model, the
current neuron’s charge value is accumulated by receiving incoming signal
spikes. The neuron then gradually leaks its charge after each time step that passes
with higher charges leaking faster than smaller charges. This makes it more likely
for a neuron to cross its threshold and fire when signals are sent to it more
frequently, even if they are only small signals (Tavanaei et al., 2019; Wu et al.,

2019).

After a neuron fires, its charge value is reset to a minimal value before it enters a
refractory period in which the neuron will not fire no matter what happens.
During this period the neuron may still accumulate charge, however, incoming
signals accumulate significantly less charge as opposed to when the neuron is not

in a refractory period (Fil and Chu, 2020).

76

SNNs are able to apply online learning rules to adjust the weights of synaptic
connections in their networks. This is known as neuro plasticity as subtle changes
in the network’s weights occur depending on inputs from the environment. SNN
learning through online adaption draws some parallels with gradient descent
methods to some extent but also easily allows for unsupervised learning. This is
because it does not require a loss function to regress against and simply works by
increasing or decreasing a connection’s weight over time depending on how

much it is used (Qiu et al., 2020).

SNN connections can be excitatory (which increase the strength of a signal) or
inhibitory (which decrease the strength of a signal). SNN learning rules are
predominantly categorized under a general learning rule called Spiking Timing
Dependent Plasticity (STDP). STDP works by adjusting weights based on the
relative times between spiking signals sent down a connection within a given
learning window period. The idea is that if a presynaptic neuron (the neuron
before a connection) fires shortly before a postsynaptic neuron (the neuron after
a connection), then the connection weight will be increased (strengthened). If
the postsynaptic neuron takes a long time to fire (but still fires within the
learning window period), then the connection weight will be decreased

(weakened) (Tavanaei et al., 2019; Qiu et al., 2020).

The process of strengthening a connection is called Long-Term Potentiation
(LTP) while the process of weakening a connection is called Long-Term
Depression (LTD). One of the most commonly used STDP rules is outlined in
Equation (4) where w is the weight of a connection, A and B are tuneable constant
parameters and T 'is the time of the learning window period. The variable A must
be less than zero while B must be greater than zero. It is worth noting that most
SNN implementations use variations of this rule so as to achieve a more efficient

result depending on the task at hand (Tavanaei et al., 2019).

77

([—(|Tpre =T
Ae (l preT pOStD Tore = Tpost <0, A>0
Aw = < (4)
_(|Tpre — TpostD
LBe T Tore = Tpost <0, B <0
2.3.8 Section Discussion

Many modern Al and ML solutions in place today involve some use of ANNS,
often within a DNN structure. ANNs are a connectionist method to handling
information as knowledge is represented in a network by the unique arrangement
and configuration of the weights of the connections themselves. This allows
ANNSs to possess a strong ability to deal with noise and exhibit generality in a
problem space (Agatonovic-Kustrin and Beresford, 2000; Poggio et al., 2017;

Gupta, 2020).

As the complexity of a problem increases, the necessity of "deepening" the
structure of an ANN becomes more significant. Not only are the weights of a
network important, but the unique structure of a network’s topology can also
have a drastic effect on its performance (Stanley, D’Ambrosio and Gauci, 2009).
Building more advanced topologies with hierarchical levels of structures (as in
the cases of DNNs) can also further assist in improving performance in complex

tasks (Acton et al., 2020; Gupta, 2020).

The choice of hyperparameters, activation functions and optimization algorithm
can also have a drastic effect on the performance of an ANN. Despite the efforts
of modern optimization algorithms, most are still susceptible to the

shortcomings of gradient descent and are not always suited to dealing with multi-

78

objective, dynamic environments (as is often the case in real-world

environments) (Ruder, 2016; Belani, Vukovi¢ and Car, 2019).

A powerful approach to ANNs that is not reliant on gradient descent methods is
neuroevolution (Miikkulainen and Lehman, 2013). NEAT is a particularly
significant implementation of neuroevolution, but it struggles to feasibly grow
large networks. Some methods such as HyperNEAT try to mitigate these
limitations by using gradient descent to optimize network weights while
exploring the problem space using evolution on network topologies (Stanley and
Miikkulainen, 2002; Stanley, D’Ambrosio and Gauci, 2009). Other methods such
as DeepNEAT and CoDeepNEAT combat these challenges by dividing the
evolutionary process into hierarchical levels to encourage the expansion and
growth of networks so that they can deal with more complex problem spaces

(Miikkulainen et al., 2018; Acton et al., 2020).

One common method of reducing an ANN's input dimensionality is by extracting
feature information from input data into a latent space using CNNs which can
both improve the speed and accuracy of an ANN (Karpathy and Leung, 2014;

Vedaldi and Lenc, 2015).

A further extension of ANNs that more directly replicates the functionality of a
human brain can been in the use of SNNs. SNNs are still able to perform in the
same manner as normal ANNs except that they have the added ability to exhibit
online-adaption and neuroplasticity. This makes them potentially even better
than traditional ANNs at dealing with noise and their ability to deal with small
adjustments makes them well suited for real-world environments (Tavanaei et
al., 2019; Wu et al., 2019; Qiu et al., 2020). Furthermore, due to the fact that
neurons build up charge over time before spiking, SNNs exhibit a natural ability
to retain knowledge and develop short to medium term memory as an event in
the past can make it more likely for some neurons to fire in the near future. If the

leaking rate of a neuron is low and the charge accumulates slowly, this ability to

79

draw information from the past can extend over relatively far horizons. The use
of a refractory period can also assist in shaping a SNN’s response to being
sensitive to temporal contexts. However, it is also worth noting that SNNs often
have a higher parameter dimensionality than traditional ANNs which make it
harder to apply evolution to them as training times may drastically increase or

optimal solutions may never even be found.

8o

2.4 Gaining Perspective

We have addressed various methods and paradigms with regards to problem-
solving using Al, however, as previously outlined, there is an aspect to problem-
solving that human intelligence is capable of that is often lacking in intelligent
machines. This thesis refers to this abstract factor as the concept of perspective
which broadly entails looking at a problem at an appropriate hierarchical level of
generalization with regards to any current or historical information.
Understanding something with perspective requires contextual awareness and
an ability to use prior knowledge to adapt to change. Using Osband'’s analysis of
intelligence, the idea of perspective in intelligent agents can be abstractly
represented by proficiency in the cognitive components of memory,
generalization, and credit-assignment. These components of intelligence
(especially credit-assignment) are areas of problem-solving that are particularly
difficult for intelligent agents to handle well, despite being something that
humans can do naturally (Holland and Gamez, 2009; Ke et al., 2018; Osband et
al., 2020). Many Al approaches such as ANNs have the ability to generalize and
deal with noise but struggle at handling tasks that require an active memory or

temporal generality (Bhandarkar et al., 2019; Badue et al., 2021).

Another aspect to perspective-based learning is the idea of intelligent
exploration. The concept of exploration in an Al's learning process is not
anything novel and is often a necessary process in the search for improved
solutions. However, the ability to choose which new solutions to try in an
intelligent way is something that is often ignored despite being a skill that
humans can do by utilizing past experiences. Furthermore, an agent should be
able to generalise about its exploration and infer knowledge about some un-
visited states without exploring them by simply visiting adjacent states (Gupta et

al., 2018). Most explorations strategies use an adaptive e-greedy algorithm where

81

the chance of randomly exploring decreases as time continues, such as in the case
of e-first or decreasing-¢. Tokic introduces Value-Difference Based Exploration
(VDBE) which increases and decreases an agent’s chance of exploring based on
its uncertainty regarding the current locality in its environmental state-space
(Tokic, 2010). Gupta extends this idea of exploration to be a solvable problem in
itself and introduces Model Agnostic Exploration with Structured Noise (MAESN).
MAESN uses gradient-descent to learn how to explore intelligently. It utilizes
prior experience to learn a latent exploration space which it can use to
intelligently employ stochastic exploration based on an agent’s current state in

its environment (Gupta et al., 2018).
no, you are alluding to "Model-based RL", like Dyna...

In most RL algorithms such as Q—learpég, an agent keeps track of an internal

mapping of environmental states visited and their feedback (Watkins and Dayan,
1992). This can be seen as the agent’s memory. However, this requires a
potentially large database of past events and states that the agent must consider.
In expansive environments the dimensionality of data stored in an agent’s
memory can become unmanageable (Ke et al., 2018; Osband et al., 2020). This is
especially an issue in situations such as those experienced by space rovers as the
computers used by space rovers are very small-scale and simplistic, limiting the
amount of memory space and processing power available. This is due to weight
and electric power limitations as well as the fact that the computer must be
robust to harsh conditions and interfering cosmic rays (Cheng et al., 2004;
Bresina and Morris, 2007; Joyeux, Schwendner and Roehr, 2014). One way to
address this issue is for an agent to be temporally general. This means that an
agent is able to make decisions that are informed by historical events without

having to explicitly store and access every individual event.

As explored by Soar, ACT-R and CLARION, there are multiple paradigms and
levels in an AI's memory that can be used to store various elements of knowledge.

These approaches can be differentiated as being long-term or short-term

82

INPUT LAYER @
HIDDEN LAYER " —

OUTPUT LAYER e

«ROLLED» «UNROLLED»

Figure 22

Diagram depicting how an RNN can be unfolded (West, 2020).

memory as well as being represented using symbolic or connectionist approaches
(Scerri, 2006). As demonstrated by ANNs, connectionist methods have a unique
ability to generalise and deal with noise. Furthermore, an Al that stores data in a
connectionist manner can learn to compress the information into a latent space
of relevant features, allowing for greater temporal generality (Agatonovic-Kustrin

and Beresford, 2000; Tiu, 2020).

The simplest approach to develop short-term (working) memory using ANNs is
by using RNNs. Since a RNN includes the output from its previous step in its
current input, RNNs can be unfolded multiple time-steps back to access even
older information. This information must somehow persist in the current state
of a network along-side any current input. As a result, the depth that RNNs can
be reliably unrolled quickly diminishes to only a few steps (Ke et al., 2018;

Tavanaei et al., 2019).

A more complex model called RNNs with Long Short-Term Memory (LSTM) was
proposed to tackle the limitations of simple RNNs. RNNs with LSTM have
multiple networks dedicated to learning what information should be

remembered and what information can be forgotten. This way of dealing with

33

memory leverages the idea of credit-assignment and only utilizes resources to
remember important pieces of information so that they can exist over longer
periods of time. However, LSTMs still struggle to viably deal with memory over
very long horizons or in complex environments (Bhandarkar et al., 2019; Osband

et al., 2020).

2.4.1 Hierarchical Learning

One way to approach the issues associated with long-term memory in RL while
still maintaining temporal generality is to use what is called Hierarchical
Reinforcement Learning (HRL). HRL methods approach large horizons by having
different granular levels of how far an algorithm looks back. HRL also breaks
problems into smaller sub-problems (sub-policies) and has different components
manage and work on these sub-policies at different hierarchical levels. Some
benefits of HRL implemented properly also include structured exploration of the
state-space and the encapsulation of different levels of knowledge (Bosch et al.,
2011). A common approach to HRL is MAXQ learning. MAXQ learning depends
on being able to break down the global goal of an environment into more
achievable sub-goals and sub-tasks. However, MAXQ is not designed to be
implemented in an unsupervised manner as it depends on the programmer being

able to identify these sub-goals (Dietterich, 2000).

The approach of HRL need not only be applied as a means to better deal with
distant temporal dependencies. HRL is also good at addressing the concept of
Transfer Learning (TL). TL is a concept in Al that focuses on using the knowledge
gained from solving one problem to solve a different but similar problem. TL can

be broken down into three categories. In inductive TL, the target environment

84

(domain) and task are different from the source environment and task while in
transductive TL the tasks are the same and just the environments (domains)
differ. Finally, unsupervised TL is the same as inductive TL except it solves
unsupervised learning tasks in the target environment (Pan, Kwok and Yang,

2008; Pan and Fellow, 2009).

A significant HRL algorithm that incorporates the concept of TL is the Feudal
Learning (FL) algorithm which was proposed in 1993 and is inspired by Europe’s
medieval feudal system. The idea of FL is that there are manager components
within a model that deploy tasks to worker components that in turn deploy tasks
to more worker components (thus playing the role of the manager) in order to
complete the task given to them by their own manager. Workers only receive
reinforcement rewards based on their completion of a task given to them by their
manager. This process of deploying tasks to workers can continue as many times
as a particular model needs (Vezhnevets et al., 2017). In 2017 FL was expanded
upon to produce Feudal Networks (FUN) which is essentially the same idea as
traditional FL except that there is only one manager and one worker. FUN
represents the sub-goals given by a manager as directions in a latent space which
can then be translated into actions taken as primitive sub-policies by a worker

(Vezhnevets et al., 2017; Nachum and Lee, 2018).

2.4.2 Meta Learning Shared Hierarchies

One method that uses HRL and draws on aspects of FUN is Meta Learning Shared
Hierarchies (MLSH). MLSH learns basic primitive policies for sub-tasks that an

agent may frequently need to complete. A higher hierarchical element of the

observation l ¢ ‘

Lo) (e Lo (e

111111

master action ——¢ 6

action

Figure 23

Diagram showing how MLSH works (Frans et al., 2018).

model then learns how to use these sub-policies to act optimally in a global policy

for an agent’s current environment (Frans et al., 2018).

The idea of MLSH is to simply use one ANN labelled 0 to select from a vector ¢
of sub-policy ANNSs. The input received by the 6 network and selected sub-policy
network are the same. The job of the 0 network is hence to learn to choose the
sub-policy that is best suited to the current instance in a given environment while
the job of the sub-policy ANN is to define how the agent will act (Frans et al,,

2018).

The sub-policy networks also learn to act optimally within their own locality. This
means that an agent can be put in a new but similar MDP and simply use the
already learnt sub-policies in ¢ and all it would need to do is re-learn or adjust
the learnt weights of the 6 network (Kocsis and Szepesvari, 2006; Frans et al.,
2018). This is an attempt to solve what is called the few-shot learning meta-
learning problem which essentially entails being able to develop a deep

understanding of a problem using only a limited amount of training. This

86

requires the leverage of previous experience and is something that humans have

an innate ability to achieve (Hutter, 2014).

Traditionally, agents try to learn a single optimal policy for their current
environment, however, there are often many sub-tasks that may have led an
agent to its goal. An example of this kind of behaviour can be seen in nature when
an animal must learn to walk before being able to learn where to go to gather
food. Furthermore, the animal doesn’t need to re-learn how to walk every time it
looks for a different food source and learning one shared policy is often not very
efficient in these kinds of cases (Turney, Whitley and Anderson, 1996; Scerri,
2006). MLSH enforces an agent’s model to have a hierarchical structure that
allows learning adjustments to be made to either the 6 network or any of the sub-
policy networks without affecting the performance of the other components. This
helps an agent exhibit more general and adaptive behaviour in varying

environments (Bosch et al., 2011; Frans et al., 2018).

MLSH also enables agents to better deal with time related tasks as it promotes
an agent to focus on sub-tasks in a step-by-step manner without having to
consider the entire long-term goal all at once. An agent using MLSH effectively
improves its ability to tackle problems with far horizons as it can break them

down into multiple problems with smaller horizons (Bosch et al., 20m).

A parallel can be drawn between the different sub-policies learnt by an agent
using MLSH and the non-conscious and automatic behaviours biological
organisms such as humans exhibit. This kind of behaviour enables humans to
focus on more complex tasks without having to learn or think about every minute
action we take (Minsky, 1961; Cooper et al., 1996; Turney, Whitley and Anderson,

1996; Holland and Gamez, 2009).

2.4.3 Attention

Further expanding the ideas surrounding perspective with regards to dealing
with large amounts of current or time-based information leads to the notion of
Attention. Attention is a concept in Al that deals with the idea that only certain
inputs are significant when determining an optimal output for a given state.
These relevant inputs may be dispersed temporally over potentially great
horizons. The idea of Attention is often brought up in natural language
processing in which select words in previous sentences give context to the

current sentence (Ke et al., 2018).

Attention is able to solve many issues associated with temporal generality that
are difficult for other methods to effectively tackle, such as RNNs with LSTM
which struggle to deal with memory over distant horizons (Ke et al., 2018). HRL
algorithms are able to look further back by using layers of different sized granular
time-steps, but they can ignore the fact that significant events need not occur in
a regular manner which may often lead to important information being missed
(Bosch et al., 2011). Attention focuses on learning the importance of certain events
in relation to other events. This information can then be used to only select the
most important pieces of historical information to be used in any further

processing, thus dramatically reducing processing times.

An example of Attention can be made with the use of a Language Model (LM).
Language is complex and multidimensional with different words and sentences
relating to each other across different spaces of text and contexts. In order for a
LM to predict the next word in a sentence (or in the case of an agent the next
optimal action to take), certain words need to be given more Attention
considering the current word and the context of the sentence (Vaswani et al.,
2017). A simple Attention mechanism essentially constructs a matrix of all words

against all other words. The values inside the matrix are learnt using some

38

method (such as gradient descent) and define how much attention to pay to each
word given another word. This can be hierarchically imposed to have Attention
on groups of words, sentences, or even paragraphs (Vaswani et al., 2017). While
language processing is only one problem domain, the concept can be generally
applied by replacing “words” with “agent inputs”, and “previous sentences” with

“past events’”.

Attention mechanisms work by encoding inputs into vectors. Three vectors are
constructed. A query (Q) vector which represents the current input, and a set of
key-value (K, V) pair vectors. Each query needs to be evaluated against all other
inputs (keys) to determine a value vector which dictates how much attention to
apply to a key given a query (Alammar, 2018). These vectors can also make use of
positional encoding which is when the position or time of an input is relevant to
its encoded vector. In the case of agents, important events that happened a long

time ago may be less relevant (Vaswani et al., 2017).

The extent of what Attention mechanisms are capable of is shown through the
use of Transformers as demonstrated in the Generative Pre-Trained Transformer
(GPT) recently created by OpenAl. Transformers stack Attention units on top of
each other (employing the concept of HL). In GPT’s second version (GPT-2), the
transformer created consists of six layers of encoders and decoders. Each encoder
has a self-Attention unit (Attention applied from the encoder to itself) and a
FFNN. Furthermore, each decoder has a self-Attention unit and encoder-decoder
Attention unit which is followed by a FFNN. GPT-2 and GPT-3 have been shown
to be extremely good as LMs and can perform text completion with convincing
context, understanding and perspective that may convince many people as being

human (Vaswani et al., 2017).

Another implementation of an Attention model combines traditional Attention

mechanisms with the use of RNNs and LSTM and is called Sparse Attentive

89

1

| MatMul |

f A

[SoftMax]
1

| Mask (opt.)
1

| Scale

1
| MatMul]

t 1
Q K V

Figure 24

Diagram showing the process followed by the SDPA Attention mechanism (Vaswani et al.,
2017).

Backtracking (SAB). However, the experiments done in SAB’s proposal show that

it falls short of the Transformer in terms of performance (Ke et al., 2018).

The Attention mechanism that Transformers use is called Scaled Dot-Product
Attention (SDPA). In SDPA, the dot product of a query is computed against all
keys and scaled by the square root of the number of key dimensions (dk). A
softmax function is then applied to find the weights of the value vector. The
formula for SDPA can be seen in Equation (5) and is visualised in figure 24

(Vaswani et al., 2017).

. (QKT)
Attention(Q,K,V) = softmax |4 (5)

N

90

2.4.4 Section Discussion

The ability to solve problems with a sense of perspective is necessary for any
general cognitive architecture to be able to create intelligent agents that can
operate in a wide variety of complex, dynamic, and time-dependant
environments. This abstract concept is a significant component that
differentiates strong biological intelligence as demonstrated in humans from ML
and other weak Al approaches (Holland and Gamez, 2009; Osband et al., 2020).
Some key issues around this disparity include hierarchical memory structures as
well as the ability to be general with regards to temporal information in memory
(Bosch et al., 2011; Squire and Dede, 2015; Frans et al., 2018; Ke et al., 2018).
Generality in problem-solving and the ability to understand what experiences are
relevant given an agent’s current state (the credit-assignment problem) are also

important (Vaswani et al., 2017; Osband et al., 2020).

A common issue that many Al solutions fall into when dealing with memory and
time-related events is not addressing the fact that relevant past information can
be structured hierarchically as demonstrated in HRL (Dietterich, 2000; Bosch et
al., 2on1). Furthermore, explicitly storing data symbolically can limit generality
and the ability to quickly access relevant past data (Ke et al., 2018). Connectionist
methods can mitigate this as approaches such as ANNs exploiting the Markov
property are able to generalise by learning latent space representations of data
which can be applied to an agent’s understanding of its environmental state-
space (Ohnishi et al, 2019). The knowledge held in a network’s weighted
connections are representative of procedural (implicit) memory or knowledge. In
the case of neuroevolution, the evolutionary process itself would be the driving
factor of this kind of knowledge. Extending this, Attention mechanisms can be
used to bring about a sense of semantic, declarative (explicit) and episodic

memory by directly addressing the credit-assignment problem. SNNs also have

o1

the ability to naturally implement short to medium term episodic (working)

memory.

Breaking down problems into hierarchies through the use of HL not only has the
ability to improve efficiency in accessing hierarchies of memory information but
can also improve task completion by breaking down a global goal into more
achievable sub-goals. MLSH directly addresses this by enforcing a hierarchical
structure in a network and encourages the development of sub-policies that can
be used when solving global policies (Frans et al., 2018). It is also worth noting
that Attention mechanisms can be applied in a hierarchical way to address

different levels of credit-assignment (Vaswani et al., 2017).

Utilizing a perspective-based approach can also be expressed in exploration.
Instead of applying a static or simplistically adaptive algorithm to the process of
exploration, methods such as VDBE and MAESN intelligently use exploration as
needed based on the situation of an agent (Tokic, 2010; Gupta et al., 2018). An
extension of this idea could be to utilize the temporal and structural information
provided by methods such as MLSH and Attention mechanisms to further
improve intelligent exploration. Additionally, applying the approaches of MLSH,
and Attention to evolutionary methods may result in better exploration of the

problem space as these methods are traditionally applied using gradient descent.

This part about gaining perspective is probably the most original in the survey of the literature.

92

2.5 General Discussion of Literature

Broadly speaking, the literature reviewed in this chapter covers a wide spectrum
of general knowledge pertaining to Al. This includes unpacking what intelligence
is in the context of Al and ML (as applicable to the construction of general
theories of cognition) as well as various methods of implementing Al as solutions
to various components that are relevant to general cognitive architectures. The
cognitive architecture developed for the thesis, Brain Evolver (BE), is centred
around creating intelligent agents using evolutionary algorithms, RL and various
metaheuristics including HPO and REVAC. The different Al and ML methods
reviewed generally covered ANNSs, neuroevolution, SNNs, MLSH, and Attention.
The literature pertaining to these approaches was explored as the outcome of the
search for solutions to the various aspects of intelligence outlined in chapter 2.1.
The purpose of reviewing ANNs and gradient descent methods along with
various neuroevolutionary approaches was to survey prominent (connectionist)
methods to efficient and effective general problem-solving. On the other hand,
the use of literature regarding metaheuristic methods is driven by the desire to
find general solutions that can explore a wide range of problem spaces in a more
universally applicable way, while REVAC offers an AutoML-like solution to

completing HPO.

The main analyses of intelligence explored constitute those proposed by
Sternberg, Thurstone, Minsky, and Osband. The limitations of these attempts to
perfectly define intelligence (and any attempt to do so) is that they are essentially
abstract and ultimately just hypothetical claims (Minsky, 1961; Clarke and
Sternberg, 1986; Osband et al., 2020). Furthermore, the porting of a linguistic
definition of some component of intelligence to an actual algorithm or piece of

computer code makes it even harder to draw exact conclusions from these

93

analyses. Although these analyses are useful as guidelines, they should be treated

as such, just guidelines.

Some well-known cognitive architectures were also briefly reviewed including
Soar, ACT-R and CLARION (Scerri, 2006; Laird, 2008; Omohundro, 2008;
Yliniemi, Agogino and Tumer, 2014). It is important to note that each of these
projects are extremely expansive and have been in development for many years.
It would hence be out of the scope of this thesis to try and replicate the depth of
these cognitive architectures. The intention of this thesis is to develop a novel
architecture by utilising a unique combination of Al methods. Replicating exactly
what has already been done (in a general sense) is not as useful in expanding the
broader field of research. The implementations of Soar, ACT-R and CLARION

should hence also be treated as guidelines.

As a result, it is important for this thesis to focus on particular domains or
essential features of general Al problem-solvers as well as highlight some
potentially important concepts that are often over-looked, such as credit-
assignment and temporal generality (Ke et al., 2018; Osband et al., 2020). This is
where this thesis’s idea of addressing these essential features by combining
different prevalent Al approaches in the construction of a single architecture
comes from. It also drives the purpose of conducting a broad spectrum of highly
focused tests (see chapter 3.8) to evaluate BE, with only a few small-scale tests
that represent more realistic situations (Mars rover exploration). This is because
focusing on these aspects acts as a surrogate for a much wider range of complex
tasks that BE (or another general cognitive architecture using similar principles)
could theoretically solve (Osband et al., 2020). It is important to remember that
BE is just meant to be a stepping-stone in the broader field of general Al research
and is intended to highlight insights that may lead to the development of more

advanced, effective, and practical cognitive architectures.

94

In identifying some essential features of general Al, a significant aspect of
intelligence highlighted by the cognitive architectures explored, as well as DL
and HL, is the necessity of defining different levels or paradigms of knowledge
(Scerri, 2006; Laird, 2008; Omohundro, 2008; Yliniemi, Agogino and Tumer,
2014; Vezhnevets et al., 2017; Miikkulainen et al., 2018). This also seems to be a
key element to understanding problems with perspective alongside the credit-
assignment problem and the ability to be general across time (Ke et al., 2018;

Osband et al., 2020).

At the most fundamental level, all intelligent behaviour must learn by navigating
a problem space (Newell, 1990). There are multiple ways to approach doing this,
but it is important to realize that many tasks that intelligent agents encounter in
real-world environments require unsupervised knowledge acquisition in
POMPDPs (Belani, Vukovi¢ and Car, 2019; Jabri et al., 2019; Badue et al., 2021).
This makes RL a natural approach to learning as it allows an agent to gather
information by exploring its environment. However, applying RL as a blanket
method ultimately also has its limitations as RL may not be good for certain kinds
of tasks such as classification tasks or tasks that are best learnt through regression

methods like gradient descent (Pan, Kwok and Yang, 2008; Karpathy and Leung,

2014).

Although gradient descent methods are very efficient in some cases, it is
important to remember that the goal of this thesis is to find general solutions and
hence, a broader approach to navigating problem spaces is needed. This leads to
the use of metaheuristics as they have the ability to traverse any problem space
with some guarantee of success (Lozano, Molina and Herrera, 20m). Of the
metaheuristic methods reviewed (SA, ACO, PSO, and EAs), the choice of
approach may depend on the task at hand. However, due to the particular wide

applicability and extensive body of available research, EAs are a particularly

95

useful choice to use as a metaheuristic (Utzle et al., 2010; Mishra, 2011; Yliniemi,

Agogino and Tumer, 2014; Olague, 2016). what do you mean exactly?

The limitations of metaheuristics such as EAs are that they are iﬂ){ic_i&black—
box approaches to problem-solving and, due to the requirements of an
appropriately large population (depending on the dimensionality of evolvable
parameters in the problem space) and need to for multiple generations, they are
often more computationally expensive than other approaches (Gobeyn et al.,
2019). This may indeed end up being a limiting factor of BE since BE is
implemented extensively with evolutionary methods. However, this is an
intentional choice to directly follow the cognitive modelling approach (since
biological intelligence is a product of evolution) in order to explore the potential
outcomes of applying a cognitive architecture in such a manner. Since real-world
tasks often entail multiple objectives, multiple niching techniques were also
reviewed including fitness sharing, speciation, crowding, VEGA, and SPEA>.
Ultimately, all these methods aim to uphold some level of Pareto optimality and
attempt to prevent EA populations from converging on a solution to only one
objective, with speciation being a particularly popular approach (Goldberg and
Holland, 1988; Zitzler, Laumanns and Thiele, 2001; Stanley and Miikkulainen,

2002; Eiben and Smith, 2015).

It is necessary to identify the role of a cognitive architecture as a kind of
implementation of AutoML and hence recognise the importance of HPO in the
stack of problems to address when creating an intelligent entity (Cooper et al.,
1996; Hutter, 2014). Without, going out of scope, REVAC was explored as a viable
solution for BE to tackle this issue. Like other metaheuristics (particularly when
dealing with HPO), REVAC suffers from being computationally demanding and
does not guarantee that it will find the most optimal hyperparameter

configuration (Smit and Eiben, 2010).

In addressing another essential feature of intelligence, methods of basic problem-
solving and function-mapping were looked at. This naturally led to the analysis
of various connectionist NN methods due to their resilience to noise and
generalisation capabilities. (Agatonovic-Kustrin and Beresford, 2000; Poggio et
al., 2017; Bre, Gimenez and Fachinotti, 2018). Both ANNs and CNNs are able to
make use of latent spaces to learn the features of an input. However, some
limitations of ANNs are that they (like metaheuristics) are also black-box
approaches and can produce unexpected and undesirable behaviours if careful
attention is not given to how they are trained. CNNs are also limited as they are
essentially a rigidly heuristic approach to doing something that standard ANNs
can theoretically do by themselves (Minsky, 1961; Karpathy and Leung, 2014;
Vedaldi and Lenc, 2015; Tiu, 2020). A second limitation of simple ANNs as
represented by FFNN is that they are a basic abstraction of more complex systems
and processes that take place in biological brains and ignore some important
aspects to problem-solving such as plasticity and time-sensitivity (Fil and Chu,
2020). However, this does not diminish the usefulness of connectionist-based

approaches as a potentially fundamental component of a cognitive architecture.

In addressing some of the limitations that ANNs pose, ANNs can be expanded to
evolutionary processes (neuroevolution). As a result, CNE, NEAT, HyperNEAT,
DeepNEAT, and CoDeepNEAT were explored. The use of EAs on ANNs has been
shown to improve a network’s ability to traverse a problem space while dealing
with multiple potential objectives. A common limitation of neuroevolutionary
methods (as with other EAs) are their extended processing times which is
especially prevalent in NEAT. DeepNEAT and CoDeepNEAT attempt to mitigate
these issues without resorting back to gradient descent but are still unable to
exhibit neuroplasticity or the ability to adequately assign credit to generalized
time-based information (Stanley and Miikkulainen, 2002; Stanley, D’Ambrosio
and Gauci, 2009; Miikkulainen et al., 2018; Acton et al., 2020). However, it is

useful to recognise the strengths and weaknesses of each of the above mentioned

97

neuroevolutionary approaches when constructing the DNE method used for BE

(see chapter 3.1).

In an effort to further cover all aspects of intelligence, some methods to
addressing time-sensitivity were explored. Expanding on the connectionist
approach introduced by ANNs, these methods included RNNs, RNNs with LSTM
and SNN:ss. It is evident from the literature that the level of time-awareness that
these approaches offer is only feasible over short to medium horizons (Ke et al.,
2018; Bhandarkar et al., 2019; Tavanaei et al., 2019). However, SNNs also have the
additional ability to be even more resilient to noise than traditional ANNs and
employ neuroplastic behaviours. This makes SNNs a valid pathway to explore as
a component of BE since there is also little research pertaining to evolutionary
SNNs. A downside to SNNs is that they introduce extra parameter complexity as

opposed to traditional ANN approaches (Wu et al., 2019).

At this point, a few uncovered issues remain. Drawing from Soar and ACT-R’s
approaches to memory and sub-goal creation, these issues pertain to the lack of
broad-scaled time sensitive problem-solving, credit-assignment and a method of
directly addressing the hierarchical nature of many complex problems (Laird,
2008; Vaswani et al., 2017; Frans et al., 2018; Osband et al., 2020). These challenges
are the inspiration of this thesis’s categorization of the perspective problem. As a
result, literature pertaining to HL and Attention methods were explored. Within
HL the methods FL, MAXQ, FUN and MLSH were covered which all broadly
cover the idea of solving problems at different levels by creating and tackling sub-
goals in order to solve a global goal, much like Soar (Dietterich, 2000; Bosch et
al., 2011; Vezhnevets et al., 2017; Nachum and Lee, 2018). FL, MAXQ and FUN
constitute prior research to MLSH which is an approach to HL that has been
shown to be successful in leveraging sub-policies to solve complex problems as

well as being able to demonstrate TL capabilities. A limitation of MLSH is that it

relies largely on a supervised approach to learning and is unable to organise its

own sub-goals (Pan and Fellow, 2009; Frans et al., 2018).

As far as addressing long-term memory and the credit-assignment problem when
dealing with time sensitive tasks, Attention offers a direct solution. Not only is
Attention computationally efficient, but it has been shown to achieve truly state-
of-the-art results when applied in layers (HL) as well as being combined with

DNNs (as demonstrated by GPT) (Vaswani et al., 2017).

In summary, it was identified through the literature reviewed that in order to
create a general Al problem solver or approach to AutoML, a strong theory of
cognition must be developed through the creation of a general cognitive
architecture. Cognitive architectures comprise of many components, however,
common deficiencies in the learning methods reviewed include the ability to be
general over time, assign credit to feedback, and the ability to exhibit a general
sense to solving problems by hierarchically breaking tasks down. This is summed
up as the notion of perspective. The literature indicates that general problem-
solving boils down to function-mapping. This can be achieved through the
connectionist approach provided by ANNs which can take on a more general
heuristic nature by being extended to neuroevolution. However, to tackle the
perspective problem, three main approaches were explored in the literature and
stand out as primary methods to be tested (see chapter 2.1.). These include
Attention, MLSH, and SNNs. Using the information reviewed, these approaches

can be tactically implemented by referring back to RL.

Some common principles behind RL explored include the Markov principle,
Monte Carlo methods, BPO, QL, and DQL. However, QL is limited in POMDPs
and large problem spaces with distant horizons as it must discretize and
remember all states (Helman, 1986; Kocsis and Szepesvari, 2006; Hunt, 2010;
Ohnishi et al., 2019). DQL tries to address this by using ANNs to map to latent

QL states while intelligent exploration methods such as VDBE and MAESN are

99

better able to traverse problem spaces (Watkins and Dayan, 1992; Tokic, 2010;

Mnih et al., 2013; Gupta et al., 2018; Ohnishi et al., 2019).

As proposed solutions, the use of EAs and the methods of Attention, MLSH and
SNN reviewed in literature can be applied to the QL or DQL framework. In order
to efficiently traverse the problem space to map potentially multi-objective tasks
to latent QL states, DQL can make use of DQN through DeepNEAT networks
instead of traditional ANNs. This can be extended further to include evolutionary
SNNs. Another limitation of QL is its use of a reward discount factor (Dietterich,
2000). Instead of trying to remember diminishing past and potential future
rewards over distant horizons, an Attention matrix can substitute for a table of
learnt Q-values. This process can then also be applied hierarchically using MLSH.
In this way the principles of RL can be applied with the hierarchical and time
sensitive attributes of Attention, MLSH and SNNs in order to effectively tackle
the perspective and credit-assignment problem in a paradigm that allows for the
development of intelligent agents. Furthermore, a custom method of exploration
that utilizes the above-mentioned approaches can be used to potentially improve
performance over other exploration methods. The details behind the
construction of these components and the custom exploration method used in

the development of BE as well as the tests conducted are outlined in chapter 3.

Globally, this very general and broad survey is rather nice. It clearly lacks depth due to its breadth, as one
cannot be deep, precise, and very broad at the same time, but | understand this choice.

100

Chapter 3

Methods

The purpose of this thesis is to develop a general cognitive architecture that has
the ability to create adequately robust intelligent agents regardless of their target
environment. This cognitive architecture is expressed in the creation of the
software Brain Evolver (BE). BE is designed to be completely customizable and
modular so that the user can create their own unique models and test them on a
suite of in-built or custom-added environments. This makes BE a tool that can
be used beyond the scope of this thesis by other people wishing conduct similar
research. BE is also written with an open copyright which allows others to modify

or add to its source-code.

The programming language that BE is written in was chosen for performance
reasons. The project uses C++ and was compiled with the MinGW-w64 compiler.
All project files can be found at the link in the appendix. As suggested by the
compiler, BE is a 64-bit program which is useful if a user intends to run large-

scale tests that require a lot of RAM on a more powerful system.

Like Soar and other software implementations of cognitive architectures, BE’s
architecture is ultimately just a hypothetical claim to the effectiveness of its
particular design as a general problem solver. In other words, there is no
mathematical standard or proof that allows us to say that a piece of software has

definitively achieved the goal of being a truly general cognitive architecture.

Based off the cognitive modelling approach and literature reviewed, this thesis
outlined certain aspects and components of what makes something potentially
intelligent. As with other cognitive architectures, a wholistic approach to

101

theorising about general intelligence requires multiple different architectural
parts to work together. The way these elements work together may result in
emergent useful behaviours and characteristics. There is little research on the
merging of different Al approaches to form cognitive architectures (as opposed
to research on the approaches in isolation) which is likely due to the fact that
cognitive architectures often take long times to develop, and it can be difficult to
do research on such a general topic. BE’s theory about what components are
necessary for general intelligence is hence unique and its particular combination
of Al methods offer a novel avenue to explore with regards to general problem

solvers.

Before defining BE’s architecture (as alluded to in chapter 2.5), it is worth
recapping the directives behind its design as the separation of intelligence into
two paradigms. The first paradigm pertains to the method (or methods) by which
an intelligent entity comes to learn what it knows. This thesis identifies two main
ways that this occurs in nature. The first method involves learning through
experience by exploring what is not known and exploiting what is known. This
can be described by RL. The second method involves an adaption of generational
knowledge through the use of evolution which can be represented by the physical
expression an entity’s phenotype as well as the development of neural structures
through neuroevolution (representing instinct). Extending this idea practically
to machines also highlights using evolutionary Hyperparameter Optimization
(HPO) as part of an AutoML process that further places the development of
intelligent behaviours on BE instead of a human designer. Implementing HPO
with an EA would simply use an evolutionary method to optimize the hyper
parameters of a single Deep Neural Evolutionary (DNE) run within BE. In this
context, REVAC (Relevance Estimation and Value Calibration of Evolutionary

Algorithm Parameters) would fulfil this role (see chapter 3.2).

102

The second paradigm involves the resultant intelligent abilities of an entity once
it has learnt to act in an environment. These abilities can be broken down into
the seven core capabilities of strong intelligent agents as outlined by Osband
which include basic task completion, exploration, scalability, noise reduction,
generalization, memory, and credit-assignment (Osband et al., 2020). An
extension of these capabilities identifies the necessity of combining memory and
generalization and opens up a new categorization around the ability to be
temporally general. Furthermore, the idea of exploration can better be defined as
intelligent exploration as it is insufficient to occasionally act randomly but is
rather more efficient to direct exploration based on experience. Lastly, it must be
recognized that most modern implementations of Al involve some level of Deep
Learning or at least a recognition that knowledge and information are often

hierarchical.

Based on this summation of the literature reviewed as a guideline to BE’s
construction, a hypothesis was settled upon regarding a particular architecture
for BE based on the scope, limitations, and goals of this thesis. These goals focus
on the use of evolutionary RL to construct a cognitive architecture and its ability
to be general across different types of tasks by dividing intelligence into definable
components. This goal is further focused on the relevance of each of BE’s
subsequent parts (modules) in the context of its entire architecture, as well as
highlighting the concept of temporal generality while avoiding explicitly storing
all historical information. More details are given regarding these goals in chapter

1.2.

BE’s architecture consists of six core modules. For the basis of the architecture,
all agents are fundamentally built on a custom implementation of DNE. All of the
other modules are optional and can be turned on or offin different combinations
based on the user’s choice. These other modules include REVAC, an Attention

unit, SNNs (Spiking Neural Networks), MLSH (Meta Learning Shared

103

Hierarchies) and an intelligent exploration unit (see figure 25). The way that the
components connect or join together can also be adjusted to some extent by the
user. Furthermore, the structure of BE’s software itself can also be broken down
into five modules. These modules include a testing environment interface, a user
interaction framework (GUI), a graphics engine, a saving and loading system, and
the cognitive architecture itself. A detailed outline of BE’s structure and

implementation as a piece of software can be seen in the appendix.

The overall process that BE uses in order to learn, along with a general overview
of its architecture can be seen in figure 25. Hierarchically, REVAC is at the highest
level. REVAC generates a population of potential hyperparameter solutions
which are each evaluated under a general evolutionary process centred around
DNE. Each individual in a DNE population represents a potential agent. For each
step within a test environment’s simulation, an agent must first poll input from
its environment. This data is then passed through the agent’s Attention unit (if
enabled) before the output of the Attention unit is fed into the agent’s main 6
network (see chapter 3.3). If MLSH is disabled, the 6 network’s output determines
the agent’s next action in its environment. If the exploration unit (which is
attached to the 6 network) is enabled (see chapter 3.6) and the agent decides to
explore (rather than exploit what it already knows), it will instead perform a
random action within the environment. I[f MLSH is enabled and the agent is not
exploring, then the next action of the agent is decided by the MLSH module.
Lastly, the actions performed by an agent result in feedback from its environment

before the cycles starts again.

104

> I — >
> 1" I >
> -— > I F——»
—Proo0o— P oo o e0e——»
—Proooe— P ooe eee—»
——Poee — P ooe ese— >
REVAC DNE Agents Environment Attention 0 Network ¢ Networks Environment
Poll Unit Feedback

Figure 25

Diagram showing the whole process of how Brain Evolver (BE) works as well as its general
architectural components. Each component is colour coded. Brown represents REVAC, DNE is
purple, green is the Attention unit, blue represents an agent’s main DNE network or SNN,
yellow is the exploration unit, and MLSH is red.

3.1 Module One: DNE

The evolutionary process of BE’'s DNE implementation is represented by the
purple highlighted column in figure 25 while the standard DNE networks
produced for each agent by the evolutionary process are represented by the blue
area in figure 25. The choice of DNE as the core module for BE is founded on the
fact that high-level biological intelligence is largely neurally based and the
formation of these neural structures as well as their base-level of understanding
(instinct) comes about through evolution (Turney, Whitley and Anderson, 1996).
DNE is based on DNNs (Deep Neural Networks) which are good at being able to
generalise, deal with noise and perform basic function-mapping (task

completion). The addition of evolution to ANNs improves the ability of the

105

network to effectively explore the problem space while “deepening” networks
improves the ability of the network to understand different hierarchical levels in
data, thus enabling more complex tasks to be solved. For these reasons, DNE
should be able to address (to varying degrees) the requirements of basic task
completion, scalability, noise reduction and generalization, as outlined in
Osband’s analysis of intelligence (Osband et al., 2020). Basic task completion,
noise reduction and generalization are directly addressed by the ANN of an agent
while adding additional deeper layers improves task completion and scalability.
Furthermore, the use of evolutionary methods also assists in an agent’s ability to
potentially deal with multiple objective environments (Stanley and

Miikkulainen, 2002; Miikkulainen et al., 2018; Acton et al., 2020).

The implementation of DNE in BE is, like DeepNEAT, based off the original
implementation of NEAT (Neuro Evolution of Augmenting Topologies) as
proposed in 2002 (Stanley and Miikkulainen, 2002). Everything is implemented
in the same manner as the traditional NEAT algorithm except that there are a

few alterations and additions.

The speciation process is done dynamically at each generation. The user has the
option to set a cap for the number of different species that can exist at one time.
This is to prevent the number of species becoming too diverse and unnecessarily
slowing conversion times. Users can additionally choose a portion of the
population to be dedicated as elite individuals. Furthermore, the parent selection
method used for each generation can also be selected from a choice of linear,

exponential, proportional, or tournament selection.

The main difference between NEAT and BE’s DNE is that it no longer works with
individual neurons, but layers of neurons. This is similar to the way DeepNEAT
functions (Miikkulainen et al., 2018; Acton et al., 2020). However, all nodes and
their parameters within a layer can be mutated individually. Each network node

must reside in a layer whilst new layers come about through mutation. When a

106

new layer is mutated, it is always added as the final layer before the output layer.
A set of random neurons are initiated for the new layer with the number of
neurons being equal to the floor of the number half-way between the size of the
previous second-last layer and the size of the output layer. Connections are then
formed as to maintain the network in a fully connected state. All input
connections to the new layer will hence include all connections that previously
entered the final layer. All output connections and any additionally required
input connections are initiated with their weights set to one so as to keep the

performance of the network relatively consistent given mutations.

Once a new layer has been mutated, further structural mutation within the layer
itself can occur by adding a new node to the layer or removing a node (if there
are at least two nodes in the layer). The enforcement of fully connected networks
and topological mutation of layers encourages deeper networks to evolve faster.
Furthermore, if connections are not needed, they can always evolve to be turned
off (in the same way as traditional NEAT) or have a weight of zero. This is
effectively the same as a connection not being there, but the fact that it is there
presents more avenues in the problem space for the evolutionary process to

operate on.

Each node also has the ability to evolve its own activation function as well as
something called an activation offset. The activation offset simply takes the sum
of all input signals, offsets the value by some relatively small amount (between
negative one and one) and then feeds the result into the node’s activation
function. This horizontal transformation of the activation function can become
useful as it increases the inclination of some functions such as the binary function
to produce drastically different outputs. The functions that a node can evolve to
include the identity, binary, ReLU, Leaky ReLU, sigmoid, and TanH activation
functions as outlined in chapter 2.3. All node output signals and connection

weights are constrained to be between negative one and one. It is also worth

107

noting that the sigmoid function is parametrized in the same way as the original

NEAT paper, as seen in Equation (6).

1

Singid(X) = m

(6)

Unlike DeepNEAT and CoDeepNEAT, BE does not make use of different types of
layers. The lack of convolutional layers is due to scope restraints for the project.
This opens potential for growth in BE’s software as the literature reviewed
highlights the benefits of CNNs as outlined in chapter 2.3.1. However, it is still
possible for convolutional-like layers to evolve naturally due to the fact that
nodes can evolve different activation functions. Secondly, recurrent networks are
not utilized in BE’s implementation of DNE. This is because recurrent networks
cannot be reliably unfolded many time-steps into the past and add a level of
unnecessary complexity to a network (Bhandarkar et al., 2019; West, 2020).

Instead, contextual historical data is directly addressed using BE’s Attention unit.

Due to these deviations from the original NEAT implementation, there is no
longer a need to keep track of innovation numbers. Since new layers are always
added at the end of the network and nodes are added or removed based on their
position in the layer, the structure of a network indicates its maturity while
innovation data about the nodes themselves are implicitly held in their position
in the network. This approach is partially inspired by the importance HyperNEAT

places on positional, structural, and topological data.

Speciation also works differently to NEAT. Individuals are bucketed into species
based on a hash-key that is generated by the particular structure of their DNE
networks. Every unique network structure gets its own unique hash-key, so
individuals that have the same topology will be put in the same species. However,
since the user can place a cap on the number of species that may exist at once, a

distance function is used to place individuals with uniquely structured networks

108

into species that are the closest to them when the species cap has already been
reached. The distance function between two individuals is calculated by totalling
the difference in the number of nodes across the entirety of both networks.
However, nodes are only totalled in one individual if the layer or ¢ sub-network
(if MLSH is enabled) exists and so differences on a hierarchically higher level are
more significant. Furthermore, in order to prevent the topology of some
individuals from growing too rapidly and the variation between species from
becoming too sparse, individuals are only allowed to make topological mutations
if they are part of a species larger than a certain adjustable size. Networks can
also be limited by the user to not have more than a particular number of hidden

neurons if processing times become too much of an issue.

Due to the fact that innovation numbers no longer exist, BE’'s DNE recombination
method uses crossover that simply works by lining up nodes and connections by
their position. Any excess networks (if MLSH is enabled), layers, or nodes within

a layer are copied over to a child individual if they come from the fitter parent.

The evolutionary process itself can be terminated by a user defined generation
cap or be set to automatically stop if no new best solution has been found after a
certain number of generations. When testing the individuals of a generation in
an environment, the user can choose how many times to repeat the testing
process before averaging the fitness across all repetitions. More details on the
adjustable parameters and settings of BE can be seen in the appendix. If the fittest
individual of a particular generation is equal to or fitter than the best seen
individual so far, it is repeatedly tested again by a different amount as chosen by
the user. This allows the population to be quickly evaluated by a smaller number
of repetitions while any candidate best individuals are still thoroughly tested

before they may be accepted as being one of the best solutions seen.

109

3.2 Module Two: REVAC

REVAC is used to perform HPO and is represented by the brown highlighted
section in figure 25. Although an optional component, it is still an important part
of BE’s full architecture as it enables the parameters of a run to be adjusted so as
to suit any environment or set of environments being tested. This facilitates the
process of AutoML, alleviates the burden of configuration from the user, and

assists BE’s independence as a cognitive architecture.

Due to the intended flexibility of the program, the number of hyperparameters
governing a particular configuration of BE can consist of up to 50 different
tuneable values (depending on the user’s architectural configuration) that must
each take on a value between zero and one. This is quite a large number of
parameters, and it can further increase to 200 independent values if online self-

adaption is enabled.

Online self-adaption is done by using four values for each parameter, which can
themselves be optimized through REVAC. The first value is the parameter’s
starting value which is also its constant value if self-adaption is not enabled. The
second, third and fourth values define a function (as shown in Equation (7)) that
adjusts a configuration’s i" parameter value (p;) based on the change in MBF (as
a percentage between zero and one) every n number of DNE generations, where
n is specified by the user and is not included in the optimization process of
REVAC. In the equation, the value x represents the percentage change in MBF.
The range for a; and b; is between negative one and one and the range for ¢; is

between zero and one.

pi = ai|x —b;| +¢; (7)

110

Due to time constraints and the increased hyperparameter dimensionality
threatening out-of-scope processing times, self-adaption was not enabled in the
tests conducted for this thesis. However, the feature remains present in the

program for others who may wish to experiment with it.

The implementation of REVAC itself works in the same way as how it is outlined
in chapter 2.2.5. However, an additional element was added to the algorithm at
the mutation phase where there is a user defined chance of an entirely new
solution being created with completely randomized parameters. This is to
mitigate REVAC from potentially getting stuck in a local optimum if its initial
population has an “unlucky” randomization of parameters. This is a possibility
due to the fact that REVAC’s population cannot be too large without running into

unreasonable processing times.

[t is worth noting that REVAC does not operate on program settings that change
the overarching architecture of BE or the fundamental way that the software
runs. Those settings must be adjusted by the user. For a list of hyperparameters
as displayed in BE’s settings GUI and further descriptions on what each of the

hyperparameters are responsible for changing, please refer to the appendix.

3.3 Module Three: MLSH

MLSH is represented by the red block in figure 25 and enables BE to implicitly
generate sub-policies and sub-goals for itself in the context of its global goal. The
enforcement of hierarchical structure has the potential to assist and improve
performances in most of the aspects of intelligence as defined by Osband but is

essentially focused on basic task completion, scalability, generalization, and (to a

111

smaller extend), noise reduction and temporal generality (Osband et al., 2020). By
leveraging principals of HL (Hierarchical Learning), MLSH should hypothetically
be particularly good at assisting in BE’s ability to be scalable when solving bigger,
more challenging problems as opposed to just smaller tasks. This is also the
reason why MLSH should (indirectly) assist in the other aspects of intelligence

as it enables problems to be broken down into more manageable sub-tasks.

MLSH in BE is implemented dynamically by using an evolutionary approach. The
hierarchical structures formed are generated in an unsupervised manner and are
figured out by the evolutionary process itself. This is different to the original
MLSH implementation which largely requires the overall structure of an
implementation to be defined by the programmer. Furthermore, all networks
within the MLSH module are evolved simultaneously in contrast to traditional

MLSH which trains all ¢ networks first before training the 6 network.

The main DNE network of an individual is referred to as the individual's 6
network. In BE’s dynamic implementation of MLSH, an individual is first
initiated with a 6 network and one ¢ network. Mutation and crossover are then
applied to each individual at both a network and meta-network level. An
individual can mutate to include another new ¢ network (if it is part of a species
that is sufficiently large enough to allow topological mutation). The new ¢
network is given an ID based on its order of appearance within the individual
(similarly to NEAT’s innovation number system) and a new output node is added
to the 6 network with randomly weighted connections generated so as to
maintain full connectedness. Networks that share IDs across individuals perform
crossover within their isolated networks while excess networks from one parent
are inherited if they come from the fitter parent. This allows the structure of
networks to dynamically grow without adding additional hierarchies that do not

benefit the population.

112

The output from an agent’s main 6 network decides which sub-policy ¢ network
to use before the input received by the 6 network is duplicated for the chosen ¢
network. The output from the ¢ network then constitutes any actions made by
the agent for its current environment simulation step. Like the original
implementation of MLSH, BE also uses one-hot-encoding to poll ¢ networks
(Frans et al., 2018). This means that only the ¢ network corresponding to the
strongest output of the 6 network is used to dictate an agent’s action. Further
additional research could hence explore the possibility of using weighted polling
of ¢ networks which was also alluded to in the original MLSH paper (Frans et al.,

2018).

3.4 Module Four: Attention Unit

Attention is used as BE’s main method of introducing temporal contextuality and
is highlighted as the green column in figure 25. Despite the Attention unit also
being an optional module, its purpose is to tackle the challenges surrounding
memory, temporal generality, and credit-assignment as outlined in Osband’s
analysis (Osband et al., 2020). Furthermore, the Attention unit’s output has a
lower dimensionality than the agent’s cumulative input across time, allowing it
to generate a time-based latent space in a similar way to how convolutional layers

perform feature extraction.

BE’s Attention unit includes just one layer of self-Attention that applies Attention
from the input of an agent’s current step to the input received across all previous
steps. Although stacking multiple Attention layers hierarchically (as in the case
of Transformers) may have the potential to produce better results, the choice to

only use one layer was purely based on scope limitations. Adding more layers not

13

only requires more software development, but the additional dimensionality
would further increase processing times. However, should the addition of the
single Attention unit prove effective, then its use warrants further development

and acts as a proof-of-concept for its inclusion in BE’s architecture.

The Attention mechanism used is SPDA and despite the fact that the unit only
consists of a single encoding layer, it should enable an agent to remember
important inputs that happened on previous time-steps. All values for each
individual’s Q, K, and V vectors are optimized through evolution which is an
approach to Attention mechanisms that is sparsely researched. During mutation,
each value across all three vectors can change to a brand-new value or shift by
some offset. Furthermore, crossover is applied by lining all vector values up

linearly between two individuals.

There are two options for how Attention is utilized in BE. The first option passes
environmental input into the Attention unit and then passes the output of the
Attention unit into the 6 network. The second option includes both the original
sensor input from the environment and the output from the Attention unit in the
6 network’s input. Lastly, the number of steps back in time that the Attention
unit considers is also an adjustable parameter which can be modified by the
REVAC algorithm. The inclusion of this setting was added because extending the
look-back window too far for certain problems may unnecessarily increase the

dimensionality of the evolutionary landscape.

114

Using SNNs in FFNNs (that is, preventing recurrent networks) is a weird choice, as most of
the interesting properties of SNNs appear when they are recurrent. And you call upon SNNs
with the argument that they are "more biological", but the biological brain is *a lot* recurrent...

3.5 Module Five: SNNs

SNNs allow BE to directly apply the cognitive modelling approach by mimicking
the way human brains work in a more accurate way than traditional ANNs and is
also represented by the blue column in figure 25 as it integrates itself into the way
the standard DNE 6 network module works. SNNs enable the creation of agents
that are able to exhibit online adaptation and neuroplasticity which is useful
when dealing with real-world environments. SNNs add to the capabilities of BE’s
custom DNE implementation by improving a network’s ability to deal with noise
as well as assist in memory and temporal generality. Due to the reduced
complexity (compared to other implementations) and generally wide
applicability, the approach that is used for BE’s SNN implementation is the LIF

model in conjunction with the STDP rule as defined by Equation (4) in chapter

2.3.7.

When SNNs are enabled, the overall structure of BE remains the same while the
manner in which individuals’ networks are evaluated changes. Each node
includes additional parameters (as required by the LIF model) for its resting
value, spiking threshold, refractory period, inhibitory factor for incoming signals
during the refractory period, and leaking rate per time step. The activation
functions used in the normal implementation of NEAT are no longer present as
neurons simply fire a signal when their charge threshold is crossed. Each
connection also includes additional parameters that assist in online adaption.
These include a learning window for plastic adaptions, LTP rate, and LTD rate. All
these additional parameters are then mutated and recombined in the same

manner as the other parameters used in DNE.

Structurally, the user has two further configuration options. If both MLSH and
SNNs are enabled, the user can choose whether SNNs are only implemented in

an agent’s 6 network or if they are used in all networks of the individual. Using

15

SNNs in only the 6 network allows an agent to exhibit plasticity in hierarchically

higher-level decision making while maintaining rigidity in its learnt sub-policies.

3.6 Module Six: Exploration

Exploration of any environment’s problem space takes place at multiple
hierarchical levels within BE. REVAC is responsible for this at the highest level
while the evolutionary processes that takes place within each component of an
individual’s architecture employs exploration at a lower level. These evolutionary
processes allow the exploration and development of implicit (procedural)
knowledge whilst leveraging niching techniques including speciation and fitness
sharing to improve the effectiveness of the algorithm’s exploration. Furthermore,
the use of evolutionary methods allows BE to tackle multiple potential objectives
depending on the tests run by the user. Fine adjustments that affect the way
exploration takes place can be set by the user or adapted by REVAC and include
(among others) the selection method (not REVAC adjustable), elitism factor,
mutation chance, and crossover chance. A full list of all adjustable parameters

can be seen in the appendix.

At the lowest hierarchical level, BE’s agents are also able to intelligently employ
exploration strategies within their environments. The exploration strategy
devised for BE is called Guided-€ exploration (GEE) and is a component in BE’s
learning process that can be enabled or disabled by the user. The GEE module is
indicated in figure 25 as the yellow column as it is attached to the main DNE 0
network. GEE is inspired by MAESN as defined by Gupta (Gupta et al., 2018). It
works by incorporating the decision to perform exploratory actions as part of the

functioning of an agent’s 6 network by utilizing an additional output node that

16

is simply added so that it is fully connected to the rest of the network. A further
parameter is then assigned to an agent which acts as an exploration trigger
threshold. If the value of the additional output node is greater than the value of
the exploration trigger threshold, then any ¢ networks that may exist are not
evaluated and all the agent’s actuator outputs are given random values. This
places the decision to explore on the agent itself and bases it on contextual
information from the agent’s environment. This contextual information can be
supported by data passed on from the Attention unit. The latent exploration
space is then explored by the evolutionary processes acting on the agent’s

architecture.

3.7 Section Discussion

To summarise the methodology behind this thesis, a unique and novel general
cognitive architecture was constructed based off the necessary components and
processes of natural intelligence as guided by the literature reviewed. Part of the
intent of identifying intelligent processes into different components also directs
the construction of the general cognitive architecture (BE) as a modular piece of
software so that it can be flexible for other users. This is due to the fact that the
methods behind constructing BE are important as the program itself is a prime

contribution of this thesis.

The six core modules for BE including DNE, REVAC, MLSH, Attention, SNNss,
and the custom exploration unit (Guided Epsilon Exploration) GEE were
developed and built into BE’s general software structure. The uniqueness in these

implementations is further demonstrated in the flexibility by which they can be

1y

Table 1

Table showing the expected task performance focus of each module.

Focus Task / Module DNE MLSH Attention SNNs GEE
Basic Task Completion v v
Exploration - - - - v
Scalability v v
Noise Reduction v v v
Generalization v v
Memory / Temporal Generality v v v
Credit-Assignment - - v

linked, parameterised and controlled by BE’s software, as well as the fact that

everything makes use of evolutionary methods as opposed to gradient descent.

Based on the hypothesis defined in chapter 1.2 and literature reviewed, some
modules are also expected to have certain performance benefits with different
types of tasks, such as the Attention and SNN modules’ potential ability to add
contextual temporal generality and MLSH’s ability to target hierarchically more
complex tasks. However, these predictions needed to be examined in the testing
process. The unique aspects of intelligence that each module is intended to target
can be summarised in table 1. The REVAC module is not included in the table as

it simply facilitates the process of AutoML by targeting HPO.

Tests were formulated as part of the methodology process in order to examine
how well BE can perform at being able to generally solve a wide range of different
kinds of tasks by itself (see chapter 4). The tests were also conducted with
different architectural configurations to gain insight into the impact that each of
the modules have on different kinds of tests on their own or in combination with
other modules. The intended outcome of the methodology used is to ultimately
make a contribution to the broader field of general problem solvers and AutoML
with the analysis of BE’s varying evolutionary methods and their potentially

cohesive union.

18

Chapter 4

Experiments and Results

4.1 Experiments

In order to evaluate BE’s effectiveness as a general cognitive architecture, a wide
range of testing environments that target varying fundamental aspects of
intelligence were created. These tests are split into three categories. The first
category consists of a set of standard test functions (since problem solving can
essentially be broken down to function mapping) while the second category
includes a collection of common RL benchmark tests that have been directly
referenced from B-Suite. B-Suite (short for Behaviour Suite for Reinforcement
Learning) is the title of the original paper outlining the seven core capabilities of
intelligence defined by Osband and is an assortment of testing environments
designed to specifically target these aspects of intelligence (Osband et al., 2020).
Each environment was recreated for BE’s custom environment interface and
adjusted to fit the needs of the program whilst also incorporating user-friendly
visualisations. Lastly, the third category includes test environments that
abstractly represent some basic tasks that intelligent agents acting as Mars rovers

might encounter.

For a complete outline of the parameters and configurations used for all tests, see

table 7, table 8, table 9, and table 10 at the end of chapter 4.1.4.

119

4.1.1 Test Functions

The test functions used for BE include 20 different functions that were largely
sourced from Mishra’s collection of important test functions (Mishra, 2011). The
test functions can either be tested in 1D or in 2D for a total of 40 test functions.
Since the rewards of a test function at all points are a dimension itself, the
visualizations of the 1D test functions are in 2D and the visualisations of the 2D

test functions are in 3D.

All tests with 1D and 2D test functions work in the same way. When a test
function environment is initiated, all individuals are given random locations
across the surface of the function. Each individual then gets ten steps to figure
out how to get to the lowest point in the function. At each step, an individual can
jump to any other location in the function within the specified bounds of that
function (which have been manually chosen). The inputs received by the agent
include their current and previous coordinates as well as their current and
previous rewards from the function. Also included in an agent’s input is how
many steps are remaining for the current test cycle. The fitness of the agent is
then only evaluated on the final step and is judged to be the agent’s current

position in the function.

There are also two additional function-based environments that can be selected
by the user. These include “Random 1D Functions” and “Random 2D Functions”.
As their names suggest, these test environments simply initiate a new random
function for the start of each simulation cycle. This tests an agent’s ability to learn

a general rule for solving functions instead of a rule that solves a specific function.

A list of all the test functions used can be seen in table 2 along with a 1D and 2D
depiction of each function (generated by BE’s graphics engine) in table 3. Note

that for the 1D implementations, y is defaulted to zero.

120

Table 2

Common test functions used and their formulae.

Name Formula
Rastrigin f(x,y) =20 + x? — 10 cos(2mx) + y? — 10 cos(2my)
Ackley flx,y) = —20e~02v0.5(x*+y?) _ p0.5cos(2mx)+cos(2my) 4 o 4 20
Sphere flo,y) =x2+y?
Rosenbrock flx,y) =100(y — x*)% + (1 — x)?
Beale fle,y) =(15—x+xy?)? + (225 — x + xy?)? + (2.625 — x + xy3)? — 0.281274
Booth fl,y)=(@x+2y—-7)?+02x+y—75)?
Bohachevsky 1 f(x,y) = x% + 2y? — 0.3 cos(3mx) — 0.4 cos(4my) + 0.7
Bohachevsky 2 f(x,y) = x% + 2y? — 0.3 cos(3mx)0.4 cos(4my) + 0.3
Bohachevsky 3 f(x,y) = x% + 2y? — 0.3 cos(3mx + 4my) + 0.3
Easom f(x,y) = cos(x) Cos(y)e—(x—n)z—(y—n)z +1
Griewank f(x,y) = 0.00025(x% + y?2) — cos(x) cos (%) +1
Himmelblau fO,y)=(x+y?—6)2+ (x2+y—11)?
5 5
Levi3 flx,y) = (Z((i — Dcos((i + Dx + i))) (Z((i —Dcos((i + Dy + i))) +176.542
i=1 i=1
Levii3 f(x,y) =sin?(3mx) + (x — 1)2(1 +sin2(3my)) + (y — 1)?(1 + sin?(2my))
Matyas f(x,y) = 0.26(x% + y2) — 0.48xy
, . : AT a0 (2Y?
Michalewicz f(x,y) = —| sin(x) sin?° - + sin(y) sin?° - +1.8013
Schwefel f(x,y) =837.9658 — x sin (w/ le) + ysin(Iyl)
Eggholder f(,y) = —(v +47)sin (105x +y + 47]) — xsin ({Tx = y + 47]) + 959.6407
‘JW
Holder Table f(x,y) = [sin(x) cos(y)e T +19.2085

Styblinski-Tang

f(x,y) =05(x*—16x2% + 5x + y* — 16y? + 5y) + 78.33234

121

Table 3

Common test functions used and their assosiated 1D and 2D images in 2D and 3D space.

Name 1D Function - 2D Image 2D Function - 3D Image

Rastrigin

Ackley

Sphere

Rosenbrock

Beale

Booth

Bohachevsky 1

Bohachevsky 2

Bohachevsky 3

A=

22

Easom

Griewank

Himmelblau

Levis

Levii3

Matyas

Michalewicz

Schwefel

Eggholder

Holder Table

Styblinski-Tang

IIESHI A =F

23

4.1.2 B-Suite Environments

The environments that have been derived from the original B-Suite tests
(outlined by Osband) have been modified to fit the needs of BE’s testing interface.
The original set of B-Suite tests includes a wide range of parameters that define
how B-Suite runs each test which can be used to adjust the scale or difficulty.
Since so many tests were run for this thesis, the recreated versions of the B-Suite
tests run for BE used parameters that were narrowed down to the scope of the
project. By increasing the range of the parameters or scale of the tests further,
preliminary tests showed that run times began to take too long to get useful
results. Furthermore, variations of the tests that included too much stochasticity
were excluded so as to better control the proceedings (and hence understand the

outcomes) of the tests.

Additionally, there were also three environments that were added to this section
of the tests. These included two environments that directly test the ability of an
agent to perform 1D and 2D gradient descent as well as a very simple environment
that tests an agent’s ability to move to a target. The gradient descent tests were
put in place since all methods in BE use evolutionary optimization instead of
gradient descent optimization. The Move to Target test was added because it is a
straight-forward, fundamental task and tests BE’s ability to remain robust to

overfitting without obfuscating the simplicity of the underlying problem.

A list of all testing environments in this category and their details can be seen in
table 4. Additionally, table 5 shows the visualizations created for each
environment (generated by BE’s graphics engine) along with a general outline of
what aspects of intelligence each environment tests. The target issues shown in
table 5 are partly taken from Osband’s analyses but adjusted slightly for the

unique implementations used in BE (Osband et al., 2020).

Well, the test functions in section 4.1.1 are measuring gradient descent, aren't they?

124

Table 4

Table detailing each B-Suite test environments and how it is implemented

Name Description
Move to Target is a very simple test where agents must move to a red target whose location is
Move to randomized at each step. The only information given to an agent includes its current position and
Target target position. The closer an agent is to the target, the higher its reward. Rewards are only given if

the agent moved closer to the target compared to its previous position.

1D Gradient
Descent

Agents must descend a 1D slope to find its lowest point within ten steps. The gradient and direction
of the slope as well as the position of the global minimum are randomized for each test cycle.

2D Gradient
Descent

Agents must descend a 2D slope to find its lowest point after ten steps. The gradient and direction
of the slope in both dimensions as well as the position of the global minimum are randomized for
each test cycle.

One-Armed
Bandit

The One-Armed Bandit implemented for BE is deterministic. An agent is given an array of ten
possible choices to select as input with each option being worth a reward from ten to a hundred in
increments of ten. The positions of these rewards are randomized at the start of each cycle. There
are 20 steps in each test cycle, but rewards are only received after ten steps. An agent must therefore
keep trying different options until it finds one that gives the highest reward before staying with it
for the remaining number of steps.

Catch

Catch is a game that an agent must play in a grid world that is ten blocks high and five blocks wide.
The agent occupies the bottom row and can only move a maximum of one block left or right. Targets
then fall one block at a time from the highest block and start at a random location in the x-axis.
Agents must move so as to “catch” the target falling towards them.

Cartpole

The Cartpole test requires agents to figure out the physics behind the problem. A cart is positioned
within a 1D bounded area with a weighted pole attached to it standing upright (with a small
randomized initial deviation). The agent must then apply forces to the cart at each time-step in
either the left or right direction in order to maintain the balance of the pole so it does not swing
down. It must maintain this for 50 steps whilst constantly remaining in the bounds of the
environment. The input received at each step consists of the cart’s position in the area, change in
position, sine and cosine of the pole’s angle, and change in the pole’s angle. A reward is received at
each step if the pole is upright such that the cosine of the angle of the pole is greater than 0.8.

Cartpole
Swing-Up

The Cartpole Swing-Up test is exactly the same as the Cartpole test except all poles begin hanging
down (with a small randomized initial deviation). The agent must then learn to swing the pole up
before maintaining its balance in an upright position. This is significantly harder than the standard
Cartpole test. Each agent gets 50 steps to do this but because the pole starts already hanging, it is
technically impossible to get 100% accuracy (which would require the pole to always be upright) as
there will always be a period in which the agent must swing the pole up.

Mountain
Car

For the Mountain Car test, an agent must apply a force to a car to the left or to the right in order to
move the car to the top of a target hill. The car starts on a smaller hill (with some random deviations
to its initial starting conditions) and must use the dip between the two hills by going back and forth
in a swinging motion to gather enough momentum to reach its target. An agent receives its current
position, velocity, and current step as its input. Each test cycle is 50 steps, but an agent gets 20 free
steps to make it to the top of the other hill. Its fitness is then calculated as 30 minus every step past
20 that the agent takes to reach its target.

125

Deep Sea

The Deep Sea test requires agents to traverse down a tree of nodes with six nodes (including the
starting node) and five binary decision branches for each traversal. An agent can choose to either
go left or right at each node. However, the node can either take the agent’s action at face value
(indicated by a plus sign) or reverse the agent’s decision (indicated by a minus sign). This is
randomized for each test cycle. Travelling down the left branch of the tree always results in a reward
being received, however, the farthest right-hand node at the bottom of the tree issues the highest
reward of 100. Each test cycle allows for enough traversals so that an agent may potentially explore
the entire tree before only evaluating the final tree traversal to find the agent’s fitness. The input
received by an agent includes its cumulative rewards and an array representing the chain of
movements the agent made in its current traversal of the tree as well as a flag indicating if it is in
its final traversal or not.

Custom
Simplified
MNIST

The Custom Simplified MNIST environment has been modified from the original MNIST test. The
original MNIST test simply requires the classification of 28x28 pixel hand-written numbers from
zero to nine. In order to scale down the problem to fit within the scope of this thesis, this custom
version only requires an agent to classify a number represented using digital segments with
randomized noise. This changes the input to 14 different values. The same number is given multiple
times with differently randomized noise in order to test an agent’s ability to be invariant under
changing noise. This also allows agents with memory to correct an initial misclassification. Rewards
are only given to correct classifications.

Custom
Umbrella
Problem

The Custom Umbrella environment has been slightly modified from the original Umbrella Problem
as outlined by Osband (Osband et al., 2020). An agent begins at the start of a five-step sequenced
event where the agent has to make a binary decision that determines where it ends up at the end of
the five steps. A reward is only given at the end of the five steps and all actions taken by the agent
on other steps don’t actually impact anything. At each step, an agent receives an array (also of size
five) of random noise. However, one of the array parameters (randomly chosen) indicates which
initial decision will result in a reward. This information is only given on the first step. The five-step
cycle is repeated twice, allowing the agent to learn which piece of information is valuable before
having its fitness evaluated the second time. The problem is analogous to deciding to take an
umbrella outside based on a weather prediction. One might engage in a set of unrelated tasks before
the initial decision only becomes important later when it starts to rain.

Discounting
Chain

The Discounting Chain environment consists of eight chains of linked nodes with each chain being
made up of ten nodes. One randomized node on each chain contains a reward while only one reward
across all chains contains the maximum reward available. At each step, an agent progresses along
the chain before having to decide which chain to explore next when it reaches the end of its current
chain. Each test cycle allows for an agent to potentially explore all chains before the final chain
decision is the one that is evaluated as the agent’s fitness. The input received by an agent includes
data about its current position within its current chain as well as a flag indicating if it is on its last
decision or not.

Memory
Chain

In the Memory Chain test, an agent is shown a succession of five different pieces of information.
Each piece of information contains a number from one to three. With each new piece of
information, the environment also asks the agents what piece of information was previously given
at a randomly chosen past step. Successfully choosing the right value results in a reward while the
amount of content to remember increases with each step.

126

Table detailing all B-Suite test environments, what each test intends to target, and example

Table 5

visualisations.

Name

Target Issues

Visualisation

Move to Target

Basic Task Completion

[o

1D Gradient Descent

Basic Task Completion

2D Gradient Descent

Basic Task Completion

One-Armed Bandit

Basic Task Completion
Exploration

Catch e Basic Task Completion
e Basic Task Completion
Cartpole e Simple Credit-Assignment XDy 2

Generalization

127

e Basic Task Completion
Simple Credit-Assi t
Cartpole Swing-Up * 1mpe .re ,1 ssignmen FIERILITEENE T K
e Generalization ’
e Exploration
e Basic Task Completion
Mountain Car e Simple Credit-Assignment
e Generalization
[]
. H =
e Exploration i
Deep Sea e Credit-Assignment .
e Memory / Temporal Generalit
eme ! == mwE
e E e
e Basic Task Completion ' =
Custom Simplified G lizati p 0 -[:I
L] [
MNIST er.lera iza 1o.n H
¢ Noise Reduction (] balen®
.) HEENE-
e Credit-Assignment
Custom Umbrella M /T G lit
L]
Problem e.mory er.npora enerality
¢ Noise Reduction
H E B E-E
EE-EEEEEEE®D
EEENEEEEEE
e Exploration EEEEEE
Discounting Chain e Credit-Assignment : ::n - : : : : : :
¢ Memory / Temporal Generality EE-EEEEEEEE
e
EEEEEEEEE
" E m mEm
Credit-Assi t i
Memory Chain * redit-AssIgNmen . m E- = m m
e Memory / Temporal Generality Ly
mE N m m N

128

4.1.3 Mars Rover Test Environments

The aforementioned test environments are each highly targeted and cover a
broad range of general tasks. However, in order to replicate a more realistic use-
case of BE’s software, four more test environments were built that abstractly
represent the kinds of tasks that may be encountered by a space rover operating
on Mars. These environments are still scaled down to fit within the scope of this
thesis and are merely representative of larger scale problems that BE might be

used to help tackle.

Drawing from the implementation GESTALT in NASA’s MER mission, the
environments created utilize a 11 x 11 virtual grid world which is very similar to
the 10 x 10 meters® grid world originally used by GESTALT. As a result, this more
directly replicates the type of higher-level decision making that a more advanced
space rover Al may need to execute if it were in a similar situation to the original
MER mission. The dimensions of the grid world were chosen to be eleven instead
of ten in order to have a starting cell that is perfectly in the centre of the grid

world.

The four space-rover environments created target all of the aspects of intelligence
outlined by this thesis and hence represent a more general benchmark of BE as a
whole. The difficulty of performing well in these environments is also
considerably higher than that of the other tests so the results produced by agents
operating in these environments are not necessarily expected to be very good.
The details pertaining to the space rover tests created as well as an example of

their visualisations can be seen in table 6.

129

Table 6

Table detailing all space rover test environments and how they are implemented along with

example visualisations.

Name

Description

Visualisation

Collect
Mission

This mission represents a basic space rover task that entails navigating
to certain locations in order to gather sample data from that location.
The locations are randomly set around the grid world. Gathering
samples results in a reward being received. If two sample locations
overlap a cell, they are indicated by a “x2” symbol and are worth an
appropriately higher reward. Cells also go grey if they have been
collected by all agents. Each agent only gets 121 steps (the number of cells
in the grid world) to try and find all sample gathering locations. Agents
can only move one block at a time and cannot collect the same source
more than once. The input information received by an agent at each step
includes information about all the blocks immediately surrounding it,
the last movement it made, and how many steps are remaining. Blocks
that don’t contain anything also include a random noisy signal that
agents must learn to ignore.

Gather
Mission

The Gather Mission is set up in exactly the same manner as the Collect
Mission except once a sample has been gathered, a reward is only
received for it once the agent returns to its starting position at the centre
of the grid world. An additional input is given to the agents beyond those
outlined in the Collect Mission that indicates whether an agent is
currently holding any samples that needs to be deposited or not. This
environment is therefore significantly harder than the Collect Mission.

Navigation
Mission

This mission is also set up in the exact same way as the Collect Mission
except instead of gathering locations that are randomized around the
world, hazardous obstacles are randomly place while still ensuring there
is always at least one path leading from the starting point (in the centre
of the grid world) to the edge of the grid world. Agents must then try
and navigate as far away from the centre as possible. If they move into a
hazard, their progress is halted and they can no longer move. An
additional input is given to the agents beyond those outlined in the
Collect Mission that indicates the furthest distance that a particular
agent has achieved from the starting point for its current test cycle. This
test is similar to the Collect Mission in difficulty.

Full Rover
Mission

The Full Rover mission is the hardest environment and combines the
Gather Mission with the Navigation Mission. Agents are rewarded in the
same way as the Gather Mission except there are additional hazardous
cells that halt an agent’s progress should they move into them. Unlike
the Navigation Mission, agents are not rewarded for how much distance
they cover from the starting point as the hazardous cells merely act as
obstacles to the target gathering locations. On a high level, agents must
be able to explore the world in an efficient manner while avoiding
dangerous cells. Only exploring areas once and remembering paths they
took to deposit gathered samples is also necessary for an agent to
perform well.

130

4.1.4 Experimentation Process and Data Gathering

The experimentation process conducted for this thesis tests BE’s ability as a
general cognitive architecture to exhibit its potential for AutoML. This is to say
that the tests focus on BE’s architecture as a whole, whether simpler approaches
for a particular problem would be more efficient or not. An example of this would
be in the solution to the Move to Target test environment. The solution to the
environment is extremely simple, and BE’s architecture (due its complexity) only
serves to obfuscate the optimal function. However, the intent is to test BE’s
process as a whole to target any problem regardless of the complexity and its
ability to solve the Move to Target test environment without guidance is still
valuable. Despite the goal of BE being its capability to eventually assist in solving
complex tasks, most tests were highly simplified in order to focus on small proofs

of concepts by testing BE’s generality over a wide range of different kinds of tests.

All tests were run on a local machine with 16Gb of DDR4 RAM and an i7-8700K
hex-core running at 3.7 GHz. However, since the machine was not dedicated
solely to running tests, only four of its six cores were allocated to BE. Due to long
processing times from the limited hardware available and large number of tests
to complete, the scalability of the tests run was also kept very small. However,
scalability was identified as being one of the core components of intelligence.
Despite this, in order to keep everything in scope, the tests conducted do not
evaluate the scalability component of intelligence. While some tests may
inadvertently test this (such as in the case of the space rover tests), this aspect is
not explored much further by this thesis. However, it is still important to note
that MLSH’s focus on scalability still assists its effectiveness in improving other
aspects of intelligence as its purpose is to break problems down into simpler

parts.

131

There are multiple functionalities and potential configurations that are also
possible with BE that are not explored in the testing process. The reason for this
is that these functionalities and configurations are simply out of scope and are
not essential for the focus of this thesis. However, they still remain part of BE’s
software for others to potentially use since BE is in itself a contribution of this
thesis. One of these functionalities not used includes tests that involve an agent’s
ability to solve multiple test environments at once. Test environments are
therefore not combined and are instead run individually. This shifts the focus
from testing BE’s ability to create generally intelligent agents to testing BE’s
ability to be general itself. Another feature that was not used is online self-
adaption which simply fell out of scope but may still be a potentially useful
component of BE as a general cognitive architecture. However, this would have

to be explored by future research.

Continuing with the effort to keep everything in scope, tests were not run on all
1D and 2D test functions individually. Instead, only two test environments were
run using the Random 1D Function and Random 2D Function environments as
they encompass all of the test functions. Despite all these changes to minimise
testing run times as well as the use of parallelisation, completing a single run of
all the tests ultimately took more than an entire month. Due to this time
constraint and the fact that many preliminary tests were first attempted, only a
single batch of all tests was successfully completed. This means that the results
were not averaged across different runs with different initial seeds. However, this
does not necessarily mean that the results obtained are unreliable as all potential
best individuals in the optimized DNE tests were evaluated 100 times before
averaging the obtained fitnesses. Furthermore, each REVAC generation was also
repeated five times before averaging the results (MBF) of each of the individual

DNE configurations.
You should have dimensioned your testing budget before setting up a too large experimental study...

132

The architectural configurations tested include all possible combinations of
enabling or disabling the SNN, MLSH, Attention, and GEE components with
DNE always enabled as a core component (see table 8). Some of the configuration
options that remained static (in order to reduce the number of tests) include Add
Raw Input to Attention Output which was always set to off (to reduce network
complexity) and Use SNNs On Theta Network Only which was always set to being
on (to minimise SNN’s additional complexity being introduced into ¢ sub-policy
networks). The evolutionary parent selection method used was also always set to
exponential selection due to its flexibility as a selection method as outlined in

chapter 2.2.6.

The testing process used to evaluate BE involves running BE with 16 different
architectural configurations repeated for each testing environment. Each test
configuration-environment pair is run twice; first using REVAC with lots of
small-scale DNE runs of the target test environment (representing the population
of REVAC) and secondly using the optimally found parameters by REVAC on a
large-scale DNE run. A complete list of all the relevant non-architectural
parameters (that were not optimized by REVAC) used for all tests can be seen in
table 7. For a full comprehensive overview of all the tests run, table 7 can be used
in conjunction with table 8 and table 9 (which have been split up due to the
limited page space available) as well as table 10. Table 8 and table g show the exact
architectural configurations for all tests in all test environments. Each
configuration is made up by combining different modules. The modules DNE,
SNN, MLSH, Attention and GEE are represented by the symbols D, S, M, A, and E
respectively. The “Use REVAC” option is marked as “N/A” since all tests are run
once with REVAC enabled and then again with it disabled. The “REVAC Tests”
column in table 7 corresponds to the parameters used for all tests that have
REVAC enabled while the “Optimized DNE Tests” column corresponds to all tests
where REVAC is disabled.

133

Table 7

Table showing all non-architecural and non-REVAC optimized parameters used for all tests.

Parameter REVAC Tests Optimized DNE Tests
Seed 1 1
Max Threads 4 4
Max Nodes Per Network 100 1000
Max Networks 5 10
DNE Population 50 1000
DNE Generations Max 50 1000
DNE Generations to End If No New Best 50 1000
DNE Simulation Repetitions 1 10
DNE Evaluation Repetitions 10 100
REVAC Population 80 N/A
REVAC Generation Max 100 N/A
REVAC Generations to End if No New Best 4 N/A
REVAC Evaluation Repetitions 5 N/A
REVAC Parent Pool Size 40 N/A
REVAC Mutation Range 10 N/A

Table 8

Table showing all the different configuration settings (with GEE disabled) used in the tests

conducted for all environments. REVAC is marked “N/A” as it is enabled first and then disabled.

Configuration D DS DM DA DSM DSA | DMA | DSMA
Use REVAC N/A N/A N/A N/A N/A N/A N/A N/A
Use SNNs - v - - v v - v
Use SNNs On Theta Network Only - - - - v - - v
Use MLSH - - N - v - v v
Use Attention - - - N - v v v

Add Raw Input to Attention Output - - - - - - - -

Enable Guided Epsilon Exploration - - - - - -

Enable Activation Offset v N v v v v v v
Enable Identity Function N N4 v N v v v v
Enable RelLU Function v N v v v v v v
Enable Leaky ReLU Function N N4 N N v v v v
Enable Sigmoid Function N N4 v N v v v v
Enable TanH Function v N N N v v v v
Use Linear Wheel - - - - - - - -
Use Exponential Wheel v v v v v v v v

Use Proportional Selection - - - - - -

Use Tournament Selection - - - - - -

134

Table 9
Table showing all the different configuration settings (with GEE enabled) used in the tests

conducted for all environments. REVAC is marked “N/A” as it is enabled first and then disabled.

Configuration DE DSE | DME | DAE DSME | DSAE | DMAE | DSMAE

Use REVAC N/A N/A N/A N/A N/A N/A N/A N/A
Use SNNs - v - - v v - v
Use SNNs On Theta Network Only - - - - v - - v
Use MLSH - - v - v - v v
Use Attention - - - v - v v v
Add Raw Input to Attention Output - - - - - - - -
Enable Guided Epsilon Exploration N N N v v v N v
Enable Activation Offset v N N v v v v v
Enable Identity Function v N v v v v v v
Enable RelLU Function v v v v v v v v
Enable Leaky ReLU Function N N4 N v v v v v
Enable Sigmoid Function v N4 N v v v v v
Enable TanH Function v N N v v v v v
Use Linear Wheel - - - - -

Use Exponential Wheel v v v v v v N v
Use Proportional Selection - - - - - - - -
Use Tournament Selection - - - - - - - -

Table 10

Table summarizing all experiments run. The target issues have been abbreviated as B, E, N, G,

M, and C which corresponds to the first letter of each target issue’s description.

Environment Steps B E N G M C
Move to Target 5 v - - - - -
1D gradient descent 10 v - - - - -
2D gradient descent 10 v - - - - -
One-Armed Bandit 20 v v - - - -
Catch 10 v - - - - -
Cartpole 50 v - - v - v
Cartpole Swing-Up 50 N v - v - v
Mountain Car 50 N - v - v
Deep Sea 60 v - - v v
Custom Simplified MNIST 10 v v v
Custom Umbrella Problem 10 - - N - v v
Discounting Chain 90 - v - N v
Memory Chain 5 - - - - N N
Collect Mission 121 v v v v v v
Gather Mission 121 v v v v v v
Navigation Mission 121 v v v N v v
Full Rover Mission 121 v v v v v v
1D Test Functions 10 v - -
2D Test Functions 10 v - - - - -
All environment tests above are repeated for each of the following configurations:

Excluding GEE: | D DS DM DA DSM DSA DMA DSMA
Including GEE: DE DSE DME DAE DSME DSAE DMAE DSMAE

135

To summarise the experiments outlined throughout this chapter, an overview of
all tests conducted can be seen in table 10. The table simply defines all test
environments and the number of simulation steps used. The target issue of each
environment is also shown in order to highlight the purpose behind each test. All
target issues (Basic Task Completion, Exploration, Noise Reduction,
Generalization, Memory/Temporal Generality, and Credit Assignment) have been
abbreviated as B, E, N, G, M, and C respectively. The configurations depicted
have also been abbreviated in the same manner as table 8 and table 9. Ultimately,

table 10 encompasses every test run using BE for this thesis.

136

4.2 Results

The results obtained from the tests outlined in chapter 4.1.4 were all stored in
separate save files by BE. An additional Python program was then written called
data_reader.py to read the data from the collection of save files before
summarising all the information into four MS Excel spreadsheets named Average
Results, Average REVAC Results, Highest Results, and Highest REVAC Results.
The data pertaining to each Excel spreadsheet corresponds to the values obtained

at the end of a particular run.

The results that hold the most interest are those found in the Highest Results
spreadsheet as shown in table 15 and table 16 as they represent the performance
of the “end products” or resultant intelligent agent solutions produced by BE’s
AutoML process for all the environments and architectural configurations. The
results in Average Results indicate the solution population’s stability or reliability
in relation to the highest results while the REVAC counterparts highlight the
benefit of running larger scale DNE runs with REVAC tuned parameters as

opposed to the results produced using REVAC by itself.

The data collected in the four files can be seen in the tables to follow. The
columns represent the results for different architectural configurations while the
rows represent the different test environments used. Each table has been split up
(due to space constraints) in the same manner as table 8 and table 9 so that the
results obtained with GEE are represented on a separate table. Symbols have also
been used as a shorthand in the same way as table 8 and table g to indicate an
architectural module except that the default architectural configuration simply
indicates that only the core DNE module was used in combination with BE’s
general learning and evaluation process. The symbol “D” (DNE) has been omitted

for convenience.

137

Table 11
Average Optimized DNE Results with GEE Disabled

Environment/Config: | Default S M A S+M S+A M+A | S+M+A
Move to Target 75.97 23.41 78.30 70.77 24.47 25.92 67.12 20.69
1D gradient descent 85.90 92.27 86.01 91.90 92.68 92.51 86.71 91.99
2D gradient descent 82.99 89.91 88.32 86.86 90.70 90.57 86.48 90.85
One-Armed Bandit 68.13 70.07 69.05 69.66 69.85 73.63 68.17 71.07
Catch 38.65 72.34 36.87 28.77 72.47 83.49 51.64 74.66
Cartpole 17.25 46.57 67.55 47.87 46.51 45.25 52.47 44.42
Cartpole Swing-Up 29.19 10.87 32.39 13.39 10.84 10.14 12.75 10.84
Mountain Car 33.51 44.42 31.47 0.00 0.00 0.00 0.00 0.00
Deep Sea 74.86 83.33 75.19 79.28 83.33 83.33 72.77 83.33
Custom Simplified MNIST | 35.54 22.64 20.80 58.22 23.15 25.67 35.77 17.99
Custom Umbrella Problem | 68.30 80.25 63.56 63.90 72.50 77.11 78.96 74.58
Discounting Chain 66.64 75.12 65.36 70.37 69.77 70.15 65.81 70.15
Memory Chain 54.63 63.21 46.69 51.97 60.49 57.51 49,58 53.79
Collect Mission 47.24 14.38 30.25 4.52 10.88 2.45 6.33 2.20
Gather Mission 6.16 0.00 20.57 0.88 0.14 0.00 1.66 0.00
Navigation Mission 61.49 55.59 78.18 28.72 55.35 17.51 30.39 12.84
Full Rover Mission 0.61 0.00 1.70 0.92 0.00 0.00 0.48 0.00
1D Test Functions 63.42 78.12 63.91 68.49 76.43 76.78 68.25 77.21
2D Test Functions 74.09 79.36 74.24 76.84 79.36 78.59 73.41 79.59
Table 12

Average Optimized DNE Results with GEE Enabled
Environment/Config: | Default+E | S+E | M+E | A+E | S+M+E | S+A+E | M+A+E | S+M+A+E
Move to Target 69.55 26.10 | 79.83 | 72.57 | 26.31 26.83 70.94 25.01
1D gradient descent 80.08 86.46 83.88 83.48 86.03 86.32 83.12 85.11
2D gradient descent 82.94 87.50 82.97 80.82 87.38 86.26 80.76 88.03
One-Armed Bandit 71.39 66.98 | 70.70 | 70.50 | 73.14 71.76 67.67 69.44
Catch 68.54 56.22 | 48.82 | 53.36 | 37.84 4438 22.86 38.49
Cartpole 39.81 56.58 | 20.19 | 29.06 | 49.70 43.34 44.03 39.55
Cartpole Swing-Up 41.01 14.83 | 49.66 | 1839 | 9.33 8.72 18.44 9.12
Mountain Car 37.12 4.48 60.38 38.78 4.26 4.41 28.65 3.92
Deep Sea 78.06 78.46 | 7651 | 7458 | 81.32 77.12 75.89 80.65
Custom Simplified MNIST | 18.28 20.84 | 15.05 | 27.26 | 21.32 21.99 19.37 18.01
Custom Umbrella Problem | 59.05 56.71 | 62.81 | 60.10 | 65.33 63.07 55.72 59.97
Discounting Chain 61.20 61.02 | 61.13 | 63.34 | 62.25 60.69 61.14 62.71
Memory Chain 46.89 37.87 | 47.79 | 46.58 | 37.57 46.00 43.65 42.15
Collect Mission 33.60 26.69 30.38 19.06 28.12 27.94 19.73 19.36
Gather Mission 7.83 7.80 7.45 4.21 7.32 7.12 4.84 4.97
Navigation Mission 64.26 57.93 71.34 26.04 61.30 15.31 21.80 15.34
Full Rover Mission 0.21 0.21 0.22 0.21 0.22 0.24 0.22 0.21
1D Test Functions 60.19 69.17 | 57.09 | 67.15 | 64.04 62.88 62.30 66.00
2D Test Functions 68.01 7296 | 7251 | 67.79 | 70.04 74.99 69.39 70.76

138

Table 13
Average REVAC Results with GEE Disabled

Environment/Config: | Default S M A S+M S+A M+A | S+M+A
Move to Target 90.73 31.68 90.56 82.71 29.83 25.58 80.56 26.80
1D gradient descent 94.12 94.04 94.15 94.38 94.28 94.31 94.38 94.34
2D gradient descent 91.06 91.89 91.15 91.19 91.87 91.86 91.20 91.86
One-Armed Bandit 88.23 80.56 88.27 88.11 80.05 80.74 88.22 79.84
Catch 78.00 64.55 84.00 78.97 70.40 68.68 83.85 70.82
Cartpole 88.49 49.01 91.35 86.60 48.73 46.13 53.06 45.98
Cartpole Swing-Up 37.49 16.20 35.81 30.50 17.00 14.99 29.21 14.73
Mountain Car 45.47 0.74 51.25 1.54 0.66 0.00 2.41 0.00
Deep Sea 83.17 83.33 83.13 82.37 83.33 83.33 83.23 83.33
Custom Simplified MNIST | 46.39 28.47 46.13 46.30 29.74 33.36 46.38 35.02
Custom Umbrella Problem | 88.32 89.38 88.53 87.85 87.60 89.32 88.70 90.55
Discounting Chain 82.59 81.16 82.44 82.87 80.40 76.53 82.83 76.27
Memory Chain 71.27 54.40 71.40 71.53 54.67 67.07 71.65 66.61
Collect Mission 26.01 11.13 27.88 12.81 8.22 3.71 12.78 3.55
Gather Mission 4.33 0.00 5.92 2.56 0.00 0.00 1.89 0.00
Navigation Mission 79.42 54.22 77.35 50.62 54.94 19.88 51.70 19.57
Full Rover Mission 1.42 0.00 1.33 0.26 0.00 0.00 0.32 0.00
1D Test Functions 82.31 80.99 82.59 83.11 80.85 80.74 83.16 80.72
2D Test Functions 84.17 82.78 83.86 84.20 82.75 82.78 84.23 82.70
Table 14

Average REVAC Results with GEE Enabled
Environment/Config: | Default+E | S+E | M+E | A+E | S+M+E | S+A+E | M+A+E | S+M+A+E
Move to Target 86.55 37.96 | 84.17 | 7445 | 38.24 38.13 74.84 38.25
1D gradient descent 93.03 91.97 92.77 93.07 92.05 92.17 92.94 92.06
2D gradient descent 90.20 89.60 90.27 90.04 89.50 89.43 90.12 90.14
One-Armed Bandit 87.79 77.45 | 88.08 | 87.61 | 77.80 77.30 87.84 77.32
Catch 62.22 5855 | 61.17 | 58.42 | 58.78 59.08 63.62 60.00
Cartpole 77.68 48.41 | 83.26 | 67.83 | 49.79 46.09 79.07 45.89
Cartpole Swing-Up 31.68 1491 | 29.83 | 21.47 | 14.89 14.90 21.73 14.87
Mountain Car 59.58 2191 | 63.99 | 2399 |21.67 21.80 24.26 21.72
Deep Sea 83.00 83.33 83.27 82.99 83.33 83.33 82.84 83.35
Custom Simplified MNIST | 44.41 2261 | 4575 | 43.90 | 25.89 29.75 43.89 29.96
Custom Umbrella Problem | 87.30 86.62 | 87.57 | 87.10 | 86.82 86.68 87.10 86.72
Discounting Chain 80.67 78.88 | 80.71 | 80.73 | 78.81 78.79 80.83 78.76
Memory Chain 70.04 47.06 | 70.11 | 69.90 | 47.06 46.63 70.10 50.01
Collect Mission 43.84 43.17 43.84 40.94 43.22 43.22 41.19 41.12
Gather Mission 18.90 18.55 18.62 15.91 18.47 18.56 16.04 16.48
Navigation Mission 80.35 51.33 76.35 49.12 39.28 19.82 49.90 21.67
Full Rover Mission 1.77 1.76 1.73 0.99 1.72 1.75 0.96 1.03
1D Test Functions 79.78 7425 | 79.76 | 80.67 | 74.59 74.02 80.49 74.20
2D Test Functions 82.76 77.17 | 82.60 | 81.77 | 77.16 77.37 82.41 77.59

139

Table 15
Highest Optimized DNE Results with GEE Disabled

Environment/Config: | Default S M A S+M S+A M+A | S+M+A
Move to Target 96.43 34,53 94.11 83.99 38.67 37.34 90.33 31.64
1D gradient descent 92.71 92.27 99.35 99.44 92.68 92.95 99.22 92.18
2D gradient descent 88.73 89.91 89.00 92.17 90.75 90.57 91.37 90.98
One-Armed Bandit 77.33 70.07 81.07 82.34 69.85 82.92 76.40 77.62
Catch 100.00 77.00 100.00 | 100.00 | 96.00 100.00 | 100.00 | 76.00
Cartpole 100.00 49.92 100.00 | 99.96 51.10 50.26 90.68 48.86
Cartpole Swing-Up 63.96 31.20 63.96 51.58 32.20 25.76 42.00 38.08
Mountain Car 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00
Deep Sea 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33
Custom Simplified MNIST | 50.60 30.00 37.80 71.30 26.00 30.80 78.00 35.30
Custom Umbrella Problem | 78.00 80.25 77.00 77.00 84.00 100.00 | 100.00 | 100.00
Discounting Chain 68.74 77.96 68.74 78.41 80.20 76.33 69.67 74.27
Memory Chain 63.00 69.20 62.40 74.60 65.60 73.20 77.60 72.00
Collect Mission 62.00 19.10 63.50 8.10 17.70 2.45 8.10 2.40
Gather Mission 13.40 0.00 51.60 0.88 0.40 0.00 1.66 0.00
Navigation Mission 87.00 78.40 86.00 36.00 88.80 28.60 38.00 19.60
Full Rover Mission 1.70 0.00 3.50 0.92 0.00 0.00 0.48 0.00
1D Test Functions 71.11 78.51 71.32 81.14 76.96 81.56 86.10 80.66
2D Test Functions 77.33 79.36 77.14 77.17 79.36 78.59 76.19 79.59
Table 16

Highest Optimized DNE Results with GEE Enabled
Environment/Config: | Default+E | S+E | M+E | A+E | S+M+E | S+A+E | M+A+E | S+M+A+E
Move to Target 94.33 32.56 95.49 87.28 32.56 32.56 87.36 32.56
1D gradient descent 94.92 90.44 91.76 98.84 90.23 90.66 97.82 90.76
2D gradient descent 89.22 89.18 88.89 91.53 89.83 89.18 92.29 89.02
One-Armed Bandit 84.81 66.98 | 78.43 | 75.56 | 80.40 71.76 74.47 77.18
Catch 100.00 81.00 | 100.00 | 100.00 | 77.00 73.00 100.00 93.00
Cartpole 99.94 65.22 | 100.00 | 100.00 | 60.54 48.50 100.00 43.12
Cartpole Swing-Up 65.96 2994 | 67.50 | 28.46 | 12.16 12.04 36.02 12.04
Mountain Car 100.00 9.93 100.00 | 100.00 | 9.93 9.93 76.73 9.93
Deep Sea 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33
Custom Simplified MNIST 35.40 26.30 34.20 44.50 30.60 34.00 31.90 26.10
Custom Umbrella Problem | 69.00 65.00 | 69.00 | 65.00 | 65.33 65.00 72.00 65.00
Discounting Chain 65.82 65.82 | 65.82 | 69.45 | 65.82 65.82 72.37 65.82
Memory Chain 62.00 39.40 | 60.60 | 71.60 | 52.80 71.40 66.60 72.00
Collect Mission 44.30 36.40 36.40 34.40 36.40 36.40 34.40 34.60
Gather Mission 12.80 12.80 12.80 11.00 12.80 12.80 9.40 11.00
Navigation Mission 86.00 77.80 87.00 36.00 87.40 19.60 36.80 18.80
Full Rover Mission 0.80 0.80 0.80 0.70 0.80 0.80 0.70 0.70
1D Test Functions 72.10 74.02 | 72.05 | 8254 | 73.13 67.64 81.66 70.76
2D Test Functions 76.90 7296 | 76.40 | 7630 | 72.51 74.99 76.79 72.44

140

Table 17
Highest REVAC Results with GEE Disabled

Environment/Config: | Default S M A S+M S+A M+A | S+M+A
Move to Target 95.05 40.33 93.79 88.66 38.35 34.86 87.25 34.73
1D gradient descent 95.62 95.07 95.93 97.72 95.40 95.39 98.21 95.67
2D gradient descent 92.75 92.92 93.19 93.19 92.86 92.98 92.86 92.93
One-Armed Bandit 93.26 89.54 94.34 93.26 85.88 89.06 94.16 86.30
Catch 98.00 82.00 98.00 96.00 86.00 84.00 98.00 92.00
Cartpole 100.00 54.88 100.00 | 100.00 | 53.84 48.40 100.00 | 47.72
Cartpole Swing-Up 48.48 25.32 45.20 35.44 23.32 20.24 37.88 20.04
Mountain Car 100.00 19.47 100.00 99.60 19.93 0.00 100.00 0.27
Deep Sea 83.33 83.33 83.33 83.33 83.33 83.33 83.33 83.33
Custom Simplified MNIST | 58.40 37.60 58.80 61.20 40.00 44.00 58.80 45.40
Custom Umbrella Problem | 94.00 98.00 96.00 94.00 100.00 | 96.00 96.00 98.00
Discounting Chain 87.55 86.21 87.43 87.06 86.50 81.79 87.76 83.21
Memory Chain 76.00 61.20 76.00 78.40 61.20 75.20 77.20 74.80
Collect Mission 42.40 20.60 44.20 16.80 13.60 8.20 16.60 8.00
Gather Mission 15.40 0.00 15.20 7.00 0.00 0.00 7.00 0.00
Navigation Mission 96.00 70.40 100.00 | 60.80 73.20 22.80 63.20 22.00
Full Rover Mission 2.80 0.00 2.80 1.60 0.00 0.00 2.40 0.00
1D Test Functions 87.73 85.24 87.37 88.66 84.88 85.82 87.67 86.27
2D Test Functions 88.25 86.76 91.38 88.15 87.01 87.16 89.74 86.84
Table 18

Highest REVAC Results with GEE Enabled
Environment/Config: | Default+E | S+E | M+E | A+E | StM+E | S+A+E | M+A+E | S+M+A+E
Move to Target 93.39 40.05 | 91.51 85.36 40.95 40.03 86.11 40.58
1D gradient descent 95.45 94.63 | 94.95 95.15 94.52 94.63 95.14 94.57
2D gradient descent 92.48 92.08 | 92.65 92.18 91.81 91.49 93.23 91.82
One-Armed Bandit 93.28 86.10 | 94.96 | 93.26 | 85.80 86.88 93.26 85.80
Catch 80.00 72.00 | 84.00 | 80.00 | 70.00 72.00 84.00 78.00
Cartpole 100.00 56.36 | 100.00 | 100.00 | 55.32 48.24 100.00 | 47.48
Cartpole Swing-Up 43.56 17.16 | 39.76 | 27.96 | 16.68 16.12 31.68 16.52
Mountain Car 100.00 30.47 | 100.00 | 93.73 26.53 25.40 92.73 25.40
Deep Sea 83.33 83.33 | 83.33 83.33 83.67 83.33 83.33 83.67
Custom Simplified MNIST | 57.80 30.60 | 54.60 54.00 36.20 40.40 55.40 38.60
Custom Umbrella Problem | 96.00 94.00 | 94.00 | 94.00 | 94.00 94.00 94.00 94.00
Discounting Chain 85.37 83.70 | 87.41 | 8573 | 83.90 83.70 87.34 83.70
Memory Chain 76.00 52.80 | 76.00 | 76.00 | 53.60 57.20 76.40 59.20
Collect Mission 49.20 46.00 | 50.00 44.40 45.80 46.00 44.80 45.80
Gather Mission 22.40 21.20 | 24.40 20.80 21.00 21.00 19.00 19.40
Navigation Mission 98.00 67.20 | 94.00 62.80 55.60 22.80 61.60 25.60
Full Rover Mission 3.20 3.20 3.00 2.60 3.20 3.20 2.40 2.60
1D Test Functions 85.83 80.36 | 84.26 | 85.89 | 81.40 80.80 84.93 81.14
2D Test Functions 87.74 85.03 | 87.50 | 87.41 | 86.76 84.27 86.70 85.92

141

4.3 Section Discussion

Before any experiments could take place, BE had to be successfully developed
and checked for the absence of any programmatical and logical bugs.
Furthermore, the system created for BE that allows experiments to be run was
built in such a way that all subsequent tests executed for the purpose of this thesis

could be easily setup through the program’s GUI.

The goal behind the experiments conducted is to test BE’s ability to find general
Al solutions (by itself) for a wide range of possible task scenarios. The test
environments coded into BE were hence chosen to stress this. As BE is just an
attempt at a general cognitive architecture, the effectiveness of its architecture
and all its components is hypothetical. Consequently, experiments were run on
all test environments for all configurations (in a general subset of the possible
configurations BE has to offer) so as to test the relevance of BE’s claim to its
specific architecture. There is also no AutoML process in BE that automatically
configures the architectural design other than using all components at once and
having less useful components evolve to not interfere with other internal

processes.

Based on the literature reviewed, hypothetical predictions were also made
outlining what each module within BE would be capable of achieving (as
summarised in table 1). The experiments used were set up so as to test the validity
of these predictions and hence provide insight into the benefits of using each
module in an evolutionary context, thus contributing to the broader field of

research into general Al

The use of REVAC within the testing process was also separated out. In other
words, each test involved a HPO process (done by REVAC), and an evaluation

process done by running the optimized parameters for the current configuration

142

and environment on an extended DNE test. This was done so that two separate
results could be obtained for each test-pair (instead of just running everything
with REVAC and using those as the final results). Having two separate sets of
results means that the effectiveness of REVAC’s contribution to the AutoML
process can also be evaluated, since REVAC implements HPO and doesn’t form

part of the core modules involved in the operation of a resultant agent.

As already stated, processing time was a significant issue for the set of
experiments that needed to be run which was mostly due to the sheer number of
them. Since each test-pair consists of two test-runs repeated across 19
environments for all 16 configurations, there were a total of 608 separate tests.
However, it is important to remember that these long processing times are not
necessarily indicative of a potential inefficiency in BE’s implementation as the
experiments evaluate BE as a whole and as a possible general cognitive
architecture. Practically using BE to develop (or assist in developing) a general
agent would not involve running so many tests as the objective purpose would
likely be more specific and could hence be done in a much more manageable

timeframe.

143

Chapter 5

Discussion

5.1 Overview

After gathering and processing all data obtained through the experimentation
process conducted for this thesis, the information collected was then analysed.
The following chapter outlines and discusses the various analyses made whilst

also further processing the data and representing it in subsequent tables.

The first objective is to discuss the validity of the predictions made regarding how
each BE module will perform in the context of each of the different target aspects
of intelligence as outlined in table 1. The data is also looked at and analysed by
focusing on BE'’s overall performance in solving all test environments, subtasks,
and aspects of intelligence. Based on BE’s general ability to solve problems,
further discussion is given to the effectiveness of BE’s architecture by comparing
different configurations to the default core configuration that uses DNE in

isolation.

Furthermore, the usefulness of REVAC in the role of BE’s implementation of
AutoML is also evaluated along with identifying which modules were most
valuable given certain conditions. Special attention is also subtly focused on the
performance of BE in the space rover tests as well as the aspects of intelligence
pertaining to perspective, such as memory/temporal generality and credit

assignment.

144

5.2 Discussion and Analysis of Results

The analyses of the results collected draws back to the information presented in
chapter 4.2. The tables in chapter 4.2 contain a lot of data to comprehend despite
the fact that it has already been largely abstracted and summarised from the 608
files of raw data that were produced from all the tests run. However, as previously
mentioned, the data that holds the most initial interest consists of the highest
results obtained by BE using an optimized DNE test for any given environment.
One might notice that not all of the highest results were obtained from the
optimized DNE tests and that many came from the REVAC tests. However, the
highest results from the REVAC tests should not be counted above the optimized
DNE tests as the optimal agents run by REVAC were configured to not be
evaluated 100 times like the optimized DNE tests, but 10 times instead (see table
7). This was done to avoid REVAC taking too long to run and was assumed to be
a good-enough approximation to facilitate the REVAC process. However, the
outcome is that there is an increased chance that an agent will get an inflated

optimal result by chance.

Based on the analyses of the different test environments as outlined in chapter
4.1, certain environments target different aspects of the core components of
intelligence. This is directly shown in the “Target Issues” column in table 5 in
chapter 4.1.2 which also highlights the frequency by which credit-assignment is
an element of focus, thus mirroring the importance of the idea of perspective.
Furthermore, there is also an expectation as to which BE modules will help solve
which kinds of problems as specified in chapter 3. Keeping this in mind, table 19
and table 20 highlight which architectural configurations were expected to result
in better performance for each environment while comparing them to the
descending order of how the configurations actually performed. The

configurations that were expected to perform better in a particular environment

145

are highlighted in green while those expected to perform worse (due to possible
added architectural complexity) are blue. Ambiguous or neutral configurations
are orange. The 1* rank represents the highest performance while rank 16 is the

lowest. Contiguous results with the same values are marked as “N/A”.

The expected colour coded performances for the B-Suite tests were devised by
cross-referencing the “Target Issues” column in table 5 as well as the information
depicted in table 10 with the aspects of intelligence that each module is intended
to target as summarised in table 1 in chapter 3.7. Modules that target aspects of
intelligence present within an environment (green) are hence expected to have
better performance as opposed to ones that may hinder performance (blue). The
ambiguous modules (orange) vary between including MLSH, DNE, GEE, and
sometimes Attention. DNE is the backbone of all configurations so it does not
ever get highlighted blue, and while exploration may not always be a target aspect
of a particular environment, it is mostly unclear what prediction to make with
regards to GEE’s effect on performance. Furthermore, since MLSH hypothetically
has the ability to improve many aspects of intelligence, it was only marked as
green where the test environment was complex enough to have multiple sub-
goals, such as first swinging up the pole before balancing it in the Cartpole Swing-
Up test. In some cases (such as the rover mission tests) it is expected that all the
modules will assist in performance, so configurations that combine multiple

modules were predicted to perform better.

146

Table 19
Configuration performances from 1* to 8 rank. Green indicates an expected improvement, blue
an expected decrease, and orange indicates a neutral prediction. Yellow fields achieved 100%

while red fields achieved 0%. “N/A” fields indicate multiple identical results.

Environment/Rank: 1t 2" 3« 4th 5th 6t 7t gt
Move to Target D ME DE M MA MAE AE A
1D gradient descent A M MA AE MAE DE SA D
2D gradient descent MAE A AE MA SMA SM SA S
One-Armed Bandit DE SA A M SME ME SMA D
Catch SM SMAE SE SME S SMA SAE SA
Cartpole A DE MA SE SME SM SA S
Cartpole Swing-Up ME DE M D A MA SMA MAE
Mountain Car SME SMAE SE SAE MAE S ME M
Deep Sea N/A N/A N/A N/A N/A N/A N/A N/A
Custom Simplified MNIST | MA A D AE M DE SMA ME
Custom Umbrella Problem | SM S D M A MAE ME DE
Discounting Chain SM A S SA SMA MAE MA AE
Memory Chain MA A SA SMAE SMA AE SAE S
Collect Mission MA A M D DE SME SE SAE
Gather Mission MAE M D SME SE SAE ME DE
Navigation Mission SM SME ME D M DE S SE
Full Rover Mission M D A SME SE SAE ME DE
1D Test Functions MA AE MAE SA A SMA S SM
2D Test Functions SMA SM S SA D A M DE

Table 20

Configuration performances from 9" to 16" rank. Green indicates an expected improvement,
blue an expected decrease, and orange indicates a neutral prediction. Yellow fields achieved 100%

while red fields achieved 0%. “N/A” fields indicate multiple identical results.

Environment/Rank: | 9% 10t 11t 12t 13t 14t 15t 16t
Move to Target SM SA S SME SMAE SE SAE SMA
1D gradient descent SM S SMA ME SMAE SAE SE SME
2D gradient descent SME DE SE SAE SMAE M ME D
One-Armed Bandit SMAE MA AE MAE SAE S SM SE
Catch ME MAE MA M DE D AE A
Cartpole SMA SAE SMAE ME MAE M D AE
Cartpole Swing-Up SM S SE AE SA SME SMAE SAE
Mountain Car DE D AE N/A N/A N/A N/A N/A
Deep Sea N/A N/A N/A N/A N/A N/A N/A N/A
Custom Simplified MNIST | SAE MAE SA SME S SE SMAE SM
Custom Umbrella Problem | SME SMAE SE SAE AE SMA SA MA
Discounting Chain M D SME SMAE SE SAE ME DE
Memory Chain MAE SM D M DE ME SME SE
Collect Mission ME SMAE MAE AE SA SMA S SM
Gather Mission SMAE AE MA A SM N/A N/A N/A
Navigation Mission MA MAE AE A SA SMA SAE SMAE
Full Rover Mission SMAE MAE AE MA N/A N/A N/A N/A
1D Test Functions SE SME DE ME M D SMAE SAE
2D Test Functions MAE ME AE MA SAE SE SME SMAE

147

At a high-level overview, the predictions outlined do not hold. There also seems
to be little pattern at all as to which configurations will result with better
performances given a particular environment. Almost no trend is observed in
relation to whether the number of modules enabled in a configuration affects
performance. However, by applying a very broad generalisation, a slight bias
towards better performance with configurations that only have a few modules
enabled emerges. This can be seen by looking at the top three columns and is in
contradiction to part of the hypothesis for this thesis which predicts that the
cumulation of modules would result in greater performance than the modules on

their own. In short, at a practical level, these predictions are unreliable.

The difference in the results compared to what was expected could be due to any
number of reasons. However, a reasonable hypothesis may deduce that the way
the different solution-space complexities of each configuration behave in an
evolutionary sense depends on some potentially intricate underlying function of
the environment that is not easily understood. In other words, systems often
behave unexpectedly or drastically different when put to practical use, as
demonstrated by the results. Furthermore, it may be that adding complexity
seems to not always favour an evolutionary approach in this context. This is not
to say that the possibility that the evolutionary methods used in BE will not
obtain very good results given enough processing time, as they are far less likely
to get stuck in local optima as opposed to gradient descent methods. It may just
be infeasible to expect such complex systems to optimize themselves on any
usable timescale. This aligns with some of the motivations behind methods such
as HyperNEAT that identified both the benefits and efficiency limitations of

evolutionary methods (Stanley, D’Ambrosio and Gauci, 2009).

Some of the values shown in table 19 and table 20 are greyed-out as “N/A”. In
these cases, the results obtained were exactly the same for all the N/A fields and

it is therefore meaningless to rank them. In some other fields, there are a few

148

configurations that also have the same performances without being marked as
N/A, however, they are limited to two or three in a row and are hence not a major
issue. Long sequences of N/A fields can be seen in the Deep Sea environment tests
which is most likely because all configurations have ended up optimising to the
locally optimal solution of always figuring out the left path movement (which
results in the immediate reward). The maximum reward for only moving right is
hence always missed, even with GEE enabled. This could also be the fault of
REVAC since the smaller DNE runs used by REVAC may have forced a
configuration to be evolved that favours more immediate rewards as opposed to

exploration (which could take more generations to optimize).

Some other tests that had sequences of the same result include the 100% accuracy
rating held by the Catch, Cartpole, Mountain Car, and Custom Umbrella
environment tests. These tests, especially Catch, were optimally solved by BE.
Since multiple configurations achieved 100%, their ranking is no longer relevant.
Furthermore, the Mountain Car, Gather Mission, and Full Rover Mission
environment tests all hold a sequence of configurations that were unable to find
any solution and achieved fitnesses of 0%. Mountain Car is particularly
interesting as it holds both a sequence of 100% and 0%. This indicates that the
environment is easy to solve given that some slightly inconspicuous avenue in
the problem space is explored (such as swinging in the dip to gather momentum),
but impossible if it is not. All the results that did not achieve 0% were obtained
with GEE enabled which indicates that the module assists in the exploration
process to some degree. Another example of GEE’s use is in the One-Armed
Bandit environment in which DNE with GEE performed the best, which is as

expected since the environment is a basic task that targets exploration.

Another broad analyses of table 19 and table 20 identifies a subtle trend in which
MLSH appears relatively often in the higher ranked configurations as opposed to

DNE by itself. Attention also sees multiple instances in the top rankings while

149

SNNs and GEE see mixed results between high and low ranking configurations
(possibly due to the unnecessary increase in problem space dimensionality they
bring). This indicates that the use of the additional modules beyond DNE may
still be useful depending on the task at hand, despite what the unpredictability
of the configuration rankings may initially seem to indicate. A potential solution
may be to incorporate different configurations into the REVAC process or add a
meta-meta optimization process as it is evident that the choice of architectural
configuration is critical in the AutoML process and cannot be easily predicted by
a human. However, this runs into even greater issues regarding processing times
and further brings to light the efficiency issue of solely using evolutionary

methods. This would of course require more research to explore.

Since the idea of perspective is also a relevant idea for this thesis, looking at the
SNN and (particularly) Attention modules in this context can allude to their
contribution to temporal generality and (in the case of Attention) credit
assignment. The B-Suite environments Cartpole, Cartpole Swing Up, Mountain
Car, Deep Sea, Custom Umbrella Problem, Discounting Chain and Memory Chain
all target credit assignment. Using the Attention unit received mixed results in
this regard with only better results than the default configuration in four of the
seven environments. However, the strength of the Attention unit’s contribution
to perspective is directly shown in the results of the Discounting Chain and
particularly Memory Chain which are the most rigorous tasks when it comes to
credit assignment and temporal generality. Attention improved the results over
the default configuration from 68.74% to 78.41% and 63.00% to 74.60%
respectively. The SNN module also saw similar success by beating the default
configuration in Custom Umbrella Problem, Discounting Chain, and Memory
Chain which all focus on temporal generality. Furthermore, SNNs also saw some
success in the Custom Simplified MNIST as demonstrated by its frequent

appearance in the higher ranks of table 19.

150

Despite, yhe fact that the predictions made do not seem to hold up to the results,
comparing configurations that made improvements over the standard DNE
configuration is also a focus goal of this thesis. Hence, Table 21 and table 22 show
the highest and average results (respectively) and their corresponding
configuration for each environment. The average results are the final average
values for the population of an entire optimized DNE run and show the stability
of a configuration across the whole population within the evolutionary process
of DNE. The percentage increase that a configuration offers over the default
configuration is also shown while the fields marked “N/A”indicate that the result

value is the same as the default configuration.

The results from table 21 and table 22 align with the general expectation that
certain module configurations should offer performance improvements above
the default evolutionary process of DNE, despite any additional architectural
complexity. Besides the Move to Target test (for which the default environment
was expected to have the best result), the Catch, Cartpole, Mountain Car, Deep
Sea, and Collection Mission tests were the only environments that didn’t adhere
to this pattern. However, most of these cases can be explained as Catch, Cartpole,
and Mountain Car could not have achieved any better results as the default
configuration already achieved 100% and Deep Sea led all configurations to get
stuck in the same local optima. The Collect Mission test was the only test that
truly defied expectation in both tables as the default configuration produced the

best result.

Table 21 and table 22 also reconfirms the trend favouring simpler configurations
over those that have many modules enabled at once, further countering the
prediction made that the addition of all modules would have the greatest
performances. Of the four additional modules that can be enabled, five of the top
configurations in table 21 only used one additional module, eight used two

additional modules, three configurations used two, and none used all four.

151

Table 21

Table showing the best configurations per environment and their improvements over the default

configuration.
Environment Best Result | Configuration | Increase % From Default Configuration

Move to Target 96.43 D N/A
1D gradient descent 99.44 A 7.26
2D gradient descent 92.29 MAE 4.01
One-Armed Bandit 84.81 DE 9.67
Catch 100.00 N/A N/A
Cartpole 100.00 N/A N/A
Cartpole Swing-Up 67.50 ME 5.53
Mountain Car 100.00 N/A N/A
Deep Sea 83.33 N/A N/A
Custom Simplified MNIST 78.00 MA 54.15
Custom Umbrella Problem 100.00 MA/SA/SMA 28.21
Discounting Chain 80.20 SM 16.67
Memory Chain 77.60 MA 23.17
Collect Mission 62.00 D N/A
Gather Mission 51.60 M 285.07
Navigation Mission 88.80 SM 2.07
Full Rover Mission 3.50 M 105.88
1D Test Functions 86.10 MA 21.08
2D Test Functions 79.59 SMA 2.92

Table 22

Table showing the best configurations using the average DNE population data per environment

and their improvements over the default configuration.

Environment

Best Average

Configuration

Increase % From Default Configuration

Move to Target

79.83

ME

5.08

1D gradient descent 92.68 SM 7.89
2D gradient descent 90.85 SMA 9.47
One-Armed Bandit 73.14 SME 7.35
Catch 83.49 SA 116.02
Cartpole 67.55 M 291.59
Cartpole Swing-Up 49.66 ME 70.13
Mountain Car 60.38 ME 80.19
Deep Sea 83.33 S/SM/SA/SMA 11.31
Custom Simplified MNIST 58.22 A 63.82
Custom Umbrella Problem 80.25 S 17.50
Discounting Chain 75.12 S 12.73
Memory Chain 63.21 S 15.71
Collect Mission 47.24 D N/A
Gather Mission 20.57 M 233.93
Navigation Mission 78.18 M 27.14
Full Rover Mission 1.70 M 178.69
1D Test Functions 78.12 S 23.18
2D Test Functions 79.59 SMA 7.42

152

It is evident from both table 21 and table 22 that BE was successfully able to
generate good results across a wide range of task environments with at least one
of its configurations. This is in line with the main goal of this thesis of attempting
to create a general cognitive architecture that is able to find solutions to a wide
set of disparate environments using AutoML. Even the averages of the DNE
populations have relatively good results compared to the highest results, which
indicates that the performance of the population as a whole increased over time
and adhered to the expectation of how an effective evolutionary process should

behave.

It is worth noting the 67.50% accuracy for the best Cartpole Swing Up test is better
than it initially seems since there are multiple steps that the agent must take to
swing the pole up before it can receive a reward (as previously stated in table 4).
Furthermore, BE achieved very good results in the standard 1D and 2D test
functions with high scores of 86.10 % and 79.59% respectively. Since these
environments test the ability of BE to create agents that are general themselves
(due to the fact that any of the test functions could be given in succession to an
agent), they are particularly impressive and are a positive outcome for SNNs.
However, BE struggled with the Gather Mission test and failed the Full Rover
Mission test, indicating that at larger, more practical scales, the architecture still
needs improvement and is either unable to solve such tasks or may require
infeasible processing times to do so. This is in contradiction to one of the
potential goals of this thesis as BE was partly created to possibly solve tasks like
the Full Rover Mission test. This means that BE was not able to obtain a sense of
perspective at a higher level. However, it has also been stated that these kinds of
tasks are very challenging to tackle, and it was partly expected that poor results

in the space rover missions would be a possible outcome.

In a further effort to analyse the general performance of each of the different

modules and their appropriate configurations, table 23 shows all possible

153

configurations and their average performance across all environments. This
analysis is performed to see if any modules offer a general performance increase
across all tasks as the results shown in table 19 and table 20 indicate that it is not
always obvious which modules will assist in which kinds of tasks. This means that
there may be some trends in which certain configurations are more likely than
others to contribute positively to an agent’s performance. The MBFs for each
configuration are compared to the default configuration by giving the percentage
increase from the default configuration as well as the p-value of a t-test done on
the comparison of the two pieces of data. The formula for a t-test is given in
Equation (8) where X is the mean of a set, s is the standard deviation and n is the
size of the set (which in this case is 19 as there are 19 environments). The p-value
is obtained from the t-value by using an appropriate lookup table for a two-tailed
t-test using 18 degrees of freedom since the null hypothesis proposes that the
configuration in question has a distribution that is the same as the default
configuration, which can be rejected if it is either higher or lower than the default

configuration.

154

Table 15
Table showing the general performances of each configuration across all environments compared

to the default configuration. Statistically significant results are blue.

Configuration | MBF Across All Tests Delta % From Default Configuration P-Value
Default (DNE) 72.39 N/A N/A
S 60.05 -12.33 0.199
M 74.20 +1.81 0.826
A 63.07 -9.32 0.364
S+M 56.51 -15.88 0.121
S+A 54.46 -17.93 0.097
M+A 63.64 -8.75 0.399
S+M+A 52.76 -19.62 0.065
D+E 70.40 -1.99 0.825
S+E 53.68 -18.71 0.048
M+E 69.50 -2.89 0.749
A+E+E 66.13 -6.26 0.506
S+M+E 54.40 -17.99 0.062
S+A+E 50.50 -21.89 0.025
M+A+E 64.77 -7.62 0.414
S+M+A+E 50.96 -21.43 0.033

X1 — X2

t = —= (8)
st N s>
ng Ny

The way the data is presented in table 23 in combination with the unpredictability
depicted by table 19 and table 20 highlights the fact that each environment has a
certain configuration bias that isn’t necessarily humanly predictable. None of the
configurations had a positive delta percent over the default configuration except
for MLSH in isolation. However, table 21 and table 22 both show that certain
configurations are indeed beneficial. This ties in with the No-Free-Lunch theorem
which states that no black-box algorithm can outperform a task-specific solution
when averaged across all theoretical tasks, and the more dependency BE places

on AutoML, the more it relies on being a black-box approach (Eiben and Smith,

155

2015). Although the fact that MLSH was the only configuration to achieve a
positive delta (which is testament to its strength as a general Al approach), the
result was not statistically significant. Results are statistically significant if their
p-value is less than o0.05. Furthermore, the only statistically significant results had
negative deltas and were obtained by configurations with multiple modules
enabled. This is once again further evidence to suggest that additional complexity

(at least in the context of BE’s evolutionary system) is not necessarily good.

Turning attention to REVAC, one of the potential issues surrounding REVAC is
that since DNE runs within REVAC have to be scaled down in order to maintain
reasonable processing times, REVAC may end up optimizing a set of
configurations to work for the scaled down DNE runs and not the extended DNE
runs. This can result in undesirable performance as the scaled down DNE runs
are encouraged to grab immediate rewards as opposed to exploring more distant
and potentially greater rewards due to the limit on the number of generations
available. This can be seen in the fact that all results for the Deep Sea test got
stuck in the same locally optimal results. Keeping this in mind, it may (or may
not) be that a human-configured test could achieve greater results in these cases
as the user can configure a DNE run with these expectations in mind. However,
human-configured tests were not explored for this thesis as they were out of
scope and the focus is on whether BE can figure out everything itself, regardless
of any potentially better results that may be possible with more human
intervention. Table 24 shows the difference between the best results achieved for
REVAC and the best results achieved by the extended optimized DNE tests across

all environments for each configuration and their associated p-values.

It has already been identified earlier in this chapter that some REVAC results are
higher than the optimized DNE results, however table 24 shows that each
configuration always does better with REVAC than the optimized DNE tests

when averaged across all environments, except in the case of SNNs in isolation.

156

Table 16
Table showing the comparison of REVAC’s MBF results vs the extended optimized DNE’s MBF results.

Configuration REVAC MBF Optimized DNE MBF Delta P-Value
Default (DNE) 76.58 72.39 -4.19 0.643
S 59.41 60.05 0.64 0.951
M 77.00 74.20 -2.8 0.748
A 72.15 63.07 -9.08 0.411
S+M 59.22 56.51 -2.71 0.805
S+A 55.22 54.46 -0.76 0.949
M+A 72.53 63.64 -8.89 0.426
S+M+A 55.66 52.76 2.9 0.805
D+E 75.95 70.40 -5.55 0.544
S+E 59.80 53.68 -6.12 0.512
M+E 75.60 69.50 -6.1 0.507
A+E+E 71.82 66.13 -5.69 0.555
S+M+E 59.30 54.40 -4.9 0.607
S+A+E 57.45 50.50 -6.95 0.472
M+A+E 72.21 64.77 -7.44 0.435
S+M+A+E 57.88 50.96 -6.92 0.490

On the other hand, none of these differences are statistically significant as all the
p-values are greater than o.05. However, the results do show that REVAC is
optimizing its parameters to the scaled down DNE configurations that it uses,
and that running extended optimized DNE tests (although not statistically

worse) is at the very least, not worth it.

It has also already been pointed out that REVAC may obtain higher results by
chance and that the results obtained by the optimized DNE tests were more
robustly evaluated. However, the consistent rate that DNE is not statistically
different indicates that REVAC should either not be used (in which case a human
would attempt to configure everything, thus diminishing the extent of the
AutoML process), or a new approach to HPO needs to be considered that allows
optimal configurations to be found for extended tests without drastically
increasing processing times. Further research would need to be done on this
avenue as REVAC indeed seems to be too inefficient when combined with all the

other evolutionary processes present in BE.

157

The chapter would benefit from being organized into a set of short sections examining one
aspect of the result at a time, putting the most interesting results more forward.

Also, comparing all performance results to the best SOTA results when available and not only
to the max possible reward would help, as in many cases 100% cannot be acheived at all.

Ask yourself: if you had to write a 10 pages paper about your work, what would you keep in these
resuts, what would you put more forward?

If you want to pursue a PhD after this work, you have to measure the distance between the work you
performed and a work that deserves to be published in a top Al conference, and ask yourself what you
should do if you want to bring your work to that level.

To me the key is more focus on the most interesting aspects, for more detailed analyses, rather

than broadening the scope even more. For instance, focusing on the contribution of MLSH might be
a very good starting point.

158

Chapter 6

Conclusions

The primary goal of this thesis was to attempt to create a general cognitive
architecture (Brain Evolver) using evolutionary Reinforcement Learning (RL) with
a subtle focus on the concept of perspective. The architecture (BE) is intended to
fully implement the process of AutoML which entails automatically creating and
configuring intelligent agents that can perform sufficiently well in any target
environment. In short, this goal was achieved as the software BE was successfully
developed such that it is able to solve a wide variety of tests on its own. Despite
BE’s limitations and potential need for further development, the task of creating
a general problem solver in the pursuit of true, general Al is an extremely
challenging one, and the results obtained (as shown in table 21) indicate that BE
was able to adequately solve almost all of the test environments except for the

Full Rover Mission test.

A further success of BE is that it has been created to be customizable, modular,
and flexible enough so that others may possibly use it as a tool for further
research. This is an important aspect of the original intent behind the goal of
creating a general architecture, and much effort was put into creating a piece of
software that not only has a wide range of functionalities but is also user-friendly

with a clear GUI and insightful visualisations.

Since the creation of a cognitive architecture is such a broad and open-ended
task, one of the first goals of the thesis was to try find a definable analysis of
intelligence to use as a guideline in the construction of BE. As expected, this

required navigating through an extensive pool of related research by trying to

159
Not put forward at all in the document...

pick what is relevant and useful while still focusing on the generality of the
research topic. The literature reviewed therefore successfully covers a relatively
wide base of approaches and methods in Al, however, it is all directed by the
initial analysis of what general intelligence really is, as predominantly outlined
in chapter 2.1. This analysis is also abstracted from a large body of research and
hypothetical opinions. Ultimately, the use of the cognitive modelling approach
in taking inspiration from nature and moving away from gradient descent
methods largely scoped the construction of BE (governing the initial choice to
focus on evolutionary RL) along with significant inspiration from Osband’s
analysis of intelligent agents (Osband et al., 2020). This resulted in an effective
categorisation regarding certain elements of intelligence to target, along with a
direction outlining how BE may implement such solutions. Furthermore, the idea
of perspective is illuminated in the attempt to obtain temporal contextuality and
high-level problem comprehension without resorting to rigidly or explicitly
storing information gathered from an environment. Perspective is hence

abstractly represented by credit-assignment and temporal generality.

Osband’s analysis of intelligence also predominantly contributed to the tests
constructed for BE (B-Suite) as they directly relate to the elements of intelligence
outlined. However, additional environments were built that included common
test functions and a set of space rover simulation tests. The addition of the space
rover simulation tests is based on the fact that one of the drives behind creating
more robust, general Al with the capability of understanding tasks with

perspective is to perform well in similar complex real-world environments.

The analysis of intelligence led to the review of multiple different approaches to
Al including RL, various metaheuristic and evolutionary approaches, Hyper
Parameter Optimization, various gradient descent and evolutionary network-
based approaches, Hierarchical Learning, and Attention. As outlined in the goals

of this thesis, a set of questions were defined in the context of general cognitive

160

architectures based on the implementation of solutions to these approaches
using core components of intelligence. These questions involved the
construction of BE’s modules and the subsequent analysis of their effectiveness
and contribution to the general problem-solving skills and AutoML process of
BE. This thesis hence focused on BE’s ability to be general as opposed to being
overly concerned with what the best performances achieved in isolation were.
Reasonable results for most environments were thus valued higher than greater

results for only a few environments.

The modules successfully developed include Deep Neural Evolution (DNE),
Relevance Estimation and Value Calibration of Evolutionary Algorithm
Parameters (REVAC), Meta Learning Shared Hierarchies (MLSH), Attention,
Spiking Neural Networks (SNNs), and a custom exploration unit Guided Epsilon
Exploration (GEE). The hypothesis thus proposed for this thesis is that these
methods implemented together in BE will sufficiently solve the standard test
functions selected, the tasks outlined by B-Suite, and the space rover tests. As
already stated, most environments were adequately solved which hence supports

the hypothesis.

An extension of the hypothesis and goal of analysing intelligence sees the
prediction that all modules combined will perform better than those on their
own, and that certain modules will be better at solving certain tasks. There is also
the counter argument of complexity (relating to the curse of dimensionality) and
the often-slow conversion rates of evolutionary methods. However, the results
shown in table 19 and table 20 do not support this part of the hypothesis as there
seems to be little correlation between which module configurations have better
performance, with a slight trend indicating that configurations using multiple
modules actually perform slightly worse on average. This highlights the
unreliability of using human predictions to guide the construction of an Al

solution. It means that different modules may or may not help given a particular

161

environment and supports the need to further extend the AutoML process.
However, this refocuses the issue of complexity and the practical useability of
such an implementation given limited hardware and time, and encapsulates one
reason why true, general intelligence is so difficult to research. It may indeed be,
to some degree, that such intelligent systems require unreasonably extensive
processing times. However, it may also be that by continually attempting to find
aresearch pathway to general Al, regardless of the immediate results, these kinds

of efforts will eventually lead to the elusive goal of true Al.

On the other hand, the three additional environments appended to the B-Suite
tests targeted whether BE could still solve simple tasks given its complex
architecture. These three environments included the Move to Target, 2D Gradient
Descent, and 1D Gradient Descent tests. While all environments were adequately
solved, Move to Target achieved an accuracy of 96.43%. This highlights the
heuristic nature of evolutionary approaches as a drawback since the Move to
Target test simply required a direct relationship between all inputs and outputs
as a solution, making it trivial to achieve 100% using a gradient descent-based
method. 1D Gradient Descent achieved a strong result of 99.44% but 2D Gradient
Descent achieved a slightly lower 92.29% which again highlights the issue,
especially if agents need to be very precise in the tasks they have been given. It
can be concluded by this that in order to solve more complex tasks, greater
complexity and perspective may come at a detrimental cost to fine-grained

preciseness and accuracy.

Despite the unpredictability of a configuration’s performance given a particular
environment, table 21 and table 22 show that certain configurations and modules
can have very significant performance increases beyond the default configuration
(which consists of DNE by itself). This is particularly prevalent in the space rover
missions, especially in the Gather Mission test which achieved a 285.07% increase

using MLSH over the default DNE configuration. However, it must also not be

162

understated that the wuse of Deep Learning present in BE’s custom
implementation of DNE was able to obtain significant results across the general
collection of tests conducted, thus supporting its design choice as the

fundamental component in BE.

It is very important to note that, beyond the failure of BE to solve the Full Rover
Mission test, the highest result obtained across all four space rover tests was
88.80% accuracy, which is still not sufficient to be a practical solution for any
real-world space rover mission. This is because these kinds of tasks required by
space rover missions are often very high-risk and one small, incorrect action can
sometimes have a disastrous impact. With this in mind, 88.80% percent accuracy
is still simply too unreliable for such high-stake tasks and much more
development would be needed before such systems would be trusted. However,
for simpler, less important tasks, a rover may be more likely to rely on Al without
human intervention. Solutions provided by BE may also still be useful for high-
risk tasks if they are combined with other, more predictable and reliable methods
and used as a recommendation of sorts. This can also be related back to the
problem statement of chapter 1.1 which largely outlined the use of intelligent
agents in our society’s growing dependence on technology and Al alike. The
conclusion drawn is that practically, more predictable and simpler solutions are
most likely going to be the predominantly favourable choice in the context of our
current understanding of Al and that as more complex or experimental solutions
(such as those offered by BE) develop, they would best be suited to first become

generally used in less conspicuous or inconsequential tasks.

Another conclusion made by further exploring the data found that different
configurations do not have a general improvement across all environments
beyond finding a specific configuration for that environment. Additionally,
REVAC was both problematic and useful. Its usefulness comes in its ability

perform HPO which, as indicated by the unpredictability of the results, is a

163

valuable component of AutoML. However, it is problematic in the sense that its
optimizations do not apply well to the extended optimized DNE tests. This means
that if it must optimize large scale DNE tests, its processing times would start to

increase unreasonably.

Although the evolutionary methods used to implement BE’s modules are shown
to be imprecise or heuristic-like in nature (as is a common drawback of
evolution), when coupled with the concept of RL, evolution can be concluded to
be very useful. Many of the environments were partially observable and required
agents to discover things by themselves. This means that, due to the
unsupervised nature of many of the problems, it would have been very
challenging to solve them using gradient descent as there would be no source of
knowledge to regress against. Evolutionary methods hence work well in these
cases as the reward and punishment feedback system of RL aligns neatly with the

fitness function of an evolutionary method.

In analysing the individual components, it was concluded that MLSH performed
significantly well and was on average the most valuable additional module
beyond DNE by itself. This highlights the importance of addressing hierarchies
within problems as the basis of any Al that can tackle complex, high-level

problems.

Both the SNN module and GEE had mixed results when enabled, but both often
seemed to unnecessarily increase complexity without getting drastic
performance increases. This is not to say that the SNN module and GEE were not
beneficial for some environments. GEE seemed to assist in environments such as
the Cart Pole Swing Up test (which targets exploration) but could not assist the
Deep Sea test environment from getting out of the common local optimum.
Ultimately, GEE’s performance (as a novel method) proved to be not very
relevant and could have potentially been replaced by a simpler exploration
method. However, the results indicate that under the right circumstances it can

164

still be useful, and it may also be possible that GEE could be more valuable if it is

given enough time to optimize itself.

SNNs had successful results in the Catch, Mountain Car, Custom Umbrella
Problem, and 2D Test Functions test environments but had negative results for
multiple other environments. Some good results were also seen with SNNs in the
Custom Simplified MNIST environment, indicating that it may indeed be assisting
with noise reduction (since both SNNs and Custom Simplified MNIST target this
issue). Additionality, SNNs formed part of the top performing configurations in
the standard 1D and 2D test functions (which test generality of the agents
produced themselves) and thus supports SNNs use in this case. However, SNNs
add a significant increase in evolvable parameters and due to the degree to which
changing them can affect performance, a longer evolutionary period or larger
population may be needed to optimize the SNN module further. An example of
this would be the learning window parameter of an SNN node which initially
starts out as being only one time-step and would first need to evolve to become

larger before it can evolve to be optimized.

The Attention module also saw some strong results in assisting with
environments that required temporal context and credit assignment
(perspective) as outlined in chapter s.1. It is hence also evident from the results
that it can be concluded that additional temporal context can be obtained by BE
despite the fact that agents never explicitly store historical information. This is a
positive result that aligns with one of the goals of this thesis. However, to have
significant practical results, this implicit approach to memory would most likely
need to be combined with a more explicit approach to historical knowledge, like

other cognitive architectures such as Soar (Cooper et al., 1996; Laird, 2008).

Since the notion of perspective also relates to solving problems with an
appropriate level of overview, Attention and MLSH have been concluded to be

the most effective at improving an agent’s ability to achieve this abstract quality.

165

However, some environments see SNNs and DNE also achieve similar results.
This leads to another conclusion which alludes to the idea that perspective may
not even be a relevant concept at the level of understanding that the agents
produced by BE acquired for each test environment. In other words, despite the
intentions behind the purpose of each module and Al method, the results
indicate that practically, some methods are simply more likely to optimize to a
better function for an environment than others. Furthermore, it is possible that
more meaningful results (for all experiments) may only be seen at larger test
scales and that by keeping the scale of individual tests lower in order to have
more of them ultimately proved to be less helpful. Additionally, although
scalability was put aside as a focus, it seems that BE does indeed struggle with
scalability due to the fact that the largest scaled test (the Full Rover Mission) was

the only environment that it could not solve in the allotted scope.

Finally, it is worth being reminded that the research done for this thesis as well
as its analyses and conclusions are quite broad and general. This is as intended
since the insights provided will hopefully guide further research in the topic of
general Al and advise on what to avoid and what to explore. There is currently a
certain informality about approaching general Al research (and many other
black-box approaches in general), however, the broad analyses presented by this
thesis through BE will hopefully assist in slowly formalizing and bringing about
further understanding in the subject matter. Additionally, while BE may be far
from the single source of truth that it aims to target, it is, and can most certainly
be, a useful tool in assisting the development of other systems that use similar

methods.

166

5.1 Potential Future Research

The two biggest challenges surrounding this thesis involved the scope of
developing the program Brain Evolve itself due its complexity as a piece of
software and the time taken to run all the experiments. The issue of inefficiency
opens an avenue for further research that aligns more with the approach that
HyperNEAT takes in which evolution takes place at a more granular level while
gradient descent is incorporated back in at a fine-grained level in order to
mitigate slow processing times (Stanley, D’Ambrosio and Gauci, 2009). As
already alluded to, combining elements of explicit memory with BE’s implicit

approach to temporal information could also be an area of additional research.

Other potential routes that could be explored involve adding multiple Attention
layers (like a Transformer) and including other types of networks such as CNNs
and RNNs as modules into the system. Additionally, everything could be
incorporated into the MLSH process whereby each ¢ sub-network could evolve
to be a different module, thus resulting in a system that works similarly to the
blueprint model present in DeepNEAT. The addition of all these components will
most likely not solve the issues experienced around performance and hence begs
for potential experiments to be done at very large scales with much faster
computers. As already stated, it may be that significant results only begin to
emerge at larger scales when using more complex architectures like BE’s

(Vaswani et al., 2017; Acton et al., 2020).

There were also multiple configuration combinations that were not tested for BE
as well as the online-adaption system that was neglected. Some components such
as the activation offset feature and the use of different possible activation
functions for each node were enabled and left for the evolutionary process to
optimize. Only one selection method was also used (exponential selection). It was
hence difficult to test the significance (in the given scope) of these features and

167

additional research could see more variations being explored. The capabilities of
BE’s ability to implement Transfer Learning and solve multiple objectives was
also not targeted by the tests conducted for this thesis but remains an open
avenue as BE allows for agents to be simultaneously or consecutively tested on
multiple environments. Furthermore, there is also room to find a more efficient
method of HPO. It is also worth exploring whether the focus of general, true Al
is slightly misplaced since increasing a system’s capabilities through complex Al
architectures often decreases its predictability, making it unsuited for tasks such

as those encountered by space rovers.

168

References

A.G., B.and RS, S. (1999) ‘Reinforcement Learning’, MIT Press,
Cambridge. Massachusetts Institute of Technology, pp. 126-134. doi:
10.1017/50269888999003082.

Acton, S. et al. (2020) ‘Efficiently Coevolving Deep Neural Networks
and Data Augmentations’, 2020 IEEE Symposium Series on
Computational Intelligence, SSCI 2020, pp. 2543-2550. doi:
10.1109/SSCI47803.2020.9308151.

Adyatama, A. (2019) Particle Swarm Optimization, RPubs. Available
at: https://rpubs.com/argaadya/intro-pso (Accessed: 24 November
2021).

Agatonovic-Kustrin, S. and Beresford, R. (2000) ‘Basic Concepts of
Artificial Neural Network (ANN) Modeling and Its Application in
Pharmaceutical Research’, Journal of Pharmaceutical and Biomedical
Analysis, 22(5), pp. 717-727. doi: 10.1016/S0731-7085(99)00272-1.

Alammar, J. (2018) The Illustrated Transformer. Available at:
http://jalammar.github.io/illustrated-transformer/ (Accessed: 13
December 2020).

Armstrong, J. M. (2004) ‘After the Ascent: Plato on Becoming Like
God’, Oxford Studies in Ancient Philosophy, 26(December 2003), pp.
171-183.

Aspinall, A. and Gras, R. (2010) K-Means Clustering as a Speciation
Mechanism Within an Individual-Based Evolving Predator-Prey
Ecosystem Simulation. University of Windsor. doi: 10.1007/978-3-642-

15470-6_33.

Badue, C. et al. (2021) ‘Self-Driving Cars: A Survey’, Expert Systems
with Applications, 165. doi: 10.1016/j.eswa.2020.113816.

Bansall, S. (2019) Agents in Artificial Intelligence, Geeks for Geeks.
Available at: https://www.geeksforgeeks.org/agents-artificial-
intelligence/ (Accessed: 10 December 2020).

Belani, H., Vukovi¢, M. and Car, Z. (2019) ‘Requirements Engineering

169

Challenges in Building Al-Based Complex Systems’, IEEE.

Bhandarkar, T. et al. (2019) ‘Earthquake Trend Prediction Using Long
Short-Term Memory RNN’, International Journal of Electrical and
Computer Engineering (IJECE), 9(2), p. 1304. doi:
10.11591/ijece.vQi2.pp1304-1312.

Blickle, T. and Thiele, L. (1996) ‘A Comparison of Selection Schemes
Used in Evolutionary Algorithms’, Evolutionary Computation, 4(4),
PP. 361-394. doi: 10.1162/evc0.1996.4.4.361.

Bosch, A. van den et al. (2011) ‘Hierarchical Reinforcement Learning’,
in Encyclopedia of Machine Learning. Boston, MA: Springer US, pp.
495-502. doi: 10.1007/978-0-387-30164-8_363.

Boukas, E. et al. (2017) ‘Global Localization for Future Space
Exploration Rovers’, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10528 LNCS, pp. 86-98. doi: 10.1007/978-3-319-68345-
4_8.

Branke, J., Kaufler, T. and Schmeck, H. (2001) ‘Guidance in
Evolutionary Multi-Objective Optimization’, Advances in Engineering
Software, 32(6), pp. 499-507. doi: 10.1016/S0965-9978(00)00110-1.

Bre, F., Gimenez, J. M. and Fachinotti, V. D. (2018) ‘Prediction of
Wind Pressure Coefficients on Building Surfaces Using Artificial
Neural Networks’, Energy and Buildings, 158(November), pp. 1429-
1441. doi: 10.1016/j.enbuild.2017.11.045.

Bresina, J. L. et al. (2003) ‘Mapgen: Mixed Initiative Planning and
Scheduling for the Mars ‘03 MER Mission’, Proceedings of iSAIRAS.
Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:MA
PGEN:+Mixed+Initiative+Planning+and+Scheduling+for+the+Mars+?
03+MER+Mission+?#o0.

Bresina, J. L. and Morris, P. H. (2007) ‘Mixed-Initiative Planning in
Space Mission Operations’, Al Magazine, 28(2), pp. 75-88.

Brinton, C. and Atm, M. (2017) ‘A Framework for Explanation of
Machine Learning Decisions Analysis’, International Joint Conference
on Artificial Intelligence - Explainable Al (XAl) Workshop. Available
at: http://home.earthlink.net/~dwaha/research/meetings/ijcaii7-
xai/2. (Brinton XAl-17) A Framework for Explanation of Machine
Learning Decisions.pdf.

170

[20]

Bryndin, E. (2020) ‘Technology Self-Organizing Ensembles of
Intelligent Agents with Collective Synergetic Interaction’,
Automation, Control and Intelligent Systems, 8(4), p. 29. doi:
10.11648/j.acis.20200804.11.

Champrasert, P., Suzuki, J. and Otani, T. (2009) ‘Constraint-Based
Evolutionary QoS Adaptation for Power Utility Communication
Networks’, Proceedings - International Conference on Tools with
Artificial Intelligence, ICTAI, (Figure 1), pp. 395-403. doi:
10.1109/ICTAI.2009.113.

Cheng, Y. et al. (2004) ‘The Mars Exploration Rovers Descent Image
Motion Estimation Systemy’, [EEE Intelligent Systems, 19(3), pp. 13-21.
doi: https://doi.org/10.1109/M1IS.2004.18.

Clarke, A. M. and Sternberg, R. J. (1986) ‘Beyond IQ: A Triarchic
Theory of Human Intelligence’, British Journal of Educational Studies,

34(2), p. 205. doi: 10.2307/3121332.

Clarke, P. (2018) ETA Adds Spiking Neural Network Support to MCU,
eeNews Europe. Available at:
https://www.eenewseurope.com/news/eta-adds-spiking-neural-
network-support-mcu-o (Accessed: 14 December 2020).

Cooper, R. et al. (1996) ‘A Systematic Methodology for Cognitive
Modelling’, Artificial Intelligence, 85(1-2 SPEC. ISS.), pp. 3—44. doi:
10.1016/0004-3702(95)00112-3.

Daniel Buchmueller (2017) ‘Tether Compensated Airborne Delivery’.
United States.

Dietterich, T. G. (2000) ‘Hierarchical Reinforcement Learning with
the MAXQ Value Function Decomposition’, Journal of Artifcial
Intelligence Research, 13, pp. 227-303.

Donald Michie (1968) “MEMO” Functions And Machine Learning,
Nature, 218(5136), pp. 19-22. Available at:
https://stacks.stanford.edu/file/druid:jt687kv7146/jt687kv7146.pdf.

Dréo, J. (2006) Find the Shortest Path with ACO. Available at:
https://commons.wikimedia.org/wiki/File:Aco_shortpath.svg
(Accessed: 24 November 2021).

Eiben, A. E. and Smith, J. E. (2015) ‘Problems to Be Solved’, in
Evolutionary Computation, pp. 1-12. doi: 10.1007/978-3-662-44874-8_1.

171

[33]

[34]

Ferguson, D. and Stentz, A. (2007) ‘Field D*: An Interpolation-Based
Path Planner and Replanner’, Springer Tracts in Advanced Robotics,
28. doi: 10.1007/978-3-540-48113-3_22.

Fil, J. and Chu, D. (2020) ‘Minimal Spiking Neuron for Solving
Multilabel Classification Tasks’, Neural computation, 32(7), pp. 1408-
1429. doi: 10.1162/neco_a_01290.

Frans, K. et al. (2018) ‘Meta Learning Shared Hierarchies’, ICLR, pp. 1-
11.

Fujimoto, S., Meger, D. and Precup, D. (2018) ‘Off-Policy Deep
Reinforcement Learning Without Exploration’, in Proceedings of the
36th International Conference on Machine Learning.

Glover, F. (1986) ‘Metaheuristics’, Encyclopedia of Operations
Research and Management Science. Springer, New York.

Gobeyn, S. et al. (2019) ‘Evolutionary Algorithms for Species
Distribution Modelling: A Review in the Context of Machine
Learning’, Ecological Modelling, 392(June 2018), pp. 179-195. doi:
10.1016/j.ecolmodel.2018.11.013.

Goldberg, D. E. and Holland, J. H. (1988) ‘Genetic Algorithms and
Machine Learning’, Machine Learning, 3, pp. 95-99. doi:
https://doi.org/10.1023/A:1022602019183.

Gomez, F. and Miikkulainen, R. (2006) ‘Efficient Non-linear Control
Through’, Control, pp. 654-662.

Gupta, A. et al. (2018) Meta-Reinforcement Learning of Structured
Exploration Strategies. University of California, Berkeley.

Gupta, D. S. (2020) Fundamentals of Deep Learning — Activation
Functions and When to Use Them?, Analytics Vidhya. Available at:
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-
learning-activation-functions-when-to-use-them/ (Accessed: 12
December 2020).

Hadjiivanov, A. and Blair, A. (2016) ‘Complexity-Based Speciation and
Genotype Representation for Neuroevolution’, 2016 IEEE Congress on
Evolutionary Computation, CEC 2016, pp. 3092-3101. doi:
10.1109/CEC.2016.7744180.

Hassabis, D. (2017) ‘Chess Match of the Century’, Nature, 544, pp. 413-
414.

172

[43]

[44]

[45]

[46]

[53]

[54]

Helman, P. (1986) ‘The principle of optimality in the design of
efficient algorithms’, Journal of Mathematical Analysis and
Applications, 19(1-2), pp. 97-127. doi: 10.1016/0022-247X(86)90147-2.

Holland, O. and Gamez, D. (2009) ‘Artificial Intelligence and
Consciousness’, Encyclopedia of Consciousness, pp. 37-45. doi:
10.1016/B978-012373873-8.00004-9.

Hunt, J. (2010) ‘A Short Note on Continuous-Time Markov and Semi-
Markov Processes’.

Hutter, F. (2014) Meta-learning, Studies in Computational Intelligence.
doi: 10.1007/978-3-319-00960-5_6.

Jabri, A. et al. (2019) ‘Unsupervised Curricula for Visual Meta-
Reinforcement Learning’, Advances in Neural Information Processing
Systems, 32(NeurlIPS).

Jakobi, N., Husbands, P. and Harvey, 1. (1995) Noise and the Reality
Gap: The Use of Simulation in Evolutionary Robotics. University of
Sussex. doi: 10.1007/3-540-59496-5_337.

Joyeux, S., Schwendner, J. and Roehr, T. M. (2014) ‘Modular Software
for an Autonomous Space Rover’, International Symposium on
Artificial Intelligence, Robotics and Automation in Space (iSAIRAS).

Karpathy, A. and Leung, T. (2014) ‘Karpathy Large-Scale Video
Classification with Convolutional Neural Networks’, Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pp.
10-20. Available at:
http://cs.stanford.edu/people/karpathy/deepvideo.

Ke, N. R. et al. (2018) ‘Sparse Attentive Backtracking: Temporal Credit
Assignment Through Reminding’, in 32nd Conference on Neural
Information Processing Systems, pp. 1-12.

Kocsis, L. and Szepesvari, C. (2006) ‘Bandit Based Monte-Carlo
Planning’, European conference on machine learning, pp. 282-293.
Available at:
https://link.springer.com/content/pdf/10.1007/11871842_29.pdf.

Laird, J. E. (2008) ‘Extending the Soar Cognitive Architecture’,
Frontiers in Artificial Intelligence and Applications, 171(1), pp. 224-235.

Langley, P., Choi, D. and Shapiro, D. (2004) ‘A Cognitive Architecture
for Physical Agents’, Aaai-2004, pp. 1469-1474.

173

[55]

[56]

[64]

[65]

Long, L. N. et al. (2007) ‘A Review of Intelligent Systems Software for
Autonomous Vehicles’, Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Security and Defense Applications,
CISDA 2007, (Cisda), pp. 69-76. doi: 10.1109/CISDA.2007.368137.

Lozano, M., Molina, D. and Herrera, F. (2011) ‘Editorial Scalability of
Evolutionary Algorithms and Other Metaheuristics for Large-Scale
Continuous Optimization Problems’, Soft Computing, 15(11), pp. 2085-
2087. doi: 10.1007/500500-010-0639-2.

M, R. (2019) The Ascent of Gradient Descent, Clairvoyant. Available at:
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-
23356390836f (Accessed: 28 November 2021).

Mahesh, K., Nallagownden, P. and Elamvazuthi, I. (2016) ‘Advanced
Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm
Optimization for Optimal Placement and Sizing of Distributed
Generation’, Energies, 9(12), p. 982. doi: 10.3390/en9120982.

Mahoney, M. S. (1988) ‘The History of Computing in the History of
Technology’, Annals of the History of Computing 10, 10, pp. 113-125.
Available at: https://www.princeton.edu/~hos/mike/articles/hcht.pdf.

Maimone, M. W., Leger, P. C. and Biesiadecki, . J. (2007) ‘Overview of
the Mars Exploration Rovers’ Autonomous Mobility and Vision
Capabilities’, IEEE International Conference on Robotics and
Automation, Space Robotics Workshop, pp. 1-8.

Matrossov, S. et al. (1992) ‘RCL’S Advanced High Mobility
Locomotion Systems’.

McCarthy, J. et al. (2006) ‘A Proposal for the Dartmouth Summer
Research Project on Artificial Intelligence’, Al Magazine, 27(4), pp. 12—

14.

McLeod, S. A. (2007) ‘Skinner - Operant Conditioning’, pp. 1-4.
Available at: http://www.simplypsychology.org/operant-
conditioning.html.

Miikkulainen, R. et al. (2018) ‘Evolving Deep Neural Networks’,
Artificial Intelligence in the Age of Neural Networks and Brain
Computing, pp. 293-312. doi: 10.1016/B978-0-12-815480-9.00015-3.

Miikkulainen, R. and Lehman, J. (2013) Neuroevolution, Scholarpedia.
Available at: http://scholarpedia.org/article/Neuroevolution
(Accessed: 13 December 2020).

174

[68]

[74]

[75]

[76]

Minsky, M. (1961) ‘Steps Toward Artificial Intelligence’, Proceedings of
the IRE, 49(1), pp. 8-30. doi: 10.1109/JRPROC.1961.287775.

Mirfenderesgi, G. and Mousavi, J. (2015) ‘Adaptive Meta-Modeling-
Based Simulation Optimization in Basin-Scale Optimum Water
Allocation: A Comparative Analysis of Meta-Models’, Journal of
Hydroinformatics, 18. doi: 10.2166/hydro.2015.157.

Mishra, S. K. (2011) ‘Performance of Repulsive Particle Swarm Method
in Global Optimization of Some Important Test Functions: A Fortran
Program’, SSRN Electronic Journal. doi: 10.2139/ssrn.924339.

Mnih, V. et al. (2013) ‘Playing Atari with Deep Reinforcement
Learning’, pp. 1-9. Available at: http://arxiv.org/abs/1312.5602.

Nachum, O. and Lee, H. (2018) ‘Data-Efficient Hierarchical
Reinforcement Learning’, in 32nd Conference on Neural Information
Processing Systems.

Nadikattu, R. R. (2016) ‘The Emerging Role of A.D.M.E.’, International
Journal of Creative Research Thoughts, 4(4), pp. 906-911. doi: ISSN:
2320-2882.

Newell, A. (1990) Unified Theories of Cognition. Cambridge,
Massachusetts: Harvard University Press.

Odziemczyk, W. (2020) ‘Application of Simulated Annealing
Algorithm for 3D Coordinate Transformation Problem Solution’,
Open Geosciences, 12(1), pp. 491-502. doi: 10.1515/ge0-2020-0038.

Ohnishi, S. et al. (2019) ‘Constrained Deep Q-Learning Gradually
Approaching Ordinary Q-Learning’, Frontiers in Neurorobotics,
13(December), pp. 1-19. doi: 10.3389/fnbot.2019.00103.

Oke, S. A. (2008) ‘A literature Review on Artificial Intelligence’,
International Journal of Information and Management Sciences, 19(4),

PP- 535-570.

Olague, G. (2016) ‘Evolutionary Computing’, Natural Computing
Series, (9783662436929), pp. 69-140. doi: 10.1007/978-3-662-43693-
6_3.

Omohundro, S. M. (2008) ‘The Basic Al Drives’, Frontiers in Artificial
Intelligence and Applications, 171(1), pp. 483-492. doi:
10.18254/5207751800009748-1.

175

[87]

[88]

Osband, I. et al. (2020) ‘Behaviour Suite for Reinforcement Learning’,
in ICLR, pp. 1-19.

Pan, S. J. and Fellow, Q. Y. (2009) ‘A Survey on Transfer Learning’,
IEEE, pp. 1-15. doi: 10.1109/TKDE.2009.191.

Pan, S. ., Kwok, J. T. and Yang, Q. (2008) ‘Transfer Learning via
Dimensionality Reduction’, Proceedings of the National Conference on
Artificial Intelligence, 2, pp. 677-682.

Perspective (2020) Oxford Learner’s Dictionaries. Available at:
https://www.oxfordlearnersdictionaries.com/definition/english/persp
ective (Accessed: 9 December 2020).

Poggio, T. et al. (2017) “‘Why and When can Deep-but Not Shallow-
Networks Avoid the Curse of Dimensionality: A Review’, International
Journal of Automation and Computing, 14(5), pp. 503-519. doi:
10.1007/s11633-017-1054-2.

Qiu, H. et al. (2020) ‘Towards Crossing the Reality Gap with Evolved
Plastic Neurocontrollers’, GECCO 2020 - Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pp. 130-138. doi:

10.1145/3377930.3389843.

Rubenstein, D. I. (1982) ‘Risk, Uncertainty and Evolutionary
Strategies’, pp. 91-111.

Ruder, S. (2016) An Overview of Gradient Descent Optimization
Algorithms. Available at: https://ruder.io/optimizing-gradient-
descent/ (Accessed: 12 December 2020).

Saha, S. (2018) A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way, Towards Data Science. Available at:
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-elis-way-3bd2b1164a53 (Accessed:
28 November 2021).

Sandra May (2021) NASA’s Picture Dictionary - Rover, NASA. Available
at: https://www.nasa.gov/audience/forstudents/k-
4/dictionary/Rover.html (Accessed: 1 August 2021).

Scerri, P. (2006) Cognition and Multi-Agent Interaction - From
Cognitive Modeling to Social Simulation. Edited by R. Sun. Cambridge
University Press.

Schatten, A. (1995) ‘The Application of Software Agent Technology to

176

[93]

[94]

[97]

[98]

[99]

[100]

Health Care’.

Shen, Y. et al. (2019) ‘Interpreting the Latent Space of GANs for
Semantic Face Editing’, I[EEE, pp. 9243-9252.

Shyalika, C. (2019) A Beginners Guide to Q-Learning, Towards Data
Science. Available at: https://towardsdatascience.com/a-beginners-
guide-to-q-learning-c3e2a30a653c (Accessed: 23 November 2021).

Smit, S. K. and Eiben, A. E. (2010) ‘Beating the “World Champion”
Evolutionary Algorithm via REVAC Tuning’, 2010 IEEE World
Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE
Congress on Evolutionary Computation, CEC 2010. doi:
10.1109/CEC.2010.5586026.

Squire, L. R. and Dede, A. J. O. (2015) ‘Conscious and Unconscious
Memory’, Cold Spring Harbor Laboratory Press. doi:
10.1101/cshperspect.a021667.

Stanley, K. O., D’Ambrosio, D. B. and Gaucdi, J. (2009) ‘A Hypercube-
Based Encoding for Evolving Large-Scale Neural Networks’, Artificial
Life, 15(2), pp. 185-212. doi: 10.1162/artl.2009.15.2.15202.

Stanley, K. O. and Miikkulainen, R. (2002) ‘Evolving Neural Networks
Through Augmenting Topologies’, Evolutionary Computation, 10(2),
pPp. 99-127. doi: 10.1162/106365602320169811.

Stevens, R. and Soller, A. (2005) ‘Machine Learning Models of
Problem Space Navigation: The Influence of Gender’, Computer
Science and Information Systems, 2(2), pp. 83-98. doi:
10.2298/¢s1s0502083s.

Tambe, M. et al. (1995) ‘Intelligent Agents for Interactive Simulation
Environments’, Al Magazine, 16(1), pp. 15-39.

Tavanaei, A. et al. (2019) ‘Deep Learning in Spiking Neural Networks’,
Neural Networks, 11, pp. 47-63. doi: 10.1016/j.neunet.2018.12.002.

Taylor, A. (2017) When the Brain’s Wiring Breaks, UNC Health Talk.
Available at: https://healthtalk.unchealthcare.org/when-the-brains-
wiring-breaks/.

Thurstone, T. (1962) ‘PMA (Primary Mental Abilities)’. Available at:
http://www.worldcat.org/title/pma-primary-mental-
abilities/oclc/8067751&referer=brief_results.

177

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Tiu, E. (2020) Understanding Latent Space in Machine Learning,
Towards Data Science. Available at:
https://towardsdatascience.com/understanding-latent-space-in-
machine-learning-desa7c¢687d8d (Accessed: 10 December 2020).

Tokic, M. (2010) ‘Adaptive e-Greedy Exploration in Reinforcement
Learning Based on Value Differences’, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6359 LNAI pp. 203-210. doi:
10.1007/978-3-642-16111-7_23.

Turney, P., Whitley, D. and Anderson, R. W. (1996) ‘Evolution,
Learning, and Instinct: 100 Years of the Baldwin Effect’, Evolutionary
Computation, 4(3), pp. iv-viii. doi: 10.1162/evc0.1996.4.3.iv.

Utzle, T. S. et al. (2010) ‘Parameter Adaptation in Ant Colony
Optimization IRIDIA - Technical Report Series Parameter Adaptation
in Ant Colony Optimization’, IRIDIA, (January).

Vaswani, A. et al. (2017) ‘Attention is All You Need’, Advances in
Neural Information Pro-cessing Systems, pp. 6000-6010. Available at:
https://papers.nips.cc/paper/2017/file/3fsee243547deegifbdos3cic4a8
45aa-Paper.pdf.

Vedaldi, A. and Lenc, K. (2015) ‘MatConvNet: Convolutional Neural
Networks for MATLAB’, MM 2015 - Proceedings of the 2015 ACM
Multimedia Conference, pp. 689-692. doi: 10.1145/2733373.2807412.

Vezhnevets, A. S. et al. (2017) ‘FeUdal Networks for Hierarchical
Reinforcement Learning’, in Proceedings of the 34th International
Conference on Machine Learning.

Vof3, S. (2001) ‘Meta-Heuristics: The State of the Art’, Lecture Notes in
Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
2148, pp. 1-23. doi: 10.1007/3-540-45612-0_1.

Watkins, C.J. C. . and Dayan, P. (1992) ‘Q-Learning’, Machine
Learning, 8, pp. 279-292. doi: 10.4018/978-1-59140-993-9.ch026.

West, M. (2020) Explaining Recurrent Neural Networks. Available at:
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-
networks (Accessed: 13 December 2020).

Wilde, H., Knight, V. and Gillard, J. (2020) ‘Evolutionary Dataset
Optimisation: Learning Algorithm Quality Through Evolution’,
Applied Intelligence, 50(4), pp. 1172-1191. doi: 10.1007/510489-019-

178

[112]

[113]

[114]

[115]

[116]

[117]

[118]

01592-4.

Wu, Y. et al. (2019) ‘Direct Training for Spiking Neural Networks:
Faster, Larger, Better’, The Thirty-Third AAAI Conference on Artificial
Intelligence, pp. 1311-1318. doi: 10.1609/aaai.v33io01.33011311.

Yliniemi, L., Agogino, A. K. and Tumer, K. (2014) ‘Multirobot
Coordination for Space Exploration’, Al Magazine, 35(4), pp. 61-74.
doi: 10.1609/aimag.v35i4.2556.

Yudowsky, E. (2008) ‘Artificial Intelligence as a Positive and Negative
Factor in Global Risk’, Artificial Intelligence, pp. 1-45.

Zelinka, I., Senkerik, R. and Pluhacek, M. (2013) ‘Do Evolutionary
Algorithms Indeed Require Randomness?’, 2013 IEEE Congress on
Evolutionary Computation, CEC 2013, pp. 2283-2289. doi:
10.1109/CEC.2013.6557841.

Zheng, Y. C. (2020) ‘Mars Exploration in 2020’, Innovation(China),
1(2), p. 100036. doi: 10.1016/j.XinN.2020.100036.

Zitzler, E., Laumanns, M. and Thiele, L. (2001) ‘SPEA2: Improving the
Strength Pareto Evolutionary Algorithm’, Evolutionary Methods for
Design Optimization and Control with Applications to Industrial
Problems, pp. 95-100. doi: 10.1.1.28.7571.

Zitzler, E. and Thiele, L. (1999) ‘Multiobjective Evolutionary
Algorithms : A Comparative Case Study and the Strength Pareto
Approach’, IEEE Transactions on Evolutionary Computation, 3(4), pp.

257-271.

179

Appendix

All Brain Evolver project files:

https://github.com/davegjioi/BrainEvolver

A: Brain Evolver Software Structure

A.1 Environment Interface

BE includes an interface class that serves as a communication standard between
all agents and all environments. Since the code for BE is open source, this allows
users to code and add their own new custom testing environments to BE. The
interface ensures that newly coded environments fit in with how the program’s
system works and that agents’ behaviours comply with what the interface
expects. The methods and variables included in the interface class outline the
paradigm for which agents created by BE must interact with an environment. It
is also important to note that the RL rewards received by an agent as it learns

also constitute the resultant fitness of the agent for a particular test simulation.

In order to add a new environment, a user must create new environment_x.h and
environment_x.cpp files in Brain Evolver Project Files -> src -> environments ->
simulations. These files must execute the logic of the newly added environment
by implementing all the expected methods and variables defined in Brain Evolver

Project Files -> src -> environments -> management -> environments.h.

180

Additionally, the new environment must be imported into Brain Evolver Project

Files -> src -> environments -> management -> environment.h before adding the

option to create the new environment in the constructor method of Brain Evolver

Project Files -> src -> environments -> management -> environment.cpp by

following the same procedure used to add the other environments. Lastly, the

name of the new environment must be added to at the bottom of the Brain

Evolver Project Files -> src -> general -> globals.cpp file so that it can be accessed

through the GUI.

All environments must assign valid values to a set of variables. These variables

include:

the environment name,

the number of steps per test,

the number of expected input and output nodes,

the maximum fitness obtainable for the environment,

the highest reward an agent can receive on a given step,

and the update rate of the environment (which is used to set the simulation

speed of visualization animations).

There are seven methods that must also be overridden. These methods include

functions to:

setup the environment,

perform any reset actions between steps,

poll the dimensions of the internal state parameters required by an agent,
poll the environmental input for the current step,

update the environment and agent feedback based on an action taken by
an agent,

draw a visualisation of the environment,

and to draw a visualisation of the individuals in the environment.

181

A.2 Graphics Engine

BE includes its own custom graphics engine that makes use of OpenGL. The
engine was designed in a multithreaded way so that a user can interact with the
program’s GUI while any visualizations being displayed by test simulations are
simultaneously displayed without affecting the responsiveness of the GUI. It
enables multiple windows to be stacked and displayed at once while the
communication and management of each window is handled in separate but
concurrently safe threads. The thread-safe communication is implemented in
such a way as to only minimally impact performance and is a very important
aspect to the graphics engine since different draw instructions may be given to
different windows across different threads. All visualizations are also separate to
any Al processing. This means that if BE is running a computationally intense
simulation, the program will remain responsive without the frame-rate being

likely to drop.

The graphics engine includes some high-level commands that can be executed.

These include:

e the initialization of a new window,
e closing of an open window,
e updating the responsiveness of all windows,
e polling if a window is ready to be used,
e posting a frame to a window,
¢ and a number of draw commands. These commands include:
o drawing a rectangle,
O a tetragon,
o aline,
o acircle,

o and displaying text.

182

The graphics engine also includes a custom 3D engine that allows tetragon shapes
to be projected and ordered into a 3D space. This 3D component is used when
visualizing two-dimensional test functions (see chapter 3.8.1). These 3D
visualisations can also be interacted with by controlling the user’s mouse. A user
can click and drag the visualisation to rotate it or use the scroll wheel to zoom in
or out. Any 3D function is represented using a mesh of partially transparent
polygons. The user can also adjust the resolution of the number of polygons that
are used when rendering 3D functions. This can be increased for better visual

fidelity and decreased for better performance.

Users can also cap all visualizations to only display a maximum number of
individuals, even if there are more individuals present in the population. This
further assists any performance issues. Additionally, users can toggle whether to
see the fitness of each individual by pressing the spacebar and can speed up or
slow down the simulation rate by using the arrow keys. These interactive
functions are enforced by the environment interface class. Users can also toggle
whether environment simulation visualisations are even displayed at all. If
visualizations are disabled, the training process will run at the maximum speed
capable by the hardware being used. Visualizations can be toggled back on at any
point to see how a test is progressing. Further details regarding the
implementation of the test environments and their visualizations can be seen in

chapter 3.8.

183

A3 File System

BE includes a saving and loading system to ensure that progress is not lost should
something go wrong during a long testing session. When REVAC is enabled, BE
only saves progress between REVAC generations. When REVAC is not being
used, it saves between DNE generations. The saving process can be set so that it
occurs automatically. If saving is enabled, a user can either choose to have the
program automatically save once everything is complete or every certain number

of generations.

All sessions are saved and loaded from a single file named save.cfg which is
located in the save folder in the root directory of the program. If a previous
session has been saved, a user can choose to either load the whole session as it
was last saved so that it can continue running from where it left off, or they can
choose to just load the settings and parameters used for that session. The latter
option is useful if tests are run so has to perform hyperparameter configuration
(using REVAC) before running longer DNE level tests on the optimally found
parameters. A user can then just load the parameters discovered by the REVAC
tests without loading the REVAC session itself before changing some parameters

to define a new test.

A4 Performance

BE’s performance is based on a few factors. Firstly, the fact that BE was coded in
C++ was a performance-based decision. Furthermore, the multithreaded
approach to BE’s graphics engine and the way it interacts with simulation

visualizations and the program’s GUI was also designed with performance in

184

mind. In this way, the operation of the program’s GUI does not affect the running

of any program tests.

A significant addition to BE that enables scalable performance comes in the
ability of the program to parallelise its tests. Tests can run in parallel at two
different granular levels. The first level is course-grained and is implemented by
REVAC while the second is more fine-grained and is implemented by DNE. These
different levels cannot operate at the same time. If REVAC is enabled, then
parallelization takes place at the course-grained level. If REVAC is not enabled,
then it takes place at the fine-grained level. Users also have some control over
the extent of the parallelization by setting the maximum number of threads the

program can use for running tests (which is by default set to be linear).

If a system has 128 available cores but a user only wants to dedicate half of the
system’s resources to a particular set of BE tests, then they can set the maximum
number threads to be 64. This does not mean that the program will always use
the maximum number of threads, but it will try grab as many threads (up to the
maximum) when it can. At the course-grained level, new threads are created by
dividing up the evaluations of the population of potentially hyperparameterized
DNE solutions. At the fine-grained level, new threads are created during the
simulation and evaluation processes where all individuals’ evaluations for a

generation are divided up between the available threads.

Certain architectural and coding practice decisions also went into ensuring that
the program runs as efficiently as possible. Besides more routine requirements
such as the choice of data structures, algorithms, and variable datatypes, one of
the main architectural choices that had a large impact on performance was BE’s
choice to use a structure based DNE (as outlined in chapter 3.1). This allowed
node and connection values to be quickly accessed in arrays while the lack of a
need for innovation numbers and the use of structure makes speciation,

mutation, and crossover significantly more efficient. It is worth nothing that two

185

previous versions of BE were coded during the development of this thesis. The
first was coded in Python which proved to be too slow while the second was
coded in C++ but made use of a more traditional approach to NEAT than the
current custom implementation of DNE. This implementation’s performance was
far worse than the current model and its increased run times due to its lack of
efficient processing was one of the motivational factors to re-coding the whole

program and redesigning the algorithm.

Due to the dynamic way that an agent’s components can grow and evolve in BE,
a highly parallel implementation of the code that makes use of graphics cards
ended up falling out of the scope of the project and was hence not implemented.
This is a drawback of the program’s performance and future work on further

optimizing BE could see the inclusion of either CUDA or OpenCL into BE.

A5 Parameters and Settings

BE'’s software is governed by a wide range of parameters and settings. Some of
these settings are tuneable by REVAC and some are not. All adjustable values in
BE are divided into four categories including runtime variables, configuration,
settings, and parameters. Runtime variables pertain to how BE’s software runs
and does not interfere with how the logic of the Al operates (and are hence not
influenced by REVAC). A list of all the runtime variables (as seen in the program)
is given below. Some of these settings have already been outlined. It is also
important to note that binary variables are set by a user by either entering a one

or zero for true or false.

186

Runtime Variables:

e Seed: Allows randomizations to be predictably repeated. If set to zero, then there is no seed and
all random processes are completely unpredictable.

e 3D Graph Polygons: The number of polygons to render when displaying an environment that
has 3D visualizations.

¢ Render Population Max: The maximum number of individuals to render in an environment’s
visualization. The other individuals are still processed in the background.

e Simulation Speed: How fast the visualization of an environment simulation animates.

¢ Show On-Screen Fitness: Display all individual’s fitnesses in any environment’s visualisation.

e Max Threads: Limit the number of CPU threads that BE can use.

e Auto-Save Interval: BE will automatically save a run every n number of generations. If set to
zero, then the run will only be saved once it is complete.

e Stats Graph Resolution: The resolution of the graph in the GUI depicting a run’s average and

best fitnesses found across all generations (see chapter 3.7.6).

The configuration category pertains to how the overarching structure of BE’s
cognitive architecture works. These settings allow certain components to be
enabled or disabled and also allow for some adjustability in how any active
components interact with each other. All configuration values are also not
adjustable by REVAC and must be set by the user. A list of all the configuration
settings (as seen in the program) is given below. The names of the settings are

self-explanatory in their function.

Configuration:

e General:

o Use REVAC

o Use SNNs

o Use SNNs On Theta Network Only
o Use MLSH

o Use Attention

o Add Raw Input To Attention Output

o Enable Guided Epsilon Exploration
e Activation Functions:

o Enable Activation Offset

187

o

o

Enable Identity Function
Enable Binary Function
Enable ReLU Function
Enable Leaky ReLU Function
Enable Sigmoid Function

Enable TanH Function

e Selection Methods (only one can be selected at a time):

o

o

o

O

Use Linear Wheel
Use Exponential Wheel
Use Proportional Selection

Use Tournament Selection

The settings category pertains to how DNE and REVAC operate. Again, these

settings are not tuneable by REVAC and must be set by the user. A list of all the

adjustable values in the settings category (as seen in the program) is given below.

Most of the names of the settings are self-explanatory in their function but

additional clarification has been given for a few of them.

Settings:

e DNE:

Population

Generation Max

Generations To End If No New Best - (If an improvement is not made within this number
of generations, then the DNE process terminates.)

Simulation Repetitions - (This is the number of repetitions that all agents must go
through when being tested for each generation.)

Evaluation Repetitions - (This is the number of repetitions that only the fittest agents with
the potentiality of being the “best seen” solutions must go through)

Max Hidden Nodes per Network

Max Networks

Population
Generation Max
Generations To End If No New Best - (If an improvement is not made within this number

of generations, then the REVAC process terminates.)

188

o Evaluation Repetitions
o Parent Pool Size

O Mutation Range

Lastly, the parameters category pertains to all hyperparameters that can be
adjusted by REVAC. These values can also be manually set by the user and be
constrained to only be REVAC adjusted within a certain tuneable range.
Furthermore, these parameters can also be subject to online self-adaption as each
parameter has four values that can be set as demonstrated by Equation (77) in
chapter 3.2. A list of all the parameters (as seen in the program) is given below.
The names of the parameters should also be self-explanatory in their function.

However, clarification is also given to parameters with more obscure names.

Parameters:

¢ General:

o Crossover Chance

o Mutation Chance

o Attention Memory Length Factor - (This is the look-back depth that is included into the
Attention unit’s temporal window as a fraction of the maximum number of simulation
steps across all testing environments.)

e Selection:

o Max Number of Species Factor - (The factor is a portion of the total population size.)

o Species Discard Factor - (This is the weakest portion of the total number of species that is
discarded.)

o Min Champion Species Size Factor - (This is the minimum number of individuals that a
species must have as a portion of the total population before the species can have
champions. Champion individuals employ elitism and pass on to the next generation
without change.)

o Exponential Selection Factor

o Tournament Pool Size Factor

e Connection Mutation:
o Mutate Connection Enabled Chance
o Mutate Connection Weight Chance

o Shift Connection Weight Chance

189

o Shift Connection Weight Scale

o Mutate LTP Rate Chance

o Shift LTP Rate Chance

o Shift LTP Rate Scale

o Mutate LTD Rate Chance

o Shift LTD Rate Chance

o Shift LTD Rate Scale

o Mutate Learning Window Chance

o Shift Learning Window Chance

o Shift Learning Window Scale

¢ Node Mutation:

o Mutate Activation Function Chance

o Use Identity Function Chance

o Use Binary Function Chance

o Use ReLU Function Chance

o Use Leaky ReLU Function Chance

o Use Sigmoid Function Chance

o Use TanH Function Chance

o Mutate Activation Offset Chance

o Shift Activation Offset Chance

o Shift Activation Offset Scale

o Mutate Activation Threshold Chance

o Shift Activation Threshold Chance

o Shift Activation Threshold Scale

o Mutate Leaking Factor Chance

o Shift Leaking Factor Chance

o Shift Leaking Factor Scale

o Mutate Refractory Period Chance

o Shift Refractory Period Chance

o Shift Refractory Period Scale

e Topology Mutation:

o Min Topology Mutation Species Size Factor - (This is the minimum number of individuals
that a species must have as a portion of the total population before any individuals in that
species can make a topological mutation.)

o Mutate New Node Chance

o Mutate Remove Node Chance

o Mutate New Layer Chance

o Mutate New Network Chance

190

e Attention Mutation:
o Mutate Attention Weight Chance
o Shift Attention Weight Chance
o Shift Attention Weight Scale
¢ Exploration Mutation:
o Mutate Epsilon Exploration Chance
o Shift Epsilon Exploration Chance
o Shift Epsilon Exploration Scale

A.6 Graphical User Interface

The Graphical User Interface (GUI) of BE enables the interaction of the user with
the program. When starting the program, the user is presented with the main
window as shown in figure 26. The buttons down the top left-hand side of the
window each open up new windows corresponding to the categories of
parameters and settings that the user can adjust as outlined in chapter 3.7.5
alongside another button that selects what testing environments will be used.
The windows dedicated to changing parameters and settings are all structured in
a similar manner and are all scrollable. An example of the window dedicated to
changing parameters (with online self-adaption disabled) can be seen in figure
27. To enter a new parameter or setting value, the user must click on an empty
field to highlight it, type in the new desired value, and then press the enter key.
Invalid entries are ignored and values that are out of bounds default to the closest

valid boundary value.

In the top-middle section of the main window is another list of buttons
pertaining to actions that can be performed by the program during runtime. The

function of the buttons is listed below.

191

The START/PAUSE button does as its named and starts and pauses a run

of a set of tests.

The SHOW/HIDE SIMULATION button enables or disables any test
environment visualisations. When set to disabled, the program will run at

maximum speed.

The VIEW BEST NETWORK button brings up an interactive window
where users can inspect details about the currently best found individual.

More details are given on this functionality shortly.

The LOAD PROGRESS button loads an entire previously saved session as

is so that it can continue from where it left off.

The LOAD SETTINGS button only loads the values for the runtime
variables, configuration, settings, parameters, and environments selected
for a previously saved session. These values can then be further adjusted

before starting a new run.

192

B Brain Evolver 1.0 - X

| RUNTIME VARIABLES | | STARTAPAUSE | Number of Species: MR
\ CONFIGURATION | | SHOW/HIDE STMULATION Simulation Averaze: oz
\ SETTINGS | | VIEW BEST WETWORK Best Evaluationi 0
| FARAMETERS |] LOAD PROGRESS \ Gensrationt o
\ ENYTROMMENTS |] LOAD SETTIMGS \ FPS: 60
Stept o Eruirorment: O Repstition: 0 MR

100

a0

&0

70

a0

50

40,

30

20

10

o

M Best W Ffuerage

Show; ALl Envirormsnts - > RESET
TRIAL BEST INDIYIDUAL

Figure 26

Main GUI window displayed when program starts.

7 Brain Evelver 1.0 - b
PARAMETERS
START/BEST RANGE ADAPTION/BEST RANGE GENERAL
[o.8 | 1 | [o | [0 | Crossover Chance
[0.4 | B | [o | [o | Mutstion Chance
[1 | [x | o | [0 | Attention Memory Length Factor
SELECTION
[o.1 | [x | [o | o Max Number of Species Factor

|
[o.1 | [1 | [o | [0 | Species Discard Factor
[0.08 | B | [o | [0 | Min Champion Species Size Factor
[0.9 B | o | [0 | Exponentisl Selection Factor
[0.05 | B | [o | [o | Tournament Pool Size Factor

CONNECTTON MUTATTON

[oor | [a | [e | [o | Mutsts Connection Enabled Chance
[0.01 | 1 | o | [0 | Mutste Commection Weight Chance
[0.5 | B | o | [0 | Shift Conmection Weight Chance
[o.1 | B | [o | [0 | Shift Connection Weight Scale
[0, 01 | [x | o | [o | Mutate LTP Rate Chance

I

Figure 27
GUI Window dedicated to changing and viewing parameters.

193

The window produced by clicking on the view best network button can only be
accessed once a run has been started. It shows the structure of the current best
network. A user can click on one of the nodes to see the parameters for that
particular node. Furthermore, if a user clicks on a second node that is connected
to the first one, the program will highlight the connection between the two nodes
and show the parameters pertaining to that connection. Examples of these
interactions can be seen in figure 28 and figure 29 respectively. Initially, the
network shown represents the agent’s 6 network (referenced as network zero).
However, users can switch to view different ¢ networks (if MLSH is enabled) by
clicking the plus or minus buttons at the top right of the window. If Attention is
enabled, users can also view the Q, K, and V vectors of the agent’s Attention
matrix by clicking on the buttons with the corresponding letters at the top right

of the window. A depiction of what this may look like can be seen in figure 3o0.

On the top right-hand section of the main window is a set of fields on top of each
other depicting the current information regarding a particular run. This
information includes the current number of species (if REVAC is not enabled),
the most recent average population fitness, the best fitness found so far, the
current generation, and the program’s frames-per-second (FPS) which can be

used to monitor if the program is under excessive processing strain.

194

Activation Function: Identity
Activation OFfzet: N-A Showing Metwork: Theta
SHN Threshold:

SHN Refractory Period: 1

&\ ‘/
v A

N7

X
N AV

Sy
N W P

Figure 28

View best network GUI window with a single node highlighted.

Enabled:
Weight: 0,59 Showing Hetwork: Theta
LTP Rate:
LTD Rate:

SN SO,

Figure 29
View best network GUI window with a connection highlighted between two selected nodes.

195

B Brain Evolver 1.0 - x

Figure 30

View best network GUI window showing the values of the Attention matrix’s Q-vector.

In the lower-middle half of the main window exists the progress graph. The
progress graph draws two lines as the program runs, one in red and one in blue.
These lines plot the average population fitness (in blue) and the best fitness
found so far (in red) against the progression of generations. This graph is useful
as it keeps track of the historical information about the evolutionary DNE process
(if REVAC is disabled) or the evolutionary REVAC process (if REVAC is enabled).
This can be used to gain insights into how the population converges (or doesn’t)
to potential optimal solutions. By default, the progress graph shows the
cumulative fitness of individuals across all test environments selected. However,
if more than one test environment is selected, the user can see the progress of
the population for just one of the test environments by clicking on the plus or
minus buttons below the graph. An example of how a run might be represented

by the progress graph and the main window can be seen in figure 31.

196

B Brain Evolver 1.0 - X

RUNTIME WARIABLES START~PAUSE Humber of Species: 10
CONFIGURATION SHOWAHIDE SIMULATION Simulation Average! 67,80%
SETTINGS WIEW BEST HETWORK Best Ewaluationt 96, 451
PARAMETERS LOAD PROGRESS Generation: 119
ENVIRONMENTS LOAD SETTINGS FPS: 60

Step: 545 Environment: 4] Repetition} g Testing ALl

M Best W Averaze
Show: ALl Envirtomments + RESET
TRIAL BEST INDIVIDUAL

Figure 31

The main window GUI showing statistics pertaining to a test during a run.

Just above the top of the progress graph is a row of more information fields
running laterally across the screen. This information pertains to the progression
of the current evaluation process and is also different depending on whether
REVAC is enabled or not. If REVAC is disabled, the information displays the
current simulation step, environment being evaluated (since users can set
multiple test environments to be evaluated one after the other), evaluation
repetition, and current algorithm status. The status can indicate a few algorithm
states. These include testing all individuals, testing a potential best individual,
evolving the population between generational evaluation tests, saving the current
progression of a session, and indicating that the algorithm is complete. If REVAC
is enabled, the information displayed on this row constitutes the current
evaluation repetition, the number of evaluated DNE solutions within a repetition

that are complete, and the current generation of the slowest DNE solution.

197

At the bottom left of the window is a trial best individual button that pauses the
progress of the current session (if it has not finished yet) and runs a test on the
selected environments of just the best solution found so far by itself. This is useful
to see the behaviour of what the program considers to be the optimal found
solution. Lastly, there is a button at the bottom right of the main window which
allows the program to be reset. Any current session is discarded, and all settings

and parameters are set to their default values.

198

