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Abstract

The process of drug discovery broadly follows the sequence of high-throughput screening, op-
timisation, synthesis, testing, and finally clinical trials. This takes an average of 10 years and 2.6
billion US dollars, while recent surveys have shown that the productivity of drug discovery re-
search is on the decline, with average failure rates for clinical trials approaching 90% in all disease
categories.

This research investigates methods for accelerating this process through the use of machine
learning algorithms capable of automatically designing novel ligands for biological targets. Re-
cent work has demonstrated the viability of deep reinforcement learning, generative adversarial
networks, Bayesian optimisation and autoencoders. This work builds on one of the state-of-the-
art deep reinforcement learning molecular modification algorithms and through the integration of
molecular docking simulations applies it to the targeted generation of novel antagonists for the
adenosine triphosphate binding site of plasmodium falciparum phosphatidylinositol 4-kinase, an
enzyme essential to the malaria parasite’s development within an infected host.
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Chapter 1

Introduction

Drug discovery is the identification of compounds, either biological or synthetic, which can be
expected through theory or simulation to bind effectively to targets in the human body. Targets
are, for example, proteins, DNA, RNA, or other endogenous macromolecules which have been
shown to regulate a given pathology. Pathologies of interest include heart disease, cancer, auto-
immune disorders, high cholesterol, bacterial or viral infection, mental disorders, pain, diabetes
and so forth.

Drugs will usually affect their regulatory action by binding to a specific region of the target
known as a receptor. Binding to a receptor will trigger some change in the target which yields a
cellular response and consequential physiological effects. The mechanism of binding between drug
and receptor is usually a combination of hydrogen bonding, electrostatic attractions, and van der
Waals interactions [Bruice, 2011].

Drug-receptor interactions are usually either agonistic or antagonistic. Agonists will mimic
the natural action of endogenous biomolecules and trigger the same response in a receptor while
antagonists will block these endogenous molecules from docking without activating the receptor.
Anti-histamines are examples of antagonistic drugs, as they prevent the cold-like symptoms which
are caused by histamine molecules docking with histamine receptors by blocking the receptor
without triggering its response [Bruice, 2011].

To bind effectively here means to bind with a high affinity and selectivity. Binding affinity (BA)
in this context means that the drug (ligand) forms a strong bond with the target’s receptor and is
thus not easily displaced by other molecules with lower BA. Selectivity means that the drug has a
low BA for receptors other than the target’s, that is, drugs with a low selectivity for a given target
receptor will bind to that target, but they will also bind to other receptors, leading to unintended
side effects. Maximizing selectivity thus minimizes negative side effects [Bruice, 2011].

Databases such as PubChem [Kim et al., 2021] and the Comparative Toxicogenomics database
[Davis et al., 2021] maintain searchable catalogues of the currently known pathologies, as well as
known interactions between proteins, genes and chemicals for which there is evidence showing that
they contribute to a given pathology.

Pathologies are generally mitigated by regulating a target, and this is usually achieved by acti-
vating or deactivating the target, thus increasing or decreasing their associated cellular functions.
Activation or deactivation requires that a ligand be of the correct size and shape and possess the
correct functional groups to substitute for the endogenous molecules which would usually dock at
the target’s active site as part of normal biological processes.

Target regulation is the primary goal when searching for new drug candidates and a drug’s
potential is determined by its size, shape, and functional groups, as these will determine the
molecular interactions (BA) between the drug and receptor.

As of 2021, a few of the most popular drug-target databases were: DrugBank with 4,563 human
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CHAPTER 1. INTRODUCTION 3

targets and 2,358 approved drugs [Wishart et al., 2018], The Therapeutic Target Database with
3,419 human targets and 2,649 approved drugs [Wang et al., 2019], and ChemBL with 6,311 human
targets and 2,715 approved drugs [Mendez et al., 2019].

In order to successfully regulate a target a drug must reach the intended region of the body in
the right concentration. Therefore, besides target regulation there are many auxiliary properties
which make a molecule an appealing drug candidate, such as the molecule’s molecular weight, sol-
ubility (water-octanol partition coefficient) and synthetic accessibility (SA). A selection of relevant
molecular properties are combined into a metric called the quantitative estimate of drug-likeness
(QED). A high QED indicates that a drug is likely well-received by the body and easy to synthesize.

Other examples of properties of interest besides BA and selectivity for a particular target recep-
tor are, in the case of oral drugs, the drug’s resistance to the acidity of the stomach and enzymatic
degradation by the liver [Bruice, 2011], a molecule’s polarity, which amongst other things, relates
to the rate at which it crosses the blood-brain barrier, or it’s hydrophobic or hydrophilic character
as this influences its ability to dock at certain protein receptors, or its molecular polarizability, the
measure of how easily a molecule’s polarity is distorted by an external electric field, as this effects
bonding interactions and therefore impacts a drug’s pharmacokinetics and pharmacodynamics.
These are all possible optimization goals for lead compounds. An appealing candidate would have
a scaffold with a high BA and selectivity for a given target’s receptor as well as optimal values for
properties such as these.

The typical contemporary drug discovery and design process comprises three phases: hit screen-
ing, which is where libraries of molecules are filtered for collections of hit molecules which are likely
to be applicable for the intended use case. Hit-to-lead optimization, which is where hits identified
from screening are modified by chemists to become leads: molecules with high BA for the intended
target. This is then followed by lead optimization which is where the optimized leads then have any
number of auxiliary physico-chemical properties relevant to their intended application optimized
accordingly.

The screening process is usually driven by a method called high-throughput screening, where
libraries of drug candidates are run through increasingly selective simulations, or through classi-
fiers trained on examples of known hit compounds, to identify potential leads for a given target.
Once leads are identified they are then further screened through bioassays, where the synthesized
compounds are added to assay plates containing the biological target and the resulting effect, if
any, on the target is observed, usually via some form of spectroscopy. Despite how costly and
time-consuming it is to prepare and analyse these bioassays, they are still not guaranteed to detect
active leads since the in vitro and in vivo environments differ significantly, so a candidate which is
active in vitro may prove to be less effective or even useless when tested in vivo. Conversely, in the
case of prodrugs, which are drugs that become pharmacologically active due to a transformation
which occurs within the body, it’s possible for drugs which are later revealed to be active in vivo to
be inactive in vitro as they first need to be transformed into an active state within the body [Bruice,
2011]. This is an incredibly costly process, and the resulting leads are limited to subsets of already
known molecules. However, the process is accelerated through the use of computational filters and
robotic automation of the bioassay screening. The subsequent two phases on the other hand are
still heavily reliant on the knowledge of expert chemists to select hit compounds and modify their
structure for increased target BA and physico-chemical properties.

Therefore, the field of drug discovery and design has been the focus of research into its acceler-
ation. It is not possible to manually specify all molecular variations that would satisfy all possible
constraints, since the space of drug-like molecules is estimated to contain between 1026 and 1060

molecules (the estimated number of stars in the observable universe is approximately 1024). And
so machine learning (ML) is being actively explored as a way to chart a course through chemical
space.

There has been substantial research into the generation of so-called median molecules, which
are sets of novel functional analogues of a given set and are therefore expected to possess similar
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chemistry. The term median is used to refer to how these novel molecules occupy the interstitial
chemical space between known structures [Brown et al., 2004b] and functional analogues are two
molecules which exhibit similar biochemical or physiological effects on the human body, but with
potential variations in efficacy and side effects [Bruice, 2011]. This is intended to avoid the screen-
ing process by generating novel hits from existing hits. There has also been some research into
generating novel molecules possessing physico-chemical properties within specified ranges in order
to accelerate the lead optimization phase.

The ideal goal of applying ML to this problem is to be able to describe a given macromolecular
target along with a desired role such as agonist or antagonist, to an algorithm, which would then
design an optimal ligand, possessing maximal BA and selectivity for the given target, as well as
optimal auxiliary properties such that the corresponding pathology would be successfully mitigated
through its use. Or more simply, given a candidate lead compound or chemotype scaffold, a trained
agent would apply a learned policy to optimize one or more properties subject to a set of constraints.

There is a panoply of ways in which ML has been applied to the problem of drug design and
optimization. These include evolutionary algorithms (EAs) [Rupakheti et al., 2015,Ole Carstensen
et al., 2011, Supady et al., 2015, Brown et al., 2004b, Brown et al., 2004a, Lameijer et al., 2005,
Sheridan et al., 2000,Jones et al., 1997], reinforcement learning (RL) with adversarial training [You
et al., 2018,Guimaraes et al., 2017] and variational autoencoders (VAEs) [Gómez-Bombarelli et al.,
2018, Jin et al., 2018]. Within these methods, besides the expected differences in implementation
of the learning methods, there is significant variation in the choice of how to represent molecules
to the learning algorithm, and the specifics of how reward or fitness is measured.

The field is also adjacent to research in artificial life and synthetic biology where researchers
are attempting to approach the problem of mitigating physiological pathologies through the use of
techniques such as molecular programming, artificial cells, molecular cybernetics and evolutionary
and self replicating molecular assemblers. In these fields the goal is to develop molecular machines
capable of harnessing cellular processes to replicate how drugs regulate the in vivo environment as
an alternative to traditional drug discovery and design [Dinh et al., 2015,Hagiya et al., 2016,Aubert-
Kato et al., 2017, Hagiya et al., 2014, Cavalcanti et al., 2008b, Cavalcanti et al., 2008a, Duim and
Otto, 2017,Liu et al., 2020].

1.1 Motivation

The drug discovery and design process can be partitioned into three primary categories: hit screen-
ing, which is where classes of drugs or chemotypes which share a similar molecular scaffold are
identified as having a notable BA for a target receptor, hit-to-lead optimization, which is where
hits obtained from the previous phase have their BA for the receptor increased through modi-
fication by experts, and lead optimization, which is where leads optimized to have high BA for
the target have their other physico-chemical properties such as solubility, selectivity, molecular
polarizability, charge distribution, molecular weight and others customized for their intended ap-
plication. This period of discovery and design is then followed by synthesis, testing and the stages
of clinical trials. This process takes on average 10 years and costs an average of 2.6 billion US
dollars [DiMasi et al., 2016]. In addition to this, the productivity of drug discovery research has
been shown to be on the decline, with average failure rates for clinical trials approaching 90% in
all disease categories [Kadurin et al., 2017].

Therefore, the motivation for this research is to develop systems for accelerating these three
phases of drug discovery and design so that this timeline can be reduced from years to weeks,
yielding gains in drug efficacy and a concomitant improvement in the quality of life for those
whose cumulative suffering would persist were the process not accelerated.

This goal is also positioned within the context of the burgeoning field of automated science and
robotic laboratories [Burger et al., 2020] which shares a similar goal but across a broad spectrum
of scientific fields. It is hoped that the contributions of this research will be relevant to the
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development of systems capable of extending learning beyond simulations to robotic scientists which
design their own experimental parameters and incorporate autonomously obtained experimental
data to improve their designs and adjust their assumptions.

There has been significant progress towards automation of the hit-screening and lead optimiza-
tion phases through the use of EAs, generative adversarial networks (GANs) [Guimaraes et al.,
2017, You et al., 2018] and autoencoders (AEs) [Gómez-Bombarelli et al., 2018]. However, the
primary goal for drug design is BA for the target macromolecule, and it is automation of this, the
hit-to-lead optimization phase of the drug design process, which has been underexplored relative
to the other two phases.

Therefore, this research seeks to apply ML to develop a generative algorithm capable of corre-
lating features of molecular structure with BA for a specified binding site of a target molecule such
that it is capable of generating ligands with maximal BA for the receptor site, and when given a
molecular scaffold the algorithm will return a ligand with greater BA for the target.

Recent work in the field has demonstrated the efficacy of deep RL at lead optimization [Zhou
et al., 2019] and thus this was the foundation for the methods implemented in this research.

1.2 Research Questions

This research focuses on the hit-to-lead phase of drug discovery and design. Therefore, we are
concerned with algorithms capable of taking a molecular scaffold of a particular chemotype and
returning a ligand optimized for binding with a target receptor. The specific questions which this
research seeks to answer, are therefore:

1. Is RL through simulations of molecular docking a viable method of learning a policy for
automatic hit-to-lead optimization?

2. What are the methodological requirements for implementing RL as a method of training an
intelligent agent to autonomously generate ligands possessing high BA for a target macro-
molecule?

3. How do the ligands produced by a simulation-based generative RL algorithm compare to
ligands currently available for a particular receptor?

The motivation for these questions is as follows. Given that the primary requisite of a drug
candidate is BA for the target macromolecule, question 1 aims to elucidate the potential for RL as
a method of generating potential ligands using only a priori calculations when the crystal structure
of a macromolecule is available. This is a potential alternative to the numerous approaches which
employ supervised learning that are consequently dependent on the availability of large amounts
of labelled training data.

Given that the application of ML to the automatic design of drug candidates is still a nascent
field, there are many open methodological questions, particularly for this case of RL in combination
with a priori docking score (DS) calculations and crystal structure. Therefore, question 2 aims to
illuminate the impact of various methodological considerations which pertain to the representation
of molecular graph states, environment rewards, and chemical validity among others. These various
methodological components would comprise the practical requirements for successfully applying
RL in this context.

The ultimate goal of frameworks such as this is that the graphs produced by the agent can be
taken with a reliable degree of certainty to demonstrate high BA when the ligand is synthesized and
evaluated in a physical bioassay. The purpose of question 3 is therefore to compare the structures
and DSs of ligands generated by the agent with those selected by chemists. The first axis of
comparison would be the DSs of the artificially designed ligands and those selected by chemists.
The second and more important comparison would be to assess the correlation between DS and
real ligand potency.
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1.3 Contributions

In addressing the questions stated above, this research applies RL to the problem of generative
drug design, thus yielding a generative RL algorithm.

The research therefore contributes a framework for training an agent through simulations of
molecular docking to both generate novel ligands for a macromolecular target, and to modify a
given molecular scaffold such that the resulting ligand has improved BA, as estimated using docking
score (DS) as a proxy, for the receptor site of a given target macromolecule whilst retaining a certain
level of structural similarity its initial state.

The framework applies deep RL, specifically double-deep Q-learning [Mnih et al., 2013, Mnih
et al., 2015], in an environment comprised of a ligand to be modified and a target macromolecule.
The agent designs molecular graphs and employs the Morgan algorithm [Rogers and Hahn, 2010]
to convert graphs to molecular fingerprints. The state of the environment is the current state of
the molecular graph and possible actions are defined to be the graphs accessible from the current
state. Given that the action-space changes for each state, the algorithm implements a method for
learning from environments with inconsistent action spaces. Docking between the ligand designed
by the agent and the target macromolecule is simulated using the Autodock-GPU [Santos-Martins
et al., 2021] package, and the DS calculated by Autodock-GPU defines the reward received by the
agent at each step of a design episode.

This contribution is useful for a number of reasons. It can accelerate the hit-to-lead phase of
drug design by proposing optimized leads from hits identified during the screening phase. It can
also be used to generate novel ligands from scratch or to repurpose ligands which were discarded
during the drug design process due to having promising drug-like properties but inadequate BA for
the intended receptor. These automatically generated leads may result from unintuitive changes
due to the agent identifying unknown correlations between structural features and BA which could
potentially elucidate unknown chemistry. The framework can be extended to the lead optimization
phase by incorporating any number of physico-chemical properties in the environment rewards.

Such a system will hopefully assist chemists in their work, directing them towards optimal re-
gions of chemical space and thus accelerating their research, reducing the time and cost required to
bring new drugs to clinical trials and aiding in the identification of novel compounds for outstanding
pathologies.

1.4 Overview

The rest of this thesis is divided into 5 chapters: Related Work (chapter 2), Methods (chapter 3),
Experiments and Results (chapter 4), Discussion (chapter 5), Conclusions (chapter 6).

Chapter 2 reviews related work in ML applications to drug discovery, covering the popular
approaches using EAs, AEs, Gaussian optimization, RL, adversarial training and Tanimoto simi-
larity.

It also covers the different methods of evaluating the performance of generative algorithms in
this context, these are the concepts of internal diversity, external similarity and validity of the
generated sets, as well as the considerations that need to be made when choosing how to represent
molecules in a learning framework.

Chapter 3 describes the three aspects of the methodology implemented in this research. The
first is the design of the agent and the environment including the input representations used,
how training episodes were defined, how the agent explored molecular space, how states of the
environment were defined, the action space available to the agent, how docking between the ligands
designed by the agent and the target receptor were simulated, and the reward function used
to evaluate the environment’s state. Second, this chapter details the mathematics behind the
algorithm used to train the agent including the method for facilitating learning given the sparse-
rewards nature of the environment. Finally, the chapter describes how the agent and environment
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were applied to the task of hit-to-lead optimization.
Chapter 4 describes how the methods presented in the previous chapter were evaluated and

presents the results of their evaluation. The evaluation presented in this chapter includes the
optimization of QED when constructing a molecule starting from a single carbon atom, the max-
imization of DS for a target receptor when constructing ligands from a single carbon atom, the
maximization of DS when beginning from a reference scaffold, and a comparison between ligands
generated by the agent and currently available ligands for the target receptor.

Chapter 5 discusses the implications of the results from the previous chapter, and Chapter 6
draws conclusions from the discussion, reviews the contributions of this research and ends with
suggestions for future work.



Chapter 2

Related Work

This chapter presents and overview of the problem and context for the methods implemented in
this work by providing a summary of seminal contributions to the field. It ends with a discussion
of this related work with reference to the hypotheses formulated in the introduction.

Section 2.1 introduces the concept and motivation for the robotic automation of science. Sec-
tion 2.2 describes the asymptotic computational complexity of the problem of automatic drug
design from an algorithmic perspective and why ML is a viable method as opposed to traditional
approaches. Section 2.3 introduces the abstractions used when representing the problem to a ma-
chine. Section 2.4 summarizes the traditional approaches used by chemists, namely the rational
construction of quantitative structure-activity relationships (QSARs) through combinatorial syn-
thesis. Section 2.5 summarizes the first of the ML approaches: the application of EAs to explore
the solution space through the stochastic recombination of molecular building blocks. Section
2.6 summarizes the application of RL algorithms to the problem to leverage gradients to more
effectively search the solution space. Section 2.7 summarizes the application of AE algorithms to
model the probability distributions which define the salient features of drug molecules and bias
the generation of novel compounds to those from optimal regions of drug space. The chapter ends
in section 2.8 with a discussion of the various approaches to the problem as motivation for and
theoretical background to the methods in chapter 3 and the hypotheses formulated in section 1.2.

2.1 Scientific Automation and Robotic Laboratories

The integration of computation and robotic automation with scientific research has been consis-
tently increasing since the advent of the field of computer science, and it would be hard to imagine
conducting modern scientific research without some component of automated computation. This
integration has usually been for the sake of automating processes such as screening, mixing, experi-
ment regulation, and so forth. However, with the recent advances in ML there has been significant
progress towards the development of autonomous robotic scientists, capable of observation, hy-
pothesis generation, data collection and hypothesis testing. The goal for such robotic scientists is
not to simply combinatorially evaluate a hypothesis for all possible permutations of variables, but
to learn from their observations, construct new hypothesis and adjust the experiments accordingly.

For example, Adam [King et al., 2009] is a fully autonomous robotic laboratory designed to
identify encoding genes for enzymes catalysing biochemical reactions thought to occur in yeast.
The mobile robotic chemist [Burger et al., 2020] is a robot capable of autonomously navigating
a laboratory and manipulating the experimental apparatus. The robot was designed to search
for improved photocatalysts for hydrogen production from water. Instead of simply trying all
combinations of reagents, the robot employed Bayesian search to incorporate its measurements
and update its model of the search space and select the next set of experimental parameters.

8
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Another example is ChemOS [Roch et al., 2018], a general purpose autonomous laboratory system
capable of being applied to a wide range of research laboratories with autonomous hardware. The
software provides, among other functionalities, a learning module which continuously proposes new
experimental parameters to be executed on the laboratories robotic platforms, a communications
module, to facilitate communication between the human scientist and the laboratory system, and
an orchestration module for asynchronously integrating geographically distributed laboratories.

These are examples of a shift away from simply automating routine tasks to replicating the
patterns of thinking which underpin the investigative reasoning that is central to empirical research,
and leveraging this to accelerate scientific research in a novel way.

2.2 Problem Complexity

The problem of drug discovery or optimization can be reduced to: given a propositional formula
(target receptor, physico-chemical property range) does a satisfying argument (ligand) exist? Such
a problem is NP-Complete and the de facto contemporary approach in this context is brute-force
search (HTS) through known subsets of chemical space [Ruddigkeit et al., 2012].

Linear search on an array of molecules in this way has Θ(n) time complexity. Estimates
calculate the upper limit of the number of possible molecules to be 1080 and the number of small
organic molecules, that is, those which would have particular relevance to drug discovery to be 1060

[Ruddigkeit et al., 2012]. Assuming the best case scenario where one has access to a supercomputer
with a throughput capacity on the order of petaFLOPS (1015), such as Oak Ridge National Lab’s
Summit, and an ideal case where only one floating point operation is required to evaluate a known
candidate, evaluation of 1060 candidates would require 1045 seconds, or ∼ 3 × 1037 years, where
the age of the universe is 2.3 × 1033 years. And this is the ideal case where a candidate can be
evaluated with only a single floating point operation, on one of the world’s fastest supercomputers,
bearing in mind that comprehensive simulations are significantly more demanding.

A practical demonstration of this evaluated 1.66× 1011 candidates from the GDB-17 database
of small molecules against simple property calculations, a process which required 11 CPU-years
(11 years on a gigaFLOP processor) [Ruddigkeit et al., 2012]. Extrapolating from this result with
Θ(n) time complexity, an evaluation of all 1060 drug molecules on the same system would require
∼ 7× 1050 years.

Even if one had a fast enough system capable of reducing the execution time of a brute-force
approach to within a single lifetime, such an algorithm is still constrained to be presented with
known compounds, whereas the ideal candidate may not be a known structure.

Clearly, a more effective combination of data structures and algorithms is needed to efficiently
search the solution space of known candidates, as well as generating novel candidates. The question
then is, how best to chart a path through chemical space to a region that is optimal for any given
goal in drug design or materials science?

Given the intractability of conducting a simple linear search through all possible molecules, a
traditional method of focusing the search is to build expert knowledge into an algorithm such that
only relevant candidates are considered for screening.

This is traditionally done through the use of QSARs (fully described in section 2.4) to determine
relationships between molecular fragments and physico-chemical properties or biological activity.
One can then prioritize their search to combinatorial libraries of molecules containing the relevant
fragments.

The problem with this approach is that while a particular fragment may be experimentally
determined to contribute a particular physico-chemical property, a molecule’s chemistry is deter-
mined by all interactions between of all of its constituents, and while the presence of a particular
fragment may indicate the presence of a particular property, it does not predict the cumulative
impact of the molecule’s total constitution, configuration and conformations.
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Secondly, the rules which one might use to construct such a combinatorial library are incom-
plete, as evidenced by the fact that Lapinski’s rule of five, a set of five rules used as a rule of
thumb to estimate the potential for a structure to be well received in vivo, is regularly violated by
experimental measurements of known drugs.

So the prediction of physical properties and biological activity from structure requires a model
not just of the chemistry of individual fragments, but of the effect that the interactions between
those fragments will have on the respective properties and activity. Designing a molecule to meet
a particular set of requirements is thus a multivariate optimization problem, something where ML
methods such as EAs and artificial neural networks (ANNs) have been shown to excel [Coetzee
and Nitschke, 2019,Huang et al., 2021,He et al., 2021,Jang et al., 2020].

Furthermore, by applying ML to drug design there is the potential for ANNs to learn previously
unknown relationships between molecular structure and physico-chemical properties. Section 2.4
describes the traditional method whereby chemists will obtain such structure-activity relationships.
However, the increasing preponderance of publicly available experimental data allows researchers
to train ANNs to predict almost any physico-chemical property including quantum mechanical
properties which can require days to simulate, and to account for the impact of the presence of
other molecular fragments on those properties.

Regarding the generation of novel molecules, this array of predictive networks can then be used
to provide multivariate reward signals to generative networks which learn to achieve their goals
without any ontological understanding of chemistry or physics.

The increasing availability of large sets of experimental data for physico-chemical properties,
BAs, therapeutic indications, reaction pathways and gene/protein regulatory interactions, makes
possible entirely automated drug design pipelines where discriminative ANNs can learn to predict
these properties directly from ground truth data without needing human-defined relationships.
These discriminative networks can then constitute multivariate reward signals for training genera-
tive networks through RL. Thus, intelligent agents can learn to improve drug designs directly from
experimental measurements without needing human intervention [Réda et al., 2020]. There’s also
the potential for advancements in ML theory to improve these prospects.

Once a discriminative network has been trained to predict physico-chemical properties or BAs,
interpretation and inversion techniques can be used to elucidate what structural features of a
given model are responsible for the network’s response, potentially yielding novel insights about
the relationship between structure and behaviour [Elton et al., 2019].

In cases where chemists and biochemists do not have reliable rules about how molecular struc-
ture will affect activity, such as how genetic variation impacts drug receptivity, but for which there
is an ever-increasing amount of publicly available data from genome-wide association studies, there
is the potential for ML to yield optimized designs prior to a rational understanding of the biological
interactions.

That being said, the true potential of the applications of ML to drug design lie in self-contained
and self-improving design loops where autonomous systems obtain experimental data from high-
throughput screening of assays measuring, for example, BA and selectivity against a target. That
experimental data is then used to train ANNs which can predict BA for the target. Those ANNs
are then used as the reward signal for a generative network which learns to correlate structural
features with high reward, designing a new set of candidate ligands in the process. This new set is
then synthesized and evaluated in another high-throughput assay. Through this self-improving au-
tomated loop of (exploration) design → synthesis → measurement → learning, these systems have
the potential to learn new relationships between molecular structure, physico-chemical properties,
and target BA [Sanchez-Lengeling and Aspuru-Guzik, 2018].

This research focuses on methods for applying ML to the targeted generation of molecules and
the potential of such intelligent systems as a foundation for the development of high-throughput
autonomous robotic laboratories.
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Figure 2.1: The conformations of cyclohexane [Wikipedia, 2021]. State A corresponds to the chair
conformation and state C corresponds to the boat conformation. States B and D are transitions
states.

2.3 Molecular Descriptors and Similarity

A reliable rule of thumb in chemistry is that similar structures will yield similar behaviour [Nikolova
and Jaworska, 2004]. Therefore, a significant topic in the field is how to best represent molecular
structures so that similarity can be accurately measured [Nikolova and Jaworska, 2004].

When describing molecular structure one can define the constitution of a molecule, which refers
to its two-dimensional structure as defined by the atoms it contains and how they are connected,
which determines the presence of certain functional groups [Nikolova and Jaworska, 2004].

One can describe a molecule’s configuration, that is to say, the three-dimensional arrangement
of the molecule’s constituents. Configuration can be described by the bond angles between atoms
which are connected to at least two others [Nikolova and Jaworska, 2004].

Finally, one can describe a molecule’s conformations, which is the set of thermodynamically
stable spatial arrangements which the molecule will shift between as it’s bonds rotate due to the
kinetic activity of its atoms [Nikolova and Jaworska, 2004]. A basic example of conformations are
the boat and chair conformations of the cyclohexane molecule, shown in figure 2.1. These are
two of cyclohexane’s conformers, or shapes, which the molecule shifts between as its bonds rotate.
The chair being the lower-energy conformer due to the molecule experiencing less steric hindrance
(inter-atomic repulsion) and less torsional strain (inter-bond repulsion) in this shape, and the boat
being the least stable conformer due to this shape possessing significant steric and torsional strain.

Together, a molecule’s constitution, configuration and conformation will determine its activity
and physical properties, as well as its shape, which is relevant for its interaction with receptors.

Theoretically, all relevant information about a molecule, including its constitution, configura-
tion and conformation, is contained within it’s quantum mechanical wave-function, and so this
would be the most informative representation to work with [Nikolova and Jaworska, 2004]. How-
ever, techniques for working with wave-function representations molecules are still underdeveloped
and were therefore not explored in this project.

Extended-Connectivity Fingerprints

Molecular fingerprints are a kind of topological representation which represent molecules as bit-
strings. A particular kind of molecular fingerprint which is able to capture aspects of molecular ac-
tivity relevant to drug activity are extended-connectivity fingerprints (ECFPs). These topological
fingerprints were developed specifically for structure-activity modelling, and they are theoretically
capable of representing an infinite number of molecular features, including stereochemical infor-
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Figure 2.2: Visual representation of the ECFP algorithm. The circles represent that information
that is incorporated into the identifier for atom C1 [Rogers and Hahn, 2010]. The radius of the
circles increases with each iteration.

mation. These are sometimes referred to as Morgan Fingerprints as they are calculated using a
variant of the Morgan algorithm; a method for solving the molecular isomorphism problem [Rogers
and Hahn, 2010]. The ECFP algorithm is summarized as follows:

1. The molecule’s atoms are assigned an integer identifier, this could, for example, be a series of
atomic properties such as their atomic number, mass, charge, number of heavy neighbours,
whether the atom is contained in a ring, and so on, or it could include information about
the the atom’s functional role in the molecule. These properties are defined by integer values
which are then hashed into the atom’s identifier.

2. The initial identifier for each atom is added to the fingerprint set.

3. Each atom adds its identifier, and those of its neighbours (bonded atoms) into an array. The
identifiers of neighbours are added with their bond order: single (1), double (2), triple (3),
or aromatic (4).

4. For each atom, this array is passed to a hash function which calculates a new identifier for
the atom.

5. Each atom updates its identifier in the fingerprint set.

6. This loop of updating identifiers in the fingerprint set is iterated a set number of times.

7. After the set number of iterations, any duplicate identifiers are removed and the remainders
define the molecule’s ECFP.

This process computes an identifier for each atom which represents that atom’s molecular
neighbourhood and includes information not just about the atom’s which are directly bonded to
the given atom, but also the respective neighbours of the atom’s neighbours. With every iteration
an atom’s identifier contains information about atoms further away. This is shown in figure 2.2.

When calculating a molecule’s ECFP, the number of iterations determines the diameter of the
circle of information that is incorporated into each atom’s identifier, where the circle’s diameter is
defined in terms of the number of bonds it contains. For example, two iterations would lead to a
circle e with a diameter of four bonds being centred on each atom.

Fingerprints are named according to this diameter. So the fingerprint generated from two
iterations would be an “ECFP 4“’.

The result is a set of numerical identifiers for every atom in a molecule which represent the
molecular environment in which the atom is situated.



CHAPTER 2. RELATED WORK 13

Figure 2.3: Example of the ECFP for butyramide calculated with different diameters [Rogers and
Hahn, 2010].

The method is in some aspects similar to the message passing algorithm used in graph convo-
lutional neural networks, and it produces a representation that is similar to graph embeddings.

An example of the ECFP calculated for butyramide is shown in figure 2.3.
The integer identifiers calculated for each atom correspond to an “on” bit in a 232 bit bit-

set. Where the presence of a particular bit corresponds to the presence of a particular molecular
feature [Rogers and Hahn, 2010]. As further iterations expand the radius of information for each
atom and more features are identified, the hash function calculates the corresponding bits to set
and these new identifiers are appended to the fingerprint set for the molecule.

For example, in figure 2.3, the initial fingerprint, “ECFP 0” indicates that bit 734603939 should
be set in the fingerprint for butyramide. This corresponds to the presence of a single methyl group
in the molecule. After the second iteration this identifier is updated to 863188371 indicating the
presence of a methyl carbon bonded to an ethyl carbon.

Tanimoto Similarity

The Tanimoto coefficient (also referred to as the Jaccard index), given in equation 2.1, is a metric
for quantifying the similarity of sets. It calculates the ratio of the intersection of two sets to their
union, and is proportional to their similarity [Nikolova and Jaworska, 2004], that is, the ratio of
the number of features which the sets share to the number of features which they do not share.

τ(A,B) =
NA&B

NA|B
=

NA&B

NA +NB −NA&B
(2.1)

Where NA is the number of features in set A, NB is the number of features in set B, and NA&B

is the number of features both A and B share, that is, the intersection of A and B.
Conversely, the dissimilarity between two sets is quantified by their Tanimoto distance [Nikolova

and Jaworska, 2004], given by
d(A,B) = 1− τ(A,B). (2.2)

When applying this to ECFPs, the sets of identifiers shown in figure 2.3 are the sets A and B
in equation 2.1. Where each fingerprint set corresponds to the “on” bits in a bit bit-string with up
to 223 bits. Less bits are often used however, in this research 2048 bit ECFP 4 fingerprints were
used.

These fingerprint sets are converted to their bit-string representations and a simple method
calculates the number of intersecting bits between them [RDKit, 2021b].
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Furthermore, Tanimoto Similarity can be used to calculate the similarity between sets of
molecules. This is usually done in two ways. First, the diversity of structures within a set is
referred to as the internal diversity [Polykovskiy et al., 2020], and it is calculated as

IntDiv = 1−
√

1

N2
A

∑
m1,m2∈A

τ(m1,m2). (2.3)

This measures the average dissimilarity, or diversity, between every pair of molecules in a set.
Second, the similarity between molecules in one set and those in separate set is referred to as

the external similarity [Polykovskiy et al., 2020], and this is calculated with as

ExtSim =
1

NA

∑
mA∈A

max
mB∈B

τ(mA,mB). (2.4)

This measures the average similarity between each molecule in set A, and it’s nearest neighbour
(or most similar molecule) in set B.

2.4 QSAR and Combinatorial Synthesis Approaches

While structural analogues can be expected to share similar BA and selectivity for receptors, other
pharmacological properties that are significantly relevant for drug molecules are due to physical
properties of drugs, properties which can be similar for significantly different structures.

For example, the water-octanol coefficient of a molecule is measured by dissolving the compound
in mixture of 1-octanol and water and measuring the compound’s relative dissolution between the
two layers.

Water and 1-octanol are chosen because water is an analogue for the aqueous blood system and
1-octanol is similar in structure to the lipid membrane of human cells [Bruice, 2011].

For example, it has been shown that for a compound to be able to have effective distribution in
the body, that is, to reach target cells and cross the cell’s lipid barrier it requires a water-octanol
partition coefficient within an effective window. If the coefficient is too low the compound will be
unable to penetrate the cell membrane. If the coefficient is too large, the compound is unable to
cross the aqueous blood phase to reach the target cell [Bruice, 2011].

Water is a polar molecule whereas 1-octanol is non-polar, therefore a molecule’s partition
coefficient is directly determined by its polarity. Therefore, features of molecular structures which
determine polarity are relevant to whether or not a molecule would have desirable distribution
properties.

Therefore, being able to use molecular structure to predict physical properties which are known
to track biological activity would allow the design of compounds with desired activity profiles. Such
relationships are referred to as quantitative structure-activity relationships (QSARs).

These relationships are obtained by collecting sets of compounds which are known to have a
certain biological activity and identifying the common structural features which could be the cause
of the property.

For example, equation 2.5 is a QSAR that was obtained experimentally from a set of dihydro-
folate reductase inhibitors obtained by substituting the 2,4-diaminopyrimidine scaffold shown in
figure 2.4 [Bruice, 2011].

potency = 0.80π − 7.34σ − 8.14 (2.5)

Where σ is the electron donation potential of the substituents and π is the hydrophobicity of
the substituents. This relationship elucidates that for the receptor in question, ligand potency was
found to be proportional to hydrophobicity and electron donation. Obtaining such relationships
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Figure 2.4: 2,4-diaminopyrimidine scaffold for which the QSAR given in equation 2.5 was obtained
by measuring the potency of substituted variants of this scaffold as inhibitors for the dihydrofolate
reducatse enzyme [Bruice, 2011].

informs the drug design process because, for example in this instance, an optimal ligand can be
designed by substituting the scaffold in figure 2.4 with the appropriate substituents.

In order to obtain the measurements to model such relationships libraries are created from
molecular building blocks. All permutations of these building blocks are synthesized, and their
activity is measured in vitro.

2.5 Evolutionary Approaches

Evolutionary computing (EC) is the application of EAs to the solution of multidimensional opti-
mization problems with very large solution spaces.

EAs are based on the principle of natural selection where, starting with a population of ran-
domly initialized solutions, a fitness function is used to evaluate how well each solution solves
the problem at hand. Solutions have the potential to be improved by having their parameters
crossed over with those of other solutions, or through random mutation. By linking the likelihood
of a solution being selected for crossover to its fitness, and having the offspring compete with the
current generation for a place in the population, the fitness of the population increases over suc-
cessive generations [Eiben and Smith, 2015]. The algorithms are inspired by how the evolutionary
process can be extended beyond natural selection to general purpose problem-solving algorithms,
or metaheuristics. This metaphor of evolution as a problem-solving algorithm is shown in table
2.1.

In the context of this research, drug design can be treated as an optimization problem, where
the molecule is the input and its properties are the output. Given a specified target range for the
properties, the aim is to find the set of molecules which sufficiently satisfy these constraints, thus
identifying new candidates for synthesis and testing.

EC has been applied to drug design and optimization in a wide variety of ways, including the
generation of libraries of novel molecules with a sufficient degree of similarity to a set of reference
structures. For example, the method was used to evolve libraries of compounds with a sufficient
degree of similarity to a particular class of ligands, angiotensin-II antagonists, as well as candidates
for ligands which were likely to bind to the active site of the stromelysin-1 protein [Sheridan et al.,
2000]. Another approach started from a population of minimal molecules represented with a graph-
based genome, thus not biasing the initial population to any particular region of chemical space,
which grow through mutations which add, remove or exchange atoms, form or break rings, amongst
other operations. The fitness function was a weighted sum of molecular properties calculated from
the graph, and the fit of the graph to a predefined grid, which served as an estimate of the
candidates’ BA as a ligand for a target receptor [Glen and Payne, 1995]. This was used to design
molecules with a minimum degree of similarity to ribose and molecules which could be expected
to have an affinity for the bacterial enzyme dihydrofolate reductase.

Alternatively the method has been used to find optimal conformations for known molecules,
for example optimal ligand conformations were evolved for a set of 100 known protein-ligand
complexes, using fitness functions which directly calculate a genotype’s BA [Jones et al., 1997].
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Table 2.1: Evolution as a metaphor for problem-solving [Eiben and Smith, 2015].

Evolution Problem-Solving
Environment ↔ Problem

Individual ↔ Candidate Solution
Fitness ↔ Quality

Here the chromosomes encoded a known ligand’s torsion angles and hydrogen donors and acceptors,
where the fitness function calculated a least-squares fit of the hydrogen donors and acceptors
represented by the genotype and those of the receptor, as hydrogen bonding is one factor which
determines the location and orientation of a ligand with respect to the receptor. The internal energy
of the ligand, calculated from its torsion angles, and the ligand-protein interaction, calculated from
the hydrogen bonding information, is used to measure the candidate’s docking fitness, where a lower
total internal energy indicates a higher BA for the receptor. Another approach [Supady et al., 2015]
generated a population of random conformers for a given SMILES string, represented by a vector
of torsion angles, where the fitness function calculated each individual’s conformational energy,
estimated with Density Functional Theory [Atkins and de Paula, 2010], and modulated relative to
the other individuals in the population. This method was used to generated low energy conformers
of a set of amino acid dipeptides and a larger mycophenolic acid molecule.

The method has also been used to optimize physico-chemical properties relevant to specific
applications, such as the evolution of optimal molecular switches for use in photochemistry, where a
given backbone was modified in order to find the composition of substituents producing a molecule
with an optimal excitation energy [Ole Carstensen et al., 2011], and molecular dipole moment
[Rupakheti et al., 2015] where an evolutionary landscape defined by 40 dimensional Moreau-Broto
autocorrelation descriptors. AM1 quantum mechanical calculations were used to estimate each
genotype’s dipole moment and a genetic algorithm was used to generate a population of diverse
compounds with dipole moments above 5.5D. Diversity was measured as the euclidean distance
in chemical descriptor space.

Another example, ChemGE [Yoshikawa et al., 2018], employed population-based grammatical
evolution to an initial population of SMILES strings corresponding to known ligands, and a fitness
function which calculated an individual’s DS with thymidine kinase using rDock [Ruiz-Carmona
et al., 2014]. The method produced a diverse set of 189 ligands with better DSs than the best
known ligand in the DUD-E database [Mysinger et al., 2012].

Furthermore, a comparison between a graph-based genetic algorithm, monte-carlo tree search
(MCTS), and VAEs on the problem of logP optimization [Jensen, 2019] demonstrated that the
graph-based genetic algorithm generated results that were as good or better than those produced
from the MCTS or VAE methods while being orders of magnitude more computationally efficient.

2.6 Reinforcement Learning Approaches

RL is arguably the most successful learning paradigm, distinct from supervised and unsupervised
learning, and which most closely mirrors how humans and animals learn. The field draws on multi-
ple areas of psychology, specifically classical Pavlovian conditioning, temporal-difference learning,
the reward prediction error hypothesis, and the neurological role of dopamine [Richard S. Sutton
and Andrew G. Barto, 2018]. It is a field which tries to understand the general processes underlying
learning and intelligence.

The various RL algorithms have been very successful in their application to unknown environ-
ments, where the reward function is unknown to the agent and must be learned through exploration.
This makes it a flexible method, applicable to almost any learning problem, and a viable path to
obtaining generally intelligent systems, capable of learning at least a human level of skill on a wide
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Figure 2.5: The interaction of an agent with its environment in a Markov decision process (MDP).

range of tasks.
If a problem can be described as a Markov decision process (MDP), shown in figure 2.5, that

is, one where the actor or agent can observe the state of the environment, and based on the
information in the current state, take an action in accordance with some goal, then a solution to
that problem is considered an RL method [Richard S. Sutton and Andrew G. Barto, 2018].

There are various aspects to consider when designing an RL algorithm, and the different ap-
proaches to these lead to variations of the fundamental method. These considerations include
whether the most appropriate approach would be model-based or model-free, value-based or policy-
based, on-policy or off-policy and how to bootstrap learning. A discussion of these concepts is
beyond the scope of this thesis [Richard S. Sutton and Andrew G. Barto, 2018], but it is important
to note that popular RL algorithms are designed to deal with classes of problems that are defined
by these considerations.

Value-Based Reinforcement Learning

Both value-based and policy-based methods attempt to learn a policy which maximizes the return
over an episode T

RT = E
[ T∑
t=1

rt

]
(2.6)

received by the agent when deployed in the environment. Value-based RL methods attempt to
first learn to predict the state-action value function

Q(st, at) = Et
[
Rt|st, at

]
. (2.7)

Which returns the expected cumulative reward for any given state-action pair, and from this they
extract a policy, where the policy is to choose the action in each state with the greatest value.

The dominant value-based RL algorithm is Q-learning which implements value iteration using
the Bellman function

yt = rt + γQ∗(st+1, at+1) (2.8)

to predict the target state-action values for a given transition. The agent obtains transitions
through ε-greedy exploration of the environment.

In its simplest form the algorithm is implemented in tabular form with the agent iteratively
updating its value estimates for each state as it obtains new information from the environment.
Recently the method has been implemented with ANNs which are able to learn mappings for
very large state spaces which would require prohibitive storage space to implement in tabular
form [Mnih et al., 2013, Mnih et al., 2015]. These neural implementations, referred to as deep
Q-learning, leverage a replay memory of past exploration trajectories and learn to approximate
the value-function with backpropagation through gradient-descent [Rumelhart et al., 1986].
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The loss function for gradient descent is therefore the difference between the targets predicted
by equation 2.8 and those predicted by the ANNs Q(st, at)

L = yt −Qt. (2.9)

Value-based RL has successfully been applied to the generation of molecular graphs optimized
for solubility, QED and SA [Zhou et al., 2019].

Policy-Based Reinforcement Learning

Policy-based methods attempt to learn an optimal policy directly, without first learning a value-
function from which the policy is extracted. That is, while some policy-based methods may inte-
grate learning of an approximation of the state-action value function, the policy is a probability
distribution of the action space for a given state, such that sampling from that probability distri-
bution will maximize the return received (defined by equation 2.6) over an episode T .

As with deep Q-learning, recent policy-based methods benefit from a neural implementation and
are thus referred to as policy-gradient methods. There are a number of popular policy-gradient
methods, such as REINFORCE [Richard S. Sutton and Andrew G. Barto, 2018], which learns
only a parametrized probability distribution over the action space without any dependence on the
state-action value function.

While a discussion of the policy-gradient methods is beyond the scope of this thesis, they all
implement a variation of the policy gradient theorem [Richard S. Sutton and Andrew G. Barto,
2018] to define the parameter update for the policy network

θ ← θ + αGt∇θ log πθ(at|st) (2.10)

Actor-critic methods [Konda and Tsitsiklis, 2003] such as deep deterministic policy gradi-
ents [Lillicrap et al., 2015] and proximal policy optimization [Schulman et al., 2017] integrate
value-based and policy-based learning by learning the state-action value function (the critic) si-
multaneously and using this to bootstrap the policy (the actor).

Keeping the definition of an MDP in mind, and applying it to drug design, the environment
is chemical space, the space of physically realizable molecules, or subsets of thereof. Any given
molecule in chemical space is one state in the environment, and actions are those molecules obtained
from modifying the present state. Stated this way, RL methods are readily applicable to the
problem of drug design.

Generative Adversarial Networks Incorporating Reinforcement Learning

There have been numerous applications of RL to drug design which have incorporated GANs to
sequentially map from a continuous vector to a discrete representation of a molecule, with the
output being recurrently combined with the input vector to generate the next step of the output.

Here a separate ANN referred to as the discriminator alternates with the generator during
training where the two networks compete in a min-max game defined by equation 2.11 [Goodfellow
et al., 2014].

min
G

max
D

V (D,G) = E
x∼pdata(x)

[logD(x)] + E
z∼psynthetic(z)

[log(1−D(G(z)))] (2.11)

The two networks alternately perform gradient descent via backpropagation to minimize their
respective errors where the result is that the output of the generator G(z) eventually resembles the
training data x as the generator network has learned the distribution of features which characterize
elements of the training set.
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Figure 2.6: Adversarial training in combination with RL [Guimaraes et al., 2017]. Left: shows the
standard adversarial training arrangement. Right: shows it’s integration with RL.

This process has been integrated with RL so that the reward to the generator network is a
weighted sum of both the discriminator error and physico-chemical properties such as solubility,
SA, and QED among others [Guimaraes et al., 2017] [Sanchez-Lengeling et al., 2017].

This integration of adversarial training (GANs) with RL is shown in figure 2.6.
A key complication when applying adversarial training to generate discrete structures however,

is that the training process becomes non-differentiable. That is, as shown in equation 2.12, one
can only assign a discriminator reward to the final action which completed the sequence.

Q(s = YT−1, a = yT ) = R(YT ) (2.12)

This complication is solved by using N-time MCTS with Gθ as the rollout policy to estimate
the intermediate state-action values Q(s = Yti , ayti ) [Yu et al., 2016].

This method was used to generate SMILES strings of molecules which, in terms of their consti-
tution, resembled those of a set of reference molecules and simultaneously had improved solubility
(logP ), SA and QED [Guimaraes et al., 2017]. Here Gθ was composed of recurrent neural net-
work (RNN) layers with long short-term memory (LSTM) cells which mapped from a continuous
input vector to a SMILES sequence. Dθ was composed of one-dimensional convolutional layers
and designed for text classification.

The result being a network which, given any continuous vector input, would recurrently con-
struct a novel SMILES string similar in constitution to examples from the training set, and pos-
sessing physico-chemical properties within a desired range.

In an extension to this approach, adversarial training in combination with RL was used to train
an agent to generate an optimized set of molecules, except here the set was optimised for melting
point, and their use as photovoltaics [Sanchez-Lengeling et al., 2017]. For melting point optimiza-
tion an auxiliary ANN trained on a set of experimentally determined molecular melting points
provided the reward signal. For photovoltaic potential another auxiliary network was trained on
molecules for which experimental data was available for their photoelectric conversion efficiency,
and this network was used to provide the reward signal to the generator during adversarial training
on a separate dataset of organic photovoltaics. The trained network was able to generate a set of
novel molecules similar in constitution to known organic photovoltaics but with a higher average
expected power conversion efficiency as estimated with quantum chemistry methods. Here the gen-
erator also used recurrent neurons to sequentially construct SMILES representations of molecules
which were input to the network as hot-encoded binary matrices; this is a representation where
every character in the SMILES string is represented by a fixed-length bit-vector, with a single bit
being set which corresponds to the character. An example of a hot-encoded SMILES matrix is
shown in figure 2.7.
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Figure 2.7: An example of hot-encoded SMILES matrices [Blaschke et al., 2018]. The rows cor-
respond to characters in the SMILES string and the columns correspond to the set of possible
SMILES characters, with the number of possible characters determining the length of the bit-
vector. Such representations are commonly used as inputs to recurrent ANNs.

2.7 Autoencoding Approaches

Autoencoders (AEs) are a class of ANNs which copy their input x to their output r by passing
it through a lower dimensional hidden layer (latent code) h. In order to do so, the ANN has to
learn one mapping h = fθ(x) from the input to the lower dimensional hidden layer (the encoder),
and a second mapping r = gφ(h) which reconstructs a sample from a given lower dimensional code
(the decoder) [Goodfellow et al., 2016]. This general structure is shown in figure 2.8. The network
learns these two mappings simultaneously during training by learning the features that define the
training data. Once trained, the generator can be given arbitrary latent codes, from which it will
generate new samples not present in the training data.

The use of a lower dimensional hidden layer prevents the ANNs from perfectly copying the
input to the output. This constrains the network to identify the features which will maximize the
accuracy of the reconstruction over less impactful features. These statistically salient features are
those which define the training data.

The network is trained by attempting to minimize the reconstruction error over a set of training
samples, and how this reconstruction error is defined will depend on how the data is represented.

x h r
fθ(x) gφ(h)

Figure 2.8: AE structure. The encoder fθ(x) maps the input x to an internal representation h and
the decoder gφ(h) maps the encoding to a reconstruction of the input r.

Variational Autoencoders

However, when working with deterministic mappings like this, many arbitrary latent codes will
yield invalid samples when decoded.

This problem can be ameliorated by taking a Bayesian approach, so that the encoder learns
pθ(h|x) instead of a deterministic mapping h = f(x). That is, given a point x, the encoder generates
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Figure 2.9: VAE structure. The encoder pθ(h|x) maps the input x to a sample h drawn from the
prior distribution p(h), and the decoder maps the sample h to a posterior probability over the
output domain qφ(r|h).

a distribution over the possible values of the latent code h from which x was likely sampled. The
distribution here is a multivariate Gaussian N (µ, σ2), where µ and σ2 are vectors. The decoder
similarly learns pφ(r|h) instead of r = g(h). That is, given a latent code h, the decoder generates
a distribution over the possible values of an instance x [Kingma and Welling, 2013].

This can be done by having the latent code be sampled from a vector of distributions instead
of deterministic elements. This is done by splitting the hidden layer into two hidden layers: µ and
log σ2 which correspond to vectors of the means and the log of the variance of these distributions.
From these two vectors a latent code is sampled. This structure, referred to as a variational
autoencoder (VAE), is shown in figure 2.9.

The mapping from an instance x to a multivariate distribution defined by the vectors µ and
log σ2 is then learned by introducing the Kulbach-Liebler divergence into the loss function alongside
the reconstruction error [Kingma and Welling, 2013]:

L = KL+R(x, gφ(fθ(x))) (2.13)

KL =

n∑
i=1

1 + log σ2
i − µ2

i − elog σ
2
i . (2.14)

where R is the reconstruction error. The Kullback-Leibler (KL) term corresponds to the sum
over the elements of hidden vectors µ and log σ2, where each element i corresponds to the log
variance and mean of the distribution for element i of the latent code. The KL Loss is the sum
of the divergences between multivariate distribution defined by pθ(z|x) and a normal distribution
N(µi, σ

2
i ). Minimizing the KL loss therefore means optimizing the weights of the encoder such

that the probability distribution parameters µ and σ2 resemble those of a normal distribution.
Sampling new latent codes from the distribution represented by vectors µ and log σ2 improves the
validity of samples generated by the decoder.

The result of these modifications is that the encoder learns to calculate the probability p(h|x),
that is, it models the probability distribution over all possible values for the elements of the latent
vector h given x. The latent code h, the elements of which are sampled from the distributions
defined by the hidden vectors µ and log σ2, is then taken to be the prior probability for the
generator. The generator then learns to calculate the posterior probability q(r|h), that is, the
probability of the possible constituents of a reconstructed sample given a prior probability p(h).
When working with images this would be a posterior distribution over the RGB values for each
pixel. The KL term regularizes the prior probability distributions p(h)i defined by µi and σ2

i by
forcing them to be normally distributed. Therefore, sampling new latent codes h as a vector of
normally distributed elements is more likely to lead to valid reconstructions.

VAEs have been applied to the generation of novel SMILES strings using networks composed of
one-dimensional convolutional layers of recurrent neurons [Harel and Radinsky, 2018]. Here one-
dimensional recurrent convolutional layers were used to map from SMILES strings to a continuous
vector encoding. Latent codes were decoded to SMILES strings by mapping from the continuous
vector to a probability distribution over the available characters. This was done iteratively for
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each character in the sequence until the terminal token was chosen. Given the generator produces
a probability distribution, from which the next token is sampled, it is possible for the same latent
code to generate multiple strings. Here the authors mimicked how chemists will often use a known
reference compound as a prototype for drug design by encoding a prototype as a latent vector
and sampling the local neighbourhood by adding noise to the prototype code. Due to working
with SMILES strings however, and using an unregularized latent space, a large proportion of their
generated samples were invalid.

This method was expanded upon by using Bayesian optimization to find latent codes which
decode to molecules with optimal properties [Gómez-Bombarelli et al., 2018]. Here the authors
also iteratively decoded a SMILES string from a continuous latent code by generating a probability
distribution over the available strings and sampling a character from the distribution. However,
here a separate ANN was trained to predict pharmacological properties from latent codes jointly
during reconstruction training. Novel latent codes were then sampled by encoding a reference
molecule and moving in the direction in latent space, predicted by Bayesian optimization to be
most likely to improve the property of interest.

Conditional Generation

Conditional generation decodes a latent code given a particular class. Vanilla VAEs model p(z|x),
they make no consideration for the class of x. Similarly, the decoder models p(x|z) with no
knowledge of class. Letting class be c, a conditional variational autoencoder (CVAE) models
p(z|x, c) and q(x|z, c). This is called conditioning the encoder and decoder on the variable c. The
distribution for latent codes then becomes p(z|c). That is, for any given c there is a multivariate
distribution p(z). Therefore, one can sample a code from the latent layer of the encoder and
present it to the decoder with the desired class concatenated in order to generate a novel instance
of the desired class. The same latent code can be concatenated with different labels to generate
instances from different classes. Or multiple latent codes can be concatenated with the same class
to generate multiple molecules possessing a desired property.

Conditional generation was used to generate structural analogues of known ligands by using
measured activity for a target receptor as the label. The authors collected a set of JAK2 and
JAK3 inhibitors from ChEMBL and used experimentally measured activity for these two targets
as the conditioning class. Then by setting the generation condition to high activity against JAK3
and low activity against JAK2 they generated 300,000 candidates. After passing these candidates
through a series of filters and simulations they reduced this to 100 promising candidates. A group
of experts then selected their preferred candidate from this set to be tested in vitro [Polykovskiy
et al., 2018].

In other work adversarial training was used to bias the generation towards regions of chemi-
cal space containing molecules similar to a set of known anti-cancer drugs [Kadurin et al., 2017].
The authors constructed a conditional adversarial autoencoder (AAE) by concatenating drug con-
centration to the input and output fingerprint vectors, as well as concatenating tumour growth
inhibition (GI) percentage to the latent code z. They trained the model on samples for which these
measurements were available as measured from bioassays of the MCF-7 tumour cell line. Once
trained 640 latent vectors were sampled from the encoder’s prior distribution along with 640 GI
values. These were presented to the decoder to generate 640 molecular fingerprints including their
expected concentrations. During reconstruction training adversarial training was used to regular-
ize the latent layer through discrimination with a normal distribution. The generated fingerprints
were filtered for those with low drug concentration and the resulting fingerprints were screened
against a library of 72 million compounds obtained from PubChem. From this screening 69 hits
were obtained.
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2.8 Discussion

As mentioned in section 2.2 the drug design problem is one of finding a solution to a proposition,
where here the proposition can be defined by a set of functions, modelled by artificial neural
networks, which map molecular structure to physico-chemical properties and biological activity,
where these models are trained through supervised learning from experimental measurements. The
goal then is to design a molecule or set of molecules which constitute a Pareto front with respect
to this set of constraints.

Bearing in mind that the true potential of intelligent systems applied to this context lies in
their learning ground-truth relationships obtained not from models and simulations developed by
humans, but from experiences obtained from exploration in the real-world robotic laboratories.
This section presents the argument that deep RL is superior in this context compared to EAs, AE
approaches and GANs which include RL.

Secondly, as a foundation for the experiments described in chapter 3 it describes a method
for improving the performance of deep RL applied to automatic drug design by incorporating a
strategy for mitigating the sparse rewards problem.

As already discussed in section 2.2 linear search through all known small molecules is not a
viable approach, and this method is not meaningfully improved by simply being more selective
about the chosen subsets.

One could try a random-walk approach which constructs molecules from random combinations
of molecular building blocks and returns only those which pass all defined filters. For example,
QED scores a molecule according to the presence and absence of certain functional groups, so the
groups which are beneficial to this score could be set as essential building blocks for the random
walk algorithm. However, this method has no guarantee of optimal convergence.

One needs to find the regions of chemical space which are likely to pass the given set of filters.
Random walk could be improved with EAs which encode these molecular building blocks as genes
and through mutation and selection the algorithms are able to find those genes which are likely to
satisfy the given filters, but this method is also not guaranteed to do so efficiently or optimally.

AEs attempt to model the features of a given set of reference molecules, such as those with
properties within a useful range and through recurrent decoding, generate novel structures with
similar properties.

It is possible to use AEs to learn a mapping from discrete molecular representations to con-
tinuous vectors, and train an auxiliary network to predict multiple physico-chemical properties
from the latent layer, thus allowing one to use Bayesian optimisation to obtain latent codes which
optimally satisfy a multivariate reward function, codes which can then be decoded back to dis-
crete molecular descriptors. However, due to the semi-supervised nature of this training model,
the results will always be biased to the same region of chemical space as the training data. It is
also difficult to apply this model to the generation of molecules optimized as ligands for specific
targets, as for such applications there are significantly fewer examples of positive examples for
the model to learn from. Without sufficient positive training samples, autoencoding methods will
struggle to produce useful results. While there have been, as discussed in section 2.7, methods of
using conditional and AAEs to solve this, the results of these methods do not seem to warrant the
significantly increased complexity.

There are six motivating factors for the preference towards deep RL over GANs incorporating
RL. The first is the difficulties inherent in training GANs due to the nature of their training process.
The second is the sample-dependent nature of training GANs. The third is the theoretically supe-
rior performance of deep RL agents over GANs, and the fourth is the experimentally demonstrated
superior performance of deep RL algorithms over GANs on drug optimization tasks. The fifth is
that a reusable policy, as is obtained from deep RL training, is more appropriate for the intended
applications of an autonomous self-improving robotic laboratory. Six is the increased flexibility
when working with deep RL methods as opposed to GAN-RL methods. These six concerns are
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unpacked below.
GAN optimization is inherently unstable due to the nature of the training problem, as it is

an attempt to locate a saddle point between the performance of the generator and discriminator,
leading to difficulties such as the perfect discriminator problem, mode collapse or vanishing gradi-
ents [Elton et al., 2019]. Thus, simpler training methods are preferable, especially if they can be
made to be more performant.

GANs, like AEs, are supervised learning algorithms. That means that in order to train them,
they require a large source of labelled training samples from which to learn. In the context of drug
design where the goal is to generate novel compounds for which there are no available reference
sets, supervised learning algorithms are not appropriate. If an autonomous agent is attempting
to learn to generate ligands for a target receptor, there likely will not be a sufficiently large set
of positive samples to train the discriminator. Deep RL on the other hand is capable of learning
entirely unsupervised, improving its performance using only the feedback it receives from the
environment through its own exploration, thus requiring no positive examples in order to learn to
generate a ligand of the required class. Secondly in cases where there are limited reference sets,
supervised learning algorithms attempt to generalize from the samples that they have seen about
those which they have not. GANs for example will attempt to generate novel compounds which
are structurally analogous to a reference set through the use of a discriminator. However, that
reference set constitutes only a tiny fraction of the estimated 1060 drug-like small molecules. Those
which have a constitution and configuration which is known to be appropriate for the intended
use. However, there may be other combinations of constitution, configuration and conformation
not contained within the reference set which are also appropriate and potentially superior for the
goal. Therefore, attempting to generate analogues of known leads is unlikely to discover candidates
which have the desired properties but dissimilar structural features to the reference set. Limited
training data is therefore likely to lead to pure deep RL approaches being the preferred method in
future applications of ML to drug design [Elton et al., 2019].

Regarding experimentally verified performance, the MolDQN framework [Zhou et al., 2019] and
the graph-convolutional policy network (GCPN) [You et al., 2018] have both been shown, when
optimizing properties such as LogP and QED, to have superior performance to GAN based RL
methods ORGAN [Guimaraes et al., 2017] and ORGANIC [Sanchez-Lengeling et al., 2017], as well
as the leading AE method: junction tree variational autoencoder (JTVAE) [Jin et al., 2018,Elton
et al., 2019].

Between the two deep RL methods, the GCPN employed an adversarial training method which
was later outperformed by MolDQN using only Tanimoto Similarity.

The added benefit of the deep RL approach is that it is more amenable to targeted property
optimization, as a trained agent can be given any lead candidate whereupon the agent will apply
its policy in order to modify the given molecule such that the physico-chemical properties are
modified according to the agent’s training goals.

Another interesting result from the MolDQN experiments [Zhou et al., 2019] was that the use
of Tanimoto Similarity proved to be sufficient for the constrained generation of molecules and
in fact yielded better results than the GCPN which employed adversarial training to constrain
optimization by maintaining similarity [You et al., 2018]. The benefit of Tanimoto Similarity is
that it can be incorporated into the reward signal to both maintain similarity to a given starting
molecule in the case of lead optimization, or by using equation 2.4, similarity to a reference set
can be maintained without the difficulties of adversarial training such as mode collapse and the
perfect discriminator problem.

Under the RL method the agent learns which actions during the construction of a molecule
will lead to an optimal reward. This yields a policy which can be used to both optimize any
given molecule, or to generate novel molecules. If an agent learns a policy which will maximize a
reward composed of physico-chemical properties and DS, this can be used to generate an optimal
candidate by starting from an empty molecule and greedily choosing the modification expected



CHAPTER 2. RELATED WORK 25

to yield maximum reward, that is, the action with the highest Q-value. An RL agent can also
generate a set of viable candidates by choosing actions greedily with probability ε, without needing
to train a generator through adversarial training. Alternatively, random molecules can be chosen
from significantly different regions of chemical space: from known sets, or generated by an AE, and
the agent’s learned optimization policy can be applied to bring them into the region of optimal
physico-chemical properties and BA.

The final consideration references the context where this research is situated: towards the goal
of autonomous robotic laboratories. RL is more appropriate than the other methods discussed in
this chapter for this application as it easily extended from simulation to a real-world laboratory
where the robotic scientists generate experimental metadata and measurements through automated
experiments from which they improve their predictions for subsequent experimental parameters
pursuant to their goal.

Referring back to the research questions posed in section 1.2, the related work reviewed in this
chapter indicates that RL is indeed a viable method of training an intelligent agent to autonomously
optimize molecular scaffolds for a specific target receptor through exploration in simulation. The
RL method is particularly suited for the hit-to-lead phase of drug discovery and design [Sumita
et al., 2018,You et al., 2018,Zhou et al., 2019,Khemchandani et al., 2020] compared to alternative
methods such as EAs, AEs or GANs, which are better suited for the hit-generation phase. Further-
more, the RL method is particularly appropriate considering the context of autonomous scientific
laboratories [Elton et al., 2019]. The methodological details of how deep Q-learning, specifically
the double deep Q-networks (DDQN) algorithm with reward shaping, was implemented for this
task of ligand generation are given in the following chapter, and the performance of the algorithm
on this task is reported in chapter 4.



Chapter 3

Methods

The methods used in this work build on similar applications of RL to automated drug design,
particularly the use of Q-learning [Zhou et al., 2019], which was explored in its application to the
generation of molecules with optimized physico-chemical properties such as logP , QED and SA;
which were measured with the RDKit chemoinformatics package. The work thus demonstrated the
algorithm’s ability to learn these rules, and to optimize molecules according to constraints imposed
on these properties while retaining similarity to the starting structure.

However, in order to develop a ligand for a particular target receptor one needs to measure
a given molecule’s BA and specificity for that receptor. This can only be accurately measured
experimentally, but it can be estimated through simulations which are becoming increasingly more
reliable. Therefore, this work seeks to incorporate simulations of molecular docking for a receptor
identified as a target for a specific pathology into the reward function.

In summary, the experiments focus on the application of deep Q-learning to train an agent
through docking simulations to optimize a ligand’s BA for a protein target, using DS as an estimate.

This learning framework was applied to four case studies. The first was QED optimization
(section 4.1), where the agent constructs ligands from scratch, and attempts to find a path through
chemical space to a ligand with maximal QED. The second was DS optimization when learning from
sparse rewards (section 4.2.1), where the agent attempted to generate ligands with maximal DS for
a target receptor when only the terminal state in a rollout episode was rewarded. This was done
to minimize total run-time as docking every intermediate state made the run-time unreasonably
long. The third test applied reward shaping to ameliorate the impact of sparse rewards and
facilitate learning under these conditions (section 4.2.2). The final test applied the algorithm
composed of shaped sparse DS rewards beginning from three different chemotypes: napthyridine,
imidazopyridazine, and aminopyradine to assess the impact of starting from a region of chemical
space known to contain structures with high DS for a target (section 4.2.3).

The following sections break down the components of the learning framework: the agent, envi-
ronment, docking simulator, reward function and learning algorithm, and how they were applied
in this context.

The specific target receptor, against which the agent was trained, was the adenosine triphos-
phate (ATP) binding site of the plasmodium falciparum phosphatidylinositol 4-kinase (PfPI4K)
enzyme, shown in figure 3.1, an active target for which high-affinity ligands are still being sought.
This is the site where ATP would bind and activate PfPI4K through conformational change in
order to drive its biological processes, thus being hydrolyzed to adenosine diphosphate (ADP) in
the process.

26
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Figure 3.1: Ligand-protein training environment, showing the PfPI4K target enzyme [Fienberg
et al., 2020] with a ligand docked at its receptor site. The receptor site is encapsulated within the
docking box. All docking calculations are performed within the bounds of the docking box.

3.1 Agent

Under the RL model an agent explores an environment generating experiences from which is learns.
A schematic of the interaction between the agent and environment is shown in figure 3.2. The agent
here is implemented as a pair of fully connected deep ANNs, and a memory buffer, where the input
to the network is the concatenation of three vectors.

The first is the 2048 bit ECFP 4 molecular fingerprint of the current state of the graph, with
each bit in the fingerprint corresponding to the presence of a certain functional group. Second is
the fingerprint of each state that is accessible from the current state. These are concatenated to
the current state in turn and for each, the network calculates the state-action value according to
its Q-network. This approach is taken at each step of the graph design process as the number and
nature of accessible states changes with the current state of the graph, so that it is impossible to
define a constant action space. The action-value distribution over the states accessible from the
current state is thus constructed by evaluating each accessible state in sequence. The final input
parameter is the number of steps remaining in the design episode, such that each accessible state
is considered relative to the number of steps the agent has left in which to modify the graph.

This input layer is followed by a number of one-dimensional convolutional layers for extracting
features in the molecular fingerprints relevant to identifying patterns of functional groups in the
molecules, which are subsequently followed a series of linear layers with rectified linear unit acti-
vations, with the number of neurons halving at each layer until the sigmoidal output layer, which
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Figure 3.2: Algorithm summary showing the interaction of the agent and the environment. As the
agent constructs molecular graphs they are evaluated through docking simulations with the target
receptor, from which the agent receives the DS as a reward. These rewards are combined with the
molecular graphs and stored in the agents’ memory buffer to use for training.

contains a single neuron corresponding to the action-value of the state-action concatenation. This
structure is the same for both the behavioural policy network (Q) and the target network (Q−).

3.2 Environment

The training environment, shown in figures 3.1 and 3.2, is a combination of both the ligand
which the agent is designing and the target protein, where their interaction is simulated with the
Autodock-GPU docking package. During exploration the agent has a maximum number of steps
in which to construct a candidate ligand. Once the design period is over docking simulations
determine if it is possible for the given ligand to form a stable complex with the target protein,
and if so, what is the change in the free energy of the ligand-protein complex as a result of binding.
This change in binding free-energy determines the reward which the agent receives at the end of
each exploration episode.

The agent designs molecules as two-dimensional molecular graphs using the .mol format, how-
ever it perceives these graphs as molecular fingerprints. At each step the agent is presented with
the set of possible modifications it can make to the current graph, perceiving each as a molecular
fingerprint and choosing the modification which it perceives according to its policy as leading to a
molecule with the highest DS for the receptor site of the target in the remaining number of modi-
fication steps. After the modification episode the agent presents the ligand which it has designed
to the target for docking.

Simulating Molecular Docking

Molecular docking was simulated with the Autodock-GPU package. Given a molecular graph and
the crystal structure of a target protein, docking proceeded as follows: the ligand’s molecular graph
was converted from its two-dimensional graph .mol format to its three-dimensional representation,
including hydrogens, partial charges, and atomic coordinates using the .pdbqt format.

The crystal structure of the target protein was obtained from the protein data bank in .pdb

format. This was also converted to its .pdbqt format. A three-dimensional docking grid was
then prepared which encapsulated the receptor site of the target protein. The preparation of
the target protein and docking grid was done once prior to training whereas the conversion of
two-dimensional ligand graphs to their three-dimensional representations was performed after each
molecular modification episode prior to docking. Given the .pdbqt ligand and protein files and
docking grid, Autodock used its conformational search algorithm to explore the conformational
states of the given ligand, evaluating the ligand-protein interaction for each conformation. This
conformational search is implemented as a Lamarckian genetic algorithm [Morris et al., 1639]. The
conformation with the greatest corresponding release of binding-free energy was then saved to a
coordinate file. Autodock uses a semi-empirical scoring function (differentiated from knowledge
based and physics based) which is a weighted sum of atomic interactions, tuned to structural data.
Steric, hydrophobic, and hydrogen bonding interactions between atoms in the ligand in its current
conformation, and atoms of the receptor within the docking grid are calculated. The weights of
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these terms were computed from a non-linear fit of the scoring function to structural data [Trott
and Olson, 2010].

The free energy ∆G of a binding pose is given by

∆G = ∆HvdW + ∆Hhbond + ∆Helec + ∆Gdesolv + ∆Stor. (3.1)

Where ∆HvdW , ∆Hhbond, ∆Helec are the enthalpy changes due to Van Der Walls interactions,
hydrogen bonding and electrostatic interactions respectively, ∆Gdesolv is the Gibbs free energy
change due to desolvation and ∆Stor is the change in ligand entropy due to the loss of rotatable
degrees of freedom in the ligand as a result of binding.

These energetic terms are approximated semi-empirically as follows:

∆HvdW = WvdW

∑
i,j

(
Aij

s(rij)12
− Bij
s(rij)6

)
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∆Stor = WtorNtor

(3.2)

Where the sums
∑
i,j are over all intermolecular pairs of ligand-receptor atoms within the docking

box. Aij , Bij are constants which depend on the modified Lennard-Jones potentials [Atkins and
de Paula, 2010] between atoms i and j, and Cij , Dij are constants which depend on the hydrogen
bonding potentials between i and j. S and V are the salvation parameters and atom volume
respectively and σ is set to 3.5 A. rij is the interatomic distance between atoms i and j and s(rij)
is a smoothing function. E(t) is a function which provides directionality for the hydrogen bond
term based on the angle t. ε(rij) is a dielectric function of rij . Nrot is the number of torsions in
the receptor in its bound state.

The weights WvdW , Whbond, Welec, Wdesolv and Wrot were empirically determined using linear
regression on a set of ligand-receptor complexes with known binding constants.

The Lamarckian genetic algorithm mentioned above attempts to find the global minimum of
equation 3.1 through conformational search. This release of binding free-energy was then returned
as the ligand’s DS, which served as an estimate of its BA. This DS determined the reward to the
agent.

A single docking calculation involves the evaluation of between 106 and 108 scoring function
evaluations during the course of the genetic algorithm, which accounts for more than 90% of the
algorithm’s runtime. Autodock-GPU [Santos-Martins et al., 2021] dramatically accelerates the
runtime by exploiting the parallel nature of the docking algorithm, decomposing the population
from a single generation of the algorithm into its individuals and assigning them to work-groups
with each work group running on a parallel GPU compute unit.

3.3 Rewards and Shaping

Under the RL method, the state of the environment is evaluated by the reward function on every
step to determine if the goal state has been reached and reward the agent accordingly. When
treating drug design as a RL problem, the state of the environment is defined by the current
molecular graph. However, the goal is that the agent discovers a novel molecular graph with high
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DS for the given target receptor, therefore we cannot specify the goal molecular graph to the
agent. Instead, a property that the goal state should possess is specified, and the reward function
is defined accordingly. Here, the desired property is high DS for the specified receptor site of a
given target molecule. Therefore, the reward simply returns the result of conformational search
and the DS calculation performed by the docking package to the agent with its sign inverted, that
is:

r(st) = −1×∆ Binding Free Energy (3.3)

The reason for the inversion is that a greater reduction in binding free energy is of higher value.
As a result, the q-value, or state-action value, of any molecular graph returned by the agent’s
behavioural network, takes on the meaning of the expected cumulative DS expected to be obtained
in the remaining steps by choosing that action.

Unlike in MolDQN [Zhou et al., 2019] which rewarded each state independently, which is possi-
ble since the calculation of properties such as QED and LogP are not computationally demanding,
here it was not possible to calculate the DS of each transition along a rollout as this would have
made the runtime of a complete training session infeasible. Therefore, it was only possible to
calculate the DS of the final state along a rollout. Given that a rollout trajectory was composed
of 40 transitions, only one of which receives an extrinsic reward, the problem was one of sparse
rewards, and a shaping method was implemented to encourage learning.

Transition Shaping

Given the reward for the terminal state of a rollout trajectory, rewards for the preceding transitions
were calculated using a method similar to that of potential-based reward shaping [Ng et al., 1999].
Here the potential of the terminal state was taken to be the DS received from the environment,
and the potentials of the preceding states were estimated by linearly interpolating from the full
DS in the final state to zero in the initial state with the function

φ(st) = rf −
rf
tmax

× (ti − 1) (3.4)

where rf is the reward of the terminal state, tmax is the number of steps in a trajectory and ti is
the steps remaining between state i and the terminal state.

3.4 Learning Algorithm

The RL algorithm (shown in Algorithm 1) used to train the agent was an implementation of
double deep Q-networks (DDQN) [Mnih et al., 2013] [Mnih et al., 2015]. This section unpacks the
algorithm in further detail. The line numbers that follow refer to Algorithm 1. First the agent
was initialized with an empty molecular graph (line 4, Algorithm 1). The agent was then allowed
a maximum of 40 steps in which to construct a ligand. The limit was chosen to be 40 as has been
done in similar work [Zhou et al., 2019] [You et al., 2018] as it is necessary to define a limit to the
length of a rollout episode, and since each step corresponds to the potential addition or removal of
an atom or bond, this limits the maximum size of the ligands to 40 atoms, excluding hydrogen, with
a mass in the range of 500 to 1000 Daltons, which is common for small-molecule drugs [Chhabra,
2021]. At each step of the modification phase, the environment generates all possible and valid
molecular graphs that are accessible from the current state and returns these to the agent in a
tensor. Note that in algorithm 1 the next states st+1 are the actions at. Therefore, at each step of
an episode the action space is defined by the accessible states. The agent then uses its behavioural
network to select a state (action) to move into next (lines 5, 6, and 7, Algorithm 1). At each
step, docking between the ligand and target receptor was simulated. The DS was calculated and
returned to the agent as a reward (rt in line 7, Algorithm 1), and the transition (st, st+1, rt, term)
was stored in the agent’s memory (line 9, Algorithm 1), where term is a flag indicating if st+1 was
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Algorithm 1: Double Deep Q-Learning (DDQN) [Mnih et al., 2013] [Mnih et al., 2015]

1 Randomly initialize action-value function Qθ and target network Qθ− with parameters ~θ

and ~θ− respectively.
2 Initialise replay memory D to capactitiy N
3 repeat
4 Reset environment
5 repeat
6 With probability ε sample random action (next state) st+1

7 Otherwise select st+1 = max
st+1

Q∗θ(st, st+1)

8 Move into next state st+1 and observe reward rt
9 Store transition (st, st+1, rt, term) in D

10 until tmax

11 if e mod Tbp == 0 then optimize behavioural and target networks
12 Sample random minibatch of transitions (sj , sj+1, rj , term) from D

13 Setyj =

rj for terminal sj+1

rj + γmax
a′

Q(st+1, a
′
) for non-terminal sj+1

14 Update Qθ via one step of gradient descent by backpropagation

15 ∆~θ = ∇θJ(θ) = E
[(
r + γmax

a′
Qθ−(s

′
, a
′
)−Qθ(s, a)

)
∇θQθ(s, a)

]
16 θ− ← τθ // soft update target network

17 end

18 until emax

a terminal state. A trajectory of at most 40 such transitions (tmax in algorithm 1) constituted a
single rollout or exploration episode.

After Tbp rollout episodes (the backpropagation period) where data was sampled from the
policy πθ the agent randomly sampled a minibatch of transitions from the replay memory (line
12, Algorithm 1) and optimized its ANN approximation of the optimal action-value function Qθ
through stochastic gradient descent using the backpropagation algorithm (lines 13, 14 and 15,
Algorithm 1). The parameters of the target network θ− were then updated with a fraction τ of
the updates made to their counterparts in the behavioural network (line 16, Algorithm 1).

Thus training comprised an alternation between Tbp sampling episodes e and minibatch gradient
descent through backpropagation. This loop continued for emax episodes or until convergence was
observed in the policy network’s loss function.

Double Deep Q-Networks

The objective for deep Q-learning is to train an ANN to approximate the optimal action-value
function

Q∗(s, a) = max E
π

[
Rt =

T∑
i=t

γi−tri | st = s, at = a

]
(3.5)

The optimal action-value function Q∗(s, a) approximates the maximum expected return Rt ob-
tainable from state s after taking action a and following policy π thereafter. Rt corresponds to
the maximum sum of rewards rt obtainable by a policy πθ from the start state discounted by γ at
each time step.

Q-learning [Mnih et al., 2013] introduced the biologically inspired process of experience replay.
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Figure 3.3: Schematic explaining the notation used in the backpropagation algorithm

This improved sample efficiency, since each experience is potentially used in many weight updates.
It also removed correlations between samples in the minibatches used for backpropagation since
each minibach contains a random sampling of transitions from multiple trajectories. Removing
such correlations reduced the variance caused by learning directly from consecutive samples, which
could lead to premature suboptimal convergence. The DDQN variant [Mnih et al., 2015] introduced
a second network, which decoupled the behavioural policy used to sample trajectories from the
network which approximated target values r+γQ(s

′
, aa) during training. This decoupling reduced

correlations between the rollout and target networks which could also lead to divergence during
training.

The optimal action-value function given in equation 3.5 obeys the Bellman equation, which
is an identity between the optimal action-value at state s and the optimal action-value of the
subsequent state s

′
. The Bellman equation states that

Q∗i+1(s, a) = Es′∼E
[
r + γmax

a′
Q∗i (s

′
, a
′
) | s, a

]
. (3.6)

That is, the optimal value of taking action a in state s is equivalent to the reward for moving
into state s

′
plus the maximum action-value obtainable in state s

′
. The method uses a deep ANN

to approximate the optimal action-value function Qθ(s, a) and a memory buffer Dt = [e1, . . . , et]
to store the transitions et = (st, at, rt, st+1) obtained from rollout trajectories. The objective of
learning is approximate the optimal action-value function by using equation 3.6 as an iterative
update. This is a form of value iteration which converges to the optimal value function Qi → Q∗

as i→∞.
Specifically, the ANN approximating Q∗ is trained by minimizing the loss function

Ji(θ) = E(s,a,r,s′ )∼U(D)

[(
r + γ max

a′
Qθ−i

(s
′
, a
′
)−Qθi(s, a)

)2]
(3.7)

through sampling minibatches of transitions randomly from the replay memory (s, a, r, s
′
) ∼ U(D).

Qθi is the approximation of the action-value function with the parameters as they were at iteration i
and Qθ−i

is the target network at iteration i, which is the approximation of the action-value function

with parameters θ−i where θ−i ← θi every C steps.

Gradient descent is then effected through backpropagation, which locates the parameters ~θ
which minimize the loss function J(θ) by calculating an update ∆θ for every parameter in the
network

~θ ← ~θ + η∆~θ. (3.8)

The update to apply to each parameter in the ANN at every iteration of backpropagation is the
gradient of the loss function

∆~θ = ∇θJ(~θ) (3.9)

where η is the learning rate. The gradient of the loss function with respect to the network param-
eters ∇θJ(~θ) is

∇θJ(~θ) = E
[(
r + γmax

a′
Qθ−(s

′
, a
′
)−Qθ(s, a)

)
∇θQθ(s, a)

]
, (3.10)
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and the explicit update for parameter θi is

θji ← θji + η
∂J(θ)

∂θji
. (3.11)

This update for each parameter θi is obtained with the backpropagation algorithm [Rumelhart
et al., 1986]. For some hidden parameter θji with input neuron i and output neuron j, the

gradient of the loss function with respect to θji,
∂J(θ)
∂θji

, is given by the identity

∆θji =
∂J(θ)

∂θji
= δjai. (3.12)

Where δj is the gradient of the loss function at neuron j and ai is the neuron activation at neuron
i. For an output neuron k, it’s gradient δk,o is given by

δk =
∂J

∂ak

∂ak
∂netk

(3.13)

where ak is the activation of neuron k and netk =
∑
h xkh = θkhah is the net input into neuron k.

For a hidden neuron j, it’s gradient δj is given by

δj =
∂aj
∂netj

∑
k

δkθkj . (3.14)

Where
∑
k δkθkj is the sum over the products of the gradients of j’s output neuron activations and

their respective parameters θkj . The relationship between neurons, their activations a, synapses θ
and gradients δ is shown schematically in figure 3.3.

3.5 Summary

This chapter presented the methods implemented in this research pursuant to the goal of automat-
ing the design of antagonistic ligands for a receptor with a known crystal structure. The chapter
discussed the three facets of the generative framework design, namely the agent, the environment
and the learning algorithm. In summary, the agent was implemented as a pair of coupled ANNs
and memory buffer, which perceived the molecular graphs that defined the environment states
as extended-connectivity fingerprints. The environment was composed of the ligand graph, the
receptor model, docking algorithm, reward function and reward shaping method. The learning
algorithm used was a neural implementation of Q-learning, specifically the DDQN variant.

The learning process is analogous to drawing graphs by hand, at each step adding or removing
bonds or atoms, keeping in mind the goal that the resulting graph should have a high DS for the
target receptor, and learning from the feedback received about each resulting graph. The DDQN
algorithm makes it possible for the agent to quickly find a path through chemical space to graphs
which receive high rewards, and as a result, the output is a number of graphs with high expected
BA for the target receptor.

In order to evaluate the generative algorithm, it was applied to ATP binding site of the PfPI4K
enzyme homology model, shown in figure 3.1, under a number of case-studies that are explored in
the following chapter.



Chapter 4

Experiments and Results

In this chapter the results of training the agent’s optimization policy against the chosen target
receptor are presented. The target receptor of interest was the ATP binding site of the human
PfPI4K enzyme, shown in figure 3.1. The agent was trained for a total of 5,000 episodes to
limit the total run-time. However, training for longer may have yielded further improvement
than what is reported here. Training was tracked through the use of plots of batch loss and
reward per episode, where the reward per transition depended on the experiment being run. The
agent was trained with the DDQN algorithm presented in Algorithm 1 using the environment
parameters, network hyperparameters and the dimensions and location of the docking box given
in table A.1.

The experiments were chosen in order to answer the research questions posed in section 1.2.
In summary, the experiments conducted in this chapter include:

� The generation of molecules with maximal QED starting from a single carbon atom (section
4.1).

� The generation of ligands with maximal DS for a target receptor when rewarding only the
terminal state in a rollout episode (section 4.2.1).

� The generation of ligands with maximal DS for a target receptor with the use of reward
shaping to distribute the terminal state reward across the preceding transitions in the
rollout (section 4.2.2).

� The algorithm composed of shaped sparse DS rewards was run starting from three different
chemotypes: napthyridine, imidazopyridazine, and aminopyradine to assess the impact of
starting from a region of chemical space known to contain structures with high DS for a
target (section 4.2.3).

� Finally, a set of 1,011 structural analogues of napthyridine, imidazopyridazine, and aminopy-
radine were docked with the target receptor and their DSs were used as a reference for
comparing the scores of the ligands generated by the agent. Their DSs were also plotted as
a function of their empirical half maximal inhibitory concentration (IC50) measurements
to assess the correlation between DS and real-world ligand potency (section 4.2.4).

The QED and DS maximization experiments address research question 1: what are the
methodological requirements for applying RL to the generative design of ligands for drug tar-
gets? The compilation of the DSs and IC50 values of the reference ligands and their comparison
with those produced by the agent address research question 2: how do the generated ligands
compare those currently available? By considering the results of these experiments together we
can address research question 3: is this method viable?

The results of these experiments in relation to the research questions are discussed in the
following chapter.

34



CHAPTER 4. EXPERIMENTS AND RESULTS 35

0 1,000 2,000 3,000 4,000 5,000

0

2

4

6

·10−3

Training Episode

B
a
tc

h
L

os
s

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

Training Episode

Q
E

D

Figure 4.1: Training curves from the dense QED rewards experiment showing mean batch error
(left) and QED of the terminal state (right) per training episode. The data are the original
values passed through a first-order IIR low-pass filter f(xt) = αxt−1 + (1−α)xt with α = 0.6 to
attenuate the high-frequency components and emphasize the trend.

4.1 QED Optimization

As a benchmark of the DDQN implementation and molecule environment the framework was
first applied to the maximization of QED, that is a replication of one of the results from the
original MolDQN paper [Zhou et al., 2019].

QED corresponds to the weighted geometric mean of eight desirability functions (equation
4.1) [Bickerton et al., 2012]

QED = exp

(∑n
i=1 wi ln di∑n
i=1 wi

)
(4.1)

where di is the ith desirability function and wi is the weight applied to the corresponding de-
sirability function. The desirability functions are molecular weight, octanol–water partition
coefficient, number of hydrogen bond donors, number of hydrogen bond acceptors, molecular
polar surface area, number of rotatable bonds, number of aromatic rings, and the number of
structural alerts.

The goal here was for the agent to learn a policy for choosing a sequence of actions which
leads to molecules with maximal QED. This was intended to verify the implementation before
extending the framework to the more challenging task of targeted ligand generation.

Given that the learning algorithm is stochastic, every training session will yield a different
set of molecules, therefore a given training session was evaluated by the QED value on which
the policy converged and the three molecules with the highest QED generated over the course
of training.

In this experiment the learning task was the simplest, and the agent received a reward on
every step of a rollout episode where the reward was the QED of the chosen state. The reward
was further scaled by the steps remaining from the terminal state (equation 4.2)

s(rt) = rt × αtmax−t (4.2)

such that states earlier in a rollout episode have their reward reduced, so that the agent has
to obtain high-value states near the end of the episode in order to maximize its reward. The
training curves from this experiment are given in figure 4.1.

The plot in figure 4.1 shows the scaled reward for the terminal state in each 40-step rollout
episode. These rewards were the QED score scaled with equation 4.2 and consequently the actual
QED scores of the generated molecules were slightly higher than the rewards plotted in figure
4.1.
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(a) 0.874 (b) 0.876 (c) 0.872

Figure 4.2: Three molecules generated by the agent during the dense QED rewards experiment.
The goal here was only to maximize QED. The terminal state QED reward is shown below each
graph, a: 0.874, b: 0.876 and c: 0.872. The QED score here was the score returned from the
RDKit QED package scaled with equation 4.2 so the actual QED value was slightly higher.

4.2 Ligand Generation

Here the framework was extended to the more challenging task of generating ligands with maximal
BA for the receptor site of a macromolecule, as approximated by their Autodock DS, defined in
equation 3.1, and measured in kcal/mol.

As in the QED experiment, the agent’s goal was to construct ligands through the addition or
removal of atoms or bonds, such that the terminal state after 40 transitions received a high DS,
subject to no other constraints. When the environment was reset at the beginning of each new
episode the state of the ligand was returned to it’s initial state.

Two of the experiments explored the impact of the initial state on the final DS on which the
agent converged. In section 4.2.2 the agent begins from a single carbon atom, whereas in section
4.2.3 the agent begins from one of three reference scaffolds.

And two of the experiments contrast the impact of sparse rewards on the agent’s performance.
In section 4.2.1 only the terminal state receives a DS reward whereas in section 4.2.2 reward shaping
is used to estimate a reward for all transitions in the rollout episode.

The target receptor for these experiments was the ATP binding site of the PfPI4K homology
model [Fienberg et al., 2020] shown in figure 3.1 and all docking simulations used the docking box
as defined in table A.1.

The performance of the algorithm was evaluated by the DS on which the agent converged after
5000 training episodes, and the highest DSs achieved during the training session.

4.2.1 Sparse Rewards from Docking Simulations

When rewarding the agent with a ligand’s DS, it was not possible to return a reward at every step
of a rollout episode as the time taken to calculate a single ligand’s DS would make the runtime
for a full training session of 5000 episodes untenable. Therefore, a DS was returned only for the
terminal state of the rollout episode. This meant that the preceding transitions were added to the
replay memory with no associated reward. The purpose of this first experiment was to evaluate
whether it was possible for the agent to achieve some degree of success with such sparse feedback
from the environment. The training curve showing terminal state DS for this experiment is given
in figure 4.3.
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Figure 4.3: Training curves from the various DS rewards experiments showing the Autodock DS of
the terminal state per training episode. The plots show the raw data as well as a that data smoothed
with the following first-order IIR low-pass filter f(xt) = xt−1 ∗ α + (1 − α)xt with α = 0.8. The
data show the agent’s performance when learning from sparse rewards (left), using reward shaping
(left), and starting from a number of known reference molecules (right). The abbreviations in the
legend in the figure on the right correspond to the reference scaffolds napthyridine, aminopyridine
and imidazopyridazine. The experiments starting from the reference molecules also incorporated
reward shaping. The two horizontal lines show the mean and maximum DS of the ligands in the
reference set shown in figure 4.5.

4.2.2 Docking Simulations with Reward Shaping

The next experiment attempted to create dense reward signals from the sparse extrinsic reward
returned by the environment at the end of the agent’s rollout trajectory.

This was done with equation 3.4. Here, instead of pushing the states received from the en-
vironment along with a reward of zero to the agent’s replay memory as they were received, they
were instead buffered until the end of the episode whereupon equation 3.4 was used to calculate a
non-zero reward for every preceding transition using the reward received for the terminal state.

The agent was trained for 5,000 episodes with the parameters given in table A.1. The training
results are shown in figure 4.3 alongside the results from the previous sparse-rewards experiment.

4.2.3 Generation from Reference Series

As a final experiment, the effect of focusing the search on regions of chemical space near to the
structural features of chemical series known to have an affinity for the receptor was explored. Here
the variant of the algorithm incorporating reward shaping was applied to three runs, each composed
of 5000 episodes starting from one of the three scaffolds shown in figure 4.6. These scaffolds are the
aminopyridine, napthyridine and imidazopyridazine molecular backbones. These chemical series
are being investigated as derivatives of these three molecular backbones with varying substituents
have demonstrated high inhibition potency against the target enzyme in phenotypic whole-cell
screenings. The plots of terminal state DS over the course of training for these three runs are
shown in the right sub-figure of figure 4.3.
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(a) -15.41 kcal/mol (b) -15.87 kcal/mol (c) -15.92 kcal/mol (d) -16.01 kcal/mol

Figure 4.4: ligands and their DSs from the following experiments: (a) reward shaping starting
from a single carbon with a DS of -15.41 kcal/mol, (b) starting from napthyridine with a DS of
-15.87 kcal/mol, (c) starting from aminopyradine with a DS of -15.92 kcal/mol, and (d) starting
from imidazopyridazine with a DS of -16.01 kcal/mol. Note that the accuracy of the DSs is limited
by the number of genetic algorithm runs.

4.2.4 Comparison with Existing Ligands

In order to evaluate the algorithm’s performance when generating ligands for the chosen receptor,
a reference point was needed. Therefore, a set of ligands with experimentally measured IC50
values were docked against the target receptor for comparison. An IC50 measurement is the
concentration of a chemical species necessary to induce a 50% reduction in the biological activity
of a target enzyme or protein, where the measurements are obtained through phenotypic whole-cell
screenings. These are in vitro bioassays where a solution of the ligand is added to a sample of
human cells infected with the target enzyme and the reduction in enzymatic activity is typically
measured through some form of spectroscopy.

The ligands and their IC50 data were provided by the UCT H3D drug design lab 1, and
they contained structures from the napthyridine, imidazopyridazine (SFK52), and aminopyridine
(SFK40) chemical series. These series contain ligands derived from the scaffolds shown in figure
4.6. Each ligand was docked using the parameters given in table A.1. The DSs of the reference
ligands are plotted as a histogram in figure 4.5 (left), and they are plotted as a function of their
empirical IC50 data in figure 4.5 (right).

The DSs in figure 4.5 (right) are plotted as a function of pIC50 (equation 4.3)

pIC50 = − log(IC50[nM]× 10−9) (4.3)

This is done due to the significant range spanned by IC50 measurements which makes it necessary
to constrain them to a logarithmic scale in order to facilitate a correlation plot.

4.3 Summary

The experiments presented in this chapter were chosen to answer the three research questions
posed in section 1.2. In summary, the goal was for the experiments to address whether, given the
crystal structure of a receptor, (1) RL is a viable method of generating novel ligands with high DS,
(2) how the DSs and structures of those ligands compare to known ligands, and (3) what were the
methodological requirements of applying the method in this way.

As a baseline, section 4.1 evaluated the DDQN agent’s ability to return molecular graphs
with high QED. Section 4.2 then extended the DDQN agent to the harder problem of returning

1http://www.h3d.uct.ac.za/

http://www.h3d.uct.ac.za/
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Figure 4.5: Results of docking a set of 1, 011 structural analogues derived from napthyridine,
aminopyridine and imidazopyridazine scaffolds (figure 4.6) against the PfPI4K receptor. Left: the
x-axis corresponds to DS intervals of 0.25 kcal/mol and the y-axis corresponds to the number of
ligands in each interval. This shows the range and distribution of Autodock DSs for known ligands,
which provides a benchmark for the agent’s performance. Right: the y-axis corresponds to DS
in kcal/mol and the x-axis corresponds to pIC50 (equation 4.3). This evaluates the correlation
between Autodock DSs and empirical IC50 measurements and gives an estimate of the confidence
with which we can expect the DSs to correlate with activity in vitro.

molecular graphs with high expected BA, estimated through their Autodock DS, for the specified
receptor region of a given crystal structure.

Within section 4.2, the agent first received a reward at only the terminal state of a design
episode (section 4.2.1). Reward shaping was then used to create dense rewards from these sparse
extrinsic rewards (section 4.2.2). This variant with sparse extrinsic rewards and reward shaping
was then applied to the modification of three chemotype scaffolds (section 4.2.3).

Finally, as a benchmark for the algorithm, the DSs of a set of 1,011 known ligands from the
same chemical series as the scaffolds in section 4.2.3 were calculated and plotted, as a histogram
and correlation plot with their pIC50 measurements (section 4.2.4).

N

N

(a) Napthyridine

H2N

N

(b) Aminopyridine (SFK40)

N

N

N

(c) imidazopyridazine (SFK52)

Figure 4.6: The three scaffolds from which the 1,011 structural analogues evaluated in figure 4.5
were derived. Each ligand contained either the napthyridine (a), aminopyridine (b) or imidazopyri-
dazine (c) backbone with varying substituents. All ligands were docked with the PfPI4K homology
model using the same docking parameters as were used in the preceding experiments (table A.1).



Chapter 5

Discussion

This chapter elaborates on the results presented in chapter 4 by summarizing them, providing
an analysis of why the experiments elicited the specific results that they did, and stating any
implications which the results could have for the current state-of-the-art in the field of automatic
drug design through ML. These supporting explanations make use of references to previous related
work where possible.

The topics discussed include the framework’s baseline performance on the QED optimization
problem, the impact of sparse versus shaped rewards, the impact of beginning from a single atom
versus a reference scaffold, and a comparison between the DSs of the generated ligands versus those
of the reference set. The chapter ends by tying the results back to the research questions outlined
in section 1.2.

QED Optimization

The results of the QED optimization experiments, shown in figure 4.1, demonstrated that the agent
is able to rapidly learn a policy for selecting molecular fingerprints in order to maximize a molecular
property such as QED. This is evidenced by the fact that the QED score of the terminal state
began at less than 0.1 at the beginning of training, when the agent was choosing actions almost
entirely at random, and quickly converged within 1000 attempts to a value greater than 0.8. It is
important to note that the values plotted in figure 4.1 correspond to the terminal state rewards,
which were the QED scores scaled by equation 4.2, and consequently the actual QED scores were
actually slightly higher than those shown in figure 4.1. Three of the molecules generated from this
experiment, together with their terminal state QED scores, are shown in figure 4.2.

This result was expected as it has already been shown [Zhou et al., 2019] that the DDQN
algorithm is capable of producing good results on the QED optimization problem. Furthermore,
the problem is significantly simpler than that of targeted ligand generation as the subset of chemical
space containing molecules with high QED scores is orders of magnitude larger than that containing
molecules with high DSs for the receptor site of a particular crystal structure. In addition to this,
the agent receives, on every step of a rollout episode, a QED score for the state that was chosen
at that step. This provides the agent with ample samples from which to correlate the features of
an extended connectivity fingerprint with high QED.

Thus, the primary utility of this result is to confirm that the framework was working as expected
before extending it to the harder problem. However, this result also confirms that of [Zhou et al.,
2019] by showing again that DDQN can easily be applied to maximize simple physico-chemical
properties like QED which in itself is potentially very useful for drug design.

40
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Sparse Rewards and Shaped Rewards

The initial generation experiment where the agent received a reward only for the terminal state
demonstrated that this is insufficient information from which to extract a useful policy as the DS
of the generated ligands failed to increase within 5,000 episodes. The terminal state DS after 4,500
training episodes was actually lower than the DSs of terminal states obtained from almost entirely
random exploration within the first 500 episodes.

However, a simple reward shaping method of linearly extrapolating backwards from the final
state, to calculate a reward for the preceding states using equation 3.4, immediately enabled the
agent to learn an effective design policy. The “shaped” plot in the left axis of figure 4.3 shows that
after starting at an initial DS of greater than -6 kcal/mol, obtained from random exploration, the
agent converged on a minimum of approximately -13 kcal/mol with the best candidates exceeding
-15 kcal/mol.

The effectiveness of this shaping methods is likely due to the fact that the value of a given
state is not determined by the state in isolation, but the terminal state of the path in which the
state occurred, as it is the terminal state that is returned by the agent. That is to say, states are
valuable if they are close to terminal states with high DSs. For example, if a given rollout episode
resulted in a terminal state which received a high DS, then the penultimate state along that path
would also be valuable as it permits access to the high-scoring terminal state. The further back
along the path you move away from the terminal state, the less valuable the states become. The
shaping function (equation 3.4) was designed to implement this logic, thus conditioning the agent
to select features in the extended connectivity fingerprints which will lead to high-scoring terminal
states within the 40-step limit.

Given that the use of reward shaping enabled the agent to learn where it had previously failed
in the sparse reward environment, we can assume that a more sophisticated sparse-reward ame-
lioration strategy such as hindsight experience replay, which has been shown experimentally to
outperform reward-shaping [Andrychowicz et al., 2017], should improve the algorithm’s perfor-
mance.

Generation from Reference Ligands

The left-hand side plot of figure 4.3 shows the results when the agent begins building from a single
carbon atom. These experiments evaluated the agent’s ability to find a path from an arbitrary
point in chemical space to a region of high DS for the receptor.

The plot on the right-hand side of figure 4.3 shows the results when the agent begins its rollout
episodes from a scaffold known to be a structural analogue of high-DS ligands. Here the agent
began from napthyridine, aminopyradine, and imidazopyridazine, shown in figure 4.6.

The corresponding plots in figure 4.3 show that when starting a 40-step rollout from each
of these scaffolds the initial ligands generated by the agent from random exploration obtained a
better terminal state DS than those obtained when beginning from only a single carbon atom
as the terminal state DSs from random rollouts starting from napthyridine, aminopyradine and
imidazopyridazine were approximately -9 kcal/mol.

After approximately 2,500 training episodes the agent converged on candidate ligands with an
average terminal state DS of approximately -14 kcal/mol, with numerous candidates exceeding
-15 kcal/mol and the best exceeding -16 kcal/mol. This is comparable to the performance of
MolDQN [Zhou et al., 2019] which converged on a score of 0.8 after approximately 3,000 episodes
when training to optimize QED.

In summary, when starting from scaffolds known to be structural analogues of ligands with
high DS for the target, the agent begun training by finding, through initial random exploration,
states with a better DSs than those discoverd when beginning from only a single carbon atom, and
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converged on states with better DSs than those obtained when starting from only a single carbon
atom.

The reason that the agent converges on better molecules when building from known scaffolds
is likely that the search is now being constrained to the region of chemical space surrounding the
given scaffold. And since the aminopyradine, napthyridine and imidazopyridazine scaffolds are the
backbones of three chemical series known to contain high-BA ligands, by constraining the search
to this region, the problem of finding high-BA candidates is simplified since the agent is more likely
to discover rewarding states through exploration.

This is expected since structural analogues, molecules which share similar scaffolds but with
different substituents and a sufficiently similar molecular backbone, are candidates for functional
analogues, which are two molecules with similar pharmacological properties. That is, they exhibit
similar biochemical or physiological effects on the human body, but with potential variations in
efficacy and side effects [Bruice, 2011].

Furthermore, this is supported by how many EAs use specially pre-initialised populations to
boost the task performance of evolved solutions by evolving novel functional analogues of the
initial population [Rupakheti et al., 2015,Brown et al., 2004a,Lameijer et al., 2005]. In other RL
approaches the network has also been initially pre-trained on a set of structural analogues [Sumita
et al., 2018].

The notion of structural analogues has also been incorporated in RL algorithms through the
use of Tanimoto similarity [Zhou et al., 2019], where the agent attempts to maximize similarity to
a given scaffold when generating novel structure.

Comparison with Known Ligands

Figure 4.5 shows the DSs and experimentally measured IC50 data of 1,011 structural analogues of
the napthyridine, aminopyradine and imidazopyridazine scaffolds. These structures were docked
with the same parameters used to reward the agent during the generation experiments. From the
histogram we see that the mean of the set is approximately -11 kcal/mol with only a very small
number of structures receiving scores less than -14 kcal/mol with none being below -16 kcal/mol.

Furthermore, the scatter plot of DS versus pIC50 measurements in figure 4.5 demonstrates a
weak correlation between DS and IC50. The weakness of the correlation could be attributed to
inaccuracies in the Autodock scoring function given that rigid bodies are used for both the receptor
and ligand models and no solvent interactions are considered. The docking simulation also does
not consider off-target interactions with endogenous biomolecules, which could contribute to the
IC50 readings as they are obtained from whole-cell phenotypic screenings. It is also important
to note that, given the large number of ligands being docked, in order to reduce the total time
taken to calculate the DSs for all 1,011 ligands, docking was only run for 10 epochs which could
yield suboptimal accuracy. This is because after each epoch the docking algorithm returns the DS
of the lowest energy conformer. However, due to the stochastic nature of the EA which searches
conformer space, the algorithm is not guaranteed to find the lowest energy conformer in a single
epoch. And so it is recommended that multiple epochs are run, with the DS taken to be the lowest
of the epochs. Limiting the number of epochs to 10 could potentially prevent the search algorithm
from finding the lowest-energy conformer of a given ligand.

Despite this, the scatter plot does show that those ligands with the best DSs of less than -14
kcal/mol also have low pIC50 values. Furthermore, the ligands with the worst DSs of greater than
-9kcal/mol, do in general have pIC50 values greater than those of the best ligands. This indicates
that the Autodock scoring function is able to identify features which correlate with very low or
very high pIC50, but for other features it struggles to accurately correlate them with pIC50.

So in summary, the results in figure 4.3 show that the agent was able to design a set of ligand
candidates which contains a substantial number of ligands with DSs better than the best DSs in a
set of reference ligands. The comparison with the IC50 data shows that within the accuracy of the
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Autodock scoring function, these ligands with high DSs can be expected to also potentially yield
low pIC50 values.

When inspecting the graphs generated by the agent, four of which are shown in figure 4.4, it is
apparent that although the agent is able to improve DS, it does so without any concern for QED or
SA, since these properties were not included in the reward function, and as a result the proposed
molecules contain a significant amount of unsynthesizable features. This issue is discussed more in
the following chapter.

The implication of these results is that the DDQN algorithm is effective at locating regions of
chemical space which maximize the Autodock scoring function, at least for the PfPI4K structure.
Therefore, if we are able to increase the correlation between DSs and pIC50, as well as improve the
QED and SA of the generated graphs, we can expect a DDQN agent to reliably generate potent
inhibitors.

Answering the Research Questions

Regarding the methodological requirements for applying RL to the problem of ligand generation,
as long as the reward received from the environment is dense, either because you are able to dock
every transition or due to the use of some method of reward shaping, the RL method is more
than capable of learning a policy for constructing a ligand through a sequence of atom and bond
additions or removals such that the result receives a high DS.

Rewarding only the terminal state during training significantly reduces training time, and
using a reward shaping method facilitates learning when doing so. However, other sparse rewards
strategies such as hindsight experience replay might work better [Andrychowicz et al., 2017].

Furthermore, it is necessary to incorporate QED and potentially SA, as penalties into the
reward function in order to filter out the unrealistic features which occur when DS is rewarded in
isolation. This can also be accomplished by hard-coding filters for structural flags into the training
environment.

In addition to this, starting generation from scaffolds known to be analogues of ligands with
high DSs also appears to simplify the search problem for the agent thus leading to the policy
converging on ligands with a higher DSs.

When comparing the artificially designed ligands with those currently available, we see that
the agent is able to generate a substantial number of ligands with better DSs than the best ligands
in the reference set. However, whether these artificially designed ligands are physically realistic is
not guaranteed because even though they may be 100% valid according to the valence rules, they
may still contain unrealizable structural features. Hence, the need for incorporating additional
structural penalties into the reward function, and potentially hard-coding flags for impossible
structures as well.

In addition to this, whether these ligands with high DSs can be expected to also yield high
IC50 measurements, which is how we would experimentally verify their potency, depends on the
accuracy of the docking simulation. If we are able to improve the correlation between DS and real
ligand potency, potentially through the use of full molecular dynamics simulations, the method
has the potential to yield valuable results.

So in summary, the method of applying RL to the problem of automatic drug design is indeed
viable, however this is subject to the constraints of removing unstable and unsynthesizable features
from the generated graphs without sacrificing DS, and improving the correlation between DS and
in vitro whole-cell ligand potency as measured by IC50.



Chapter 6

Conclusions

This research sought to investigate the potential for applying RL to the development of generative
algorithms for automated drug design. The methods comprised the development of a RL agent and
learning environment where the agent could construct molecular graphs bond-by-bond and dock
the resulting ligands with the crystal structure of a target receptor. The experiments evaluated
the agent and environment at the tasks of maximizing QED and DS for a given receptor. They
explored the impact of sparse versus shaped rewards, focusing the search to a particular region
of chemical space, and compared the ligands generated by the agent with those currently being
evaluated in the laboratory.

The first experiment, the maximization of QED starting from a single carbon atom, served
as a benchmark to confirm that the algorithm was successful at the simpler task. The second
experiment was the generation of ligands with maximal DS for a target receptor when rewarding
only the terminal state in a rollout episode. This demonstrated that while rewarding only the
terminal state reduced the run-time compared to docking all states in a rollout, it prevented the
agent from learning a successful policy due to insufficient feedback from the environment. The
third experiment repeated the previous test with the use of reward shaping to distribute the
terminal state reward across the preceding transitions in the rollout. This immediately facilitated
learning. The forth experiment applied the algorithm with reward shaping to three reference
series: napthyridine, imidazopyridazine, and aminopyradine. This demonstrated that starting
from a point in chemical space known to contain ligands with high BA for the target, as opposed
to starting from a single carbon atom, simplifies the problem for the agent thus yielding more
ligands with better DSs. Finally, a set of structural analogues derived from the three reference
scaffolds was docked with the target receptor to benchmark the expected DSs and evaluate the
correlation between DS and IC50 measurements.

The QED problem was simple for the agent to solve as it was receiving dense extrinsic rewards,
and the subset of chemical space containing molecules with high QED scores is orders of magnitude
larger than that containing molecules with high DSs for the receptor site of a particular crystal
structure. The reward shaping method was a success due to how the shaping function assumed
the value of a state to be proportional to both the DS received by the terminal state of that
episode and its distance from the terminal state. When beginning the training episodes from the
reference scaffolds, the agent was able to discover more molecules with higher DSs due to the
search space being focussed to the region of chemical space where the napthyridine, aminopyridine
and imidazopyridazine series are located. Finally, the comparison with the set of known ligands
showed that agent was able to discover numerous molecules with DSs better than the best scores in
the reference set. However, the graphs generated by the agent contained a substantial number of
unsynthesizable features due to the fact that the reward function considered DS in isolation, with
no consideration being made for QED or SA. This could likely be improved by building penalties
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for these properties into the reward function. In addition to this, the weak correlation between DS
and pIC50 was likely due to the fact that rigid bodies were used for both the receptor and ligand
models and no solvent interactions are considered. Furthermore, the docking simulation does not
consider off-target interactions with endogenous biomolecules. This could likely be improved with
the use of full molecular dynamics simulations.

So in conclusion, there is significant potential for applying RL to obtaining novel drug designs,
however, for the method to be useful it is necessary to prevent the agent from building chemically
unstable and unsynthesizable features into the generated graphs without sacrificing DS.

6.1 Future Work

The preceding discussions mentioned a few possible extensions to the framework developed in this
thesis which could resolve various shortcomings identified in the current implementation. This
section unpacks these in more detail.

The most apparent shortcoming of the current implementation is the number of impossible
atomic arrangements which appear in the graphs generated by the agent, rendering the proposals
unsynthesizable even though they possess high DSs. This is a consequence of the reward function
considering DS in isolation. The agent therefore searches for graphs which optimally fit the receptor
site without any consideration for other properties of those graphs. There are a few methods
which could potentially address this. The first would be to hard-code filters, which prevent specific
modifications that would lead to these unrealistic structures, into the environment. Alternatively,
instead of rules which filter out certain actions that would lead to undesirable features, the agent
could instead be presented with modifications which change whole functional groups. For example,
instead of choosing only between adding a single carbon, nitrogen or oxygen atom, the agent’s
choices would also include the options to add carobxylic acid, aldehyde, amine or phenyl functional
groups. In addition to these to methods, QED and SA could be incorporated into the reward
function. The goal would then be to maximize QED and SA simultaneously with DS. In addition
to having high DSs, the resulting ligands would then also have high QED and SA scores as well,
thus improving their utility.

The second shortcoming of the current implementation is the low accuracy of the DS calcula-
tions, as evidenced by the weakness of the correlation between DS and empirical IC50 measurements
for the set of reference ligands. One method for improving the simulation accuracy would be to use
molecular dynamics simulations. These are simulations which, unlike the localized approximations
used in this thesis, compute the forces acting on every atom in the system and apply Newto-
nian mechanics to calculate their corresponding accelerations, velocities and positions [Gelpi et al.,
2015]. These simulations therefore model molecules as flexible bodies in motion, as opposed to
static rigid bodies, and take solvent interactions into account. The goal here would be to improve
the correlation between DS and pIC50 measurements, as these determine a ligand’s potency in
phenotypic whole-cell screenings.

Finally, there is the potential to avoid the inaccuracies and computational demands of simu-
lations entirely by leveraging available IC50 data. By first training a discriminative network to
predict IC50 values from molecular fingerprints, this predictive model could be used as the re-
ward function for a generative agent. This could potentially be more useful than DSs calculated
from simulations as IC50 measurements are obtained from whole-cell phenotypic screenings, and
thus they also account for off-target interactions within the cell. The reward returned from this
predictive IC50 model could of course also be combined with QED and SA as described above.



Appendix A

Experimental Parameters

A.1 Network Structure

The structure of the behavioural and target ANNs, was the same as that of the original MolDQN
network [Zhou et al., 2019] The input to the networks was the 2048 bit circular ECFP 4 fingerprint
of state st+1 concatenated with the steps remaining in the episode from state st. The structure of
the network was a series of 5 dense linear layers composed of 2049 x 1024, 1024 x 512, 512 x 128,
128 x 32 and 32 x 1 parameter matrices respectively. The output neurons of each of these layers
were passed through rectified linear unit activation functions, except for the final output neuron
to which no activation function was applied.

The output was chosen to be a single neuron since it was impossible to define a fixed action
space as the possible actions varied with each state of the environment. Thus, the Q-values for all
states st+1 accessible from state st were computed through separate forward passes.

In total the network contained 2,692,128 parameters and 1,696 hidden neurons. Both the
behavioural and target ANNs shared the same structure.

The error criterion was the Huber loss (equation A.1)

ln =

{
1
2 (xn − yn)2 if |xn − yn| < δ

δ(|xn − yn| − 1
2δ) otherwise

(A.1)

with L = mean(ln) and δ = 1.

A.2 Environment Parameters

The environment limited the maximum number of transitions per episode to 40, setting the terminal
flag in the tuple returned to the agent at this point.

In the QED experiments the reward for a particular transitions was calculated using the RDKit
QED package [RDKit, 2021a, Bickerton et al., 2012]. Given a molecular graph this returned a
weighted sum of a number of chemical properties which are desirable in drug molecules.

In the ligand generation experiments the EA which implemented conformational search was
run for 10 epochs per ligand candidate. The calculation of each conformer’s binding free energy
during the course of an epoch was divided into 32 work units for GPU acceleration. The minimum
binding free energy approximation from all conformations across all 10 epochs was returned to the
agent as the molecule’s DS. These parameters are summarized in table A.1.

The centre of the docking box in which conformational search was run was located at coordinates
(x = 6.98, y = 335.60, z = 8.06) on the PfPI4K structure. The box contained 40 points at which
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Table A.1: Environment and ANN Parameters

General Environment Parameters

Molecule transitions per episode 40

Genetic algorithm runs per docking simulation 10

Number of parallel work units 32

Docking Box Parameters

Centre (6.98, 335.60, 8.06)

Number of Points (40, 40, 40)

Spacing 0.375

DDQN ANN Hyperparameters

Number of training episodes (N) 5× 103

Learning rate (α) 10−4

Discount factor (γ) 9.99× 10−1

Backpropagation period 1 episode

Batch size (b) 40 transitions

Replay memory size (l) 15× 103 transitions

ε decay rate −9.9× 10−4 per episode

Target network soft-update fraction (τ) 10−3

a conformer’s binding free energy with the receptor was calculated in each direction, each spaced
0.375 Å apart. The parameters of the docking box are summarized in table A.1.

A.3 Hyperparameters

The total number of training episodes, each generating 40 transitions of replay data, was limited to
5,000. The replay memory buffer l was limited to sliding window containing the most recent 15,000
transitions. The behaviour policy during training was ε-greedy where ε was annealed linearly from
its initial value of 1.0 to 0.01 over the first 25% of training episodes and held at its final value
thereafter (equation A.2)

εt =
εf − εi

0.25×N
× t+ εi (A.2)

with t corresponding to the current episode number, and εi and εf being the initial and final
values of ε respectively [Mnih et al., 2013,Mnih et al., 2015,Zhou et al., 2019]. The batch size for
backpropagation bi was maintained at 128 transitions throughout training. The target network
parameters φ were synchronized with the behaviour network parameters θ on initialization, and
updated using a soft-update (equation A.3)

φ = τθ + (1− τ)φ (A.3)

whenever the behaviour network was updated [Lillicrap et al., 2015]. The target network thus
received a fraction of the update applied to the behaviour network, where the fraction was defined
by the soft-update parameter τ = 0.001. These hyperparameters are summarized in table A.1.
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A.4 Discussion

The hyperparameters given in chapter 4 were identified through trial and error to avoid divergence
within the constraints of the available hardware. For example, the replay memory was made to
be as large as possible in order to prevent the agent from myopically overfitting its network to
only the most recently generated transitions, but it had to be limited to 15,0000 transitions due
to limited available GPU memory. The total number of episodes was limited to 5,000 to limit the
total experiment run-time. However, it is possible that the final DSs on which the agent converged
would have been better if more training time was available. The batch size of 128 was chosen to
be as small as possible while preventing the parameter updates from being too stochastic, and
avoiding larger batches which would slow the network optimization method and increase the total
run-time.

The parameters in tables A.1, specifically the number of points in the docking box and the
number of genetic algorithm runs per docking simulation, were chosen to minimize the total training
time. However, the consequence of this is that the DSs calculated with these parameters have
limited accuracy. That is to say that many of the reference ligands from section 4.2.4 likely had
better DSs than shown in figure 4.5. Similarly, many of the states obtained during the generation
experiments likely also had better DSs however, these would not have been discovered due to the
limited size of the docking box and number of genetic algorithm iterations. The algorithm would
likely yield better results were these parameters adjusted to prioritize accuracy over time.



Glossary

a priori Latin: “from what comes before” / “from first principles, before experience”’. Refers to
reasoning and deductions which follow from theory rather than empirical data. . 5

activation In the context of chemistry, activation refers to a reaction where a molecule transitions
into a state in which it possesses the potential to undergo a specific chemical reaction. In the
context of biochemistry this refers to biomolecules such as enzymes transitioning into states
where they obtain the ability to perform their biological function. 2

adenosine diphosphate During biochemical processes ATP looses a phosphate group through
hydrolysis thus forming ADP. 26

adenosine triphosphate An organic biomolecule which provides energy for biochemical pro-
cesses. 26

affinity The strength of the bond formed between a ligand and receptor, usually quantified as
either the change in Gibbs free energy during binding or the dissociation constant of the
ligand-receptor complex. 2, 15, 26, 37

agonist An agonistic ligand. 2, 4

agonistic A type of bonding where the ligand activates a receptor upon bonding thus inducing a
biological response. 2

antagonist An antagonistic ligand. 2, 4, 15

antagonistic A type of bonding where the ligand blocks the action of an agonist by bonding with
a receptor, thus preventing its activation. 2, 33

assay An analytical laboratory procedure for determining the presence, concentration, or potency
of an analyte. 3, 10

bioassay A type of assay which often involves the observation of an analyte’s interaction with a
biological target in vitro. 3, 5, 22, 38

charge distribution The distribution of the electrons which comprise a molecule’s electron cloud,
characterized by dense electronegative regions and sparse electropositive regions . 4

chemotype A particular class of molecules characterized by their common molecular scaffold. 4,
5, 26, 34, 39

concentration The ratio of solute in a solution to either solvent or total solution, expressed as
mass per unit volume, molarity, parts per million, or a number of other measures . 3, 22, 38
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deactivation In the context of chemistry this refers to a reaction through which a molecule
transitions to state in which it exhibits a decreased propensity to undergo a certain reaction.
In the case of biochemistry this refers to biomolecules such as enzymes being prevented from
performing their biological functions. 2

DNA Deoxyribonucleic acid is a molecule composed of two polynucleotide chains that coil around
each other to form a double helix carrying genetic instructions for the development, func-
tioning, growth and reproduction of all known organisms and many viruses. 2

electrostatic attraction The attractive force defined by Coulomb’s law occurring between op-
positely charged nueclei, atoms or molecules. 2

endogenous Naturally occurring within the body. 2, 42, 45

enzyme Proteins which function as biological catalysts. 8, 15, 26, 27, 33, 34, 37, 38

functional analogue Molecules which share a structure that is similar enough that they can be
expected to exhibit similar chemistry. 3, 4, 42

half maximal inhibitory concentration The concentration of a chemical species necessary to
induce a 50% reduction in the biological activity of a target enzyme or protein. 34

hydrogen bonding A weak bond between two molecules resulting from an electrostatic attraction
between a proton in one molecule and an electronegative atom in the other. 2, 16, 28, 29

hydrolyzed To be hydrolyzed is to undergo hydrolysis. That is, the severing of a chemical bond
under the action of a water molecule. 26

hydrophilic An attraction to water. Polar molecules are highly soluble in polar solvents such as
water due to their non-uniform charge distribution and are thus referred to as hydrophilic.
Examples are short-chain alcohols like methanol and ethanol . 3

hydrophobic The propensity to repel water. Non-polar molecules, due to their uniform charge
distribution, are insoluble in polar solvents like water, forming a boundary with the aqueous
layer instead, and are thus referred to as hydrophobic. Examples are oils and fats . 3, 28

hydrophobicity See hydrophobic. 14

in vitro Latin: “in the glass”. Refers to experiments conducted outside of a biological context,
usually in some form of assay. 3, 15, 22, 38, 39, 43

in vivo Latin: “in the body”. Refers to experiments conducted within a living organism. 3, 4, 10

ligand In the context of drug design, this is a molecule which binds to a receptor. Note that this
is slightly different to the way the term is used in coordination chemistry, where it refers to a
molecule which binds to a metal atom forming a coordination complex. 2, 4–7, 9, 10, 14–16,
22–30, 33–46, 48

macromolecule A molecule containing a very large number of atoms, such as a protein, nucleic
acid, or synthetic polymer. 2, 5, 6, 36

molecular polarizability The response of a molecule’s electron cloud to an externally-applied
electric field . 3, 4
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molecular weight The sum of the atomic weights of a molecule’s atoms. 3, 4, 35

pathology The physiological manifestation of a deleterious biological process. 2, 4, 26

pharmacodynamics The biochemical and physiological effects of drugs on the body. 3

pharmacokinetics The manner in which a drug distributes throughout the body. 3

photocatalyst A material capable of absorbing light, thus imbuing it with kinetic energy which
it can transfer to a reacting substance in order to facilitate a chemical reaction. 8

physico-chemical These are properties that are both physical and chemical in nature, and are
therefore relevant to the physics of chemical interactions. Such as charge distribution, elec-
tronegativity, internal energy, entropy, enthalpy and so on. 3, 4, 6, 9, 10, 16, 19, 23–26,
40

polarity A separation of electric charge leading to a molecule or its chemical groups having an
electric dipole moment, with a negatively charged end and a positively charged end . 3, 14

protein Large biomolecules and macromolecules that comprise one or more long chains of amino
acid residues. 2, 3, 10, 15, 16, 26–28, 38

quantitative estimate of drug-likeness A quantitative score which combines a number of molec-
ular properties in order to estimate the likelihood that a given chemical species would be well
received by the body . 3

receptor The region within a macromolecule where another, smaller molecule will bind thus
operating as a transducer of biological signals. 2–7, 9, 11, 14–16, 22, 26–30, 33, 34, 36–42,
44, 45, 47

RNA Ribonucleic acid is a polymeric molecule essential in various biological roles in coding,
decoding, regulation and expression of genes. 2

scaffold In this context of chemistry this refers to the hydrocarbon backbone of a molecule ex-
cluding its substituents. 3–7, 14, 15, 25, 36–44

selectivity The degree to which a ligand binds at a given receptor relative to other receptors. Low
selectivity results in off-target interactions and their concomitant physiological side-effects.
2–4, 10, 14

solubility The ability of a solid, liquid, or gaseous chemical substance (solute) to dissolve in
solvent (usually a liquid) and form a solution. This depends on the solvent used, temperature
and pressure, and is measured by the concentration of the saturated solution . 3, 4, 18, 19

spectroscopy The analysis of the presence, quantity and composition of an analyte in solution
based wavelength and intensity of its absorptions or emissions when exposed to electromag-
netic radiation. 3, 38

synthetic accessibility A quantitative measure of the complexity and cost of synthesizing a
given chemical species. 3

van der Waals interactions The attractive or repulsive forces occurring between molecules due
to their polarized electron clouds. 2



Acronyms

AAE adversarial autoencoder. 22, 23

ADP adenosine diphosphate. 26

AE autoencoder. 5, 6, 8, 20, 23–25

ANN artificial neural network. 10, 17–20, 22, 27, 31–33, 46, 47

ATP adenosine triphosphate. 26, 33, 34, 36

BA binding affinity. 2–6, 10, 14–16, 25, 26, 29, 33, 36, 39, 42, 44

CVAE conditional variational autoencoder. 22

DDQN double deep Q-networks. 25, 30–35, 38, 40, 43, 47

DS docking score. 5–7, 16, 24, 26, 28–30, 33, 34, 36–46, 48

EA evolutionary algorithm. 4–6, 8, 10, 15, 23, 25, 42, 46

EC evolutionary computing. 15

ECFP extended-connectivity fingerprint. 11–13, 27, 46

GAN generative adversarial network. 5, 18, 19, 23–25

GCPN graph-convolutional policy network. 24

IC50 half maximal inhibitory concentration. 34, 38, 39, 42–45

JAK Janus kinase. 22

JTVAE junction tree variational autoencoder. 24

KL Kullback-Leibler. 21

LSTM long short-term memory. 19

MCTS monte-carlo tree search. 16, 19

MDP Markov decision process. 17, 18

ML machine learning. 3–6, 8, 10, 24, 40
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ORGAN objective-reinforced generative adversarial networks. 24

ORGANIC objective-reinforced generative adversarial network for inverse-design chemistry. 24

PfPI4K plasmodium falciparum phosphatidylinositol 4-kinase. 26, 27, 33, 34, 36, 39, 43, 46

QED quantitative estimate of drug-likeness. 3, 7, 18, 19, 23, 24, 26, 30, 34–36, 38, 40, 41, 43–46

QSAR quantitative structure-activity relationship. 8, 9, 14, 15

RL reinforcement learning. 4–6, 8, 10, 16–19, 23–27, 29, 30, 34, 38, 42–45

RNN recurrent neural network. 19

SA synthetic accessibility. 3, 18, 19, 26, 43–45

SMILES simplified molecular-input line-entry system. 16, 19–22

VAE variational autoencoder. 4, 16, 21, 22
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