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Abstract

The sudden surge in computational power available to computer research in industry and
academia has led to developments in Al automation. More and more tasks are able to be
automated and replaced with machine learning systems. One such task that promises to be
highly beneficial is that of driving, clearly indicated by the amount of resources being spent by
companies such as Uber, Google and Tesla. Neuro-Evolution has shown promise in the field
of controller development, due to its ability to develop complex behaviour without a need for
any labelled training data. It has been applied previously in car controller generation, across
many fields. This thesis aims to apply Neuro-Evolution specifically to the field of intersection
management, in order to study which methods are the most effective for this particular task.
In particular we investigate three key hyper-parameters: Neuro-Evolution algorithm, task diffi-
culty and problem exposure. A traffic simulator was developed and the hyper-parameters were
used to evolve car controllers, which where then tested on unseen tasks. We show that certain
key combinations of hyper-parameters yield exceptional results, but that direct correlations
between individual parameters and performance are unclear, indicating that these methods
are highly sensitive to hyper-parameter selection. We further identify some areas in which to
optimize the evolution method, by looking at hyper-parameters which have a computational
cost but which did not produce better performance.
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1 Introduction

Self driving cars are currently in advanced stages of development. Companies like Google, Uber,
Tesla and Chrysler are aiming to develop a mass consumer market that will eventually replace
human-driven vehicles. These autonomously driving vehicles aim to be safer and more efficient
than human drivers, making transport cheaper and relieving traffic congestion. This has the poten-
tial for numerous benefits not only to humans’ quality of life, but also for the efforts of preventing
climate change. While simply replacing human drivers with autonomous drivers already offers many
advantages, there are even more advantages to be gained by re-imagining the entire transport net-
work, which currently relies on a rules-based system designed to accommodate these human drivers.
These rules must take into account human capacity for co-ordination with other drivers, as well as
reliance on visual cues such as road signs and traffic robots. Due to limited human reaction times,
calculation power and predictive power, these systems are simple and leave room for optimiza-
tion. Computers however, are able to transmit, receive and process data from many more sources
in a matter of milliseconds. This should allow a much more complicated and efficient traffic co-
ordination system than is possible with human resources. Through the use of heuristic algorithms
and machine learning, computers have already proven the potential for much higher co-ordination
ability than humans (Dresner and Stone, 2008; Parker and Nitschke, 2017; Bazzan, 2005). Where
humans require traffic lights that only allow two lanes to move at a time, centralized computer
controllers such as Autonomous Intersection Management (AIM) have demonstrated traffic that
can flow in any lane at the same time (Dresner and Stone, 2008). Investigating further methods
for autonomous intersections could provide benefits in other areas. In particular, machine learning
could be used as a way to develop a more generalized and potentially higher performing method
than those created through heuristics, due to its ability to explore its problem space automatically,
finding solutions that may not be intuitive.

The aim of this thesis is to investigate one such possible algorithm, namely Neuro-Evolution (NE).
This solution involves evolving a neural-network driven controller that, through the use of various
sensors, can control the vehicles in an intersection and create emergent co-operative behaviour. NE
would allow a solution which is distributed between cars with no central authority and which could
be generalized to work across most intersections, including those that it has not been specifically
designed for. NE is a complicated algorithm with many parameters and human decisions to be
made during implementation. This research attempts to experiment with three different NE hyper-
parameters including the specific NE algorithm used, task difficulty and problem exposure, in order
to help understand further the effectiveness of NE in this space.



1.1 Motivation

Human drivers are prone to mistakes, which cause accidents on the roads. Furthermore, humans
have to rely on a limited set of visual and audio cues, through a limited set of sensors, for co-
ordination with other drivers. This has adverse effects on traffic, such as when bad communication
and sudden rash movements cause traffic where there is none, or where an intersection becomes
gridlocked, causing traffic jams. Computers specialized in driving therefore could allow these issues
to be solved. Through wireless networks as well as individual processing, computers are able to
much more effectively co-ordinate and make decisions about how to act on the road. The exact
architecture of this computer system however must be chosen carefully. A central controller manag-
ing an intersection would provide a single point of failure that is susceptible to attacks and failures.
A heuristic controller would need to be tuned for particular intersections and may fail to take into
account scenarios that the designer did not consider. NE is a promising answer to these issues due
to several key characteristics.

NE (Floreano et al., 2008; Stanley and Miikkulainen, 2002; Stanley, D’Ambrosio, et al., 2009)
has been shown to be effective in evolving controllers for co-operative agents, both in computer
simulations (Agapitos et al., 2007) and physical robot systems (Salichon and Tumer, 2010), and
has already been applied specifically, with some success, to intersection management (Parker and
Nitschke, 2017). This suggests that NE is a viable way for developing solutions to autonomous
intersection management. A NE solution would be beneficial due to its distributed nature, which
would help proof against tampering and failure, as well as its generalizability. Each vehicle has its
own controller operating at any given time, meaning that in most cases a failure could only result
in one vehicle producing abnormal behaviour. There is also no single entry point for malicious
attacks, besides more elaborate attacks that involve the distribution of controller code. NE con-
trollers are also not hand crafted, but evolved. This evolution process can be designed in such a
way that controllers must develop generalized behaviour which can adapt to many situations, even
those that were not considered by the designer of the controller.

As beneficial as these features may be, they come at the cost of complex machine learning re-
quired in developing the controllers. Unlike a heuristic algorithm, NE relies on search algorithms to
find candidate solutions. These algorithms are stochastic, can consume a large amount of resources,
and have a large number of parameters that must be tweaked to develop optimal solutions. Specif-
ically in NE, these search algorithms make use of evolutionary principles. To understand further
how best to use NE for the problem of autonomous vehicles, evolution parameters must be tested.
By exploring and analysing these parameters, results can be obtained which will help in the future
use of NE in the problem of autonomous vehicles. This can range from the performance or viability
of different NE algorithms, to specific evolution parameters to be used to obtain useful controllers.

This thesis aims to provide this analysis, and help future researchers understand how to use NE
algorithms to effectively develop intersection management controllers. The hyper-parameters ana-
lyzed in this thesis, namely: algorithm, problem difficulty and problem exposure, all can directly
affect not only the performance of the autonomous system during evolution but also their gener-
alizability, and are key factors during development. By understanding which algorithms perform
better, and which parameters produce better controllers, less time can be spent on evolution and
development.
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1.2 Research Goals

The primary goal of this thesis is to compare sets of hyper-parameters in NE evolution to deter-
mine which ones lead to the best task performance, and to understand how these hyper-parameters
affect task performance. Hyper-parameters here include the NE method itself as well as evolution
environments. Task performance is measured by a solution’s ability to allow throughput in a traffic
system with as few collisions as possible.

To this end, several key hyper-parameters in evolution were chosen as independent variables for
comparison. These hyper-parameters are algorithm, problem difficulty, and problem exposure.
There are many other hyper-parameters not tested, due to limitations on computer power, however
results from this study will still help to inform which of these hyper-parameters to explore.

For each hyper-parameter, three possible values were compared. This lead to a total of 27 dif-
ferent evolution regimes being used to develop controllers for a homogeneous set of cars interacting
in various intersections. The regimes consisted of every permutation of the three hyper-parameters,
as seen in Chapter 4.1 and Table 3. They are:

e Algorithm - CNE, NEAT, HyperNEAT
e Problem Difficulty - Easy, Medium, Hard
e Problem Exposure - One Intersection, Two Int., Three Int.

Three different NE algorithms have been selected to explore the Algorithm hyper-parameter. They
are Conventional Neuro-Evolution (CNE) (Whiteley, 1988; Montana and Davis, 1989; Whitley et
al., 1993), Neuro-Evolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002)
and HyperNEAT (Stanley, D’ Ambrosio, et al., 2009). These algorithms are described in more detail
in Chapter 2. This hyper-parameter is most likely to generate very large differences due to the way
it affects the search process, and understanding it is crucial in any further work in the field.

Problem difficulty is an important hyper-parameter in determining the nature of scenarios dur-
ing evolution. It also has important implications for consumption of computer resources, as it
multiplies the amount of physics that must be simulated in every single fitness evaluation. By
understanding what problem difficulty to evolve with, much more efficient evolution could be per-
formed in future.

Problem exposure is not only important in computer resource consumption but also in under-
standing controller behaviour. This hyper-parameter gives insight into how well NE can generalize
and how much evolution is required to develop controllers capable of being practically useful in as
many scenarios as possible. Problem exposure directly multiplies the amount of trials that must be
run to evaluate fitness, thus there is a linear correlation with computer resource consumption and
problem exposure.
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The crux of this research is to analyse the performance of the controllers developed using these
differing hyper-parameters, and investigate the impact of the three different evolution factors. The
hyper-parameters were measured by their performance on unseen tasks, their controller complexity,
their behavior complexity and their exploration of the problem space during evolution. Some
analysis of evolution performance is also given. These results should provide insights regarding the
evolution of controllers for intersection management, which hyper-parameters are important, and
how to select hyper-parameters for similar tasks.

1.3 Methods

In order to test and compare the three hyper-parameters, a set of experiments was conducted
in which NE was applied to each permutation of the hyper-parameters, in order to develop car
controllers. Thus, each combination of possible hyper-parameters, namely algorithm, problem dif-
ficulty and problem exposure, will be used in an individual evolutionary development task. These
experiments are detailed in Chapter 4. To develop and analyse these NE controllers, an analogous
representation of an intersection with traffic flowing through it was needed. This representation
was used as the context in which to evolve controllers, and then test them. A detailed description of
the simulator is provided in Chapter 3. After evolving the controllers, they were subjected to a set
of unseen tasks in order to gather data about their performance in several respects. The controllers
were also compared alongside a baseline heuristic controller.

Several sets of data were collected and analyzed from both the evolution and testing phase of
the experiment. Generational fitness was collected during evolution, and unseen task performance,
behaviour statistics and network complexity were collected during testing, as presented in Chapter
5. Where needed, statistical significance was tested for.

1.4 Contributions

This research aims to determine the optimal hyper-parameters to be used in developing autonomous
intersection management controllers through NE, and to understand how these hyper-parameters
affect evolution and controller performance. Performance and sensitivity analysis of these hyper-
parameters will lead to an understanding of how each contributes to final controller performance.
Since most of these hyper-parameters have resource usage implications, it is useful to know if hyper-
parameters do not affect performance so that the cheapest value can be used.

These results will be able to be used in future experiments in order to develop even more advanced
controllers. The research will also shed light on the viability of NE as a solution to autonomous
vehicles. By drawing on these results, future research may be able to fix many of the variable
factors in experiments, reducing the number of permutations needing to be tested, and therefore
reducing the amount of time and money spent.
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1.5 Structure

First, in Chapter 2, we go through the background research of the field of NE, in order to describe
and understand the various NE algorithms we applied, as well as comparative research in the area of
intersection management. The simulation method mentioned above is described in depth in Chapter
3, and was used to execute experiments in order to gather data for the research goals. Chapter 4
describes the exact nature of these experiments and how they were executed. Chapter 5 then deals
with collecting results from experiments, processing them, and presenting their outcomes. Chapter
6 discusses these results and relates them back to the initial research goals. Finally we conclude
with key takeaways from experiments, as well as potential future work in Chapter 7. The thesis is
followed by acknowledgements, references and several appendices.

1.6 Conclusion

Intersection management presents an intriguing, relevant task with which we can explore the meth-
ods of NE. In order to explore these methods and collect data, a simulator has been built, and
various experimental configurations have been executed. We now go through the relevant back-
ground research before moving on to describe the methods and experiments used in more detail.
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2 Background

This thesis is in essence an exploration of the application of several NE algorithms to controller
development for multi agent systems, in the context of intersection automation. Hence, this back-
ground section aims to layout the key terms and techniques used in NE as well as previous research
and progress in the area of multi agent systems, machine learning controller development and traffic
automation.

2.1 Traffic Automation

Modern conventional traffic systems rely on a set of easily identifiable signals that can be seen and
interpreted by human beings driving vehicles. This, combined with a set of traffic rules, enables
large amounts of people to co-ordinate effectively in their individual tasks of travelling, be it through
dense city centers, quiet suburbs or out in the countryside on the highway. The value in having a
general traffic system open to any member of the public with a valid licence cannot be overstated,
however it brings with it some challenges.

The World Health Organization’s Global Status Report on Road Safety in 2018 showed road deaths
as the highest cause of death of people aged 5 to 29 years old. The INRIX 2019 Global Traffic Score-
card showed that congestion costed the UK economy £6.9 billion for that year. Clearly congestion
and road safety are two key areas in which improvements to the traffic system could be made, which
would provide huge benefits to society.

In this section, the application of computer algorithms to improve traffic systems is explored.
By understanding these systems we can form a base from which to envision a future traffic system
which may not require conventional traffic signals at all.

2.1.1 Steering and Lane Management

A seemingly low hanging fruit in the process for developing full traffic autonomy would appear to
be that of steering the car in controlled circumstances. Such circumstances would include a car
travelling along an open highway or following a small road. In these cases, no complex decision
making is required, and co-ordination between drivers is minimal. Yet the benefits of automating
this area of traffic are huge. Human drivers are prone to errors caused by tiredness, intoxication,
distraction and bad judgement, any of which could prove fatal on the open road. Having a computer
system manage steering and road lane changes could potentially solve these issues.

Due to the relative simplicity of the problem, and the discussed potential benefits, this area has
been well researched, with commercial options already available to the public. Early research began
by developing simulated and real world systems that modeled vehicles on the road and implemented
straight forward algorithms for path following and lane switching. Overall there appear to be two
general approaches to this, one using machine learning algorithms and the other using hand made
algorithms based on modeling and heuristics. In terms of heuristic systems, which allowed lane
following and switching, they resemble more traditional engineering control solutions, and were
successfully installed in actual cars, as shown in Figure 1 (Reynolds, 1999; Hatipolglu et al., 1997).
Flow dynamics were also used to model potential automatic highway systems (Alvarez et al., 1997).

14
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Figure 1: A traditional approach to autonomous vehicles. Sensors and outputs are connected
through a controller which is programmed by engineers. The vehicle is outfitted with the sensors
and control system (Hatipolglu et al., 1997).

On the other hand is the approach of using machine learning. The system developed by Pomerleau
(1992), makes use of trained Artificial Neural Networks (ANNs) to develop a controller for a van
that is able to follow a road based on camera data. Furthermore, to optimize the flow of traffic
on highways, Moriarty and Langley (1998) used NE to develop lane selection systems that could
optimize throughput.

Through multiple approaches the problems of lane keeping, lane switching and even lane selection
have shown to be optimizable by a combination of heuristic and machine learning algorithms, as
early as 1997. It is no surprise then that this research has culminated in technology such as Tesla’s
Autopilot, a commercially available system that allows Tesla vehicles to follow roads, switch lanes,
and even avoid obstacles. This first step towards automated traffic is a large one, and sets the
precedent for further automation of the traffic system. While Tesla Autopilot is a working reality,
it is still unable to make use of all the works mentioned above, do to its requirement to operate
in a still-human system. Once this is overcome, systems such as those developed by Moriarty may
become possible, as well even further optimization in the other areas of traffic management, namely
intersections.
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2.1.2 Traffic Signal Optimization

Conventional traffic systems operating at intersections make use of traffic signals, most often given
by traffic lights and signs. These systems are designed to be usable by humans and rely on a very
simple set of rules. It stands to reason that a computer system could operate with a more complex
and robust set of rules, or even potentially co-ordinate directly, bypassing the need for traffic signals
at all. While completely removing the need for traffic signals is appealing, advancements in the
effectiveness of current systems should still be considered first as a bridge towards fully automated
intersections.

Several well known systems exist and are in use with current traffic systems such as SCOOT.
These systems, while based on traffic data are flawed in their ability to react to sudden differences
in traffic in real-time (Dresner and Stone, 2008; Roozemond, 1999). There are clear improvements
to be made with real-time processing computer systems that are able to work with data available in
the traffic system. One such system is proposed by Roozemond (1999), in which intersections are
modeled as autonomous agents that are able to process and share data between themselves. The
key benefit being the ability to make use of real-time traffic network data. This line of thinking
is further extended by Bazzan (2005), in which autonomous intersection agents are modeled with
game theory. In Bazzan’s proposed systems, agents aim to optimize local and global throughput
of the traffic network simultaneously. A somewhat different approach is a system making use of
reinforcement learning systems, proposed by Abdulhai et al. (2003). In this research, instead of
heuristics and modeling, optimal traffic signals are learned through Q-learning, a simple type of
reinforcement learning. Such a system could in theory learn continuously and adapt to changing
traffic conditions, as the development of the traffic signal controller is semi-supervised.

More recently, cellular automata and traffic modeling solutions have shown to be highly effec-
tual at improving traffic flow in large systems (Gershenson and Rosenblueth, 2012). They use a
simplistic model where traffic is modeled as boolean values on a one dimensional plane, and time
steps discreetly. The value of each boolean node is a function of the previous time step and neigh-
boring nodes. This allows a set of simple rules to develop emergent and complex behaviour which
are shown to be effective at organizing traffic. These systems have been applied to simulators mak-
ing use of real world data, with results showing that wait time in the intersection can be reduced
by a half (Cools et al., 2013). These systems are hand crafted models which make use of heuristics.
As such they are limited by human ingenuity.

A final note on this topic, is the replacement of a need for humans to interpret and react to traffic
signals. Such a system would be pivotal in transitioning between traffic signal use, with mixed
human-artificial driver traffic, and fully autonomous traffic. Research by Lindner et al. (2004),
showed the application of computer vision algorithms in deciphering and tracking traffic signals.
This system is depicted in Figure 2. Such a system, combined with automated lane keeping, makes
it possible for most traffic operations to be performed by a computer driver operating in the cur-
rent human-centric traffic system. While this provides many benefits, and removes human error,
there is a great deal of optimization possible with further steps towards completely autonomous
intersections that do not need to take into account human limitations at all.
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Figure 2: Computer vision system architecture for traffic signal detection and recognition (Lindner
et al., 2004). Such systems mostly make use of convolutional neural networks to identify common
patterns in images.
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Figure 3: AIM implemented in a simulator (Dresner and Stone, 2008).

2.1.3 Intersection Automation

While there are obvious benefits with removing humans from the equation using the methods above,
things can be taken further by leveraging the power and coordination ability that computer systems
are capable of. In a traffic network fully operated by computer systems, safety could theoretically
be increased without sacrificing throughput. In fact, it is most likely that throughput and efficiency
will be increased. These systems would control every decision and interaction that takes place in
a traffic intersection, a difficult problem considering the complexity of decision making required
as well as limitations on traffic bandwidth. Methods that have have been implemented towards
automated intersection management are discussed below.

Several heuristic based intersection systems have been proposed (Naumann et al., 1997; Dres-
ner and Stone, 2004; Dresner and Stone, 2008). An early iteration by Naumann et al. (1997),
presents a working decentralized intersection heuristic, based on the principles of semaphores and
locking in multi-threading. Vehicles in the intersection attempt to obtain locks that allow them to
pass through certain regions of the intersection, with only one vehicle being allowed to have any
specific lock at a time. In theory this prevents any possible collisions in the intersection. While the
decentralized nature of this algorithm is desirable, it has several flaws as pointed out by Dresner
and Stone (2008). Two of which are the susceptibility to communication issues between vehicles,
and a lack of efficiency due to a simplistic algorithm that does not plan very far in advance. Dres-
ner instead proposes a centralized heuristic algorithm called Autonomous Intersection Management
(AIM), which makes use of a reservation based system in order to manage cars passing through the
intersection (Dresner and Stone, 2004; Dresner and Stone, 2008).

This centralized system is robust and allows for careful optimization of cars passing through the
intersection. By using a first come first serve reservation system coupled with a simulator capable
of working out if any reservation could cause a collision, AIM is able to allow many cars to enter
the intersection at the same time, from different roads while guaranteeing no collisions. Further-
more, work presented in 2008 shows direct comparisons between AIM and traditional traffic signal
systems, with a substantial improvement shown in the results (Dresner and Stone, 2008).
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Finally, a machine learning approach was taken in Parker and Nitschke (2017) with direct compar-
isons to AIM. The methods in this thesis will be examined in the next section of this background,
however there are some key takeaways with regards to performance and implementation. Firstly,
results proved to be promising with NE outperforming AIM in several scenarios. Unfortunately
separate controllers were used for each intersection, leading to results not taking generalizability
into account. At the very least however, NE shows the potential to outperform a heuristic method
such as AIM for given intersections.

It is worth noting several other systems in this area proposed that do not solve intersection au-
tomation wholly, but rather improve certain aspects of it and which could be combined with other
systems. First is Hallé and Chaib-draa (2005), which proposes a set of heuristic systems that make
use of platoons - vehicles grouped together and working in unison - to perform certain maneuvers
in an efficient way. An example being a backed up set of cars driving through an intersection.
Whereas human driven cars will wait for each car in front of them to start moving, platoons would
allow all vehicles to begin moving simultaneously, allowing higher throughput.

Kohl et al. (2006) presents a vehicle warning system developed through NE that aims to pre-
vent vehicle collisions in a variety of circumstances during intersection navigation. The proposed
system makes use of simulated cameras and develops a controller through evolution using the NEAT
algorithm, one which is used in this thesis.

We have seen the potential for full intersection automation, which combined with highway and open
road automation, could form a highly efficient and safe traffic network, saving lives and billions of
dollars. We have also seen NE as a promising solution to some parts of this automation problem.
This thesis attempts to further explore NE as a possible solution for intersection management as a
whole, and is discussed in detail further below.

2.2 Neuro-Evolution

In this section we explore the field of NE. NE is a biologically inspired set of techniques which draw
from two other biologically inspired fields, namely ANNs and EAs. We shall see that NE provides
a powerful technique for developing controllers in an unsupervised manner, which can be used to
attempt to solve the problem of intersection automation. First the precursor fields of ANNs and
EAs will be explained, followed by NE techniques themselves. Finally, we will examine previous
work which has made use of NE in similar tasks to the one in this thesis.

2.2.1 ANNs

ANNs are a mathematical system inspired by biological brains (Svozil et al., 1997; Haykin, 2004).
As early as the 1940s, work has been done to try formalize the operation of brains mathematically
(McCulloch and Pitts, 1943), but one structure has stood out as being the most popular and widely
used. This is the ANN. Key features that make the ANN so widely applicable and widely used are
its ability to act as a universal function approximator (Maggiora et al., 1992), its ability to be setup
with an arbitrary topology with any number of inputs and outputs, and the ease with which they
can be trained. While there are many different forms of ANN, we will be focusing in this thesis on
multi-layer feed forward networks, as described in Svozil et al. (1997) and Haykin (2004). Wherever
we refer to an ANN, it will be a multi-layer feed forward network specifically.
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output layer

hidden layer

Figure 4: Structure of a multi-layer feed forward network. Each node is a circle, with connections
shown as arrows between nodes. Input is fed into the bottom layer and propagates upwards to the
output layer. (Svozil et al., 1997)

The base structure in an ANN is a node. A node is able to accept a number of inputs, and
produce an output that is a function of the inputs. This function is usually homogeneous and is
called the activation function. In a multi-layer feed forward network, these nodes are arranged in
ordered layers with two special layers called the input and output layers respectively. The input
layer is the first layer in the network, and its node inputs directly represent the input for the entire
ANN. The output layer is the last layer, and its node outputs present the ANN’s solution for the
given inputs. Layers in between the input and output layer are called hidden layers, containing
hidden nodes. Between each layer, nodes can be connected by a directed weighted edge, allowing
one node’s output to feed into another node’s input. In a feed-forward network, these connections
are strictly in the direction from first layer to last layer. We can therefore consider the ANN to be
a directed, weighted graph, where each node is a vertex and each connection is an edge. Figure 4
shows a fully connected ANN as a graph structure. This structure can be seen to naturally represent
a robotic controller, capable of ingesting sensor data, passing this to the ANN’s input layer, and
then calculating the output layer which can be used to control physical processes.
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It is also possible for an ANN to be modeled as a series of matrices, which can be calculated with
matrix multiplication. We shall use this to formally describe how an ANN may be computed. Given
an activation function f, a layer | of n nodes (which we will take to be a vector of length n), the
next layer in front it I+1 of m nodes (again, as a vector), and a matrix of m - n weights w (where
wj.i; is the weight between the j th node in { and the k th node in I+1), in a fully connected ANN,
we can calculate the output of [+1 as follows:

wi1.1 W12 ... Wi.m
L+1=f(x | )

When we calculate an ANN, the input layer must first be set to match the problem state. From
there, we can iteratively use the above calculation to calculate each layer starting from the first
hidden layer all the way until the output layer. Also note, that in the case of a non-fully connected
topology, we can consider a weight to be 0 where there is no connection between nodes.

While the above methodology enables a universal function approximator, there are two glaring
issues to deal with. The first is the exact topology of the ANN, namely how many hidden layers to
use, how many nodes to have in each layer, and which activation function to use. The second is how
to determine the correct weights to use. As we have seen, this is a key component in determining
the outputs of an ANN. In terms of topology, this can be either manually chosen, or developed as
part of the training regime. We shall cover these techniques in in more depth in the NE section of
this background.

Determining weights on the other hand, cannot be done manually, and so a sophisticated mecha-
nism is needed to allow these weights to be determined without direct human intervention. One
such system, widely used in data science for predictive and classification tasks, is backpropaga-
tion through errors, first presented by Rumelhart et al. (1986). Backpropagation through errors
trains the weights in a network by feeding in input vectors alongside output vectors, also known
as labelled training data, which represent a correct solution for the given input. Using differential
calculus, the difference between the actual ANN output and the correct output vector (called the
error) is propagated backwards through the network and used to shift the weights. This technique
is effectively a form of gradient descent, and can be highly effective for large input-output data
sets. One large drawback however is the requirement of correct output vectors, which must often
be curated manually. This drawback makes back propagation through errors a difficult technique
to apply when developing controllers, as an optimal output vector is not obvious to determine for a
given set of inputs. Instead, an appealing algorithm for ANN-based controller development would
be one requiring no labelled training data. Such an algorithm is possible, and discussed further in
the next section.
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2.2.2 Evolutionary Algorithms

Where ANNs take inspiration from biological brains, Evolutionary Algorithms (EAs) take inspira-
tion from the biological processes that evolved the brain. An EA uses the concepts of survival of
the fittest, adaptation, and genetic mutations and re-combinations and applies it to the concept
of search spaces. The key characteristics of an EA are its non-optimal stochastic nature, wide
applicability, and lack of requirement for any labelled training data.

EAs have been studied for decades, with the first experiments being conducted by Holland (1975).
Since then the concept of adaptive computational systems has led to what we understand as a
Genetic Algorithm, as described by Whitley (1994). At its core, a genetic algorithm has an it-
erative cycle, in which a pool of candidate solutions are evaluated, selected and finally modified
and recombined to form a new pool. Initially the candidate pool is generated randomly. Each
candidate solution is encoded in some form, canonically a fixed-length binary string, which can be
used to evaluate the fitness of the solution. This fitness evaluation is a key function, and must be
selected carefully to incentivize more optimal solutions. Once candidates have been evaluated, the
ones with the highest fitness are selected to form a new candidate pool, called a generation. There
are many potential selection algorithms, but generally they aim to probabalistically choose higher
fitness individuals. In some cases, completely new randomly generated candidates are added to the
new candidate pool. After selection, all candidates solutions are subject to mutation and crossover
functions, with some probability. Mutation functions alter a candidate solutions encoding directly
by some function, for example swapping two values in the encoding. Crossover functions attempt to
merge two candidates’ encodings by selecting certain sections of the encoding and swapping them
with the other candidate. In theory, the candidate pool should become fitter as the GA cycle is
repeatedly applied, and will eventually terminate either at a preset fitness or after a preset number
of iterations. Figure 5 shows this cycle.

The power in this algorithm is the ability to explore complicated high dimensional search spaces
with only a fitness function. No data or known answers are required, and no part of the evaluation
itself needs direct integration with the algorithm. Any problem which can have a fitness measure
and can be encoded is able, in theory, to be optimized by the use of an EA.

The difficulty in applying GAs comes in selecting productive hyper-parameters, any of which can
greatly affect the final fitness. These hyper-parameters include the size of population to use for
each iteration, how many iterations to execute, what probability to mutate with, and so on. Also of
key importance is selecting a fitness function that correlates well with task performance, which is
not prone to exploitation, as well as designing an encoding that allows desirable candidate solutions
and provides a continuous multi-dimensional search space to be explored. Encoding schemes have
led to derivatives of the canonical GA such as Genetic Programming, as presented by Willis et al.
(1997). In Genetic Programming, instead of a fixed length encoding being used, a tree structure is
used which encodes a logic that can be used for controllers.

In this thesis, we use EAs that directly make use of the canonical GA, as well as more special-
ized algorithms that more closely resemble Genetic Programming, or even further indirection. Our
specific end goal for all these algorithms, is to provide a way to develop an ANN, without the
requirement for data. EAs that output ANNs collectively make up the field of NE, which we will
now give background on.
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Figure 5: The core steps in an Evolutionary Algorithm (EA). Key development and problem solving
is created during the cycle between evaluating fitness and creating new generations.
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Figure 6: Genetic reinforcement experiment by Whitley et al. (1993). An ANN is developed by
feeding signals from a pendulum experiment to an accumulator which reinforces desirable behaviour.

2.2.3 Neuro-Evolution Techniques

The first NE techniques developed made use of canonical GAs and simply applied them to an ANN
topology (Whiteley, 1988; Montana and Davis, 1989; Whitley et al., 1993). In this scheme, the
GA encoding is a list of weights in a fixed topology ANN. Each ANN is evaluated by mapping the
encoding to specific weights in the ANN, and evaluating the ANN’s task performance to determine
fitness. We refer to such NE implementations as Conventional Neuro-Evolution (CNE) throughout
this thesis. The first reported attempted application of GAs to ANN development was by Whiteley
(1988), which was unsuccessful. Soon after, Montana and Davis (1989) was able to successfully
apply the algorithm to a sonar image classification problem, with results at the time outperform-
ing backpropagation methods. Their method made use of a canonical GA, where each individual
was encoded as a fixed-length string of weights. They then made use of a series of standard GA
operations such as mutation and crossover, as well as gradient based functions.

While the above mentioned thesis successfully applied the first NE algorithm, it was to a super-
vised learning task. Whitley et al. (1993) took NE a step further into the domain of reinforcement
learning. Reinforcement tasks generally do not have labeled data sets for training. In this case,
the task was a simulated inverted pendulum controller. Again, a canonical GA was used with a
fixed-length encoding of weights that encoded a fixed-topology ANN directly. The key difference
between the previous thesis was the use of a fitness function based on performance during a random-
ized simulation, instead of error measurements from known solutions. Most controller development
tasks are modeled well as reinforcement tasks instead of supervised learning tasks, and so this work
presented promising results for the application of NE directly to tasks such as decentralized traffic
automation. Whitley’s genetic reinforcement method is show in Figure 6.

CNE methods have been developed further, such as in Gomez and Miikkulainen (1997), however
fundamental restrictions to GAs prompted development of more advanced algorithms. A key lim-
iting factor of GAs is their restriction to fixed-topology networks and this led to the development
of NE algorithms which evolve more than just the weights of the network.
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Figure 7: Neuro-Evolution of Augmenting Topologies (NEAT) mutations allowing changes to the
topology of the network (Stanley and Miikkulainen, 2002)

One of these additional elements to evolve is network topology itself. The theoretical benefit
of evolving topology as well as weights, is to firstly allow greater flexibility in topology. A fixed
topology can only have as many nodes or layers as is decided upon. Secondly, evolving topology
should lead to a more efficient evolution process. Smaller networks are faster to compute, and by
using a strategy which starts with a simple topology, ANN evaluation should remain as cheap as
possible throughout evolution. In practice, this means that the trade off of network complexity
versus computational cost can be determined automatically by evolution, instead of being fixed
prior to evolution. One such system, proposed by Stanley and Miikkulainen (2002), attempts to
achieve exactly this. This algorithm is called Neuro-Evolution of Augmenting Topologies (NEAT)
and improves upon a traditional GA by introducing several key new features. Firstly, some basic
new mutations are introduced, which allow direct manipulation of the network topology. These are
namely add node and add connection, which are self explanatory and shown in Figure 7.
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Figure 8: Innovation numbers can be used to match up parts of the topology of two different
parents and produce offspring that maintains the original functions of both parents (Stanley and
Miikkulainen, 2002)

Also included in the encoding however, is an innovation number which is determined globally for the
entire evolution process. As new connections and nodes are added, they are assigned an innovation
number, which can then be used to determine which genes historically match each other, as show
in Figure 8.

Secondly, a mechanism for protecting the structural development of the ANN is introduced called
speciation. The differences between individuals during evolution, as a function of their differing
weights and innovation numbers, allows grouping into separate species. These species then com-
pete separately for selection. This protects new innovation in the population which may at first be
less fit, but which potentially could develop new solutions.

The advanced NE systems in NEAT remove the limitations of fixed-topology networks, however
some aspects of the network are still fixed. Input and output nodes must still be preset during
evolution, and if new sensors or outputs are wanted, the evolution must be redone. Furthermore, if
a complex internal hidden network is required, NEAT’s strategy of starting with a minimal network
may prove to be inefficient, as it has to slowly develop more complex topology.
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Figure 9: Output, as a function of the second positional parameters, of the Compositional Pattern
Producing Networks (CPPN) where the first positional parameters are fixed (Stanley, 2007). Since
the CPPN in this case is two dimensional, its output can be plotted as an image, providing a visual
representation of the CPPN output.

Both CNE methods and NEAT discussed above make use of an encoding which directly relates to
an ANN. As mentioned, this creates a drawback of inflexibility with regards to input and output
structure. Because the encoding is direct, any changes require a new evolutionary procedure. In
real life applications such as robotics, it is possible for sensor configurations to change however.
To address this, Stanley, D’ Ambrosio, et al. (2009) proposed a new form of encoding which can be
used, not to represent an ANN, but to generate an ANN with arbitrary topology. This indirect
encoding, coupled with NEAT was then used to form a new NE algorithm called HyperNEAT.

HyperNEAT begins with the development of Compositional Pattern Producing Networks (CPPN),
described in Stanley (2007). A CPPN is almost identical to an ANN structurally, however it serves
a distinguishing purpose. Like an ANN, they are a set of nodes connected to each other, with input,
hidden, and output nodes. Unlike most ANN applications though, each node’s activation function
can be completely different, and this is what gives CPPNs their distinctive use. CPPNs have only
a single output, and their inputs are mappings from Cartesian co-ordinates. This effectively makes
the CPPN a function that relates two objects in space based on their relative positions. As shown
by Figure 9, for a given coordinate, the outputs produced relative to another coordinate can form
complex and interesting patterns.

This intuitively creates a function that has some ability to represent geometric patterns to some

degree. This function is the cornerstone of HyperNEAT’s indirect encoding. To understand how
this function is used, we first describe another HyperNEAT concept - the substrate.
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Figure 10: HyperNEAT Compositional Pattern Producing Networks (CPPN) determining substrate
weights and connectivity (Stanley, D’Ambrosio, et al., 2009).

The substrate is also similar to an ANN, however each node in the ANN also has a geometric
position. This position can be an arbitrary number of dimensions. Input nodes and output nodes
can be placed according to some real-life geometric representation. For example, a car with radially
attached sensors, would have a substrate with the input nodes mapped radially in the substrate.
This way the geometry of the car is represented to some degree in the network. In theory this
means that if more sensors were to be added to the car along the radius in arbitrary positions, the
substrate would capture this information and this could be exploited to allow the sensors to work
without further development.

The remaining piece is to connect the CPPN to the substrate, which is done simply by using
each substrate node pair’s coordinates as inputs for the CPPN and setting their weight, if the out-
put is above a certain threshold, to the output. If the output is below the threshold then the nodes
are not connected. It is also possible to manually specify connections in the substrate and simply
set the connection weights of all connected nodes to the CPPN output. In theory this allows the
CPPN to produce geometric patterns of connectivity in the substrate.

While the substrate itself is a function of hand crafting inputs and outputs as well as the CPPN,
it remains to have a method for developing the CPPN itself. This is done with a modified version
of NEAT, that has an extra mutation allowing a node to change its activation function. Through
this it is then possible to evolve CPPNs and candidate solutions using a standard NE procedure.
Each candidate solution is encoded as a CPPN. To evaluate the CPPN, an ANN is generated from
a chosen substrate and the CPPN and evaluated for fitness. As usual, the fittest CPPNs are then
modified and combined to form a new generation.
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HyperNEAT presents a radically different solution to the previous NEAT and CNE approaches,
with its indirect encoding. Not only does it allow the topology of the ANN to be changed post-
evolution, but it theoretically allows for the geometry of the task to be exploited, for tasks where
there is such a geometry, such as in robotics and controllers. This does come at a cost however,
as the indirection added increases implementation complexity as well as search space complexity.
Clune, Ofria, et al. (2009) showed that HyperNEAT can be extremely sensitive to geometric changes
in the substrate, indicating that HyperNEAT may be difficult to apply well. Indeed, one of the
biggest issues with applying NE methods is the vast number of hyper-parameters to be tweaked,
and with the addition of a substrate, HyperNEAT only adds more. In this thesis we investigate
and compare HyperNEAT with NEAT precisely in order to analyze this trade off when applied in
intersection management.

We have so far described all the NE algorithms examined in this thesis. It is worth noting however,
that other NE algorithms exist which are not included, such as SANE, which has been used success-
fully in robotics simulations (Moriarty and Mikkulainen, 1996; Moriarty and Miikkulainen, 1997).
Various optimizations and alternatives exist for every step of the NE cycle, such as Covariance
Matrix Adaptation (CMA-ES) (Floreano et al., 2008). These methods and techniques are excluded
from this thesis firstly in order to limit scope of work, but also secondly because CNE, NEAT
and HyperNEAT follows a particular path of development in the field of NE. We focus on these
to understand how progressive generalization and complexification of the NE process has affected
potential solution generation. We now examine cases where these methods were applied to other
tasks of varying similarity to this thesis’s task of controller development.

2.2.4 Neuro-Evolution Applications

We have covered the specifications for the various NE methods that are examined in this thesis.
Now we will take a look at some of the research in which NE has been applied, in general as well
as more specifically to tasks similar to intersection automation.

Dachwald (2005) made use of so called Evolutionary Neuro-Control to develop optimal interplane-
tary trajectories for low-thrust spacecraft. Despite the differing name, the algorithm described in
the thesis can be considered a form of CNE. A feed forward network with hidden layers was evolved
using an EA which then produced outputs for a given spacecraft in a simulation. Results in the
thesis were good, with trajectories developed that significantly outperformed those developed by
human experts.

Agapitos et al. (2007) made use of CNE to develop controllers for a simulated race car. The
research itself compared this method with Genetic Programming, finding the CNE able to develop
higher performing solutions given enough computational resources. Car controllers in the simulation
are set up almost identically to the ones in this thesis, with cars having radially protruding distance
sensors and speed and steering outputs. Both GP and CNE methods were able to successfully
develop controllers capable of navigating multiple different race tracks effectively.
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sensors

Figure 11: Sensor configuration used by the Neuro-Evolution of Augmenting Topologies (NEAT)-
based entry into the 2009 Simulated Car Racing Championship (Loiacono et al., 2010; Cardamone
et al., 2009). Each red line protruding from the car represents a distance sensor.

As previously seen, Kohl et al. (2006) made use of NEAT in developing a vehicle warning system,
by using range finding and visual sensors. As presented by Loiacono et al. (2010), the 2009 Sim-
ulated Car Racing Championship included a NEAT-based car controller, modified slightly from
Cardamone et al. (2009)’s proposed controller. As shown in Figure 11, the controller also made
use of radially protruding sensors. Overall this controller achieved third place in the championship.

There are many other cases of NEAT applications, such as Willigen et al. (2013) evolving car
controllers, and Duarte et al. (2016) developing robot swarm controllers. These theses all show
the possibilities of NEAT as a tool for developing controllers for robots and cars. Duarte’s swarm
controller showed that NEAT can also be used in multi agent systems to produce co-operative
behaviour. This multi-agent co-operative behaviour is critical to applying the above controller de-
velopment strategies to intersection automation. Parker and Nitschke (2017) presented a set of
controllers developed using NEAT that aimed to achieve intersection automation to some degree.
The system developed in this thesis was able to outperform the above mentioned AIM system, and
provides evidence on the viability of NEAT and NE as a whole for intersection automation. In the
thesis however, controllers were developed for specific intersections, leaving open the question of
how well these controllers would perform on unseen tasks. The next logical step would be to apply
the same techniques but generalized to unseen intersections.

HyperNEAT has been applied successfully to many controller-development problems, some specifi-
cally to vehicle control. HyperNEAT’s ability to make use of geometric information representative
of the actual vehicles being controlled makes it ideal for such tasks. Clune, Beckmann, et al. (2009)
and Yosinski et al. (2011) both made use of HyperNEAT to develop gaits for quadruped robots.
In both cases, effective gaits were able to develop which outperformed hand-made gaits as well as
methods based on NEAT. In Haasdijk et al. (2010), HyperNEAT’s indirect encoding was used to
develop controllers for modular robots that form organisms collectively. Since a given robot in this
scenario could act as an arbitrary component of the whole organism, geometric information was
able to be exploited without specific evolution being required.
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While these theses have shown HyperNEAT to be highly effective in straightforward control prob-
lems, others have highlighted some limitations of the algorithm. Drchal et al. (2009) applied
HyperNEAT to a car automation task, simulating traffic and optimizing for cars that were able to
steer and avoid collisions. This may be seen as a potential implementation of intersection manage-
ment, however the volume of cars in the simulation was very low (only five), and there was enough
space for all cars to exist on the track without having to cross an intersection at the same time.
The results show that HyperNEAT was able to effectively solve the task for the given vehicles,
and that sensory input could be changed up to a point. At high resolutions however it was found
that performance decreased when inputs where scaled. Hausknecht et al. (2014) on the other hand
found that HyperNEAT was outperformed at compact state representations by direct encoding
algorithms such as NEAT. They applied HyperNEAT to the problem of generalized video game
playing. HyperNEAT was able to effectively perform in more complex state spaces. It is possible
that the indirect encoding has a higher complexity which is not worth it when dealing with simple
state spaces. In this thesis the state space is relatively simple, and so HyperNEAT’s performance
versus NEAT will aid understanding of when to use which method.

2.3 Conclusion

We have seen how computational methods have made incremental progress in the field of intersec-
tion management, from lane keeping through to data sharing traffic lights. This has reached its
height with the work done on the AIM system, a heuristic based algorithm for allowing a much
higher throughput than traditional human traffic through the use of centralized controllers. Fi-
nally we have seen how NE has been applied to the same space, with many self driving vehicle
applications, vehicle avoidance systems, and multi-agent co-operative systems. We have also shown
an array of NE algorithms that offer compelling possible methods for developing more advanced
intersection automation systems.

The work in this thesis aims to expand upon this by contributing to the body of performance
comparisons between the various NE methods referenced. Not only will a single instance of each
algorithm be tested, but several factors which are common hyper-parameters to each. It also aims
to expand on the implementations of simulated intersection automation systems with more gener-
alized controllers and higher levels of traffic throughput.

Specifically, in the research theses mentioned in this background, several key areas are missing from
current research. Firstly, a generalized intersection management controller has not been developed
using NE which is intended to work on multiple different intersections. Secondly, while many itera-
tive comparisons between CNE, NEAT and HyperNEAT exist, there are few that compare all three,
as well as the evolution factors that affect performance. Deciding on hyper-parameters for evolution
is still mostly a human decision based on intuition and guesswork, and has huge implications for
computational costs. This thesis attempts to address these gaps by developing a general simulator
and designing experiments which allow for comparisons across multiple factors. The simulator is
able to control for all variables except those that are being tested, can handle multiple different
types of controllers produced by CNE, NEAT and HyperNEAT algorithms, and can be adjusted
with a set of factors that affect evolution. The simulator also is able to produce a baseline per-
formance indication which can be used to benchmark the NE methods applied. The simulator is
described in the following section.
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Figure 12: The intersection simulator mid-run. The track is shown in gray, and the cars are shown
as green rectangles. Padestrians are shown as small green circles.

3 Methods

At the core of this research is a custom built simulator as shown in Figure 12, meant to model
a realistic traffic flow through an intersection. This simulator is the context in which all experi-
mentation takes place, and allows for a fully controlled analysis of NE for intersection management
specifically. The intent is for the model to function as an analogy for traffic problems that are faced
in our current traffic system.

Of key importance is the ability of the simulator to test candidate controllers both in the evolution
phase of experiments as well as afterwards in unseen tasks to determine and compare performance.
To this end, each car’s behaviour in the simulator is governed by a controller which can be configured
as a parameter in the simulation. The model is designed as follows:

3.1 Overall Design

The model consists of a two dimensional space, filled with objects that represent traffic in an
intersection. An intersection, cars and pedestrians exist in this space with co-ordinates and can
interact with each other. When a simulation is run, it is fed in the structure of the intersection and
a set of configuration options which detail the other parameters such as traffic, car controllers and
simulation steps. With these parameters, the simulation then runs for the specified number of steps,
generating traffic and simulating its course through the intersection. Throughout the simulation’s
execution, cars in the intersection control their speed and steering by using their controller. As the
simulation executes, when cars or pedestrians come into contact with one another, it is considered
a collision and both objects are removed from the model. The number of collisions that occurred
during simulation between various objects is then returned, to be used as a metric for evaluation
of the simulation.
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3.2 Intersections

At the core of the simulation is an intersection, comprising a set of roads and traffic lanes. The
intersection specifies paths that car and pedestrian objects travel along in the simulation, as well
as points in the space where cars and pedestrians are generated periodically. Mathematically the
intersection is modelled as follows:

Each simulation contains a single intersection. The intersection is modelled as a collection of
directed, unweighted graphs, where vertices on the graphs are points in the two dimensional space.
Graphs may contain cycles, and may have vertices with any size outdegree and indegree. Any
vertex that has an indegree of zero is considered a root vertex, and all graphs must have at least
one such vertex. This means that there can be no sections of the intersection in which there is
no clear beginning to a path. Each graph in the intersection is designated as either a car path or
pedestrian path exclusively, determining which type of traffic is generated on that particular graph.
Cars and pedestrians that spawn in the simulation will begin at root vertices of their respective
types of paths and travel through the graph from vertex to vertex, disappearing when they reach
a vertex with zero outdegree. Pedestrians and cars never share the same path, however their paths
will usually intersect at some point.

Lastly, edges between vertices can be flagged as inactive or active. In inactive edges, there are
generally no crossing paths, and cars makes use of a heuristic controller designed to keep traffic
flowing. This controller is described later in the chapter. Active edges are where custom controllers
are used to control the cars’ actions.

Below are the intersection designs used in the simulation (and their corresponding design in Figure
13), they are, in order from left to right and top to bottom:

e A large circle
e A small circle

e A crossing

A standard four way intersection

e A standard four way intersection with two lanes

A standard four way intersection with three lanes
e A road with a connecting on ramp

e A road with a connecting on ramp and a t-junction

3.3 Traffic Generation

Traffic in a simulation is controlled by a set of parameters which determine the shape of traffic,
shown in Table 1.
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Figure 13: Intersection design used during controller evolution, as described in Chapter 3.2



Parameter Description Symbol
Min. Period Minimum period between car spawns minP
Max. Period Maximum period between car spawns maxP
Period Mult. Function cycle multiplier mulP
Randomness Randomness factor for period r
Pedestrian Period | Period for pedestrian spawns pedP
Pedestrian Period | Randomness factor for pedestrian period | pedR

Table 1: Traffic generation parameters

These parameters are used to determine the rate at which traffic is generated in the intersection
as a function of the number of steps elapsed, through Equation 1 (for cars) and Equation 2 (for
pedestrians) where s is the number of steps elapsed and S is the total number of steps at which
the simulation ends. The car function makes use of sin to produce traffic that mimics real world
traffic with heavier and lighter periods in the day.

p=(minP + (1 — (0.5 4 0.5 % sin(mulP x PI *2x s/5))) * (maxP — minP)) (1)

p = pedP * pedR (2)

For a given rate p, cars spawn in the intersection at a random root vertex at that rate. If for some
reason a car or pedestrian is present at a root vertex which is spawning a new object, it will be
considered a collision as normal. This is integral to the design of the intersection, as it creates
a limited amount of space in which cars can spawn. As will be discussed later in this chapter,
traffic generally flows because cars are mostly using a heuristic controller which drives them for-
ward. However, a controller that did not move much in the intersection in active areas would slowly
cause traffic to backup on the intersection as heuristic controlled cars slowed down to match their
speed. Eventually the traffic would back up all the way to the root node of the intersection graph,
causing a collision each time a car spawned there. As long as there is a high enough volume of
traffic that is spawned in a simulation, then because of the above mentioned effect, throughput is
essentially necessitated by the simulation. If the throughput is not high enough, then the number
of crashes will increase and thus measuring crashes is adequate for evaluating the controller and
can be considered a proxy for throughput.

Pedestrians spawn following a similar scheme to cars, however they spawn far more sporadically
with a greater randomness factor. Their behaviour is discussed later, however it is worth noting
that they do not attempt to slow down at all, making it impossible for pedestrians to collide with
each other. This is also important, as it means that collisions are only a function of car behaviour,
instead of randomness introduced by pedestrians spawning.

We have described the layout of the paths in the simulation and how objects are populated during

the simulation’s execution. We now describe the actual mechanics of these objects and how they
interact.
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Measure Simulator Value | Real World Equivalent
Car Radius 1 1m

Car Top Speed 0.277 16.62 m.s~ !

Car Acceleration | 0.0025 9 m.s—2

Car Braking 0.004 14.4 m.s—2

Pedestrian Radius | 0.5 0.5 m

Pedestrian Speed | 0.04 2.4m.s!

Table 2: Various physics values in the simulator, with their coded values as well as real world
equivalent values in units (as defined by the International System of Units)

3.4 Object Mechanics

An object in the simulation is something that has a two dimensional location as well as a radius
that determines its area of collision. In this section we describe the basic principles behind how
the objects move, changing their two dimensional location, and how they interact when they collide.

As the simulation executes, discrete steps are taken to update the status of all objects. For a
given step, each object has a location, velocity and acceleration which is used to calculate its status
in the next step. Each step also allows for controllers to influence various values for cars such as
whether to accelerate or brake. Objects in the simulation are roughly modelled to have realistic
sizes and speeds, and thus all values can be measured and converted into SI units. These exact
values are shown in Table 2.

As objects move around the simulation, it is possible for them to collide, at which point they
interact in various ways. Collision is detected between two objects using Equation 3 where z1, y1
and z2, y2 are the coordinates of the respective objects and r1, r2 are their radii.

r1+72> /(22 — 21)2 + (y2 — y1)2 (3)

As mentioned, when cars and pedestrians collide with each other and between themselves they are
removed from the simulation and a collision counter is incremented. Other than car and pedestrian
collisions, cars are equipped with sensors which use collisions to feed information to the car’s con-
troller. These sensors and controllers are described later in the chapter, however they use the same
mechanism for collision detection seen above.

While all objects adhere to the mechanics shown here, each object has specific internal behaviour
and mechanics for adhering to them, which are described further.
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3.4.1 Cars

Cars are the subject of interest in the experiment. They are represented in the simulation as a green
rectangle, or purple when selected. Their behavior is determined by an ANN which uses sensor
input on the car to determine how to accelerate and turn. This controllers is the independent
variable in the experiment. Like all objects in the simulation, cars have a co-ordinate, radius and
physics values that determine their movement. Cars spawn in the simulation from root vertices of
the intersection and then begin following vertices in the graph. Once a vertex is reached, the car
randomly decides on the next vertex to travel to from adjacent vertices. Once the car reaches a
vertex with no adjacent vertices, it disappears and is considered a successful sample for throughput.
Each car has two degrees of control, acceleration and turning, which are determined by evaluating
the controller on the car. Acceleration controls the speed of the car within the limits of the physics of
the simulation, as given in Table 2. Turning controls the path the car travels through the simulation,
however this is only relative to the preset path the car is following along the intersection. Turning
allows the car to veer off its path slightly while maintaining the cars trajectory. In order to reduce
the amount of base behavior required from the controllers, and to speed up development, the cars
are able to make use of a heuristic controller in certain parts of the intersection. The intersection
is pre-specified with segments indicating which controller should be used and, generally, once the
car enters into the intersection where there is a chance of collision then it switches to its ANN
controller. Acceleration is completely controlled by the controller while turning is determined by
the car’s target vertex. Turning can then be overridden to some degree by the controller, allowing
the car to evade other cars or obstacles in the simulation without veering too far off the track. The
turning model is based on a real car having a wheelbase.

3.4.2 Pedestrians

Pedestrians are modelled similarly to cars, however they have a much smaller radius, lower speed
and behave differently. They are represented in the simulation as small green circles. Unlike cars,
pedestrians always act in a simple, predictable way and have no decision making process. They
move at a constant rate in a straight line from the moment they spawn until a predefined finish.
Pedestrians can collide with cars in the same way as other cars, which drives up the collision counter.
Thus there is pressure for cars to learn to avoid pedestrians.

3.5 Controllers

A controller is a system that is used to process environmental input and produce output. The cars in
this simulation obtain environmental input through range sensors radially attached to the car, and
effect output by changing their speed and direction. In a simulation, a set of controllers is specified
that each car will use. While each car uses the same set of controller designs, each car runs its own
copy of the controllers, using its own sensory information and taking action based on the controllers’
output. Which controller the car uses is dependent on where the car is in the intersection. In parts
of the intersection that do not require co-ordination a simple heuristic controller is employed. The
moment the car enters a section of the intersection that could potentially lead to collisions, an
ANN based controller is used. The input for these controllers comes primarily in the form of range
sensors, which are discussed next.
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Figure 14: Car with sensors. The purple rectangle is the body of the car, and the light blue circles
emanating from it are the sensors. Each sensor is made up of a column of increasingly large circles.
To the top right, sensors detecting nearby objects in green are highlighted in purple.

3.5.1 Sensors

Each car is equipped with a set of range sensors that feed information into the car about how close
objects are to the car. Each sensor is modeled as a set of circles arranged in a line perpendicular to
the car’s circle, with radius increasing the further away from the car. If a car is selected, its sensors
can be seen as light blue circles, or purple if the sensor is activated. A sensor circle is considered
triggered when it is in collision with another object, either a car or pedestrian. The sensor returns
a value between 0 and 1, with 0 being no objects detected by the sensor, and 1 being an object
triggering the closest sensor circle. Sensors that are farther away and also triggered are ignored,
so that the maximum value of the triggered circles is taken. (In other words, the closest object’s
distance is detected by the sensor) As seen in Figure 14 most of the sensors would return 0, however
the sensors directly in front of the car to the left will register a higher value.

Through these sensors, cars are able to detect objects in the immediate vicinity and react to them.
Each car is equipped with fourteen sensors, giving a wide range of detection and the ability to react
to objects before collision occurs.

Other types of sensors are possible and have been used in self-driving car applications. These

include cameras and vision algorithms, radar, etc. In this thesis we focus on range sensors as they
are prominent in the research this thesis is based on (Agapitos et al., 2007; Loiacono et al., 2010).
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3.5.2 Heuristic Controller

When cars are in a part of the intersection that does not require co-ordination, they make use of
a standard heuristic sensor, which has built in behaviour. The heuristic controller uses a single
input: the speed of the closest car directly ahead of it. The output of this controller accelerates
or decelerates the car to converge towards this speed so that the car matches the car in front of
it and does not collide. The heuristic controller otherwise accelerates to full speed and makes no
turning movements. By matching the speed of the car in front, pointless collisions are prevented
and obvious heuristic behavior is achieved, such as cars lining up and waiting for the car in front
during a traffic jam. Without this controller, the burden on the ANN controller to develop this
behavior could increase evolution time and decrease performance.

3.5.3 ANN Controller

The ANN controller is the primary focus of each simulation, and is the context in which performance
is measured. Each controller takes data from the car’s range sensors and feeds it directly into the
ANN’s input layer. The ANN is then continually computed at each step, in order to determine two
outputs: speed and turn angle. The car then applies these output values to it’s physical controls.
The topology and weighting of the ANN is completely predetermined before the simulation begins.
In theory, as evolution iterates, the ANN controller should develop co-operative behaviour with
high throughput, as continually higher performing controllers are selected and recombined each
generation.

3.5.4 Controller Specifics

Each controller has a set of input sensors, as described above. These sensors are arranged as 14
proximity sensors arranged around the car, as shown in Figure 14. Each sensor provides a value
between 0 and 1 that can then be fed into the neural network.

The outputs of the ANN are two values between 0 and 1, for speed and turn angle respectively. A
value of 0 for speed indicates that the car should decelerate to a complete stop and a value of 1
indicates that the car should accelerate to full speed. A value of 0, 0.5 and 1 indicate, respectively,
for the car to veer to the left as hard as possible, continue straight and veer right as hard as possible.

The internal structure of the ANN is dependent on the experiment being run and could be one
of CNE, NEAT or HyperNEAT. In the context of the simulation the ANN is a black box and its

workings are unimportant.

3.5.5 Limits of Controllers

Controllers are limited in how much they can affect a cars behaviour, in order to reduce erratic and
unrealistic behaviour, as well as to prevent cars from straying too far off their course. The output
of the controller is used to determine the car’s intended speed, however the car will accelerate and
decelerate to that speed at a predefined pace. The maximum speed is also preset, and cannot be
influenced by the controller. Turning is even more restricted. Cars will follow the path of the
intersection they are in and can only veer slightly based on controller output. Cars will never
completely change direction or choose a new path based on the output of their controller.
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3.6 Simulation Execution

According to the rules defined above, the simulation will execute for a set number of steps, recording
collisions between cars and pedestrians, and controlling cars through ANNs that are being evaluated
by the EA or tested in unseen tasks. Once the steps have finished, the simulation simply ends and
the data is returned. Besides collisions, behavioural data is also returned, which will be analyzed
in Chapter 5 and 6.

3.7 Trials

We have described the full inner workings of the simulation for its use in evolution and testing. In
order to package this neatly for use, we define a trial. A trial is a single run of a simulation for a
given set of parameters. The parameters must include an intersection, a car controller and settings
that determine the type of traffic during the trial. Once the simulation has finished a set amount
of steps, the trial will complete and the number of crashes that occurred during the simulation will
be returned. All evolution and testing takes place by setting up parameters and then running a set
of these trials.

3.8 Conclusion

The simulator defined above provides a powerful tool for evaluating and comparing a set of NE
methods in a controlled manner. Realistic traffic conditions can be generated with rush hours,
pedestrians, traffic jams and a high throughput of cars coordinating together. Trials provide a well
defined unit of execution, which can be parametrized easily. In the next section we will describe
how trials and the simulator are used to perform experiments from which data has been gathered.
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4 Experiment Design

The above described simulation was used to execute a set of experiments in order to collect results.
Broadly, these experiments examine several independent variables which control the simulation
through above-mentioned hyperparameters such as traffic density and controller algorithm. The
exact specification and structure of these experiments are described below.

4.1 Factors & Scenarios

In order to gather results, controllers must be developed and then tested. A set of hyper-parameters
was chosen which represents a diverse range of different challenges and variables to be explored.
These hyper-parameters are the independent variables and are called factors, and each set of factors
is a scenario. Each of these scenarios is used to develop a single controller. There are three factors,
each with three possible values, leading to 27 overall scenarios and controllers.

The first factor is the NE algorithm used for controller development. Its value can be CNE, NEAT
or HyperNEAT. This factor affects the very nature of the controller itself, from network weightings
to topology.

The second factor is trial difficulty which can be easy, medium or hard. This factor determines how
dense traffic is during the simulation, with a higher difficulty resulting in denser traffic. In theory
this should lead to a higher number of collisions, requiring more complex behavior in order to avoid
them.

The third factor is problem exposure which can be one, two or three. This determines the number
of different trials that will be used during evolution. A higher exposure will, in theory, increase the
diversity of problems to solve and decrease overfitting.

The 27 scenarios allow us to study each factor’s impact on the development of controllers for
autonomous intersection management at several levels of granularity to determine if there are any
strong correlations with controller performance.

4.2 Baseline

In order to provide a meaningful comparison and to establish difficulty, a baseline was used to adjust
each scenario. This baseline was then also used during testing to compare and evaluate controller
performance.

The baseline is setup as follows: a heuristic controller is used which sets the speed of the car to be
maximum at all times with no steering control. This simulates a controller with no judgement or
control, and crashes will be proportional to the amount of traffic in the simulation. Difficulty is
defined as the average number of crashes that occur in a trial where the controller is one described
above. The respective difficulties of each category (easy, medium and hard) are 5, 10 and 15. To
achieve these specific difficulties, the parameters of each trial are tweaked. These factors affect the
shape of traffic throughout the simulation, the intensity of this traffic and the number of pedestrians
in the simulation.
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The general complexity of the intersections themselves also play a factor. While it is difficult
to measure complexity, it can be deduced by seeing how much more traffic is needed for a given
intersection to get it to the same difficulty as another intersection.

All values throughout the rest of the thesis that represent collisions (fitness, testing performance,
and so forth) will refer to a value that is normalized against the baseline. Therefore, a controller
which scores, on average, 0.5 in a trial of hard difficulty is resulting in 7.5 collisions on average in
that trial.

4.3 Controller Development

For a given scenario, NE was used to develop a controller using the factors of that scenario. For
example, the scenario CNE-easy-two used the CNE algorithm to develop a controller, with trials
that are of easy difficulty and with two unique trials. The EA hyper-parameters used are described
in the next section. Table 3 shows the specific factor, scenario and trial configurations used. For
each scenario, 10 iterations of the entire experiment were run, in order to reduce the impact of
randomized initial conditions.

4.3.1 Evaluation

During NE, each candidate solution was subjected to a set of trials. In a trial, the candidate
neural network is used to control every car in the intersection, although each car has their own
copy. Throughout the simulation, collisions between cars are recorded and the final tally of these
crashes constitutes the fitness function. Cars are constantly spawned on the track and move based
on the heuristic controller, so there is pressure on the cars to complete their journey through the
intersection, without needing a measure of throughput. Cars also cannot reverse in the intersection,
so traffic will become backed up and collisions will start beginning at the start of the intersection
if the cars perform poorly. Furthermore, each trial is repeated multiple times in order to increase
the amount of randomness and diversity in challenge. This prevents lucky candidate solutions from
getting a high fitness from a single trial that happens to be more forgiving.

Since the traffic is fixed and controlled but still randomized, the only possible good solution for
candidates is to find a way to make it through the intersection at a good pace without crashing.

A candidate’s score is finally the sum of collisions over all trials it is subjected to. The NE se-
lects individuals in order to try minimize this score.
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Scenario | Algorithm Difficulty | Exposure | Trials

CxEx1 CNE Easy One circle

CxEx2 CNE Easy Two circle, on-ramp

CxEx3 CNE Easy Three circle, on-ramp, crossing

CxMx1 | CNE Medium | One four-way

CxMx2 | CNE Medium | Two four-way, circle

CxMx3 | CNE Medium | Three four-way, circle, on-ramp-extra

CxHx1 CNE Hard One four-way-3-lane

CxHx2 CNE Hard Two four-way-3-lane, four-way-2-lane

CxHx3 CNE Hard Three four-way-3-lane, four-way-2-lane, circle-small
NxEx1 NEAT Easy One circle

NxEx2 NEAT Easy Two circle, on-ramp

NxEx3 NEAT Easy Three circle, on-ramp, crossing

NxMx1 | NEAT Medium | One four-way

NxMx2 | NEAT Medium | Two four-way, circle

NxMx3 | NEAT Medium | Three four-way, circle, on-ramp-extra

NxHx1 NEAT Hard One four-way-3-lane

NxHx2 NEAT Hard Two four-way-3-lane, four-way-2-lane

NxHx3 NEAT Hard Three four-way-3-lane, four-way-2-lane, circle-small
HxEx1 HyperNEAT | Easy One circle

HxEx2 HyperNEAT | Easy Two circle, on-ramp

HxEx3 HyperNEAT | Easy Three circle, on-ramp, crossing

HxMx1 | HyperNEAT | Medium | One four-way

HxMx2 | HyperNEAT | Medium | Two four-way, circle

HxMx3 | HyperNEAT | Medium | Three four-way, circle, on-ramp-extra

HxHx1 HyperNEAT | Hard One four-way-3-lane

HxHx2 HyperNEAT | Hard Two four-way-3-lane, four-way-2-lane

HxHx3 HyperNEAT | Hard Three four-way-3-lane, four-way-2-lane, circle-small

Table 3: Overview of factors used in each scenario
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Hyper-Parameter Value

Iterations 100
Population 150
Trials 15

Mutation Rate (CNE) 0.4

Mutation Amount (CNE) | 1

Add Node Rate (NEAT) | 0.001
Add Link Rate (NEAT) 0.005
Remove Link (NEAT) 0.0005

Table 4: Hyperparameters for evolution

4.4 EA Hyper-Parameters

For these experiments, EA hyper-parameters were picked which allowed a large amount of explo-
ration in each iteration, as well as a high number of iterations to allow as much development as
possible. Table 8 shows the specific hyper-parameters used. The Java library Encog was used for
its implementation of CNE, NEAT and HyperNEAT. In most cases, default Encog values were
used. See Appendix A for these defaults. More specific settings for each algorithm are described
below. For the trials variable, the set of trials in the scenario were repeated multiple times and the
collisions summed, so that each candidate evaluation ran exactly 15 trials regardless of how many
unique trials there were.

4.4.1 CNE

With CNE, there is no topological evolution, and thus the only parameters which are evolved are
the weights of the network. The network itself must be preselected by hand. Care was given to
select a network topology which was robust enough to encode complex potential solutions, while
not being overly complex and difficult to evolve. This selection and selections for other parameters
was made on the basis of background research which suggests these parameters to be reasonable
for the given task. In future these parameters should be explored. For most applications a single
hidden layer suffices.

In this case, the network topology consists of an input layer of 14 nodes to match the number
of sensory inputs. Then a hidden layer of 30 nodes, fully connected to the input layer. Finally an
output layer of 2 nodes, fully connected to the hidden layer. All nodes make use of the sigmoid
function.

4.4.2 NEAT

NEAT is able to evolve the topology of a neural network during the genetic algorithm. This makes
hyper-parameter tweaking minimal, with only some mutation types to set. Encog defaults were
used except in the case of the AddNode and RemoveNode mutations, which were increased from a
rate of 0.0000005 to 0.0005.
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Figure 15: Three novel tracks used for testing the developed controllers

4.4.3 HyperNEAT

HyperNEAT hyper-parameters mainly consist of the substrate layout. The substrate used here
mirrors the cars themselves as closely as possible, with the radial sensor inputs relating to radial
inputs in the substrate. The acceleration and braking output as well as the steering output are
located closer to the center, separated along the Z axis. No hidden nodes are used.

All weights in the network are then derived from the CPPN produced during evolution.

4.5 Testing

After evolution, the highest performing controller for each scenario’s 10 repetitions was tested in
order to determine its true performance on unseen tasks. The baseline heuristic controller was also
added to the group of controllers for testing so that performance could be compared, resulting in
28 controllers overall.

Three novel tracks were used for testing, shown in Figure 15. They include two designs with
complex intersections and one that is a simple straight line but which has many pedestrians cross-
ing.

The tests, similarly to evolution, consisted of three difficulties that are equivalent to those in evo-

lution, leading to nine distinct tests for each controller. Each test was then repeated 1000 times,
giving 9000 total data points for each controller.
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4.6 Conclusion

To summarize, three different evolution factors were explored. Each of these factors (algorithm,
difficulty and exposure) have three possible values, leading to a total of 27 controllers being devel-
oped. These 27 controllers were developed by using the simulator to control for all other variables,
except the ones of interest. A benchmark controller was also added which received no evolution
and uses a basic heuristic function for controlling cars. Finally, these controllers were examined and
tested on novel problems in order to analyze and evaluate them. In the next chapter we present
the results from this examination and testing.
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5 Results

We now present the results obtained during evolution and in testing. First we see the performance
of the different scenarios in terms of fitness during evolution. This gives insight into how effectively
the NE algorithms were able to search the problem space, and may reveal insights for understanding
controller testing. Next we take a look at several metrics for evaluating the controllers, collected
from the testing phase. This includes the performance in terms of crashes, the behaviour of the
controllers and the structure of each controller’s ANN. For performance, statistical tests are used to
compare the number of crashes generated by each controller on a set of unseen trials. For behaviour,
we look at the ANN outputs of the controllers as well as paths taken by cars in the simulation. For
ANN structure we examine the network topology as well as analytical complexity of each network.
These results will then be discussed and related to previous work in order to answer our research
questions, in Chapter 6.

5.1 Evolution

The first entry point for analysis is to simply graph the fitness of the controllers during evolution.
Figure 16 shows the average fitness during each experiment at each iteration of evolution.

Key takeaways from this figure are that fitness appears to improve dramatically in the first 20
iterations, and not much thereafter. With less iterations and a higher population size, evolution
might prove to be more effective for a similar amount of computational power. It is also possible
that the problem space is too difficult to search and is not continuous enough for NE to be effective.
Also of note is that no single algorithm appears to be dominant. HyperNEAT reaches the best fit-
ness six times, but only marginally, otherwise the fitness track ends in a similar result in most cases.
Overall the path of evolution for each algorithm is similar, in terms of final fitness and even gradient.

It is also clear that there is some sensitivity to factors which affects fitness. While the controllers
developed on easy experiments tend to reach a fitness around 0.5, medium and hard controllers
reach around 0.75, except for hard one in which all algorithms reach a fitness close to 0.5. This
may be a function of the track design and some inherent solvability.

In Figure 17 we see the average fitness distribution of the population in the last iteration of evolution
for each controller. Again, most scenarios appear to evolve in a similar fashion with a distribution
scoring between 0.3 and 1.2, except for a few exceptions. There is no clear factor which would
appear to result in a higher fitness. Certain scenarios such as NxEx2 scoring poorly however point,
again, to a sensitivity issue in evolution.
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Average fitness during training by scenario
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Figure 16: Average fitness as a function of evolution iterations for each algorithm in each scenario.
All values are normalized to their respective difficulty’s baseline.
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Average score of last generation during evolution
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Figure 17: Distribution of fitness of the final generation at the end of evolution for each scenario

Referring now to Figure 23 from Appendix A, we examine how the evolutionary algorithms ex-
plored their problem space. A great spread across fitness for a given iteration would imply great
exploration, as most solutions will be worse than the current best solution. It does appear that
CNE has a slight edge in exploration throughout evolution, as shown by a grater variety of solutions
being explored in the later iterations. NEAT and HyperNEAT on the other hand explore less as
the iterations go by, but explore many solutions during the initial phase of evolution. This could
have dramatic effects on the type of solutions discovered by each algorithm, as greater exposure
initially could lead to more varied strategies. Exploration during later iterations will most likely
result in small iterative improvements in strategy. These results are mirrored somewhat in Figure
16 where CNE is shown to have a smoother curve while NEAT and HyperNEAT have sudden sharp
improvements.

Overall these results seem to indicate a similar ability for each algorithm to explore the problem

space. While CNE explores a wider range initially, most likely due to its large network, it is still
matched in fitness by the other algorithms, which require less hyper-parameter tuning.
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5.2 Statistical Analysis

In this section we evaluate the testing results of the 28 controllers tested on nine unseen tests,
repeated 1000 times. All data is aggregated and normalized to a baseline value, based on the
performance of the baseline controller. Thus a value of 1.0 represents baseline performance, similar
to a controller that has a single fixed output. Two levels of aggregations are used. The first is at
the controller level: Each of the 28 controllers’ testing data is aggregated to give 28 distributions of
9,000 data points. The second is at an experiment level: For each algorithm, difficulty and exposure,
data is aggregated by the possible values of those factors to give 3 groups of 3 distributions each,
with 81,000 points of data per distribution (the baseline distribution of 9,000 points is included as
well).

5.2.1 Normality & Significance

In order to ensure that results are significant, a distribution and matching test must be used. We
see from Figures 24,25,26,27 that our distributions appear to indeed be normal. It is worth noting
that due to the nature of the simulation, and the low number of crashes possible in the simulations,
the number of normalised values is low, meaning the distributions are not continuous. This makes
normality testing using various methods impractical. Instead in the above mentioned figures we use
histogram plots and probability plots to show that the distributions for every aggregation follow
a normal shape, especially when plotting the probability distribution versus the normal distribution.

Given that we have established reasonably that our distributions are normal, we can apply the
T-test to show where there is significance between our distributions. We use Welch’s T-test (Welch,
1947) and apply Bonferroni correction (Bonferroni, 1936) to account for multiple comparisons. Ta~
bles 9,10 show the results of T-tests for each distribution, with comparisons highlighted in red where
the null hypothesis cannot be rejected (the null hypothesis being that the samples are from the
same distribution). It can be seen that in most cases results are statistically significant, with a few
exceptions.

5.2.2 Results

The crux of this thesis is shown in Figures 18 and 19. Here we compare the raw performance of
each controller when tested on unseen tasks. Performance is measured in exactly the same way as
fitness, by collisions normalized to a baseline. A lower score indicates a better performance. Scores
can be over the baseline, indicating that performance was worse than the baseline.

From Figure 18 we can see that the best performing controller was developed using NEAT, with a
difficulty of easy and an exposure of three. This controller achieved the lowest mean, median and
25th percentile. On the other end, HyperNEAT, with a difficulty of hard and an exposure of three
performed the worst. From comparisons with all other controllers, Table 9 shows these results to
be statistically significant.

Just less than half the controllers performed higher than a basic heuristic benchmark, while several
others outperformed the benchmark well, with the best controller being markedly improved over
the benchmark, scoring 0.75 on median. Furthermore, various settings for each factor are scattered
across the graph. This implies a high sensitivity to evolution hyper-parameters.
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Test performance by scenario
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Figure 18: Performance of each controller during testing measured by average number of collisions,

sorted by mean
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From the factor comparison graphs in Figure 18 we can see further that overall factors have a
low significance in performance. This further reinforces the evidence for sensitivity in NE. Problem
exposure appears to benefit from a higher value, with the best controller being generated with
exposure of three and the top 15 controllers only having 3 controllers developed using a problem
exposure of 1. This benefit however does not follow a linear function with respect to exposure as
two comes out as the best performing hyper-parameter. It does however, appear that there is a
correlation between increased difficulty and poorer controllers. It seems that the cost to evolution
difficulty does not pay off with more developed controllers.

Overall it appears that arbitrary scenarios may lead to poor or excellent controllers, and that
the factors overall did not have clear correlations with performance. Some key combinations of
factors however lead to exceptionally high, and low, performing controllers, indicating a high sen-
sitivity for evolution. In contrast to Parker and Nitschke (2017), this low performance most likely
derives from testing on multiple unseen trials. This could indicate that while specialized controllers
are effective, they are unable to be used on intersections they are not evolved for. We now examine
the behaviour of these networks in order to understand better why we see the differences we do.

5.3 Evolved Behaviour Analysis

We now refer to Figure 20 and 28 and examine the outputs produced by each controller during
testing.

Our highest performing controller, NEAT easy three, has a very simple behaviour. It is mostly full
speed the entire time, with 9% of the time a complete slowdown. In terms of steering there is a
nearly even split between left and right.

Contrasted with the worst performing controller, which steers full to the left around 90% of the
time and spends much more time fully slowed down, it would seem that a key factor in controller
behaviour is ability to steer in different directions while maintaining as high a speed as possible.
This is further supported by Figure 20 where high performing controllers like NxEx2, show similar
patterns.

Figure 21 illustrates the behaviour of these controllers and reveals the differing performance using a
simple experiment. While the baseline controller and HxHx3 cannot use evasive maneuvers, causing
many crashes in the intersection, NxEx3 allows some cars to slow down and avoid collisions. This
results in half the number of collisions. HxHx3 is seen to have some developed behaviour, in that
it steers the car in the intersection, however it is not helpful in preventing collisions.

Also interesting to note is the much larger spread of behaviour seen in CNE controllers. This
result is intuitive given how much larger and more connected the CNE controllers’ networks are,
however without any performance improvement this only makes the controllers’ behaviour more
unpredictable.
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Figure 20: Behaviour of each controller aggregated by factor during testing. Each graph shows the
distribution of outputs that cars exhibited on average over the time in the simulation.

54



Figure 21: Paths followed by different controllers. Red line indicates a path that has been travelled.
The color of this line also reflects the speed of the car by changing to the color green. Green cars
were successful in avoiding collision while pink cars collided (and would normally be removed from
the simulation). At the top left is the baseline controller, top right is HxHx3, the worst controller
and finally on the bottom is NxFEx3, the best controller.
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Figure 22: Artificial Neural Network (ANN) structure of the best controller (A, NxEx3) and the
worst controller (B, HxHx3). Each black circle represents a node, and coloured lines between nodes
indicate connections. A green connection indicates a positive weight, grey a weight close to 0,
and red a negative weight. The nodes on the left most of the network are the input nodes, and
calculations propagate to the right most of the network, which are the output nodes.

5.4 Evolved Neural Controller Complexity Analysis

Here we refer to Figure 29 and Figure 22 and examine the structure of each developed controller.
The diagrams are interpreted as follows: Each black circle represents a node, with nodes vertically
aligned being in the same layer. the far left layer is the input layer and the far right layer is the
output layer. Connections are shown by lines drawn between nodes that range in color from red to
grey to green. This color represents the weighting of the connection, with a brighter red indicating
a more negative weight, and brighter green indicating a more positive weight.

As is expected, CNE structures are fixed and show the topology chosen during experiment de-
sign. Not much can be inferred from these diagrams other than the fact that the networks are
indeed different. What is noticeable however is that many connections are weighted with a small
value, as shown by being grey. This could explain the more spread behaviour pattern seen in Figure
20, as input nodes have smaller effects on the network.

Similarly HyperNEAT also has a topology fixed by the HyperNEAT substrate. The weights here
however are extremely polarized, either being very negative or very positive. This may be the cause
of the extremely modal behaviour seen in Figure 20 and would explain the low performance.

Finally in NEAT we see the most interesting topologies. Firstly, as seen in CNE, connections
are much less polarized, with many more grey values. Secondly, there does not appear to be a
correlation between network complexity and performance. The best performing controller only de-
veloped a single new connection, with a low weighting, between its output nodes. On the other
hand, the most complex network, NEAT medium one, was one of the lowest performing controllers.
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Controller | Complexity
NxEx1 49
NxEx2 50
NxEx3 45
NxMx1 54
NxMx2 48
NxMx3 44
NxHx1 44
NxHx2 45
NxHx3 48

Table 5: Complexity for each Neuro-Evolution of Augmenting Topologies (NEAT) controller.

To further formalize these results, we define a simple complexity metric, Equation 4, where Nc is
the number of connections in the ANN and Nn is the number of nodes in the ANN.

C=Nc+ Nn (4)

Clearly, by design all CNE controllers have a complexity of 526, and all HyperNEAT controllers
have a complexity of 44. Of interest are the NEAT controllers, which vary in complexity due to
evolution. Table 5 shows each NEAT controller’s complexity. Firstly, they are all far below the
complexity of any CNE controller. Secondly, there is no clear correlation between higher complexity
and performance. The best controller, NxFEx3, has a complexity only 1 higher than the lowest, of
45.

It seems then that an important characteristic for performance is non-polarized connections between
nodes, while network complexity makes far less difference.

5.5 Conclusion

We have presented the data and analysis produced by the experiments described in Chapter 4. This
includes examination of the various factors’ effects on evolution and fitness, the performance of the
developed controllers on unseen tasks, and some intrinsic properties of the controllers themselves.
In the next section we will discuss the important takeaways from these results and put them in the
context of the thesis’ research goals.

LY



6 Discussion

We have presented the results from our data collection during both evolution and testing. We now
examine and discuss how these results relate to the research goal of this thesis - that is, to compare
sets of NE hyper-parameters to determine which ones lead to the best task performance, and to
understand how these hyper-parameters affect task performance.

In terms of the evolutionary phase of the experiment, we are less interested in performance given
that we see no correlation between evolution performance and test performance. This lack of cor-
relation however, is interesting to note. The discussion around this is based on results presented in
Chapter 5.1. There are clear optimizations to be made from the evolutionary phase though, which
consumes an enormous amount of resources. As can be seen in Figure 16, performance does not
increase much after 20 generations in any hyper-parameter scheme, which signals that much of the
resources spent during evolution were wasted. There are several possible ways to improve on this.
Most simply, decreasing evolution iterations and increasing population size may result in greater
exploration of the problem space. More complex evolutionary systems may also help produce better
evolution, as in this case the trade off of per-generation complexity for more powerful exploration
should pay off. It is also possible that the problem space is far too difficult to search and requires
enormously more resources than were used in our experiments. From Figure 17 we can see that the
distribution of fitness in the final generation of evolution for each controller is similar across the
board, except for one or two controllers. In most cases the distribution centers around the 0.9 score
mark, further giving evidence that the problem space is difficult to search and may simply require
more resources than were used. Overall, analysis of the evolutionary phase did not provide us with
any significant information towards answering the primary research question of this thesis, that is
- which hyper-parameters produce the controllers with the highest task performance?

Test performance results given in Chapter 5.2.2, on the other hand, were very revealing. In terms
of our three factors, a clear best combination emerged with the NxEx3 controller (refer to Table
3 for the definition of NxEx3). This controller had a score significantly better than the baseline,
achieving a median score of 0.795 across all test tasks. Furthermore a perfect score of 0 fell within
the 25th percentile of its performance distribution across all test tasks. As shown in Figures 20 and
21, the controller developed behaviour for navigating through intersections and avoiding collisions,
by slowing down when approaching the intersection to avoid collisions, and steering mostly straight
with some variation. This behaviour intuitively leads to a high fitness, as throughput is kept high
by cars only slowing down when behind other cars they may crash into. Having steering output split
evenly between left and right would imply that this controller also has a greater range of movement
and actions it can take in the intersection. We could then say that this combination of hyper-
parameters leads to the best task performance, with statistical significance. While this answers our
primary research question, we are still interested in why this particular combination works best and
how each hyper-parameter contributed to the controller’s performance. In the following chapters
we discuss the hyper-parameters themselves in further detail.
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While some controllers achieved a high task performance, such as NxEx3, NxMx2, NxHx3 and
CxEx1, many others failed to improve on the baseline. Among the hyper-parameters, there were no
major performance differences on average or clear correlations. This is most clearly shown in Fig-
ure 19 where aggregating with each hyper-parameter revealed very similar results across the board.
This effect in individual controllers can be seen when one fixes two of the three hyper-parameters
and then notes the order in which the values of the final hyper-parameter rank in performance. For
example, with a fixed factor of NEAT and easy, different exposures lead to controllers with medians
of 1.25, 1, 0.75 (respective to one, two, three exposure) where as fixing for HyperNEAT and easy,
leads to 1.2, 1, 1.2 (again, respective to exposure). It seems then that particular combinations
of hyper-parameters are responsible for drastic performance differences. NxEx3, the highest per-
forming controller, made use of hyper-parameters easy and three exposure, which when aggregated,
where some of the worst performing. We have seen in previous work that NE algorithms can be
sensitive to hyper-parameters (Clune, Ofria, et al., 2009), and here it seems that this is indeed the
case as well in this problem space.

There are some clearer takeaways however. While NEAT controllers do appear towards the lower
end of performance, as seen in Figure 18, the top three controllers all made use of NEAT, and NEAT
was still the highest performing algorithm overall. We speculate that NEATSs initially simplistic
network and direct encoding provide the most efficient algorithm of the three in this particular task.
HyperNEAT also begins with a simplistic network, but its indirect encoding may not be effective
when the morphology of the controllers is static. The difficulty factor was revealed to result in
lower performance the higher the difficulty. Given that higher difficulties require denser traffic and
more computational resources, it is clear then that difficulty should be minimized in evolution.
If, during evolution, the maximum fitness is achieved (as was not in this case) then it may make
sense to increase the difficulty to allow more room for optimization. Doing this prematurely when
maximum fitness is not achieved however would seem to be a waste of computational resources.
A better solution may be to use transfer learning (Torrey and Shavlik, 2010) and progressively
increase difficulty as maximum fitness is obtained, in separate evolution runs. When examining
problem exposure we see that there is a measurable difference between controllers developed with
an exposure to one trial vs those developed with multiple trials. Previous work using NE to develop
controllers such as Parker and Nitschke (2017) which exposed the controller to a single problem
may find that their developed controllers are not able to adapt to unseen tasks as well as if they had
been exposed to more tasks. While the intuitive result that evolving with multiple tasks yields con-
trollers that are more adaptable, the question of exactly how many tasks is less obvious to answer.
In our experiments, the middle ground exposure to two tasks seemed to be best overall, however
the best performing controller was exposed to three different tasks. It is difficult to extrapolate how
further increasing problem exposure would affect performance, but perhaps a similar technique as
mentioned above with transfer learning between increasingly more varied tasks may work well to
develop a generalized controller.
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Finally, some insights are provided by the topology and weighting in the evolved controllers, as
seen in Chapter 5.4. Network size or depth were clearly not limiting factors during evolution, as
the best NEAT controllers were barely more complex than their initial topology. These results are
supported by similar work in Huang and Nitschke (2020). Furthermore these NEAT controllers
tended to outperform the CNE controllers, which were using multiple layer networks with many
more hidden nodes per layer. What may account for this is the non-polarized weightings as seen
in Chapter 5 which were prevalent in NEAT networks. The more polarized and extreme weights
in HyperNEAT and CNE networks may lead to more extreme behaviour that may overcompensate
when only subtle adjustments to steering and acceleration are needed. This would also explain the
behaviour seen in Figures 20 and 21.

6.1 Conclusion

Our collected results give many insights into the various hyper-parameters that go into our NE
scheme. Some key hyper-parameters were identified as having little impact on task performance,
namely difficulty and problem exposure, and some as having some impact, such as algorithm. Many
hyper-parameters were identified as not having any impact, such as network complexity and high
iteration. Particular combinations of hyper-parameters seemed to yield effective controllers that
showed interesting and emergent behaviour, however without strong patterns throughout controllers
when using these hyper-parameters, it would seem that these NE algorithms are prone to sensitivity
problems. The answer to our research questions is that the particular combination of NxEx3
produced the best controller, due to using the strongest algorithm, and using a problem exposure of
more than one. For the algorithm hyper-parameter, NEAT slightly edges out CNE and HyperNEAT
in performance. Problem exposure and difficult proved less definitive, but clear benefits for problem
exposure above one was shown, and minimizing the computationally expensive difficulty may speed
up evolution in future.
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7 Conclusion

We have investigated many factors relating to the evolution and performance of NE controllers for
intersection management. First, as an overarching result, it would appear that evolving controllers
can be effective. Within a reasonable time frame, controllers which could substantially improve
on the baseline were developed. While high performing controllers were evolved, without clear
performance correlations for any hyper-parameter it remains difficult to tell which combination of
hyper-parameters to use during evolution to achieve this performance. This was seen by the spread
of factor hyper-parameters across controller rankings, as well as a high number of controllers failing
to beat the baseline heuristic. Our results show that there is perhaps a large gap still between
previous implementations and a fully working, robust, general solution to intersection management
based on Neuro-Evolution (NE).

In spite of this, the results clearly show numerous ways to improve evolution in future research.
Given that improvements during evolution appear mostly during the first 20 generations, improve-
ments could be made by increasing the population size and decreasing the number of iterations.
This would increase explorative power without needing more computational resources.

It is also clear that when the problem is not being fully solved, increasing the difficulty of evo-
lution only stymies the controllers’ development. Instead a far more productive hyper-parameter
to increase would be the problem exposure during evolution. Higher problem exposure greatly
benefited controllers during testing on unseen tasks, suggesting that the controllers were less overfit
and more generalized to the overall task.

In terms of complexity, results showed that complexity was not correlated with performance in any
way. Simple NEAT controllers outperformed much more complex Conventional Neuro-Evolution
(CNE) controllers, and did not evolve a higher complexity even given the capability.

Lastly, NEAT emerged as an out performer, due to its non-polarized weightings and simple, pre-
dictable behaviour that was concentrated in the most effective places. Neuro-Evolution of Augment-
ing Topologies’ (NEAT) evolving topology also made for the simplest hyper-parameter tweaking
among the three NE algorithms. The highest performing controller was produced with NEAT and
the exact set of hyper-parameters used for this controller was NxEx3.

7.1 Future Work

While many hyper-parameters have been explored in this thesis, there are many more possible
configurations. While difficulty does not seem to have much potential for further exploration, in-
creasing problem exposure to more trials could potentially benefit controllers greatly. Tweaking
the topology of the HyperNEAT substrate and the CNE network could also increase performance.
We now can see that a complex network is not necessarily needed for high performance, and that
interesting connections such as those between output nodes can lead to desired behaviour.

Other ANN structures could also be investigated, such as recursive layers in Conventional Neuro-

Evolution, or Long Short-Term Memory structures. The structures in this thesis are limited to
conventional feed forward networks and some limited recursion possible in NEAT.
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Results showed that a particular set of factors (NxEx3 and HxHx3) led to extreme cases of per-
formance during testing. Factors as a whole however did not show significant differences in perfor-
mance. This indication of sensitivity is import to future work in NE, and should be investigated
further. This could be done either through testing a wider spectrum of factors during evolution for
the same problem space, or replicating the experiments presented in this thesis but with a different
problem space. It would then be possible to determine if the factors which led to extreme perfor-
mance where arbitrary or whether there is correlation between performance and factors not seen in
our results.

It would appear that even with recent increases in computational power, these resources are a
limiting factor in NE research. Statistical robustness as well as evolution performance could be
improved by simply using a larger amount of computer resources and increasing the number of
evolution repetitions, evolution iterations, evolution population, and so on. This may be the sin-
gle factor allowing for the development of effective, generalized intersection automation through
NE-developed controllers.
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A Method Parameters

See https://github.com/MPCherry /MastersCode for source code of the method and experiment
design.
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Parameter

Value

Mutate Chance

0.4

Mutate Type

Weight Perturb

Mutate Amount

1

Crossover Chance | 0.8
Crossover Length | 10

Selection Strategy | Tournament
Selection Rounds | 4

Elite Rate 0.3

Table 6: Evolution parameters for CNE

Parameter

Value

Mutate Chance

0.1125

Mutate Type

Weight Perturb

Mutate Amount

1

NEAT Crossover Rate | 0.5

Add Node Chance 0.001

Add Link Chance 0.005
Remove Link Chance | 0.0005
Selection Strategy Truncation
Truncation Percent 0.3

Table 7: Evolution parameters for NEAT

Parameter

Value

Mutate Chance

0.1125

Mutate Type

Weight Perturb

Mutate Amount

1

NEAT Crossover Rate | 0.5

Add Node Chance 0.00005
Add Link Chance 0.005
Remove Link Chance 0.00005
Selection Strategy Truncation
Truncation Percent 0.3
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Table 8: Evolution parameters for HyperNEAT
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Figure 23: Exploration heat map for each controller during training
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D Significance Testing
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Table 9: T test results when comparing all controllers’ performance against each other
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Table 10: T test results when comparing factors against each other
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Figure 28: Network output heat map for each controller during testing
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F Network Structure
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Figure 29: Structure of each controller’s neural network
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