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Abstract 
 

Climate change is expected to exacerbate diarrhoea outbreak in South Africa, a leading 

cause of morbidity and mortality in the region. In this study, we modelled the impacts of 

climate change on diarrhoea with machine learning methods. We applied two deep 

learning techniques, convolutional neural networks (CNNs) and long-short term memory 

networks (LSTMs); and a support vector machine to predict daily diarrhoea cases over 

the different South African provinces by incorporating climate information. Generative 

Adversarial Networks (GANs) was used to generate synthetic data which was used to 

augment the available dataset. Furthermore, relevance estimation and value calibration 

(REVAC) was used to tune the parameters of the machine learning algorithms to optimize 

the accuracy of their predictions. Sensitivity analysis was also performed to investigate 

the contribution of the different climate factors to the diarrhoea prediction model. 

 

The results of the study showed that all three ML methods were appropriate for 

predicting daily diarrhoea cases with respect to the selected climate variables in each 

South African province. The ML methods were all able to yield low and similar RMSE. 

However, the level of accuracy for each model varied across different experiments, with 

the deep learning models outperforming the SVM model. Among the deep learning 

techniques, the CNN model performed best when only real-world dataset was used, while 

the LSTM model outperformed the other models when the real dataset was augmented 

with synthetic data. Across the provinces, the accuracy of all three ML algorithms 

improved by at least 30% when data augmentation was implemented. In addition, REVAC 

improved the accuracy of the CNN model by more than 12% in KwaZulu Natal province. 

However, the percentage increase in accuracy of the LSTM model was less than 4% in 

Western Cape province when REVAC was used. Our sensitivity analysis revealed that the 

most influential climate variables to be considered when predicting outbreak of 

diarrhoea in South Africa are precipitation, humidity, evaporation and temperature 

conditions. The result of this study is important for the development of an early warning 

system for diarrhoea outbreak over South Africa. 
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Chapter 1 
 

1. Introduction 
 
Diarrhoea is a clinical syndrome which changes the normal bowel movement by 

increasing the watery content and frequency of stools [1]. Major causes include 

unhygienic eating habits, gastrointestinal infections and diseases caused by bacterial, 

parasitic, and viral organisms [1], [2]. In most cases, diarrhoea is deadly for children 

under the age of five, yet adult mortality from diarrhoea is not unusual especially when 

there is a widespread occurrence of diarrhoeal related illnesses [2]. It is a major health 

concern and has remained the second leading cause of global morbidity and mortality [1], 

[3], [4]. Each year, over 2.5 million deaths attributed to diarrhoea are recorded 

worldwide [4]. Estimates suggest that most cases are concentrated in Sub-Saharan Africa 

and South Asia as they account for more than 80 percent of total world records [3], [4]. 

The increase in the number of diarrhoea cases during certain periods indicates that 

diarrheal diseases vary greatly with seasons, and global climate change is expected to 

increase its risk [5].  

 
Extreme weather events such as droughts and heatwaves due to climate change affect 

human health directly or indirectly and as a result, the continued impacts will be one of 

the challenges in controlling infectious diseases in the future, especially in developing 

countries [5]. Investigations have shown these events tend to cripple public and 

environmental health thus several major killer diseases including diarrhoea related ones 

are projected be on the rise [5], [6]. In addition, climate factors such as temperature, 

rainfall may also contribute to changes in the incidence and severity of diarrhoea [6]. 

Nevertheless, diarrhoea is both preventable and curable [1], [2] . 

 

However, the treatment and prevention of diarrhoea with vaccines, antibiotics, and anti-

diarrhoeal medications (such as Loperamide) is a burden on public health system 

particularly in developing countries [2]. For example, the use of rotavirus, cholera, and 

typhoid vaccines to prevent diarrhoea is costly to the government; and the cure can be 

hardly afforded by low income families [7]. Therefore, it is recommended to develop and 

strengthen public health systems that aid in reducing the incidence and severity of 

diarrhoeal diseases [5]. One way to achieve this is develop a model that uses climate 

records to predict diarrhoea outbreak in advance. This information can be used for public 

health surveillance as it will offer timely detection and prompt notification for the control 

of diarrhoea outbreak. It will also enable government organizations and healthcare 

providers to take necessary action and put together intervention strategies to mitigate 

risks related to diarrhoea thus, minimizing the costs of delivering medical care related to 
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it. Machine Learning (ML) algorithms can help in detecting anomalies by reviewing the 

volume of data collected in health centres. 

In recent years, various ML techniques such as artificial neural networks (ANNs), support 

vector machines (SVMs) and random forests (RF) have been used in developing 

predictive and diagnostic models for complex problems [8]. They have also been widely 

used in the medical field for diagnosis and disease prediction [8], [9] . For instance, in 

India, an SVM was used to predict malaria disease outbreak, the system was able to give 

about 15-20 days lead time for early intervention [10]. ANNs were also used for 

predicting the cancer outcome of an individual [11]. Apart from being applicable to 

complex problems, studies such as [8], [9] have shown that machine learning algorithms 

are accurate for decision making, cost effective and are quick and powerful for data 

processing. Several studies such as [12] reported that deep learning (DL) techniques, a 

subset of machine learning characterised by several number of layers in a neural network 

are suitable to even more complex problems and are capable of handling diverse and 

unstructured datasets. For example, Muniasamy et al. [12] showed that while 

conventional ML techniques require handcrafted feature engineering for model 

development, deep learning models carry out feature engineering automatically. 

Several Deep learning (DL) techniques such as convolutional neural networks (CNNs), 

deep neural networks (DNNs) and recurrent neural networks (RNNs) have achieved 

impressive results in predictive modelling in many areas including medical research [12]. 

For instance, Pham et al. [13] created a deep learning framework called DeepCare that 

learns patterns of several illnesses such as diabetes to predict their future outcomes. 

Google’s DeepMind Health team also used RNNs to predict the onset of acute kidney 

injury in patients [14]. Dutta et al. [15] used CNNs to predict the occurrence of coronary 

heart disease in individuals. Thus, it can be inferred that that both conventional ML and 

DL techniques have the potential to provide medical practitioners new tools and novel 

ways to better manage their practices. While some studies [8], [16] argue that DL 

techniques perform better than conventional ML methods, other studies [17], [18] 

suggest that conventional ML methods produce similar results depending on the type and 

number of datasets available for training tasks. However, availability of data is usually a 

challenge for most machine learning studies [19], [20]. Worse can be said about the 

accessibility of medical related datasets due to its sensitive and controlled nature [19]. 

Thus, the inaccessibility of data adds to the difficulty of model comparison, accuracy, and 

the advancement of machine Learning as a whole [21], [22]. This issue can be addressed 

by adopting data augmentation techniques such as window slicing, image cropping, and 

the use of generative models to generate artificial data [21], [22] .  

This study explores climate-based and diarrhoea-based time series datasets from the 

nine South African provinces to derive models for diarrhoea outbreak prediction. To 

augment the data we have available, we will use generative adversarial networks (GANs) 

to generate synthetic data. In addition, the ML techniques we will use to develop the 

prediction model are long short-term memory networks (LSTM) because of its ability to 
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work well with sequential data [16], CNNs because it is a current state of the art in deep 

learning research [12], [15] and SVMs, a traditional supervised ML method due to its vast 

success in many prediction studies [8], [10], [17] . 

 

 

1.1.  Motivation and Problem Statement 

 
Diarrhoea related illnesses are prevalent and a leading cause of morbidity in South Africa  

[23]. In the year 2000, four percent of the total death records among individuals of all 

ages in South Africa were attributed to diarrhoea [23]. In 2010 and 2015, diarrhoea was 

reported to be among the top ten leading cause of years of life lost among South African 

residents [23]. Recently, South Africa witnessed an increase in the rate of diarrhoea [24]. 

For example, in 2015-2016 provinces like Gauteng, Eastern Cape, Northern Cape, North 

West and Western Cape experienced an increase in the rate of diarrhoea reported cases, 

with the highest observed percentage increase of 4 percent in North West [24]. For most 

provinces, diarrhoea is mostly attributed to nosocomial infections or community 

acquired resulting from contaminated food and water caused by a range of pathogens 

[25]. However, other studies [5], [6] show that climate factors and weather variability 

influence the level of abundance and seasonality of the pathogens present in the 

environment thus, the prevalence of diarrhoea can be linked to extremities from weather 

events.  

 

In South Africa, high number of diarrhoea cases caused by bacterial pathogens are 

reported in the summer months and rotavirus pathogens cases are reported in the winter 

months [26]. In Western Cape, the warm and dry period from November to May is noted 

as diarrhoea peak season as it coincides with an increase in the number of reported cases 

[27]. In addition, studies suggest that the warmer weather worsens the spread of germs 

and the surge can also be attributed to the severe drought in the region whose 

occurrences was exacerbated by climate change [27]. South Africa is a climate hotspot 

and thus will experience an increased frequency and magnitudes of extreme events such 

as drought, dry spells, heat waves, hailstorms, and veld fires [28]. These events are 

reported to have the potential to increase water-borne diseases such as diarrheal 

diseases [4], [5]. Climate factors play a vital role in the long-term trends of infectious 

diseases such as diarrhoea related ones [5], [6]. The development of a model with the 

ability to capture complex relationships and long-term dependencies between climate 

features and diarrhoea may be effective for diarrhoea predictive analysis. Most of the 

current diarrhoea predictive models although proven useful, are often limited to their 

reliance on statistical models whose predictive abilities often depend on the assumption 

of linear relationships or built-in parameter time lags [8], [16].  
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Machine learning algorithms on the other hand are known for their ability to build and 

model complex predictive problems and handle high-dimensional data [8], [16]. Studies 

[8], [29] have also shown that ML methods are good at predicting and diagnosing climatic 

impacts on public health. For instance, they have been used in West Africa to model the 

effects of weather and climate on malaria [29]. Hence, they could also be effective in 

modelling weather and climate impacts on diarrhoea for future projections. However, 

little work has been done with ML on this application, especially with a focus on case-

studies in Southern Africa countries like South Africa. Filling this gap, will make it 

possible to predict outbreak and vulnerable periods. Furthermore, ML algorithms like 

CNNs are popular for their powerful feature extraction capabilities [15], LSTM are also 

known for their ability to capture long term dependencies [13], [16] which may be crucial 

for time series data modelling therefore, they will be used in this study. Due to the non-

linear nature of time series datasets, SVM “a traditional ML algorithm” will also be 

adopted since they are widely accepted for their ability to solve nonlinear regression 

estimation problems [30]. Despite the capabilities possessed by these algorithms, there 

is little empirical evidence about their efficacy for diarrhoea outbreak prediction tasks. 

Thus, the present study applied them (CNNs, LSTMs and SVMs) in building predictive 

models that uses time series climate features to predict future number of diarrhoea cases. 

This information could be useful in reducing the incidence of diarrhoea in the region, 

which will in turn ease the pressure on the facilities which are already stretched in the 

health sector. 

In an attempt to build ML methods that solve real world problems, relying only on 

accuracy and error metrics in measuring performance to justify the use of a model might 

not be enough. Many studies [18], [31], [32] have recommended providing extra 

measures of confidence to evaluate the performance of a model as a guide, before 

deciding whether the model is appropriate for a given problem. One example is to 

compare the performance of a model against others [8], [16]-[18]. In this study, we 

compare the performance in terms of accuracy of the three proposed models against each 

other to ascertain which of them is most suitable for diarrhoea outbreak prediction task. 

Since the performance of an depends on several factors such as its parameter settings 

and the amount of available training data [33] [18], we augmented the available data with 

synthetic data which we generated using generative adversarial networks (GANs). We 

chose GANs because they are popular for their effective capability to generate different 

types of realistic data [19], [22]. In addition, since there is no default setting for the 

parameters of an algorithm to guarantee optimum performance, we used relevance 

estimation and value calibration (REVAC), an evolutionary algorithm in tuning the 

parameters of the three models because studies like [34], [35] have shown it to provide 

a good search space for optimum parameter values . Using a single hyper-parameter 

strategy may also reduce performance estimation bias when all three models are 

compared with one another. 
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1.2. Research Objectives 
 

 

The aim of this research is to use climate variables to forecast the possible number of 

diarrhoea cases in geographic locations with climate similar to that of Southern Africa, 

where South Africa will be used as a case-study in this thesis. The chosen case study 

comprises of several climate variables. However, for this study, we would consider the 

following: Maximum Temperature, Minimum Temperature, Mean Temperature, 

Precipitation Rate, Potential Evaporation Rate, Specific Humidity, Surface Pressure and 

Windspeed because they are the most widely used in climate impact studies [6], [8], [36] 

. Furthermore, some studies show that they are the main indicators of a changing climate 

in any geographical location [6], [8], [36]. 

 

In this study, we used the listed climate variables as input to predict a range of diarrhoea 

cases dataset obtained from a clinical source (that is, real data) and the generative model 

(that is, synthetic data) for each South African province. The main objective of this study 

is to detect which supervised machine learning techniques (CNN, LSTM and SVM) 

performs best in terms of high accuracy when predicting the number of diarrhoea cases 

given a range of datasets (for example, varying proportions of real and synthetic climate 

variables and diarrhoea datasets) for training and testing. To further address this 

objective, the following sub-objectives have been formulated: 

 

1. Test the performance of existing deep learning methods such as CNNs, LSTMs and 

an existing conventional ML method like the SVMs across a range of datasets (that 

is, varying proportions of real and synthetic climate variables and diarrhoea-

based datasets at different testing and training intervals). 

 

2. Investigate the effect of the augmented (a combination of real and synthetic 

datasets) training and testing data on model performance in terms of prediction 

accuracy of the three models. 

 

3. Investigate to what extent REVAC parameter tuning can improve the accuracy of 

the three models. 

 

 

1.3. Contributions of study 
 

In spite of the fact that technology has evolved, many communities still face lots of 

challenges in controlling infectious disease outbreaks such as diarrhoea related ones [1], 

[3], [4] . Currently, little has been done in developing automated diarrhoea outbreak early 

warning systems, and predicting outbreaks often depends on ad-hoc advice of medical 
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experts in most communities [37]. This study aims to fill this gap by demonstrating the 

value of an ML based diarrhoea prediction model that could be used as an automated 

early warning system for diarrhoea outbreak prediction. The ML model could be 

extended to predict the outbreak of other infectious diseases, thus a potential 

contribution to the larger field of disease control.  

Another key contribution by the proposed research is the exploration and insight to 

which of the current ML methods is most suitable for the diarrhoea outbreak prediction 

task in this study. The anticipated outcome indicates to what extent the ML methods in 

section 1.2. can be utilized in making diarrhoea outbreak predictions with the datasets 

available for the proposed case study.  

This study also gives an insight as to whether the use of REVAC evolutionary algorithm 

[34], [35] as a parameter tuning method can improve model performance. It also gives us 

a deeper understanding on how the amount of data used for training a model can affect 

the performance of the machine learning model. Furthermore, the combination of the 

datasets (climate-based and diarrhoea based) used for this study could further 

strengthen the claim that states that climate factors affect diarrhoea [5], [6], [26], [36].  

 

 
1.4. Thesis Outline 

 
The rest of the thesis is structured as follows 

 

Chapter 2 

This chapter provides the background of this research and introduces the effects of 

climate factors on diarrhoea, the gap in diarrhoea disease prediction study, different 

machine learning methods, its applications in disease modelling and previous studies on 

model performance improvement. 

 

Chapter 3 

This chapter describes the specific implementations that were used for this research 

including details of the machine learning algorithms. It also describes the implementation 

of the REVAC tuning we used to optimize the ML parameters. 

 

 

Chapter 4 

This chapter describes the datasets, the experiments and details of the synthetic data 

generation and parameter tuning for all models. It also describes the performance 

evaluation functions defined for the ML methods, the synthetic data generation method 

and the REVAC tuning. 
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Chapter 5 

This chapter describes the results of each experiment and assesses the performance of 

each ML method, the effect of synthetic data in training and testing as well as the 

parameters we used for REVAC tuning. Results are then presented with visualizations 

and statistical tests. 

 

Chapter 6 

This chapter presents a detailed analysis of the results and relates them back to the initial 

hypothesis.  

 
Chapter 7 

This chapter discusses the conclusions, contributions and limitations of this study and 

suggests future work. 
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Chapter 2 

 

2. Background 
 

This chapter provides some background on the global burden of diarrhoea and the impact 

of climate factors on its severity. It also reviews existing literature on current methods 

for mitigating diarrhoea, as well as an overview of studies that used climate factors to 

develop intervention models for diarrhoea outbreak. The applications of machine 

learning in controlling infectious diseases were also reviewed in this chapter. The focus 

of this study is South Africa thus more attention will be given to the Southern African 

region. 

 

2.1. Global Burden of Diarrhoea 
 

The global burden of diarrhoea is widely documented in literature. For example, [3], [4], 

[6] reported that diarrhoea is one of the worldwide leading causes of death and individual 

years of life lost. Each year, an estimate of 2 billion episodes and 1.6 million deaths are 

recorded on a global scale [4], [38]. Another study conducted by Troeger et al. [38] 

showed that, diarrhoea is the eighth leading cause of mortality among individuals of all 

ages and the fifth leading causes of death among children under five years of age. In 2016, 

the diarrhoea death rate in adults tripled, that of children under the age of five and of all 

the deaths recorded, estimates suggest that the cases were more severe in developing 

nations [38]. For instance, Troeger et al. [38] reported that Sub Saharan Africa (SSA) 

alone had an estimate of 1 billion severe diarrhoea episodes with over six hundred 

thousand deaths, while South East Asia recorded over 470 million cases with a total death 

rate of over seventy thousand. 

In the Southern Africa region, Lesotho, Botswana, and South Africa accounted for the 

highest diarrhoea case fatality rate [38]. The region recorded an estimate of 80 million 

episodes with over 35,000 deaths in 2016 [38]. In South Africa, diarrhoea accounts for 

3% of the total death records in across all ages, making it the eight most preeminent cause 

of death in the country [39] . In the year 2000, 8.8% of the total years of healthy life lost 

for South African residents was also attributed to diarrhoea [26]. Some studies suggest 

that, its prevalence in the region can be as a result of lack of proper hygiene, poverty, 

other health conditions including varying weather conditions [26], [27], [39]. Others [6], 

[8], [26] have also showed that extreme weather events and climate variations affect the 

rate of diarrhoea infections in a specific location. Therefore, it is important to model the 

impacts of weather and climate on diarrhoea incidence.  

 



 
 

9 
 

2.2. Impacts of Climate Factors on Diarrhoea 
 

Many studies have shown that climate factors have massive impact on the prevalence of 

infectious diseases such as diarrhoea [5], [6] . For instance, Alexander et al. [40] explained 

that variability in climate factors such as temperature, rainfall, relative humidity, and air 

pressure will be one of the major challenges for developing countries to control 

diarrhoea. Several observations by [5], [6], [28] have also shown that extreme weather 

events ranging from heat, cold, drought or heavy rainfall lead to changes in water, food, 

air quality and the ecology of infectious diseases, and all these pose a threat to humans 

through increased mortality and morbidity. According to Awotiwon et al. [26], diarrhoea 

cases are related to changes in temperature and precipitation. Musengimana et al. [27] 

also showed that for every 1-degree Celsius increase in temperature, diarrhoea cases 

increased by 8 percent. 

Studies have reported that the prevalence of diarrhoea according to seasons and climate 

conditions varies according to geographic locations [38], [41]. Chang et al. [8], [36] 

showed that a rise in the incidence of diarrhoea in some Asian countries can be associated 

with increased rainfall and temperature. For example, Wang et al. [8] showed that 

diarrhoea in Shanghai, China occurs frequently in the summer and autumn years. Chou et 

al. [36] also reported that in Taiwan, maximum temperature and extreme rainfall days 

strongly influence diarrhoea incidence; this can be the effect of runoff due to heavy 

rainfall which causes contamination in drinking water distribution systems [39], [42]. 

However, in East African countries like Ethiopia, diarrhoea high risk period usually 

occurs at the beginning of the dry season [42]. In Southern African region, climate change 

is projected to lead to warmer temperatures and warming is expected to have a two 

degree celsius increase compared to the approximate global rising rate [43]; this could 

lead to an increase in the replication rate of some pathogens, and this in turn can lead to 

an increase in the incidence of diarrhoea [26], [41]. In South Africa, high number of cases 

due to bacteria pathogens are recorded in the summer months and high number of 

rotavirus cases are recorded during winter [26] . In addition, Musengimana et al. [27] 

reported that the warm months between November and May in Western Cape, South 

Africa have the highest number of diarrhoea related hospitalizations. However, in 

Botswana, a peak in diarrhoea incidence usually occurs in wet and dry months of March 

and October [40]. 

All these observations indicate that variability in climate factors significantly affect the 

increase in the rate of diarrhoea incidence, therefore efforts made in understanding the 

impact of climate change on diarrhoea patterns is critical in controlling its spread. Climate 

information could also be useful in the development of systems that aid in reducing the 

spread of diarrhoea.  
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2.3. Current Methods of Diarrhoea Outbreak Research  
 

This section explores what is currently being done to alleviate the burden of diarrhoea. It 

explains how medical professionals detect diarrhoea outbreak and it also describes 

studies that develop models to simulate how changing climate conditions affect 

diarrhoea.  

 

2.3.1. Human Experts Outbreak Detection Methods of 
Diarrhoea 

 

The prediction methods of diarrhoea outbreaks by human experts have been sparingly 

documented in literature. According to Awotiwon et al. [26], [37], outbreaks of infectious 

diseases including diarrhoea can be defined as the number of cases that is in excess of 

what would be commonly seen in that season or location. Manatsathit et al. [2] reported 

that possible outbreak of diarrhoea can be identified when there is an increased rate of 

hospitalizations due to the disease. In addition, Njidda et al. [44] showed that a high 

chance of an outbreak can be predicted if the occurrence of at least one confirmed case of 

diarrhoea is detected from an area that has been identified to be a hotspot or endemic. 

Elimian et al. [37] & Njidda et al. [44] also identified a diarrhoea outbreak to be when 

there is detection of the disease from the same area within one week in clusters of 

persons aged two years or above. Elimian et al. [37] further reported that repeated cases 

are usually followed by clinical investigations and when a case of diarrhoea is confirmed, 

an outbreak will be declared.  

These studies indicate that outbreaks are detected only when several cases have been 

reported and confirmed. However, in many African countries, remoteness to health 

facilities is an issue for potential patients, thus limiting outbreak investigation capacity 

despite diarrhoea frequency of occurrence [45]. Therefore, there is a need to develop 

systems to strengthen and improve the surveillance methods that are already in place. 

 

2.3.2. Models for Diarrhoea Outbreak Studies 
 

In recent times, several studies have used computer algorithms to develop models for 

investigating diarrhoea outbreak in various communities. For example, Chou et al. [36] 

used the Poisson regression model to predict and quantify the relationship between 

climate factors and diarrhoea associated morbidity in Taiwan. Constantin et al. [46] used 

both generalized linear model and poisson regression model to estimate the temporal 

pattern of diarrhoea by considering environmental factors such as temperature and 

rainfall. Lloyd et al. [47] used the log-linear regression method to assess the association 

between temperature, rainfall, and diarrhoea incidence in children under the age of five 

across the globe. Dhimal et al. [6] used Time-series log linear regression and negative 
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binomial regression to assess the impact of long-term climate change on diarrhoea 

epidemics. Yan et al. [48] also used the influence of meteorological variables to develop 

an autoregressive integrated moving average model (ARIMA) that predicts the daily 

incidence of diarrhoea in Beijing. In addition, McCormick et al. [49] used the Spatial panel 

regression model to explore the spatial and temporal patterns of seasonal diarrhoea 

morbidity in Thailand. 

Diarrhoea research models have also been designed for some parts of Sub-Saharan Africa. 

Azage et al. [42] used the Space-time permutation scan statistics and a negative binomial 

regression analysis to identify high risk periods and the relationship between climate 

variables and diarrhoea cases in Ethiopia. Alexander et al. [40] used the autoregressive 

analysis of covariance model (ANCOVA) and climate factors such as vapour pressure as 

predictors to analyse the monthly outbreak of diarrhoea in Botswana. In South Africa, 

Musengimana et al. [27] used the poisson regression model to assess the relationship 

between diarrhoea cases and temperature variability in Cape Town. In addition, Elimian 

et al. [37] used basic exploratory data analyses such as histograms and frequency tables 

to describe the severity of acute watery diarrhoea outbreak in Nigeria. 

The findings of these studies though proven useful are based purely on statistical models. 

Meanwhile, studies such as [8], [16], [30] have shown that traditional statistical models 

and frameworks are often limited for the analysis of high dimensional, imbalanced, and 

non-linear data. In addition, these studies [8], [9], [16] explained that the limitations of 

statistical models can be addressed using machine learning methods. Machine learning 

models are known to accurately perform statistical data analysis such as classification 

and regression [9], [30] . Thus, in the present study we used machine Learning techniques 

to model the influence of climate variables on diarrhoea outbreak. 

 

2.4. Machine Learning 
 

Machine learning (ML) is a multi-disciplinary field that draws concept from various 

subjects such as artificial intelligence, statistics and biology [50]. It involves the 

construction of computer programs that can automatically improve performance on a 

specific task by learning from data [51]. ML techniques can discover knowledge or hidden 

patterns from large data to make decisions and predictions. They work well for complex 

problems and can adapt to new data or changing conditions [51]. Other benefits of ML 

techniques include accuracy, cost effective solutions, quick and powerful processing [9]. 

ML techniques have thrived in solving real world applications in many fields such as 

health, environment and finance [20], [51].  

Learning by an ML system can be classified based on the type of supervision they receive 

during training [20]. These are Supervised Learning, An unsupervised Learning, Semi-

Supervised Learning and Reinforcement Learning [20], [50], [51]. A supervised ML model 

is trained using labelled data which provides the algorithm with feedback to evaluate its 
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training accuracy. Unsupervised learning model on the other hand, gain useful insights 

on its own from unlabelled data. Semi-supervised learning models are usually provided 

with input data where a small portion of it is labelled and the rest unlabelled thus, they 

sit between both supervised and unsupervised learning. Reinforcement learning models 

do not require labelled input data as well rather, it describes a learning problem where a 

learning agent must take actions to accomplish a goal in a specific environment to 

maximize a reward function. In this study, we focused on the supervised learning 

approach therefore it will be discussed in detail in the following section.  

 

2.4.1. Supervised Learning 
 

A supervised learning model learns a mapping function by observing some labelled input-

output pairs (training data) during training [50]. Such labels are usually the desired 

solution of the task [20]. When the desired output for a learning task is one of a finite set 

of values, it becomes a classification problem but when the desired output is numerical 

or continuous, it is called a regression problem [50]. The objective of a regression 

problem is to find an approximate mapping function that is as accurate as possible, 

because the chance of finding the exact value for an input-output pair is zero [50]. The 

workflow of a supervised learning algorithm is shown in Fig. 2.1. Some popular 

supervised learning algorithms are random forests, support vector machines, artificial 

neural networks, k-nearest neighbours, decision trees etc. However, in the present study, 

we used support vector machines and different categories of artificial neural networks to 

solve a regression task, that is, predicting the possible number of daily diarrhoea cases 

given some training data. The machine learning algorithms applied in this study are 

briefly described as follows: 

 

2.4.1.1. Support Vector Machines (SVMs) 
 

SVMs are mathematical models designed based on statistical learning theory and were 

first proposed by Vladimir Vapnik and Corina Cortes in 1995 [30]. It is a state-of-the-art 

ML technique that can be used for both linear and non-linear classification and regression 

[20], [50]. It has been used in applications such as pattern recognition, object 

classification, and various time series forecasting tasks [30]. SVMs have also been widely 

adopted in the field of medical research. For instance, Yu et al. [52] used the SVM to detect 

the presence of diabetes in individuals.  
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Figure 2. 1: Supervised Learning Prediction Task Workflow (Source: [55] ) The model (designed 
based on an ML algorithm) takes in some labelled training data. The performance of the model is 
measured based on its ability to correctly identify the labels. Learning improves by an iterative 
evaluation and penalization of the model’s performance. After a specified training period, the model 
is given new/unseen data to make predictions based on what it has learnt previously 

 

 

The SVM model was able to achieve an accuracy of over 83% when distinguishing 

between person with and without diabetes. Son et al. [53] also used the SVM to identify 

predictors of medication adherence in heart failure patients. Even though the sample size 

they used in training the model was small, SVM was still able to achieve an accuracy of 

78%. Although training SVMs can be computationally expensive [30], their advantages 

are widely documented in literature. Sapankevych and Sankar [30] reported that SVMs 

are resistant to overfitting and also have the ability to generalize well. Stuart and Peter 

[50] stated that their non-parametric nature enables them to represent complex and non-

linear functions easily. Most SVMs are designed to work with very few parameters thus, 

the process of tuning its parameters to find an optimal solution may be computationally 

cheap [30]. Another study by Kilimci et al. [54] discussed the SVM to be capable of 

providing a description of the learned model depending on the kernel function used 

during training. In this study we used an SVM to predict daily diarrhoea cases in South 

Africa. Its applications in the area of infectious diseases is discussed in Chapter 2.5. 
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2.4.1.2. Artificial Neural Networks and Deep Learning  

 
Artificial Neural Networks (ANNs) are mathematical models which were inspired by the 

biological learning system of the brain [20], [50], [51]. Several studies such as [8], [9], 

[11] have shown that they are among the most effective algorithms for modelling 

complex real-world relationships. In addition, their versatile nature makes them suitable 

for constructing clustering applications, classification, and regression models [51]. 

Similar to the human brain, ANNs are composed of several nodes interconnected by links 

where each node takes several real valued inputs and produces a single real valued 

output [50], [51]. Each link has a numeric weight associated with it and learning usually 

takes place by updating the weights.  

Brabazon et al. [56] reported that ANNs can be used for both supervised and 

unsupervised learning. In supervised learning, the ANN is given a set of input-output 

pairs (training data) over several iterations to find a matching function that minimizes an 

error. Several kinds of ANN structures have been implemented for supervised learning in 

literature and each of them has specific computational properties that make them 

suitable for a specific task. For example, Sharma et al. [10] used a multi layered 

perceptron with non-directional links and no cycles to predict outbreak of malaria in 

India while Pham et al. [13] used a recurrent network, whose links form arbitrary 

topologies to predict a patient’s risk of mental illness and diabetes. 

An example of a fully connected multi layered perceptron (MLP) is shown in Figure 2.2. 

MLPs are also a class of feedforward networks [50], [51]. They consist of at least three 

layers of nodes, an input, an output, and a hidden layer. MLPs often use the 

backpropagation algorithm, a supervised learning approach for training [50], [51]. 

Although ANNs are black boxes, studies like [20], [50], [51], [57] have shown that they 

are very good at generalization and can approximate any function regardless of how 

complex the problem may seem. They are also versatile and can work well with noisy 

data [8], [11]. ANNs also form the basis of deep learning [20]. 

Deep learning (DL) algorithms are an extension of the traditional ANNs. Unlike the 

traditional ANNs, they use more hidden layers to learn complex patterns in large amounts 

of data [12]. Several studies such as [13], [58], [59] have shown that they perform better 

than other machine learning algorithms in many tasks such as image recognition, speech 

recognition and prediction of drug combination. Another major advantage of deep 

learning algorithms is they require very little feature engineering by hand unlike other 

traditional ML techniques [12] [60] . Due to the recent acceptance and applicability of DL 

algorithms in classification and prediction tasks [12], [20], the present study focused on 

some DL algorithms such as convolutional neural networks and recurrent neural 

networks. These algorithms are briefly described as follows: 
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Figure 2. 2: A Fully connected Feedforward Multi-layer perceptron (Adapted from: [20], [50] ). 

 

 

2.4.1.2.1.  Convolutional Neural Networks 
 

 

Convolutional neural networks (CNNs) are state of the art deep learning algorithms that 

have achieved ground-breaking success in many tasks such as image classification and 

video processing [60], [61]. They have also been used in developing many useful 

applications for medical diagnosis, object detection, and facial recognition [20], [60]. The 

use of CNNs are not limited to visual perception, they are also reported to be successful 

at other tasks such as speech and audio processing, health monitoring applications, and 

time series forecasting problems [60], [61]. For example, CNNs were used to design an 

ECG monitoring system to detect abnormal heartbeat of an individual [61]. Huang and 

Kuo [62] also conducted a comparative study with CNNs and other ML algorithms to 

make forecasts on the output power of solar photovoltaic energy systems. They [62] 

found that the CNN model was able to significantly outperform the other ML models 

because of its robustness and generalization ability. 

 

CNNs process data in the form of arrays, 3D arrays for videos, 2D arrays for images or 

audio and 1D arrays for signals and other forms of sequence data [60], [61]. The flexible 

structure of CNNs have been designed to handle any of these data forms effectively. In 

terms of computation and hardware costs, 1D CNNs have an advantage over 2 and 3D 
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CNNs because their processing involves only 1D convolutions [61]. In the present study, 

we used 1D CNNs to predict daily diarrhoea cases in South Africa. The application of CNNs 

in the area of infectious diseases is discussed in Chapter 2.5. 

 

 

2.4.1.2.2.  Recurrent Neural Networks   
 

Recurrent neural networks (RNNs) are a class of artificial neural networks with feedback 

connections [16]. They operate by using these feedback connections to store the state of 

current input events in form of activations [20], [60]. Due to the ability of RNNs to store 

information, the actions of hidden neurons and output neurons might be determined not 

just by the current inputs and activations in the previous layers, but also by inputs and 

activations at earlier times [20], [60]. It is a state-of-the-art algorithm for sequential tasks 

such as speech and text recognition [60]. Although conventional RNNs have proven useful 

in many applications, they do not capture long-term dependencies during training due to 

vanishing and exploding gradients [13],[60]. 

 

Long-short term memory networks (LSTMs) a special kind of RNN were formulated to 

address the issue of vanishing and exploding gradients [13],[60]. They are commonly 

used to handle sequential tasks such as time series forecasting [16]. In addition, they have 

been successfully implemented in biomedical research, speech recognition and language 

modelling tasks [13], [20]. For instance, Pham et al. [13] conducted a study with an LSTM, 

that uses historical medical data to predict the future mental state of an individual. 

Helmini et al. [63] performed an investigation comparing the performance of LSTM, 

Random forests and Extreme gradient boosting and their applicability to forecast sales 

based on historical sales records. They [63] found that the LSTM model was able to 

outperform the other models due to its ability to preserve information and identify 

temporal relationships within the training data. In the present study, we used LSTMs to 

predict daily diarrhoea cases in the nine South African provinces. The application of LSTM 

for modelling infectious diseases is discussed in Chapter 2.5. 

 
 

 

2.4.2. Machine Learning Applications for Infectious Diseases 

 
The use of machine learning as a tool for medical analytics has become increasing popular 

in the last few decades [9]. ML has been applied to several aspects of medicine and public 

health, ranging from applications for computer vision, genomics, disease diagnostics, 

drug discovery, outbreak detection of infectious diseases, among others [9], [12]. The 

severity of infectious diseases has made many researchers focus on applications that aid 

in reducing their widespread occurrence to avoid outbreaks and epidemics. For instance, 

[10] used support vector machines (SVMs) and artificial neural networks (ANNs) to 

predict the outbreak of malaria in India, the model was able to give at least two-weeks 
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lead time for authorities to intervene and minimize risks that could arise from a 

pandemic. They used climate factors as input variables to classify the possibility of an 

outbreak. After training and testing, both models were successful, although the SVM 

model outperformed the ANNs by over 12% in terms of accuracy. Adamker et al. [64] also 

used SVM and ANN classifiers to predict the chances of hospitalizations due to Shigella 

and the shigella specie responsible for those hospitalizations. The Shigella clinical records 

used contained information such as age, shigella specie, year, month, among others. They 

used 30% of the dataset to evaluate the algorithms’ accuracy, and both SVM and ANNs 

had an accuracy of over 92% for both tasks. The high accuracy of both models indicate 

that these ML models could be used to strengthen treatment of disease caused by Shigella. 

Akbar et al. [65] used SVMs and AdaBoost ensemble model to develop a hybrid model 

that accurately detects the presence of Hepatitis in individuals. Successful and early 

detection of the virus could reduce the risk of death an individual. In [65] a SVM was used 

to select features for the AdaBoost model and they found that the SVM model was able to 

improve the prediction accuracy of the AdaBoost model by 6.39%.  

Some studies have applied deep learning models for infectious disease research. These 

studies also show that some deep learning models were superior in task performance 

when compared to other ML models. In China, Jia et al. [16] carried out a comparative 

study between a Gradient boosting model and an LSTM network. Both models were used 

to successfully predict the outbreak of several infectious diseases such as Typhoid and 

Malaria. For all predictive tests carried out, the LSTM network used only three input 

features and was able to outperform the gradient boosting model even though it trained 

with eleven input features. Chae et al. [66] also used DNN and LSTMs with temperature, 

humidity, and social media data to successfully predict the outbreak of infectious diseases 

such as Chicken pox and Scarlet fever in Korea. Both models were compared, and the 

accuracy of LSTM model was 5% higher than the DNN. The study also reported that both 

models could help to strengthen the current public health surveillance system in the 

country. Abideen et al. [67] assessed the performance of a hybrid bayesian-convolutional 

neural network on two tuberculosis (TB) benchmark datasets, to detect the presence or 

absence of TB in an individual. The accuracy of the model was compared to some classical 

CNN algorithms such as ResNet, AlexNet, and VGG19 network. Observations showed that 

all the CNN based models used had an accuracy of at least 70%. Fuhad et al. [68] 

conducted a comparative study with CNNs, SVMs and k- nearest neighbours to detect the 

presence of malaria parasites from microscopic images. The models were able to 

automate the manual process of malaria detection by clinicians. The CNN model 

outperformed the other models by obtaining an accuracy of 99.23%. 

All these studies indicate that the application ML algorithms especially SVMs, CNNs and 

LSTMs has been successful in various aspects of controlling infectious diseases. However, 

very little has been done with ML with regards to diarrhoea outbreak control, specifically 

in Africa. 
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Few studies have adopted ML techniques for diarrhoea outbreak studies in other parts of 

the world. For instance, Wang et al. [8] used ANNs to predict the outbreak of infectious 

diarrhoea in Shanghai province of China. They [8] reported that the ANN model gave one-

week lead time prediction information on the possible number of diarrhoea cases for that 

province. However, the dataset they used for the study composed of 209 weeks which 

means they used only 209 data points for training and testing the model. Meanwhile 

studies such as [21], [69] have shown that Neural Network models tend to overfit when 

a small sample size is used for training. Fang et al. [70] used a Random forest model to 

predict the outbreak of diarrhoea with climate information in Jiangsu province of China. 

Although their Random forest model was able to predict weekly outbreak of diarrhoea 

disease, it was validated with only the Autoregressive integrated moving average 

(ARIMA) model. However, studies such as [16], [70] have clearly reported that ARIMA 

models are limited to modelling problems with linear relationships which may not be the 

case for diarrhoea and climate factors. These diarrhoea outbreak studies although proven 

useful have some limitations, thus in this study, we used a traditional ML method, “SVM” 

and two deep learning algorithms, “CNN and LSTM” to predict the outbreak of daily 

diarrhoea cases in South Africa. These models were chosen because of their comparative 

advantages in their applications for infectious diseases. In order to make robust 

conclusions, we used a variety of datasets (real and synthetic datasets) to train and 

validate each model. A summary of ML applications for infectious diseases can be seen in 

Table 2.1. 

 

 

2.4.3. Current ML Methods Being Applied in the Fight Against 
COVID-19. 

 

The 2019 novel Coronavirus (COVID-19) disease was declared a pandemic on the 11th of 

March 2020 by the World Health Organization [71]. As of 8 Dec 2020, over 66 million 

cases and 1.5 million deaths were reported across the world [71]. Its continued spread 

has made researchers across the globe work tirelessly to better understand it and pursue 

possible solutions to reduce its transmission and spread. Several organizations and 

researchers have already been able to launch different platforms, and applications in the 

fight against COVID-19, in most of which machine learning has played a major role. 

Current examples of such applications are briefly highlighted as thus: 

 

Senior et al. [72] used ResNets, a convolutional neural network with hundreds of 

convolutional layers to develop a model called AlphaFold. AlphaFold was able to predict 

six different structures of proteins related to COVID-19. Once the protein structures of 

COVID-19 are known, it might be possible to predict which drugs can effectively contain 

those proteins [73]. Hu et al. [74] trained a multi-task deep neural network to identify a 

list of COVID-19 protein structures which were subsequently used as potential targets by 
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the model to predict commercially available drugs that could bind these proteins. 

Furthermore, Beck et al. [75] used Google’s BERT (Bidirectional Encoder Representations 

from Transformers) framework to develop a deep learning-based drug target interaction 

model. BERT [76] is a multi-layer bidirectional transformer encoder and a pretrained 

deep learning framework mainly used for natural language processing tasks. The model 

was also trained with a wide variety of antiviral drugs and target proteins; it was able to 

identify commercial drugs that could contain COVID-19 viral protein structures. Other 

studies such as [77] used naïve bayes algorithm to predict which commercial drug could 

be used for COVID-19 treatment. The model was trained to classify several labelled drugs 

and was able to achieve a classification accuracy of about 73%. 

 

The applications mentioned above were attempts to investigate the potential efficacy of 

existing drugs for the treatment of COVID-19 disease. Some studies have also made 

attempts to devise novel drug and vaccines against COVID-19. Zhavoronkov et al. [78] 

created a new drug molecule with an ML-based framework. They used several input 

features to train 28 different ML methods including Generative Adversarial Networks and 

genetic algorithms. Each of the models were further optimized using reward functions 

based on a reinforcement Learning technique. In an attempt to discover vaccine 

candidates, Ong et al. [79] used Vaxign-ML, a supervised ML framework for vaccine 

development to predict which viral protein will serve as the best vaccine candidate. 

Several bacterial and viral protective antigens were fed as input data to different 

algorithms such as SVM, random forest and XGBoost. After the models were trained and 

validated, the XGBoost recorded the highest accuracy.  

Some researchers have also focused on forecasting COVID-19 cases and deaths. For 

instance, a CNN was used to predict the daily number of confirmed cases in China [73]. 

Other models (LSTMs, MLP and gated recurrent units (GRU)) were trained alongside the 

novel CNN but the CNN outperformed the others with a very high margin. To confirm if 

predictions made by clinicians were accurate, Bandyopadhyay and Dutta [80] used 

LSTMs and GRU to evaluate how close their predictions were to actual confirmed cases. 

A combined LSTM-GRU architecture outperformed both individual models with an 

accuracy of over 10%.  

Other studies such as [73] [81] used ML methods such as LSTMs, GANs and fully 

connected networks to forecast the risks of an outbreak in several communities. 

Applications for medical imaging diagnosis that determine if a person has contracted the 

virus have also been developed with CNNs and ResNets [73]. In addition, CNNs achieved 

an accuracy of over 98% when it was used to differentiate the SARS-CoV-2 strain from 

other similar strains [82]. This application could be extended to improve the accuracy 

and reliability of current COVID-19 diagnostic tests. Although the above findings further 

prove that ML algorithms are applicable to a wide range of infectious diseases, the new 

COVID-19 virus remains a pandemic, and more study still need to be done. 
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2.4.4. Limitations of Machine Learning Algorithms 

The limitations of ML algorithms are widely documented in literature. For example, 

studies such as [21], [69], [83] reported that when the dataset available for training an 

ML algorithm is small, the algorithm may overfit the training data and may not properly 

generalize the problem at hand. For example, Yang et al. [84] used an LSTM to predict the 

next character in a given sequence. They [84] used datasets of two sizes for training and 

found that the LSTM performed better when the dataset with a larger sample size was 

used for training. However, studies like [19], [21] have argued that the availability of data 

is usually a challenge for most research exercises. Worse can be said about the 

accessibility of medical related datasets due to its sensitive and controlled nature. This 

issue can be addressed by adopting data augmentation techniques to generate artificial 

data [19], [21], [22].  

 
 

Table 2. 1: Summary of ML applications for infectious diseases 

Methods Contributions References 
SVMs and ANNs Malaria Outbreak Prediction 

 
    [10]     

ANNs, SVM Prediction of Shigellosis outcomes     [64]  
SVM, AdaBoost Hepatitis Disease Detection     [65]  
LSTM and Gradient Boosting Typhoid, Malaria, Cholera Outbreak 

Prediction 
    [16]  

DNN, LSTM Malaria, Chicken pox and Scarlet fever 
Outbreak Prediction 

    [66]  

Bayesian-Convolutional 
Neural Network 

Tuberculosis Disease Detection     [67]  

CNNs, SVM, KNNs Malaria Parasite Detection                                                                      [68]  
ANNs, SVMs, Random 
Forests 

Diarrhoea Outbreak Prediction                                    [8]  

Random Forests Diarrhoea Outbreak Prediction     [70]  
CNNs, DNNs, Naïve Bayes, 
Google’s BERT.GANs, SVM, 
Random Forests, XGBoost, 
LSTM, GRU 

COVID-19 Research     [72]-[75], 
[77]-[82]  

 

One popular method of data augmentation involves the use of generative adversarial 

networks (GANs), a class of neural networks to generate realistic looking data [19], [22]. 

Their massive success has aided the advancement of various real-world applications for 

security, fashion, and video games, among others. However, in recent years, the 

application of GANs have been extended to other areas of research to aid studies like 

natural language processing and time series forecasting [19], [22]. 
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For instance, Wen et al. [22] reported that GANs were successful in generating realistic 

datasets for various research disciplines to aid data augmentation for predictive analysis. 

In the field of medicine, Esteban et al. [19] used GANs to generate synthetic medical time 

series data. They [19] used the synthetic data as a training set on a Random forest 

classifier and the model was able to achieve an accuracy of 97% when it was tested on 

real world data. GANs were also used to generate synthetic patient records that included 

information such as their diagnosis and medications [19]. A qualitative evaluation was 

conducted and findings showed that it was difficult for medical experts to differentiate 

between the diagnosis and medication recommendations of a real doctor and the 

diagnosis and medications data generated by the GAN [97]. Che et al. [98] used synthetic 

time series electronic health records (EHR) data generated by GANs to augment real 

world time series EHR data. A CNN was used to compare predictions made with the real-

world data and predictions with the augmented data. Their results showed that 

utilization of the augmented data was able to boost the CNN’s task performance.  

Another limitation of ML technique is that most ML algorithms are designed to work with 

lots of parameters that have significant control over their behaviour and performance 

[58]. Manually tweaking these parameters may be difficult and would also require prior 

and expert knowledge [58], [83]. Since there is no default setting for the parameters of 

an algorithm to guarantee optimum performance, it is important for one to adopt 

techniques to tune the parameters of an ML algorithm. One popular method is to use 

evolutionary algorithms to search for an optimal solution given a wide range of possible 

parameter values [34], [35]. Karegowda et al. [85] used an evolutionary algorithm to 

initialize and optimize the structure of a neural network that was used for diagnosing 

diabetes in individuals.  

In this study we used generative adversarial networks (GANs) to generate artificial data 

for training because of their applicability to a wide range of problems [19], [22]. We also 

used relevance estimation and value calibration (REVAC), an evolutionary algorithm in 

tuning the parameters of our ML models because studies like [34], [35] have shown that 

using evolutionary algorithms such as REVAC to tune parameters improves the 

performance and accuracy of most algorithms.  

 

2.5. Summary  
 

In recent years, deep learning algorithms such as CNNs, and traditional ML algorithms 

such as SVMs have been widely used to develop countless important predictive models 

in the health care field. Despite their successes, their applications are still comparatively 

limited. For example, CNN has mainly been applied to image processing and classification 

problems but there is a dearth of literature on its application for diarrhoea outbreak. 

Although LSTMs has been used to predict the outbreak of some infectious diseases, very 
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little has been done to predict diarrhoea outbreak. The few ML models that have been 

used to predict diarrhoea were conducted outside Africa and are often constrained to 

data availability which greatly affects the performance of most algorithms. This study 

aims to fill this gap by adopting CNN, LSTM and SVM algorithms to predict the daily 

number of diarrhoea cases in South Africa. To address the issue of data availability, we 

boost the size of our training data with synthetic data generated with GANs.  
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Chapter 3  

 

3. Methods 
 
The focus of this study is to use ML methods to predict the possible number of daily 

diarrhoea cases in each province and asses the predictive performance of each ML 

method used. This chapter gives details on each of the ML algorithms used in this 

research. It also describes how the REVAC hyper parameter tuning algorithm was 

implemented.  

 

3.1. Convolutional Neural Network Architecture  

CNNs are a class of feedforward, deep Neural Networks that consists of multiple 

convolutional and activation layers, pooling layers, and a fully connected layer [59] as 

shown in Figure 3.1. In the convolutional layer, filters are applied to the input array in 

order to identify the features of the input data using the convolution operation. The 

convolution operation is a mathematical operation used for feature extraction [60] . Even 

though the size of the input array reduces after the convolution operation is performed, 

the most important features are still preserved, and the output of a convolution layer is 

called a feature map [60]. 

The activation layer is an extension of the convolution layer; here, after every convolution 

operation, the feature maps are passed through non-linear activation functions such as 

the Rectified linear unit (ReLU). The activation functions allow CNNs and other neural 

networks approximate almost any non-linear functions [59]. Other functions that can be 

used instead of ReLU are tanh or sigmoid but the ReLU is preferred in most situations 

[59]. After activation functions have been applied, the output feature maps are fed to the 

pooling layers.  

Pooling layers are designed to condense the information on the feature maps by 

summarizing its parameters [20], [59] . In addition, pooling layers combine semantically 

similar features together [60]. Examples of pooling functions are Max pooling, Average 

pooling, and Sum pooling [20], [59]. After iterating through several layers of convolution, 

activation and pooling, the final output is computed in the fully connected layer of the 

network [59], [60]. The fully connected layer uses these features to make decisions based  
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Figure 3. 1: A Simple CNN Architecture with two convolutional layers. The output of the last 
pooling layer is fed into a vector of activations and finally into the fully connected layer. The 
output neuron with the largest activation will be the network’s decision/prediction to the 
problem. 
 

 

on the problem specification. Similar to most Neural Networks, CNNs are trained with 

backpropagation and gradient descent [59], [60]. 

In this study, our CNN model was designed with 1D convolutions to match the format of 

our input data which is 1D and sequential in nature. Studies have shown that 1D CNNs 

are effective for several applications such as time-series forecasting, anomaly detection, 

text classification and health monitoring [61]. The performance of most neural networks 

including the CNN depends on its parameters and how they are configured [58]. Some of 

the important CNN parameters are, the number of convolution layers, filter size, number 

of epochs for training, etc [58].  

Fig 3.1 gives a brief overview of the input data fed into our CNN model during 

experiments. It also shows the expected output after the input data has passed through a 

series of convolutions and activations. Our experiment section (see section 4.5.1.2) gives 

details on the framework we used to design our CNN model, the parameters we chose to 

tune and the methods we used in tuning those parameters. 
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3.2. Long-Short Term Memory Network Architecture 

LSTMs are another example of Neural Networks under the category of RNNs that 

addresses the issue of exploding and vanishing gradients [13]. They consist of memory 

blocks which contain memory cells that allow gradients flow through long sequences. The 

memory cells maintain its state over time and is managed by gating units that control 

how the memory cell memorize, erase, and expose information [13], [20]. These gating 

units which are the input gate, the output gate and the forget gate uses sigmoid functions 

that set elements of each gates to values in the range between zero and one [13]. The 

input gates supervises how input activations are added into the memory cell while the 

output gate supervises which part of the memory cells are read into the rest of the 

network and finally, the forget gate supervises which part of the memory cells are erased 

[20]. 

In this study, our LSTM model was designed to predict future outbreak of diarrhoea cases 

in each South African province. The performance of the LSTM also depends on how its 

parameters are configured [58]. Some important LSTM parameters are number of hidden 

units, optimizer, batch size, number of epochs for training, etc.  

Fig 3.2 shows the basic workflow of our LSTM model. The input data fed into our model 

during experiments are input series for each climate feature and previous diarrhoea 

cases from time (t0 to tn). The final output of the model is the predicted number of 

diarrhoea cases for time tn+1. Our experiment section (see section 4.5.1.2) gives details on 

the framework that was used to design the LSTM model, the parameters we chose to tune 

and the methods we used in tuning those parameters. 
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Figure 3. 2:  Basic Structure of our LSTM model with two LSTM layers. 

 
 
 

3.3. Support Vector Machines Architecture 
 

The main function of an SVM is to find hyperplanes capable of creating margins that 

separates datapoints in a hyperspace[20], [50] as shown in Figure 3.3. An SVM algorithm 

involves the projection of data points in a training dataset with n input variables into an 

n-dimensional surface called a hyperplane; the hyperplane that maximizes the distance 

between the data points (that is, the hyperplane with the maximum margin) will be 

chosen [50]. The larger the margin, the lower the generalization error [50]. New samples 

are mapped onto the same space and the binary outcome is predicted based upon which 

side of the hyperplane each sample falls on. In a situation where the training data is not  

linearly separable, SVMs uses a technique called the kernel trick to separate the nonlinear 

data in a higher dimensional space [20], [50]. They use kernel functions to find separators 

in the high dimensional feature space. Some notable examples are the polynomial, 

gaussian and RBF kernel functions [20]. Unlike neural networks, SVMs uses fewer 

parameters that depends on the kernel function chosen during training. In this study we 

used the RBF kernel function whose main parameters are the regularization parameter, 

‘C’ and gamma. More details on how these parameters were set for all our experiments 

are given in Section 4.5.1.2. 
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Figure 3. 3:  An SVM trained with samples from two classes (Source: [20], [50]). The data points that 
fall on the dotted lines are samples from the training dataset that are closest to the decision 
boundary. They are also called support vectors and determine the margin with which the two classes 
are separate. Changing or deleting the support vectors will change the position of the hyperplane. 

 

 

 

 

3.4. Relevance Estimation and Value Calibration  
 

REVAC is an evolutionary method formally designed to tune the parameters of 

Evolutionary algorithms [34], [35]. Given an objective, a population of parameter vectors 

and n number of iterations, REVAC explores, selects, and evaluates a set of possible 

parameter values. By adopting some concepts of evolution, such as mutation, 

recombination, selection and replacement, it improves and updates the distribution of 

the parameter vectors such that after each iteration, there is a high chance of obtaining 

optimal performance when a combination of those parameters values are adopted for 

training an algorithm [34], [35]. Figure 3.4 gives a brief overview of how REVAC is used 

to tune the parameters of the ML algorithms. Details of how REVAC algorithm is 

implemented can be summarized in the following steps: 
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Figure 3. 4: Workflow of REVAC Parameter Tuning. 
 

Details of how REVAC algorithm is implemented can be summarized in the following 

steps: 

1. Initialize a population of m parameter vectors and define a utility function 

(objective).  

2. The performance of each new vector is measured based on the utility function. 

3. Select n vectors with the highest measured utility to become parents of a new child 

vector. 

4. Create one child by performing recombination with the selected parents. 

Recombination is a multi-parent crossover operation with uniform scanning [34], 

[35].  

5. Mutate the offspring created from the recombination step. A mutation interval is 

calculated, and a random value is uniformly chosen from this interval [34], [35].  

6. The new offspring replaces the worst performing vectors in the population. 

7. The performance of the new vectors are measured with the utility function and all 

steps are repeated until a stopping condition is met. 

 

In this study, we used REVAC to tune the parameters of three ML algorithms we adopted. 

See section 4 on details of how REVAC was implemented.  

 

 

3.5. Generative Adversarial Networks 
 

GANs as shown in Figure 3.5 are a common example of deep generative models that are 

used in generating realistic high-dimensional objects such as images and sequences. They 

were formally proposed for image generation in 2014 by Goodfellow et al. [99]. GANs can 

also be described as a class of ML algorithms that consists of two neural network models 

called a generator and the discriminator. These models are usually trained via an 

adversarial process whereby the generative model captures a random distribution and 

outputs some synthetic data and the discriminative model estimates the probability that  
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Figure 3.5: Basic workflow of a GAN (Source: [100]). G and D represents the generator and 
discriminator respectively while Xtrain represents the inputted training data. 
 

 

the synthetic data came from the input training data rather than the generator model 

[20][99]. When training begins, the discriminator easily tells that the synthetic data is 

fake. However, as training progresses, the generator gets better at generating realistic 

samples which easily fools the discriminator. The training procedure is divided into two 

stages and achieved with backpropagation whereby the aim of the GAN is for the 

generator to maximize the probability of fooling the discriminator when distinguishing 

between synthetic and real samples [20]. In the first stage, the discriminator uses 

backpropagation to optimize its weights and in the second phase, the weights of the 

discriminator are kept constant while the weights of the generator are affected by the 

backpropagation algorithm. In this study, we used GANs to generate synthetic samples to 

augment the available real-world data. See section 4 on details of how GANs was 

implemented.  

 

 

3.6. Summary 
 

In this study, we used three ML algorithms (CNNs, LSTMs and SVM) to predict daily 

number of diarrhoea cases in South Africa. The approach that was used to design our 

models was similar to what have been done in previous predictive ML studies in the 

health care domain however, there were some slight peculiarities. For instance, in 

designing our CNN model, 1D convolutions were used. We used GANs to generate 

synthetic data for data augmentation. REVAC tuning was also used to tune the parameters 

of all three ML algorithms. REVAC tuning is an evolutionary strategy that has mainly been 

applied in optimizing evolutionary algorithms. 

 



 
 

30 
 

Chapter 4 
 

4. Experimental Design 
 

The experiments1 in this study were designed to determine the most effective ML 

algorithms in terms of performance accuracy (proposed in section 1.2.) for predicting the 

possible number of daily diarrhoea cases (that is, to give one day lead time) in each of the 

9 provinces separately with respect to a given set of training data. The performance of 

each of the proposed ML algorithms may be influenced by several factors such as: 

 

• Input data for the ML algorithms (CNN, SVM & LSTM) described in chapter 3. 

• Choice of parameters.  

• Amount of training and testing data. 

• Method of parameter tuning.  

 

The effects of the above factors were investigated through a series of experiments for 

each ML algorithm. This section aims to give a detailed explanation of the various 

experiments carried out to show the effects of the factors above.  

 

 

4.1. Datasets 
 

The datasets used for this study contained 9 different features and can be categorized 

into two: 

a) Health data: It consists of Clicks pharmaceuticals daily sales records of 

loperamide, an anti-diarrheal compound that has been evaluated in the treatment 

of patients with chronic non-specific diarrhoea in South Africa and other parts of 

the world [1] . The data contains a 10- year period of total number of loperamide 

purchased between November 2008 and March 2018 in every Click pharmacy 

across each of the nine South African provinces. This data was used as a proxy for 

diarrhoea cases in the region. In this study, the number of diarrhoea cases per day 

for a specific province was computed as the number of loperamide sales per day 

associated with the province. Throughout the experiments, the daily loperamide 

sales data was referred to as daily diarrhoea cases dataset. 

 

b) Climate data: Climate factors such as Maximum temperature, Minimum 

temperature, Air temperature, Specific humidity, Potential evaporation rate, 

 
1 https://github.com/aminalawal/Predicting-Diarrhoea-Outbreak-with-Climate-Change 



 
 

31 
 

Precipitation rate, Surface pressure, and Wind velocities for each province 

between the period of November 2008 and October 2019 were obtained from 

National Centre for Atmospheric Research (NCAR)/National Centre for 

Atmospheric Prediction (NCEP) (https://psl.noaa.gov/ ). These data are known as 

reanalysis datasets. Please see for [86] more information. 

 

4.2. Lag Variables 
 

For most time series prediction studies [66], making forecasts based on past observations 

is usually recommended because patterns of the past are likely to be repeated in the 

future. Therefore, the selection of past values (lags) from all input features is a crucial 

step and may be important for learning during model training. For each experiment, we 

tested the predictions of the three ML algorithms with respect to four different lag 

periods from all input features. The lag periods we considered were a lag of 1 day, lag of 

5 days, lag of 2 weeks and lag of 3 weeks. For example, a lag of one day means that the 

predictions made by a model for the 6th of January 2018 was made with input variables 

(for all features) of the 5th of January 2018 while a lag of 5 days means predictions for the 

6th of January 2018 was made with input variables (for all features) of the 1st to the 5th of 

January 2018. 

 

 

4.3. Data Pre-Processing and Post Processing 
 

The original climate and diarrhoea cases datasets for each province collected for the 

study were ordered in the form of time series. The datasets for each province were 

processed separately since the diarrhoea case prediction model for each ML algorithm 

was developed per province. The diarrhoea cases data collected was in a daily format 

while the datasets for the climate features were collected in an hourly format. To use the 

climate features to predict daily diarrhoea cases, we had to change the format from six-

hourly to a daily average format. This was achieved by aggregating the six-hourly data 

values for every 24 hours and dividing by the mean which is four (since, every six-hours 

in a 24-hour time period will contain four data values). For each province, the climate 

features datasets had more data points than the diarrhoea cases datasets but for our 

experiments, we picked data points based on the same date for both datasets so that the 

training and testing data for each province will contain an equal number of data points 

for both datasets. While there was no occurrence of missing values for the climate 

features datasets the very few occurrences encountered for the diarrhoea cases datasets 

were handled as no cases for that day. For all experiments and models, the ratio of 

training to testing data were divided in the 70/30 ratio. The datasets with the earlier 

dates were used for training while the datasets with later dates were used to test and 

verify the accuracy of the models.  
 

https://psl.noaa.gov/
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Table 4. 1: Overview of all Experiments. Experiment I, II & III are fully described in sections 4.5.1, 
4.5.2 & 4.5.3 respectively 

 

Experiment 
Name 

Experiment 
Description 

ML 
Methods 
Used  

Method of 
parameter 
tuning 

Parameters 
Tuned  

Data 
Used 

Research 
Objective 
Addressed by 
the 
Experiment 

Experiment I  Predictions 
with original 
data only 

SVM, 
LSTM, 
CNN 

Grid Search See Tables 
(4.2a - c) 

Original 
data only 

See objective 1 
in Section 1.2  

Experiment II  Predictions 
with original 
data and 
synthetic 
data 
generated by 
GANs 

SVM, 
LSTM, 
CNN 

Grid Search See Tables 
(4.2a - c) 

Original 
and 
Synthetic 
data 
(see 
tables 
4.3&4.4) 

See objectives 1 
& 2 in Section 
1.2 

Experiment 
III 

Predictions 
with ML 
methods 
whose 
parameters 
were tuned 
with REVAC 
and whose 
input data 
were the 
same as 
Experiment II 

SVM, 
LSTM, 
CNN 

REVAC 
tuning  

See Tables 
(4.5a-d) 

Original 
and 
Synthetic 
data 
(see 
tables 
4.3&4.4) 

See objectives 1 
& 3 in Section 
1.2 

 

 

 

 

Another pre-processing step we took before training is the selection of a lag period for all 

our input features. Once a lag period is selected the previous values based on the selected 

lag period and training data ratio is processed and fed as input to the prediction model. 

To improve the efficiency of ML models, normalization techniques are usually adopted to 

speed up convergence and learning process. Normalization is also required when the 

features have different ranges/scales. Since all the climate features and diarrhoea cases 

have different numeric scale, we normalized the values of these features for our 

experiments. The normalization technique adopted depends on the type of ML algorithm 

and the type of dataset available for training (numerical/categorical). For all 

experiments, the normalization technique adopted for our CNNs and LSTMs is the Min-

Max Normalization /Scaling technique from the python Scikit-Learn library because it is 

largely adopted for most neural network regression models. For the SVM model, we 

adopted the Standard Scaling technique from the python Scikit-Learn library for all 

experiments since SVMs assume that the data given as input is within a standard range. 
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In addition, we observed that after normalizing/scaling the input values of our models, 

the output/result will correspond to the normalized range. Hence to interpret the results 

from the models, we inversed the normalizing/scaling initially performed to transform 

the output back to its original scale. 

 
 

4.4. Performance Evaluation Criteria 
 

To compare and evaluate the performance of an ML algorithm, several evaluation criteria 

such as Mean absolute error (MAE), Correlation Coefficient (R), Mean absolute 

percentage error (MAPE), Root mean square error (RMSE) and Coefficient of 

determination (R2) have been used in previous research [8], [16], [66]. Although proven 

useful, some of these error metrics such as the MAE make use of absolute values which is 

often avoided in many mathematical studies, the RMSE on the other hand avoids the use 

of absolute errors and is superior at disclosing differences in model performance [87] . 

Other studies such as [88] have shown that a specific metric may be chosen for a certain 

purpose. For instance, if the absolute values of the estimated predictions by a model is 

important, the RMSE may not be an appropriate metric. However, if evaluations based on 

understanding of predictions is desired, the RMSE should be used [88] . In this study, we 

used the RMSE to evaluate the accuracy of our ML models in all experiments not just 

because we aim to compare differences in ML model skill but also because it is widely 

used in many prediction studies including studies for climate research and infectious 

diseases prediction [8], [16] .  

RMSE is the square root of the mean of the squared differences between actual outcomes 

and the predictions made by a model. It is calculated using the equation below: 

 

RMSE = √
1

𝑛
∑ (𝑦𝑡 − 𝑦�̂�)2𝑛

ⅈ=1
      (4.1) 

 

In the equation (4.1), 𝑦𝑡 is the actual value while 𝑦�̂� is the predicted value and n is the 

total number of observations to be analysed. The model with the smallest RMSE error is 

considered to be the best performing model in terms of prediction accuracy.  

 

 

 

 



 
 

34 
 

4.5. Experiments to Determine the Best Performing 
Algorithm 

 

To determine the best performing ML algorithm for predicting the possible number of 

daily diarrhoea cases (that is, prediction for one day lead time), we compare the RMSE 

from the predictions made by the three ML algorithms with different factors with respect 

to the factors listed in section 4. For every algorithm and experiment, lower RMSE errors 

indicate better prediction accuracy. The experiments designed to investigate the effects 

of these factors were broken down into 3 sections. They are: 

1. Experiment I: predictions with original data only 

2. Experiment II: predictions with both original and synthetic data 

3. Experiment III: predictions with both original and synthetic data and REVAC 

parameter tuning 

 

4.5.1. Experiment I: Predictions with Original Data Only 

The first set of experiments conducted for this study were implemented with the original 

data obtained from a clinical source (diarrhoea cases) and 8 climate features data. The 

experiments were carried out across four different lags periods (see section 4.2) for each 

ML model across all provinces. After pre-processing, there were 3760 data instances 

across all 9 features available for both training and testing. This was divided in the ratio 

70/30 for training and testing. Each ML algorithm was trained and tested with a specific 

set of parameters. 

 

4.5.1.1. Grid Search Parameter Tuning 

Grid search is a parameter tuning technique that trains an ML algorithm with a 

combination of possible parameters (specified by the user) on the training set and 

evaluates and outputs the best parameters based on a given performance metric. We used 

RMSE as the performance metric for this study. The Grid search parameter tuning was 

implemented with the python Scikit-Learn Grid Search CV package. The grid search 

tuning was implemented for each ML across all provinces. The input data used for the 

grid search tuner was selected per province and a lag period of 5 days across all features 

were also used as input for each ML model.  
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The grid search tuning was implemented in the following steps: 

1. Selection of a province. 

2. Selection of an ML algorithm (CNNs, LSTMs, SVMs). 

3. The climate features and diarrhoea cases data for a specific province and a lag of 

5 days was selected as input. 

4. Pre-processing for the chosen algorithm took place. 

5. The selected parameters to be tuned for the chosen algorithm were tuned with 

the grid search tuner. 

6. The best set of parameters were recorded.  

See Table 4.2 (a, b, c) for the list of parameters we tuned for each ML model. 

 

4.5.1.2. ML Model Configuration 
 

• SVM Model - SVMs were one of the ML algorithms that was proposed for this study 

and are described in Chapter 3. For building the SVM daily diarrhoea cases 

prediction model, the python Scikit-Learn package for SVM was adopted in this 

study. An SVM with Radial Basis Function (RBF) kernel was used for prediction. 

An SVM with RBF kernel usually have two important parameters that influences 

performance. They are C and gamma (). To determine the optimal values for C 

and gamma (), grid search is used (see section 4.5.1.1 and Table 4.2(a)). The best 

parameters selected by the grid search tuner for a specific province was used to 

make predictions for that province across all lags. Before training, the data pre-

processing technique explained in section 4.3 is implemented and after training 

all scales are reversed before evaluations are made on the model’s prediction.  

 

• LSTM Model – LSTMs were also used to make diarrhoea cases predictions and are 

described in Chapter 3. All LSTM models were implemented with the python Keras 

deep learning Library and TensorFlow backend. The models were configured to 

make reproducible results thus, a fixed random seed was set for all experiments. 

We used the Adam optimizer, mean square error loss function and Tanh activation 

function for all our experiments because studies have shown them to be very likely 

to achieve good results [16], [66] . Other parameters were selected with the grid 

search parameter tuner. See Table 4.2(b) for more details. The best parameters 

selected by the grid search tuner for a specific province was used to make 

predictions for that province across all lags. Before training, the data pre-

processing technique explained in section 4.3 was implemented and after training 

all scales are reversed before evaluations are made on the model’s prediction. 
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• CNN Model – CNNs were used to make diarrhoea cases predictions for each 

province and are also discussed in Chapter 3. All CNN models were implemented 

with the Keras deep learning Library and TensorFlow backend. The models were 

configured to make reproducible results thus, a fixed random seed was set for all 

experiments. We used the Adam optimizer, mean square error loss function and 

Relu activation function for all our experiments because they have been known to 

achieve accurate results for most CNN prediction studies [22]. Other parameters 

were selected with the grid search parameter tuner. See Table 4.2(c) for more 

details. The best parameters selected by the grid search tuner for a specific 

province was used to make predictions for that province across all lags. Before 

training, the data pre-processing technique explained in section 4.3 was 

implemented and after training all scales are reversed before evaluations are 

made on the model’s prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

37 
 

Table 4. 2: Grid Search and REVAC Parameter Boundaries for all SVM, LSTM & CNN Prediction 
Models 

(a) Parameter Boundaries for the SVM Model 

Parameter Parameter Range 
C {1, 100} 
 {0.001, 0.1} 

 

(b) Parameter Boundaries for the LSTM Model 

Parameter Parameter Range 
Neurons {6,12,16,18,24,28,32,50,64,100} 

No of epochs {40,50,60,70,100,120,150,200} 
Batch size {4,16,18,32,64} 

No of stacked LSTM layers {1,2,3} 
Learning rate {0.001, 0.01} 
Dropout rate {0.1,0.2,1.0} 

Optimizer Adam (fixed) 
Loss function MSE (fixed) 

Activation function Tanh (fixed) 

 

(c) Parameter Boundaries for the CNN Model 

Parameter Parameter Range 
Convolution layers {1,2,3} 

 Kernel size [6,12,16,18,24,28,32,64] 
No of epochs {40,50,60,70,100,120,150,200} 

Pool size {1,2} 
Batch size {4,16,18,32,64} 

Learning rate {0.001, 0.01} 
Optimizer Adam (fixed) 

Loss function MSE (fixed) 
Activation function Relu (fixed) 
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4.5.1.3. Summary of Prediction Tasks Conducted for Experiment I  
 

The set of tasks designed for each of the three proposed ML algorithms with respect to 

the original data (as explained in section 4.5.1) can be summarised in the following 

steps:  

1. Selection of a specific province. 

2. Selection of an ML algorithm (CNNs, LSTMs, SVMs). 

3. The climate features and diarrhoea cases data for a specific province and a 

specific lag period (1 day, 5days, 2weeks, 3weeks) was selected as input. 

4. Pre-processing for the chosen algorithm took place. 

5. Each ML model was configured based on section 4.5.1.2 and the parameters 

for the algorithm were set based on the selection made by the grid tuner (see 

section 4.5.1.1) 

6. Post-processing took place and predictions were made. 

For each province, these steps were repeated 3 times for each lag for each ML 

algorithm across all province and the average RMSE result for each lag and each ML 

was stored. To determine the algorithm with the best performance, we compare 

their average RMSE across all lags per province. 

 

4.5.2. Experiment II: Predictions with Original Data and 
Synthetic Data 

The second set of experiments conducted for this study were implemented with a 

combination of the original data (see section 4.5.1) and synthetic data generated by GANs 

in different proportions across all lags. The aim of this experiment was to determine the 

effect of training data size (based on the combination of both synthetic and original data) 

to the prediction performance of all ML algorithms. This section tries to explain the 

experiments carried out to generate the synthetic data as well as the experiments for the 

ML predictions we made afterwards (that is, with both original and synthetic data). 
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4.5.2.1. Synthetic Data Generation  

We used GANs to generate synthetic data for this study. This section explains how GANs 

were used to generate realistic diarrhoea and climate datasets. The synthetic data 

generated were used to augment the original datasets we had for training and testing.  

• Data pre-processing: To train the GAN, the original daily diarrhoea and 8 climate 

features datasets with a sequence length of 24 was used per province. The datasets 

were normalized/scaled with the Min-Max scaler python Scikit-learn package 

with a feature range of (-1,1). After pre-processing, there was 3736 data instances 

across all 9 features available for training. After synthetic samples were generated, 

the datasets were reverted to their original scale.  

 

• GAN Architecture: The GAN model we used made use of LSTM network for both 

the generator and the discriminator. The choice of the LSTM network was due to 

the fact that studies have shown them to be good for learning sequences [16], [19] 

and our training data was time series in nature. The LSTM network we used for 

our generator had a depth of 3 with 100 hidden units while our discriminator 

LSTM network had depth of 1 with 100 hidden units as well. Since GANs generate 

samples from a specific latent space, (a latent variable is an unobserved variable, 

and a latent space is a multi-dimensional vector space of these variables. The 

latent dimension is basically the size of the latent space) we tried different latent 

dimensions ranging from 5 to 70. We noted that larger latent space dimensions 

generate more realistic looking samples especially with multivariate datasets. The 

cross-entropy loss was used to measure the performance of the discriminator and 

generator.  

 

• Sample Generation: To generate samples, the GAN model was trained with 

different batch sizes (8, 16, 32) across different epochs (200,300,400,500) and 

latent dimensions. To determine if the synthetic samples were close to the original 

data, visual comparison between the original and synthetic data was done. In 

addition, we computed the average difference measure between the original and 

synthetic data to further determine how close the synthetic data is to the original 

data. In the early stage of learning, the samples were different but as learning 

progresses further, the model eventually generates realistic looking samples for 

the diarrhoea and climate features dataset. After training, the GAN model was used 

to generate 20,000 synthetic samples. These samples were in the form of samples, 

timesteps (also known as sequence length) and features where each time step can 

be used as a lag period during prediction experiments. The GAN model was trained 

separately for each province and for each province, 20,000 synthetic samples with 

a sequence length of 24 was generated and used for our subsequent experiments.  
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4.5.2.2. Data Augmentation 
 

The datasets used for training the GAN model were the daily diarrhoea cases and daily 

climate features datasets for all the 9 provinces. After training, twenty thousand synthetic 

data samples which had 24 timesteps for each of the 9 features (that is, diarrhoea cases 

and climate variables) were generated for each province. To prepare the dataset for 

predictions with the three ML models, a combination of the synthetic and original dataset 

was made for each province.  

The data from both the original and synthetic set based on a specific lag period were 

augmented in the proportions shown in Table 4.3. The GAN model in this study does not 

generate Date as a variable rather it generates samples in the form of a series/sequence. 

Therefore, the two datasets (original and synthetic) was combined in two ways explained 

below.  

 

1. Upward Augmentation: The original data was added to the top of the synthetic 

data. When the datasets are augmented this way, the training set will include a 

combination of the original and synthetic samples, but the test set will include only 

the synthetic datasets since it is at the bottom and it is also has a larger sample 

size. 

 

2. Downward Augmentation: The original data was added to the bottom of the 

synthetic data. When the datasets are augmented this way, the training set will 

include mainly the synthetic datasets due to its quantity and the test set will 

include the original dataset since the original data was added to the bottom of the 

synthetic data. 

 

For each distribution in Table 4.3, the datasets for the upward augmentation and 

downward augmentation were used separately by the three ML Models for prediction 

across each province. For example, if a dataset for a specific province is prepared with 

the 50/50 distribution in table 4.3, it means that 50% (10,000 samples) of the synthetic 

data and 50% (1881 samples) of the original data will be augmented in both upward and 

downward manner and will be used separately by an ML model both for prediction. In 

addition, after augmentation, 70 percent of the total datasets was used for training while 

the remaining 30 percent were used as test set. The datasets used for prediction per 

province per lag (that is, lag of 1, lag of 5, lag of 2weeks, lag of 3 weeks) in Experiment II 

are summarised in Table 4.3. 
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4.5.2.3. Summary of Prediction Tasks Performed in Experiment II  

The set of prediction tasks conducted for Experiment II were implemented with a 

combination of the original data and synthetic data which both included diarrhoea cases 

and 8 climate features. Before training, the data for a specific province is pre-processed 

according to a lag period and a specific proportion in both upward and downward 

augmentation. For each province, all experiments were carried out across four different 

lags periods (see section 4.2) and across all proportions (see Table 4.3). This was done 

for each ML model for both upward and downward data augmentation. For all the 

prediction tasks carried out in Experiment II, the configuration for the three ML models 

were the same as the one used in Experiment I. The parameters selected by the grid 

search tuner for each ML algorithm and each province in Experiment I were also used for 

all the tasks in Experiment II. The procedure for the tasks carried out in Experiment II 

can be summarised in the following steps: 

1. Select a specific province. 

2. Select an ML algorithm (CNNs, LSTMs, SVMs) for prediction task. 

3. Climate features and diarrhoea cases data for a specific province and a specific lag 

period (1day, 5days, 2weeks, 3weeks) and a specific proportion for a specific 

augmented data (that is, upward or downward augmentation) was selected as 

input. 

4. Pre-processing for the chosen algorithm took place. 

5. For each province, the selected ML model was configured based on section 

4.5.1.2 and the parameters for the algorithm are set based on the selection made 

by the grid tuner in section 4.5.1.1. 

For each province, these steps were repeated 3 times for each lag for each 

proportion and each combination for each ML algorithm and the average RMSE 

result was stored each time. To determine the algorithm with the best performance, 

we compare their average RMSE across all lags and proportions per province for 

upward and downward data augmentation separately. 
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Table 4. 3: Distribution and proportions of dataset used for prediction for each features and 
provinces 

 

Synthetic Samples 
 (size =20,000) 

Original Samples 
 (size = 3,763) 

90% (18000) 10% (376) 
80% (16,000) 20% (753) 
70% (14,000) 30% (1130) 
60% (12,000) 40% (1505) 
50% (10,000) 50% (1881) 

 

 

4.5.3. Experiment III: Predictions with Original Data and 
Synthetic Data and REVAC Parameter Tuning 

The third set of experiments conducted for this study were implemented with a 

combination of the original data and synthetic data generated by GANs in different 

proportions (see section 4.5.2.2). The aim of this experiment was to determine the effect 

of REVAC parameter tuning on the performance of the predictions made with a 

combination of both the original and synthetic dataset. The major difference between 

Experiment II and Experiment III is the method used for tuning the parameters of each 

ML model. In Experiment III, the parameters of each ML model were tuned with REVAC 

tuning algorithm explained in the Method section (see section 3.4). This section tries to 

explain the how REVAC tuning was used to tune the parameters of all the ML algorithms 

we used for the daily diarrhoea case predictions. 

 

4.5.3.1. REVAC Tuning  

The REVAC algorithm adopted for this study was based on the methodology used by 

Nannen & Eiben [34]. REVAC was implemented at a layer that aids in searching for 

optimal parameter values for an ML algorithm trying to solve the problem of predicting 

daily diarrhoea cases. The input data used for this task were divided into three parts. In 

other words, they were used separately for every REVAC tuning iteration per province. 

They are: 

• The original data 

• The combination of original and synthetic in the 50/50 proportion for upward 

dataset augmentation (see section 4.5.2.2 and Table 4.3).  

• The combination of original and synthetic in the 50/50 proportion for 

downward dataset augmentation (see section 4.5.2.2 and Table 4.3).  
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For each of the above input data, a lag period of five days across all features was used as 

input data for tuning each ML algorithm. The objective of the REVAC tuner was to 

minimize a given fitness function. The fitness function of this experiment was calculated 

as the RMSE of the predictions made by the ML algorithm for each of the above input data. 

The best parameters yielded by each ML algorithm for each of the above input data based 

on the REVAC tuner was stored and used later for final predictions.  

REVAC itself works with a set of parameters that determines how efficiently it runs. The 

list of REVAC parameters and their values can be seen in Table 4.4. These values were 

chosen based on the recommendations of the paper by Nannen & Eiben [34]. To tune the 

parameters of each ML algorithm these REVAC parameters must be set first. The list of 

parameters for each ML algorithm to be tuned were the same as the parameters we tuned 

with the grid search tuner in Experiment I. Table 4.2 contains this list of ML parameters 

we tuned with REVAC. The REVAC tuning task can be summarized in the following steps: 

1. A generation size of hundred and an initial population size of 80 was set. 

2. Select a province. 

3. Select an ML algorithm (CNNs, LSTMs, SVMs) to be tuned. 

4. One of the 3input data (explained above) for a specific province and a lag of 5 days 

was selected as input. 

5. Pre-processing for the chosen algorithm took place. 

6. The chosen parameters to be tuned for the selected algorithm were tuned with the 

REVAC tuner. 

7. After hundred generations, the set of parameters with the best fitness (that is, 

least RMSE) is recorded. 

8. Repeat these steps separately for the other two sets of input data explained above. 

This means that for each province, the REVAC tuner will yield a set of fittest 

parameters for the three set of input data for each ML algorithm. Figures 4.1 to 4.3 

show a heatmap of how the RMSE error changes after each generation during REVAC 

tuning for each algorithm. These figures are for the North West province’s original 

data only. By observing these figures, we notice that in the early generation, large 

RMSE are yielded but as time progresses, the RMSE becomes smaller and the 

algorithm converges after at least 50-60 generations for the deep learning models. 

The SVM model on the other hand converges earlier than 50-60 generations. 

 

4.5.3.2. Summary of Prediction Tasks Performed in Experiment III after 
REVAC Tuning 

After the REVAC parameter tuning tasks have been completed, three fittest set of 

parameters were recorded for the three sets of input data was used for the REVAC tuning 

tasks in section 4.5.3.1. These parameters were used to carry out final predictions and 



 
 

44 
 

the best results were selected. The datasets used for predictions in Experiment II were 

the same used for predictions in Experiment III.  

For all the prediction tasks carried out in Experiment III, data pre-processing steps and 

the configuration for the three ML models were the same as the one used in Experiment 

I. However, the parameters we used for these experiments were the parameters selected 

by the REVAC tuner. Since the REVAC tuner selected three sets of fittest parameters for 

each province based on three set of input data, we had to choose one of these set of 

parameters for a specific province for our final prediction. To achieve that, the following 

steps were taken: 

1. Select a specific province. 

2. Select an ML algorithm (CNNs, LSTMs, SVMs) to make prediction. 

3. Climate features and diarrhoea cases data for a specific province and a specific lag 

period (1day, 5days, 2weeks, 3weeks) and a specific proportion for a specific 

augmented data (that is, upward or downward augmentation) was selected as 

input. 

4. Pre-processing for the chosen algorithm took place. 

5. If upward data augmentation dataset was selected as input, the ML model 

parameters was configured based on the first set of fittest REVAC parameters (that 

is, either the original or upward dataset parameters selected by REVAC tuner was 

used. Downward dataset fittest parameters were used instead of upward when 

downward data augmentation was selected as input). 

6. The predictions were made thrice and the average RMSE was stored. 

7. Steps 1-6 were repeated for each lag, each proportion, and each dataset 

augmentation for each ML algorithm over each province. 

8. For each ML algorithm and each province, the average RMSE across all lags and all 

proportions for each dataset augmentation were calculated and stored.  

9. Steps 1-8 above were repeated with the second set of fittest parameters 

depending on which set of fittest parameters were used in step 5. 

10. The two final RMSE average based on the first set of fittest parameters and second 

set of fittest parameters will be compared and the one with the least RMSE was 

recorded while the other was discarded. 

11. To determine the algorithm with the best performance, we compare their 

average RMSE across all lags and proportions per province for upward and 

downward data augmentation separately. 

 

4.6. Statistical Analysis Performed for all Experiments 

We conducted some statistical tests to make robust conclusions about our research 

objectives. We drew up some hypothesis based on our research objectives in section 1.2 

and experiments in Table 4.1. The hypothesis we drew up were: 
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1. Model performance are similar across each province and over all provinces. 

2. The use of REVAC parameter tuning during training is similar to the Grid search 

parameters. 

The first hypothesis stated in 1 above addresses the main objective of our study which is 

“to detect which supervised machine learning techniques (CNN, LSTM and SVM) 

performs best in terms of high accuracy when predicting number of diarrhoea cases given 

a range of datasets (for example, varying proportions of real and synthetic climate 

variables and diarrhoea datasets) for training and testing”. It addresses this objective by 

checking if the performance of the ML models is similar. It achieves this by testing 

statistical significance between the prediction results of each ML model against the other 

(that is, CNN vs LSTM, LSTM vs SVM and CNN vs SVM) for each province and over all 

provinces (average results across all province.) in Experiment I, II and III respectively. 

The data used for conducting these tests can be seen in Table 5.1-5.2 (results for 

Experiment I) Table B1-B18 in Appendix B (results for Experiment II) and Table C1-C18 

in Appendix C (results for Experiment III). 

The second hypothesis stated in 2 above addresses the objective which states that 

“investigate to what extent REVAC parameter tuning can improve the accuracy of the 

three models”. It addresses this objective by checking if the results of a ML model are 

similar when either of the tuning methods are used. It achieves this by testing statistical 

significance between the results of a specific ML model when grid search tuning was used 

for predictions against its results when REVAC tuning was used for predictions in each 

province and over all province (that is performance of a specific ML model in Experiment 

II vs its performance in Experiment III). The data used for conducting these tests can be 

seen in Table B1-B18 in Appendix B (results for Experiment II) and Table C1-C18 in 

Appendix C (results for Experiment III). 
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Table 4. 4: Parameter used for REVAC Tuning and all SVM, LSTM & CNN Prediction Models 

 

Parameter Parameter Range 
Population Size 80 

No. of Generations 100 
No. of Parents for Crossover 2 

No. of children to be created per 
generation  

1 

No. of parents to be replaced per 
generation 

1 

 

 
 
 
For each hypothesis, the statistical tests we conducted were the Shapiro-Wilke test [89] 
to test if the outcomes of each experiment was normally distributed and the Wilcoxon 
signed ranked test [90] to test for significance between our results in Experiment I, II and 
III. Shapiro-Wilke test was used because of the small sample size of the datasets to be 
tested. We chose the Wilcoxon signed ranked test because it is appropriate for non-
normally distributed samples that are related [91]. We test for significance by running 
these tests between the final average RMSE results for ML Model against the other 
(between each province and over all province) in Experiment I, II and III separately, and 
results between the parameter tuning methods used during training. See Appendix A for 
the outcomes of our statistical tests. 

For all tests, we regarded p < 0.05 as being statistically significant because it is considered 

as the reasonable standard of significance in most scientific research [92]. The statistical 

tests were applied in a pairwise manner and the Benjamin Hochberg [93] correction test 

was applied to decrease the false discovery rate for multiple comparisons since multiple 

statistical tests were conducted between the average results of each ML model in each 

province and over all province. All the statistical and correction tests were conducted 

with the inbuilt statistical library for R programming language. 
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Figure 4. 1: Heat Map showing changes in RMSE scores using REVAC for the SVM model. The original 

dataset for North West Province was used as input for this REVAC run. y-axis represents number of 

generations and x-axis represents parents in the population. 
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Figure 4. 2: Heat Map showing changes in RMSE scores using REVAC for the CNN model. The original 
dataset for North West Province was used as input for this REVAC run. y-axis represents number of 
generations and x-axis represents parents in the population. 
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Figure 4. 3: Heat Map showing changes in RMSE scores using REVAC for the LSTM model. The 
original dataset for North West Province was used as input for this REVAC run. y-axis represents 
number of generations and x-axis represents parents in the population. 
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4.7. Sensitivity Analysis 

To measure the degree of importance of each climate variable to the diarrhoea prediction 

model in a specific province, we conducted a sensitivity analysis [8] to examine the 

contribution of each climate variable to the output of the best predicting model for each 

province in Experiment I. The CNN model was used to conduct the sensitivity test since it 

outperformed the other models in almost all provinces. We adopted the Backward 

stepwise method [94] in which we measured the effect of one variable at a time while 

keeping the other variables fixed. Sensitivity is then measured by observing changes in 

the RMSE error of the model based on the omission of a certain variable. The larger the 

increase in RMSE, the higher the importance of the omitted variable. 

 

4.8. Summary 

This chapter discussed how the experiments for this study was conducted in order to 
achieve our research objectives. It gave details on the datasets we used, the performance 
evaluation criteria and the experiments performed to determine the best performing 
algorithm. The section also described how our ML algorithms were configured including 
the parameter tuning strategies we used to obtain optimal parameter values. Finally, the 
sections explained how statistical tests were conducted to make robust conclusions as 
well as the sensitivity study that was used to determine level of importance of each 
climate variable to the prediction model in each province. 
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Chapter 5 
 

5. Results 
This section provides the results of our experiment sets in Table 4.1. It also describes the 

outcomes of the research objectives outlined in section 1.2. In this study, we used 

quantitative measures to assess the performance of our predictive models. Although 

graphical representations provided us with some inference for our experiments’ results, 

we went further to conduct some statistical test to make robust conclusions. We used the 

Wilcoxon signed ranked statistical test to test for significance (see section 4.6 for details). 

Our findings are presented in the following sections. 

 

5.1. Outcomes for Experiment I 

This section shows the results for the predictions tasks carried out with the original data 

in Experiment I (see Table 4.1 for details). The results in this section aim to address the 

first objectives in section 1.2 which state that: “Test the performance of existing deep 

learning methods such as CNNs, LSTMs and an existing conventional ML method like the 

SVMs across a range of datasets (that is, varying proportions of real and synthetic climate 

variables and diarrhoea-based datasets at different testing and training intervals).” 

To address the objective above, we compared the RMSE of the three ML methods based 

on the predictions made in Experiment I. Figure 5.1, represents the average RMSE results 

for the prediction tasks conducted in Experiment I for each province. In this figure, we 

observed that CNN’s predictions outperformed the other models in almost every 

province with the exception of Limpopo province where the LSTM model outperformed 

the others. Over each province, the performance of the CNN model was closely followed 

by the LSTM model while the SVM, with the highest RMSE error, showed the poorest 

performance. However, in Limpopo province the LSTM RMSE average was 9.95 while 

CNN and SVM averages were 10.27 and 11.00, respectively. Over Western Cape province, 

CNN had the least RMSE average of 85.42 while the LSTM and SVM averages were 90.47 

and 90.58, respectively. We also observed that the difference margin in RMSE between 

the three models was larger in both Western Cape and Gauteng province and least in 

Mpumalanga, Free State, and Northern Cape province.  

Figure 5.2 compares the RMSE averages of the three ML models over all provinces. We 

observed that CNN had the least overall RMSE average of 31.55 while LSTM and SVM 

averages were 32.91 and 33.89, respectively. We can infer from these results that the 

RMSE errors are lower for deep learning models (CNN & LSTM).  
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Figure 5. 1: CNN, SVM, LSTM average RMSE errors for all prediction scenarios in each province for 
Experiment I (see Table 4.1 for details on Experiment I). Lower RMSE averages indicate better 
performance. 

 

Figure 5. 2: CNN, LSTM, SVM average RMSE errors over all provinces for all prediction scenarios in 
Experiment I. Low RMSE average indicates better performance accuracy. (See Table 4.1 more details 
on Experiment I). The arrows represent the corresponding widths of twice the standard error. 
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Although graphical representations in figures 5.1 and 5.2 provided us with some 

inference for the experiments, statistical test was performed to make robust conclusions. 

Therefore, to further address the objective stated above, we formulated hypothesis zero 

(H0) which states that: “Model performance are similar within the original dataset across 

each province and over all provinces”. Thus, we applied multiple Wilcoxon signed rank test 

in pairwise comparisons with the Benjamin Hochberg correction test (see section 4.6 for 

details) between the average RMSE results for the three ML models. Table A.1 in the 

Appendix shows the outcomes of the statistical test conducted for all possible 

comparisons in Experiment I. We observed that there was no statistically significant 

difference between all the model comparison for each of the nine provinces. However, 

when we compared the average RMSE across the nine provinces (altogether), the 

performance margin was statistically significant for comparisons between the SVM and 

CNN models and comparisons between LSTM and CNN models. The lack of significant 

difference between the models when compared per province may be due to the small 

sample size used during the test [92]. For all prediction scenarios in Experiment I, we 

used different lag variables to see how long-term trends of the climate features affect the 

prediction performance of our models.
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Table 5. 1: RMSE errors from the CNN, SVM and LSTM model for all prediction scenarios with the 
original dataset in Experiment I. Lower RMSE indicate better prediction accuracy of the model 
and vice-versa. 

Provinces CNN 
RMSE 
Original 
(Lag 1) 

SVM 
RMSE 
Original 
(Lag 1) 

LSTM 
RMSE 
Original 
(Lag 1) 

CNN 
RMSE 
Original 
(Lag 5) 

SVM 
RMSE 
Original 
(Lag 5) 

LSTM 
RMSE 
Original 
(Lag 5) 

Western Cape 106.35 115.67 107.03 83.16 86.13 83.93 
KwaZulu Natal 59.71 62.85 64.05 49.91 51.79 46.38 

Limpopo 11.44 13.03 11.27 9.58 10.29 9.40 
Free State 21.47 24.82 21.32 18.24 19.77 18.55 

Mpumalanga 14.45 17.02 14.53 13.56 14.33 13.60 
Northern Cape 10.15 11.70 10.24 10.30 11.07 10.17 

North West 13.43 15.81 14.41 12.95 14.89 13.05 
Gauteng 94.82 99.58 90.62 80.28 84.96 82.74 

Eastern Cape 32.23 35.83 33.09 28.27 29.30 28.84 

 

 

 

 

 

 

 

 

 

 

 

In Table 5.1 & 5.2, we observed that for all provinces and models, lagging variables by 

only 1 day does not yield the best performance. In Western Cape, lagging the variables by 

5 or 21 days yielded the best performance for the three ML models while in Eastern Cape 

and Mpumalanga, lagging the variables by 14 or 21 days also yielded better performance. 

In KwaZulu Natal and Limpopo province, lagging the variables by 5 days yielded the best 

performance while in Free State and Northwest, lagging variables by 14 days yielded 

better performance. In Gauteng province, lagging the variables by 5 or 21 days gave the 

best performance. However, in Northern Cape, lagging the variables made almost no 

different in model performance. This shows that precursory effect of the climate variables 

affects diarrhoea cases for each province in different ways

Table 5. 2: RMSE errors from the CNN, SVM and LSTM model for all prediction scenarios with the 
original dataset in Experiment I. Lower RMSE indicate better prediction accuracy of the model 
and vice-versa.   

Provinces CNN 
RMSE 
Original 
(Lag 14) 

SVM 
RMSE 
Original 
(Lag14) 

LSTM 
RMSE 
Original 
(Lag14) 

CNN 
RMSE 
Original 
(Lag 21) 

SVM 
RMSE 
Original 
(Lag21) 

LSTM 
RMSE 
Original 
(Lag21) 

Western Cape 76.99 80.00 85.28 75.17 80.51 85.64 
KwaZulu Natal 46.81 53.43 53.56 47.67 55.64 48.57 

Limpopo 9.95 10.06 9.80 10.12 10.63 9.31 
Free State 17.39 17.73 19.55 17.45 17.42 19.77 

Mpumalanga 13.37 14.07 13.59 13.31 14.26 13.57 
Northern Cape 10.13 10.54 10.32 10.36 10.56 10.32 

North West 12.16 12.83 12.74 12.35 12.79 13.15 
Gauteng 72.50 85.25 86.77 73.82 91.32 87.60 

Eastern Cape 26.59 28.21 28.45 25.92 28.17 28.68 
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5.2. Outcomes for Experiment II 
 

This section shows the results for the predictions tasks conducted with combinations 

from the original data and synthetic data in Experiment II (see table 4.1 for details). The 

results in this section aim to address the first objectives above as well as the second 

objective in section 1.2 which was to: “Investigate the effect of the varying proportions of 

real and synthetic training and testing data on model performance in terms of prediction 

accuracy of the three models.” 

To address the objective stated above, we compared the average RMSE of each model 

based on the prediction scenarios in Experiment I with the average RMSE for the 

prediction scenarios in Experiment II per province. Recall that the dataset used in 

Experiment I was only the original data while the dataset used in Experiment II were 

combinations of the original and synthetic data (see Table 4.1 for details). In addition, the 

three ML algorithms in both Experiment I and II used Grid search parameters (see Table 

4.1 for details).  

Figure 5.3 represents the percentage change in performance of each ML model when the 

combinations of the synthetic and original dataset (augmented upwards) were used in 

place of the original dataset in Experiment I. We found that the use of the upward 

combinations of the original and synthetic datasets greatly improved the performance of 

all the three ML models. Predictions for Limpopo province recorded the highest 

improvement with over 60% increase for each of the three models while Northern Cape 

province predictions recorded the least percentage increase with approximately 15%, 

25% and 22% for CNN, SVM and LSTM models, respectively. Over all provinces, the 

percentage increase in performance for predictions of the LSTM and SVM model was 

more than the CNN model.  

Figure 5.4 represents the percentage change in performance of each ML model when the 

combinations of the synthetic and original dataset (augmented downwards) were used 

in place of the original dataset in Experiment I. Similar to the results of the upward 

augmentation in figure 5.3, the performance of all three models also increased 

considerably with Limpopo’s prediction recording the highest performance increase. 

However, the percentage increase in performance for Limpopo’s predictions was 

approximately 50% for each of the three ML models. Over most provinces, the percentage 

increase in the predictions for the LSTM and SVM models was more than the CNN model. 

However, CNN’s percentage increase in performance was more than SVM’s in Western 

Cape and KwaZulu Natal provinces. We can infer from these results that the amount of 

training data used for training, significantly affects the prediction performance of all the 

three ML models.  
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Figure 5. 3: Percentage change in performance with (combinations of synthetic & original data 
augmented upwards) and without synthetic (original data only) training data for all three ML 
algorithms (CNN, SVM & LSTM) prediction scenarios conducted in Experiment II (see Table 4.1 for 
details on Experiment II). High percentages indicate high improvement in performance. 

 

Figure 5. 4: Percentage change in performance with (combinations of synthetic & original data 
augmented downward) and without synthetic (original data only) training data for all three ML 
algorithms (CNN, SVM & LSTM) prediction scenarios conducted in Experiment II (see Table 4.1 for 
details on Experiment II). High percentages indicate high improvement in performance. 
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Figure 5. 5: A comparison of CNN, LSTM, SVM average RMSE over South Africa (all provinces) for all 
prediction scenarios with the original data in Experiment I and all prediction scenarios with the 
downward augmented data and upward augmented data in Experiment II. Recall that Grid search 
was used in tuning the parameters of all ML models in both Experiment I & II. Low RMSE average 
indicates better performance accuracy. The arrows represent the corresponding widths of twice the 
standard error. See Table 4.1 for more details on both experiments. 

 

Figure 5.5 shows a further attempt to compare the performance of the overall predictions 

(that is, the prediction results over all provinces) made by each model using the original 

dataset in Experiment I, the upward augmented datasets in Experiment II and the 

downward augmented dataset in Experiment II. For each model, we also found that the 

predictions made with the upward augmented datasets yielded lower RMSE than their 

predictions with downward augmented datasets. For the CNN model, the overall RMSE 

for predictions made with the original, upward augmented, and downward augmented 

datasets were 31.55, 23.11 and 25.80, respectively. For each dataset, the SVM model’s 

overall RMSE were 33.89, 22.17 and 27.97, respectively while the LSTM model’s results 

were 32.91, 21.93 and 23.78, respectively. These results show that CNN outperformed 

the other models when the original dataset was used alone while LSTM outperformed the 

other models when synthetic datasets were augmented with the original dataset either 

upwards or downwards. We can also infer that all models benefitted from the increase in 

the quantity of datasets used for making prediction.



 
 

58 
 

 

 

Figure 5. 6: CNN, SVM, LSTM average RMSE error for all prediction scenarios in each province for 
Experiment II (see Table 4.1 for details on Experiment II). Lower RMSE averages indicate better 
performance. 

To further address the first objective in section 1.2, Figure 5.6 compares the average 

RMSE of the three ML models for both upward and downward augmented dataset 

predictions conducted in Experiment II for each province.  

By comparing the models based on the predictions for the upward dataset combinations, 

over all provinces, LSTM model outperformed all the other models except in Eastern Cape 

province where SVM model yielded lower RMSE averages. For the other provinces, the 

results of the SVM model closely followed LSTM’s however, CNN model outperformed the 

SVM model for predictions in Western Cape. When the models were compared based on 

their predictions for the downward dataset combinations, LSTM’s prediction results still 

outperformed the other models for most provinces except in Limpopo, Mpumalanga, and 

Gauteng provinces where SVM outperformed both the LSTM and CNN models. However, 

both LSTM and CNN model’s prediction results outperformed the SVM model in Western 

cape and KwaZulu Natal provinces by a very wide margin as illustrated in Figure 5.6. 

Although the charts in Figure 5.6 provided us with some useful inference, we went further 

to conduct statistical test to make robust conclusions as to whether the differences in 

prediction performance between models were statistically significant. 
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Due to the fact that we were comparing the performance between models across each 

province and over all province, we used hypothesis zero (H0) as our null hypothesis (see 

section 4.6 for details). We applied multiple pairwise Wilcoxon signed rank test with 

Benjamin Hochberg correction test (see section 4.6 for details). Table A.2 in the Appendix 

show the outcome of the statistical test conducted for all possible comparisons between 

the three model’s prediction result in Experiment II for each province and over all 

provinces when averaged. The p-values that are bolded and asterisked represents 

statistically significant difference in performance between models. The lack of 

significance between models may be due to the small magnitude of the difference in 

RMSE. For further details of the analysis carried out in Experiment II see results in Tables 

B.1-B.18 in Appendix B. 

 

5.3. Outcomes for Experiment III 

This section shows the results for the predictions tasks conducted with combinations of 

the original data and synthetic data in Experiment III. The difference between Experiment 

II and Experiment III was the parameter tuning method the ML algorithms. In Experiment 

III, REVAC parameter tuning was used while in Experiment II, Grid search tuning was 

used (see Table 4.1 for details). The results in this section aims to address the first 

objective in section 1.2 as well as the third objective which is to: “Investigate to what 

extent REVAC parameter tuning can improve the accuracy of the three models.”  

To address the objectives stated above, we compared the average RMSE of each model 

based on the prediction scenarios in Experiment II with the average RMSE for the 

prediction scenarios in Experiment III per province. Figure 5.7 represents the percentage 

change in performance of each ML model when predictions for the upward augmented 

dataset are made with the parameters from REVAC tuning instead of the Grid search 

parameters. Our analysis show that the CNN model’s prediction result improved across 

all the provinces especially in Northern Cape province where a percentage increase of 

over 8% was recorded. The prediction accuracy of the SVM model slightly improved for 

some provinces with Mpumalanga province recording the highest increase of about 1.3% 

however, prediction results for provinces like Western Cape and Free State provinces had 

negative percentages of over 1%. The prediction accuracy for the LSTM models also 

increased over most provinces with the highest increase of over 3.5% recorded for Free 

State’s predictions. In Limpopo province, the LSTM’s prediction performance declined 

drastically by over 6%. Prediction accuracy for KwaZulu Natal province also declined by 

over 1%.  

Figure 5.8 represents the percentage change in performance of each ML model when 

predictions for the downward augmented dataset are made with the parameters from  
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Figure 5. 7: Percentage change in performance for all three ML algorithms (CNN, SVM & LSTM) 
prediction scenarios in Experiment III with (REVAC parameter tuning during training) compared 
with the results in Experiments II (without REVAC tuning). (Data used for training scenarios were 
combinations of synthetic & original data augmented upwards). High percentages indicate high 
improvement in performance. See Table 4.1 for more details on both experiments. 

 

Figure 5. 8: Percentage change in performance for all three ML algorithms (CNN, SVM & LSTM) 
prediction scenarios in Experiment III with (REVAC parameter tuning during training) compared 
with the results in Experiments II (without REVAC tuning). (Data used for training scenarios were 
combinations of synthetic & original data augmented downwards). High percentages indicate high 
improvement in performance. See Table 4.1 for more details on both experiments. 
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REVAC tuning instead of the Grid search parameters. We found that the CNN model’s 

prediction result improved once again across all the provinces especially in KwaZulu 

Natal province where a percentage increase of over 13% was recorded. The least 

percentage increase recorded for CNN model was about 5%. SVM’s prediction accuracy 

on the other hand increased drastically for the Western Cape province with about 8%. 

Provinces like Limpopo, Gauteng, Eastern Cape and Northern improved very slightly 

while North West, Mpumalanga and KwaZulu Natal provinces reduced in prediction 

accuracy with Mpumalanga’s result recording the highest decline of about 2%. The 

LSTM’s prediction accuracy improved slightly over all provinces with the exception of 

Free State’s province prediction where a decrease of about 0.6% was recorded. The 

highest increase of about 3% was recorded for Western Cape province. From figures 5.7 

and 5.8, we can infer that the CNN model’s predictions benefitted the most form REVAC 

parameter tuning when compared to the LSTM and SVM models. 

Although Figures 5.7 & 5.8 provided us with some inference on the percentage change in 

performance when REVAC was used for parameter tuning, to make robust conclusions as 

to whether the percentage change was significant, we conducted further statistical tests 

to address the third objective stated in section 1.2. Thus, we formulated hypothesis one 

(H1) which states that: “The use of REVAC parameter tuning during training is similar to 

the Grid search parameters.”. Table A.3 in the Appendix A shows the outcome of the 

statistical test conducted for all possible comparisons between the prediction result in 

Experiment II and Experiment III for each of the three models. The p-values that are 

bolded and asterisked represents statistically significant difference in performance 

between models. The lack of significance between models may be due to the small 

magnitude of the difference in RMSE. 

Figure 5.9 compares the performance of the overall predictions (that is, the prediction 

results over all provinces) made by each model using the original dataset in Experiment 

I, the upward augmented datasets in Experiment III and the downward augmented 

dataset in Experiment III. For the CNN model, the overall predictions made with the 

original, upward augmented, and downward augmented datasets were 31.55, 22.07 and 

23.86, respectively. For each dataset, the SVM model’s overall RMSE were 33.89, 22.17 

and 27.30, respectively while the LSTM model’s results were 32.91, 21.93, and 21.60, 

respectively. These percentages show that using REVAC parameter tuning and various 

combinations of synthetic and original dataset improves the prediction performance of 

all three models when compared to making predictions with just the original data. We 

can also infer that with REVAC parameter tuning, the deep learning models outperformed 

the SVM model for predictions with both upward and downward dataset augmentation. 

However, the LSTM model outperformed the CNN model. 
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Figure 5. 9: A comparison of CNN, LSTM, SVM average RMSE over South Africa (all provinces) for 
all prediction scenarios with the original data in Experiment I and all prediction scenarios with 
the downward augmented data and upward augmented data in Experiment III. Recall that Grid 
search was used in tuning the parameters of all ML models in Experiment I while REVAC was used 
in Experiment III. Low RMSE average indicates better performance accuracy. The arrows 
represent the corresponding widths of twice the standard error. See Table 4.1 for more details on 
both experiments. 

 

We went further to address the first objective in section 1.2 with Figure 5.10 comparing 

the average RMSE of the three ML models for both upward and downward augmented 

dataset predictions conducted in Experiment III for each province. By comparing the 

models based on the predictions for the upward dataset combinations, we observed that 

LSTM outperformed the other models in almost every province with the exception of 

Mpumalanga and Eastern Cape province where CNN recorded lower RMSE for its 

predictions. The CNN model also outperformed the SVM model in most provinces 

however, in provinces like Gauteng, Limpopo and KwaZulu Natal, the SVM’s prediction 

results were better than the CNN’s. When the models were compared based on their 

predictions for the downward dataset combinations, LSTM’s prediction results still 

outperformed the other models for most provinces except in provinces like Western 

Cape, Eastern Cape where CNN’s prediction results were better and also in Gauteng 

province where the SVM’s prediction accuracy was higher than the others. The CNN 

model’s predictions also outperformed the SVM’s prediction results in most provinces 

except in provinces like Mpumalanga, Northern Cape, North West and Gauteng where 

SVM’s RMSE were slightly lower.  
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Figure 5.10: CNN, SVM, LSTM average RMSE error for all prediction scenarios in each province for 
Experiment III (see Table 4.1 for more details). Lower RMSE averages indicate better performance. 

 

In addition, the gap in performance margin between the deep learning models and the 

SVM model were larger in Western Cape and KwaZulu Natal provinces.  

To infer whether the difference in performance between the models were statistically 

significant, we conducted pairwise statistical tests between the three model’s RMSE for 

each province. We used hypothesis zero (H0) as our null hypothesis and applied multiple 

pairwise Wilcoxon signed rank test with Benjamin Hochberg correction test (see section 

4.6 for details). Table A.4 in Appendix A shows the outcome of the statistical test 

conducted for all possible comparisons between the three model’s prediction result in 

Experiment III for each province and across all provinces. The p-values that are bolded 

and asterisked represents statistically significant difference in performance between 

models. The lack of significance between models may be due to the small magnitude of 

the difference in RMSE. For further details of the analysis carried out in Experiment III 

see the results in Tables C.1-C.18 in Appendix C. 
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5.4. Contribution of Climate Factors to the Diarrhoea 
Prediction Model 

Figure 5.11 shows the results of the sensitivity analysis conducted in section 4.7. We 

observed that the relative importance of each climate variable differs across provinces. 

For instance, over provinces such as Western Cape, Eastern Cape and Free State, Pressure 

was the most sensitive to the diarrhoea prediction model. In North West and 

Mpumalanga, Evaporation was the most important climate variable. In Gauteng, 

Maximum Temperature was most important while in and KwaZulu Natal, Minimum 

Temperature was more sensitive. In Limpopo, Humidity was most sensitive variable 

while Windspeed was more important in Northern Cape. 

The most sensitive climate variable in a specific province might be the least sensitive in 

another. For example, in Eastern Cape, Minimum Temperature was the least sensitive 

variable meanwhile in KwaZulu Natal, it was most sensitive. In Western Cape, Eastern 

Cape and Free State, pressure was most important while in Mpumalanga and Northern 

Cape, it was least important. 
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Figure 5. 11: Variable importance plot for the CNN diarrhoea prediction model in Experiment I for 
each of 9 South African Province. In each province, the x-axis indicates the prediction accuracy once 
the variable on the y-axis is omitted from the CNN model. The longer the bar, the larger the loss in 
accuracy and the higher the importance of that variable in predicting daily diarrhoea cases. 

 

5.5. Summary of Results 

The results showed in this section give details on the outcome of all the experiments 

conducted for this study. It also relates these outcomes to our research objectives. For 

instance, observations from the results in section 5.1 can be used to make inference as to 

which of the three ML models performs best with respect to the original dataset. Results 

in section 5.2 and 5.3 can be used to make deductions on the influence of data 

augmentation on the performance of an ML model. Observations in section 5.3 can also 

be used to make inference on the influence of REVAC parameter tuning on model 

performance. Finally, the results in section 5.4 can be used to determine the relative 

importance of each climate variable to diarrhoea outbreak prediction model in each 

province. 
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Chapter 6 

 

6. Discussion 
This chapter provides a detailed explanation of each ML method’s (CNN, LSTM and SVM) 

performance with respect to the experiments in section 4. We present a detailed analysis 

of how each ML method performs in different scenarios such as lagging input variables, 

training with synthetic data, parameter tuning with REVAC evolutionary strategy when 

compared to one another. We also explain how each climate variable influenced each 

model’s output in each province. Furthermore, we relate our findings to previous studies 

where Deep learning and traditional ML methods have been used for predicting 

infectious diseases along with their implications to our research objectives in section 1.2. 

 

6.1. Performance of ML Models for Daily Diarrhoea 
Case Prediction  

The results of all the experiments conducted in section 4 were carried out to test the 

performance of the three ML methods (SVM, CNN & LSTM) across a range of datasets 

which was our first objective (see section 1.2 for details). The results showed that all 

three ML methods were appropriate for predicting daily diarrhoea cases with respect to 

the selected climate variables in each South African province. Thus, positively validating 

our first objective. They were all able to yield low and similar RMSE for each prediction 

scenario in all the given experiments (see Table 4.1 for details on all experiments).  

We observed that the RMSE varied across provinces. This is because the RMSE calculates 

a model’s prediction error based on the same unit as the original measurements of the 

input data which makes interpretation of the error easy to understand [88] . For instance, 

the input data for Western Cape and Gauteng province were similar thus their resulting 

RMSE across models are similar.  

For each of the experiments conducted, the level of accuracy for each ML model varies 

(see section 5 for details on all results). Analysis of the results with respect to the different 

experiment will be given in the following sections. 
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6.1.1. Performance of Models with the Original Dataset 
(Experiment I) 

To further address our first objective stated above (also in section 1.2), Experiment I was 

conducted to determine which of the proposed ML methods performed best given the 

original dataset. In this experiment, predictions were made using only the original 

dataset.  

We can infer from figures 5.1 and 5.2 that the high performance of the deep learning 

models (that is, CNN and LSTM) may be attributed to the fact that deep learning models 

are universal approximators and are also able to select important features automatically 

[8], [12] . In addition, these findings agree with previous research [8], [16], [17], [66] 

which showed that neural networks and deep learning models outperform traditional ML 

methods for disease prediction tasks. By observing figure 5.2 and Table A.1 in the 

appendix, the statistically significant difference in performance between CNN and the 

LSTM when results are averaged over all provinces may be due to the amount of the 

dataset used for training used in Experiment I. For instance, [84] showed that LSTM 

models perform poorly when small datasets size are used for training. Thus, we set up 

another experiment (Experiment II), to investigate the effect of the size of varying amount 

of training data on the performance of all models. 

 

6.1.2. Performance of Models with the Augmented Dataset 
(Experiment II) 

Experiment II was conducted to investigate the effect of the augmented training and 

testing data on model performance in terms of prediction accuracy of the three models 

which was our second objective. Here, the original dataset was augmented with synthetic 

data generated by GANs. Observations from the results represented in figures 5.3 and 5.4 

show that regardless of how the datasets were augmented the prediction accuracy of all 

three ML models improved. Over provinces such as Northern Cape, KwaZulu Natal, North 

West, Mpumalanga, Free State and Western Cape, the performance increase was between 

9% and 35% for all models while in other provinces the performance increase was 

between 35% and 60%. We can also infer from these results that data augmentation 

boosts model performance in terms of prediction accuracy thus, positively validating the 

use of data augmentation to improve model accuracy, which was our second objective. In 

addition, the findings from the prediction tasks conducted in Experiment II are consistent 

with previous research [21], [22] which demonstrate that data augmentation with 

synthetic datasets as well as the size of datasets used for training ML models affects the 

efficiency of their prediction performance.  
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The use of augmented data improved the task performance of the three models, however, 

the level of performance increase varied between each ML model. Figures 5.5, 5.6 and 

Table A.2 in the appendix showed that LSTM statistically significantly outperformed the 

other ML models in most provinces and across all provinces. This may be because of the 

increase in the amount of training data used in Experiment II. For instance, studies such 

as [84] have shown that LSTMs benefit from a large training set size. Another reason may 

be their ability to easily learn patterns in sequential data. Previous studies like [13], [16] 

reported that LSTMs are a state of the art for capturing the long-term dependencies 

specific to a given dataset. When results were averaged over all provinces, the deep 

learning models significantly outperformed the SVM model. However, the instances such 

as in Gauteng, Eastern Cape, and Mpumalanga where SVM significantly outperformed the 

CNN model may be due to the parameter settings of CNN used during training. Note that 

Grid search parameters were used in both Experiments I and II and previous studies, such 

as [18], [58] showed that the choice of parameters greatly affects the performance of ML 

models especially deep learning models. Therefore, we setup a different experiment 

(Experiment III) where we investigated the effect of REVAC parameter tuning on the 

performance of all models. The scenarios where there was no significant difference in 

performance between either of the ML models may be due to the small differences in 

RMSE between models.  

 

6.1.3. Performance of Models with the Augmented Dataset and 
REVAC Parameter Tuning (Experiment III) 

Experiment III was conducted to investigate to what extent REVAC parameter tuning can 

improve the accuracy of the three models which was our third objective. REVAC tuning 

was used to tune the parameters of all three ML models before final predictions were 

made. Figures 5.7 and 5.8 show that the performance of the CNN model improved over 

each province by at least 2.5%. Table A. 3 in the appendix also shows that the increase in 

CNN performance was statistically significant for almost every province. We can infer 

from these results that REVAC parameter tuning is appropriate for CNNs.  

Figures 5.9 and 5.10 showed that with REVAC tuning, the LSTM model still outperformed 

the other models. Table A.4 in the appendix also show that LSTM statistically significantly 

outperformed the other models. Even though figures 5.7 and 5.8 showed there was a drop 

in its performance in provinces like Limpopo, KwaZulu Natal and Free State. Table A.3 in 

the appendix showed that these decline in performance were not statistically significant. 

Thus, REVAC parameter tuning may still be appropriate for the LSTM model.  

Figure 5.9 showed that with REVAC parameter tuning, SVM model had the least 

performance across provinces. Figure 5.7 and 5.8 also showed that SVM’s performance in 

Western Cape and KwaZulu Natal, Free State, North West and Mpumalanga provinces 
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declined by about 1.5%. Table A.3 in the appendix showed that most of the decline in 

performance were not statistically significant except for Mpumalanga province. The 

provinces where performance improved were not statistically significant either. 

Therefore, we can infer from these results that the REVAC parameter tuning is not ideal 

for the SVM model rather it is more suited to the deep learning models. A possible 

explanation may be the low dimensional search space of possible parameters for the SVM 

model considering that an SVM’s (with RBF kernel) major parameters are gamma and C 

only. Studies such as [95] have found that pre-defining a search space for parameter 

tuning can be difficult. For instance, Nguyen et al. [95] reported that we can miss the 

optimum parameters if the search space is too large and if it is too small, it may also not 

contain the optimum parameters. However, [58] reported that grid search is better suited 

for low dimensional search space perhaps the reason for SVM’s satisfactory performance 

with grid search in Experiments I and II. 

The findings from the results in this section shows that REVAC parameter tuning 

improves the performance of ML learning models. However, the degree of improvement 

it gives depends on type of the ML algorithm. In this study, we observed that REVAC was 

better suited to deep learning models. Our findings positively validate the use of REVAC 

for deep learning algorithms which was our third objective. Our observations are also 

consistent with previous research [34], [35], [58] that aim to show how the choice of 

parameter tuning for ML algorithm affects the accuracy of a model.  

 

6.2. Effect of Climate Variables on Diarrhoea 
Prediction Model (Sensitivity Analysis and Lagged 
Climate Variables) 

By analysing how lagging the climate variables affected the prediction models, Table 5.1 

showed that in every province, the models performed better when they are lagged by a 

certain number of days depending on the selected province. From these findings, we can 

deduce that antecedent conditions of the climate variables affect the diarrhoea prediction 

of each province in different ways. This may be attributed to the fact that each province 

has climate conditions specific to it. Furthermore, a specific climate variable may have a 

shorter lag effect than another. For instance, Chou et al. showed that [36] temperature 

variables have a shorter lag effect on diarrhoea than precipitation. 

The sensitivity analysis results in section 5.4 provide further evidence as to how 

differently climate conditions affect a specific province. For instance, over provinces such 

as Gauteng, KwaZulu Natal, Northern Cape, North West, Western Cape and Mpumalanga, 

Temperature conditions were among the most sensitive variables to the diarrhoea 

prediction model. Studies such as [27] have shown that diarrhoea cases increase for every 

1°C increase in temperature. While, over provinces such as Mpumalanga, Free State and 
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North West, evaporation rate was a major contributing climate factor. Kamai et al. [96] 

reported that evaporation rate is strongly linked to high temperature. Since an increase 

in diarrhoea cases have been associated with high temperature, perhaps diarrhoea can 

also be linked to evaporation rate. However, over Limpopo, Mpumalanga, KwaZulu Natal, 

North West, Eastern Cape and Free State provinces, precipitation and humidity were 

among the most important variables affecting the diarrhoea prediction model. Several 

studies such as [8], [36] have also shown that precipitation rate and humidity are strongly 

related to increase in diarrhoea-related hospitalizations.  

From the above findings, we can infer that the contribution of climate factors vary across 

provinces and that Precipitation, Humidity, Evaporation and Temperature conditions are 

the most influential factors affecting diarrhoea outbreak in most South African Province.  

 

6.3. Summary and Contributions of Findings  

In this section, we discussed the results of the experiments on the performance of three 

ML methods (CNN, LSTM & SVM) for diarrhoea outbreak prediction over the nine South 

African provinces with respect to climate factors. The results of the study showed that 

there was no clear best method overall and that the ML methods possessed different 

levels of sensitivity to the amount of data available for training and the type of parameter 

tuning method used during training.  

We found that irrespective of the amount of data available for training, the deep learning 

models outperformed the SVM model. We note that though the real-world data contained 

fewer data points, the CNN model was able to generalize well and select important 

features to yield the most satisfactory performance. However, when we augmented the 

real dataset with synthetic data, the LSTM model outperformed the others. This implies 

that the LSTM model performs better when the size of training data is large, perhaps the 

reason for its relatively poor performance in the first experiment. 

Although proven useful most studies [8], [16] that use ML methods for diarrhoea 

outbreak research rely on only real-world dataset. Due to its sensitive nature, health 

related data is often limited and difficult to access. Therefore, making predictions with 

the available few might lead to lack of robust conclusions. This study was able to 

demonstrate the use of both real world and augmented data for diarrhoea outbreak 

prediction and we found that data augmentation was able to boost the accuracy of all 

three ML algorithms by over 30% in most provinces. 

We also found that the performance of an ML model largely depends on how its 

parameters are tuned. We adopted two parameter tuning strategies, Grid search and 

REVAC parameter tuning an evolutionary strategy. While the application of Grid search 
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tuning has been widely adopted in most ML studies, REVAC parameter tuning on the hand 

has mainly been used for tuning the parameters of Evolutionary algorithms. This study 

was able to show that the REVAC algorithm can be adopted for optimizing the 

performance of ML algorithms especially deep learning models. 

Finally, this study provided a foundation for using ML methods to predict diarrhoea 

outbreak in South Africa. By incorporating climate information, we found that the extent 

to which climate factors affect the diarrhoea prediction model differs across provinces. 

Our study has shown that in the prediction of diarrhoea outbreak predictions in South 

Africa, the most influential climate variables to be considered are precipitation, humidity, 

evaporation and temperature conditions.  
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Chapter 7 

 

7. Conclusions  
The global burden of diarrhoea cannot be over emphasized as it is a major public health 

problem that causes both personal and widespread harm. For this reason, we conducted 

this research to develop a model that could be used for public health surveillance to aid 

in the prompt notification for the control of diarrhoea outbreak. We compared the 

performance of three ML methods (CNN, LSTM & SVM) for the prediction of the daily 

number of diarrhoea cases in the nine South African provinces with respect to eight 

climate factors in three experiments. The objective of each experiment was to determine 

which ML method performed best given a specific condition. In the first experiment, 

predictions were made with only real-world dataset while predictions were made with a 

combination of real-world and synthetic datasets in the second experiment. In the third 

experiment, predictions were made with a combination of real and synthetic datasets as 

well but with REVAC parameter tuning an evolutionary strategy. Our key findings are as 

follows: 

• Overall experiment, the deep learning model’s (CNN & LSTM) prediction 

performance was superior in most provinces. However, the three ML methods 

possessed different levels of sensitivity to the amount of training data available 

and the type of parameter tuning method use for training. 

 

• The CNN model performed best when only real-world dataset was used, while the 

LSTM model outperformed the other models when we augmented the real dataset 

with synthetic data. However, data augmentation was able to boost the accuracy 

of all three ML algorithms by over 30% in most provinces. 

 

• The performance of the three ML model improved in most province and across 

experiments when the datasets were augmented upwards when compared to 

downward augmentation. 

 

• The performance of an ML model largely depends on how its parameters are 

tuned. Furthermore, the REVAC algorithm can be adopted for optimizing the 

performance of ML algorithms especially deep learning models. 

 

• The extent to which climate factors affect the diarrhoea prediction model differs 

across provinces. For example, in Western Cape and Eastern Cape, some of the 

most influential climate variables were Pressure and Windspeed while in 
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Mpumalanga, North West and Northern Cape, Evaporation and Temperature 

conditions were of major impact.  

This work is a preliminary step towards the application of ML methods in the 

development of an early warning system for predicting the outbreak of diarrhoea in 

South Africa. We were able to give a deeper understanding on how the amount of data 

used for training a model can affect the performance of the machine learning model by 

demonstrating the use of both real-world and augmented data for diarrhoea outbreak 

prediction. This study was also able to give an insight as to whether the use of the REVAC 

evolutionary algorithm as a parameter tuning method can improve model performance. 

Furthermore, the use of Climate-based data for model development further strengthens 

the claims that climate factors affect diarrhoea. 

 

7.1. Future work 

Severe diarrhoea cases that require hospitalizations may not have been taken into 

considerations. This is because hospital records are difficult to access. This is largely due 

unavailability of electronic records systems in most clinics and hospitals that use 

electronic record systems do not give them out due to policies such as confidentiality of 

patient information. Therefore, the real-world data used in this study may have 

underestimated the number of diarrhoea cases in a specific province. In addition, due to 

the few data sources available at our disposal, the real-world diarrhoea dataset we used 

to conduct our experiments contained a relatively short data-collection period. Another 

limitation of our study was that designing models for predicting diarrhoea outbreak in 

South Africa with climate factors alone may be imperfect because the causes of diarrhoea 

outbreak may involve other human and environmental factors which were not taken into 

consideration. Furthermore, the variable importance measures provided by the 

sensitivity analysis may not necessarily indicate the causality of diarrhoea. 

Given our current approach of predicting daily number of diarrhoea cases in South Africa, 

taking other factors that cause the spread of infectious diseases into consideration may 

improve the accuracy of our diarrhoea prediction model. In addition, gathering real-

world data from more than one source such as government databases, public and private 

hospitals may give a more robust estimate regarding how much diarrhoea cases were 

recorded in a specific province. Combining data from these sources may also result in a 

dataset with longer time-period. Finally, given the different strength of each ML 

algorithm, developing a hybrid model that combines the advantage and benefits of at least 

two ML algorithms may yield a model that performs better regardless of the conditions 

set in each experiment. 
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Appendices 
 

Appendix A 
 

 

 

P-values for Experiments I, II & III 

 
This appendix section contains the outcome of the pairwise Wilcoxon signed rank test conducted 

between models in Experiments I, II & III. Experiments I involved predictions with original data 

only while Experiments II & III involved predictions with combinations of original and synthetic 

data generated by GANS. However, in Experiment III REVAC parameter tuning was used to tune the 

parameters of all ML models. See Table 4.1 for more details on each experiment. 
 

Table A. 1:  Wilcoxon signed rank test Adjusted p-values for the pair-wise comparisons of the three ML methods within 
province based on the average RMSE errors for all prediction scenarios the with original data in Experiment I. Recall 
that Grid search was used to tune the parameters of all ML models in Experiment I (see Table 4.1 for details).  H0 is the 
null hypothesis while Ha represent the alternate hypothesis. * represents p-values that are statistically significant. 
Please note that H0 (No statistical significance) indicates that the performance between ML method 1 and ML method 
2 are similar while Ha  (Statistically significant difference) indicates that the model with smaller RMSE is significantly 
better than the other (see section 4.6 for details). 

 

ML Method1 - ML Method2 

H0: ML Method1 = ML Method2 

Ha: ML Method1 ≠ ML Method2 

 

 

LSTM - CNN  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

0.8705 0.3409 0.2813 0.4688 0.1974 0.1442 0.1974 0.1442 0.1974 0.0032* 

LSTM - SVM 
 

 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

0.1442 1.0000 0.7212 0.7212 0.1974 0.1442 0.1442 0.4688 1.0000 0.1442 

SVM - CNN  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

0.1442 0.3409 0.1442 0.1974 0.1974 0.1442 0.1442 0.1442 0.1974 8.13e-07* 
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Table A. 2  Wilcoxon signed rank test adjusted p-values for the pair-wise comparisons of the three ML methods within 
province based on the average RMSE errors for all prediction scenarios with combinations of synthetic and original 
data (augmented both upwards and downward) in Experiment II.  Recall that the parameters from the Grid search in 
Experiment I were maintained in this experiment (see Table 4.1 for details).  H0 is the null hypothesis while Ha 

represent the alternate hypothesis. * represents p-values that are statistically significant.  Please note that H0 ( No 
statistical significance) indicates that the performance between ML method 1 and ML method 2 are similar while Ha 
(Statistically significant difference) indicates that the model with smaller RMSE is significantly better than the other 
(see section 4.6 for details). 

 

 

ML Method1 – ML Method2 

H0: ML Method1 = ML Method2 

Ha: ML Method1 ≠ ML Method2 

 

 

LSTM – CNN (Upward augmentation)  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

1.29e-01 2.39e-01 1.39e-01 6.66e-02 5.35e-03* 2.53e-01 2.83e-02* 5.31e-03* 3.96e-02* 7.12e-08* 

LSTM – SVM (Upward augmentation) 
 

 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.26e-01 2.26e-01 8.06e-01 1.69e-02* 6.81e-02 3.99e-02* 2.43e-02* 3.68e-02* 9.52e-01 5.31e-03* 

SVM – CNN (Upward augmentation)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.43e-02* 3.20e-01 1.39e-01 6.17e-01 1.39e-01 4.30e-01 3.29e-02* 2.43e-02* 1.39e-01 8.23e-06* 

LSTM – CNN (Downward augmentation)  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

7.61e-03* 1.08e-01 1.70e-03* 2.29e-05* 8.34e-04* 1.43e-05* 8.37e-04* 2.45e-05* 7.73e-02* 6.60e-15* 

LSTM – SVM (Downward augmentation) 
 

 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

5.88e-02 3.04e-04* 2.45e-02* 2.45e-05* 7.47e-01 5.72e-03* 2.97e-03* 2.47e-02* 3.34e-04* 8.76e-07* 

SVM – CNN (Downward augmentation)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

1.39e-02* 1.43e-05* 1.10e-03* 7.44e-04* 2.97e-03* 2.86e-04* 1.37e-03* 2.10e-04* 3.58e-05* 8.95e-02 
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Table A. 3:  Wilcoxon signed rank test adjusted p-values for the pair-wise comparisons of the REVAC tuning method in 
Experiment III and the Grid search parameters in Experiment II for the three ML methods. Each comparison was within 
province and based on the average RMSE errors for all prediction scenarios with the combination of synthetic and 
original data augmented both upwards and downward in Experiment III and Experiment II (see Table 4.1 for details 
on both experiments).  H1 is the null hypothesis while Ha represent the alternate hypothesis. * represents p-values that 
are statistically significant.  Please note that H0  (No statistical significance) indicates that the performance between 
tuning method 1 and tuning method 2 are similar while Ha  (Statistically significant difference) indicates that the tuning 
method that yields a smaller RMSE is significantly better than the other (see section 4.6 for details). 

 

Tuning Method1 - Tuning Method2 

H1:  Tuning Method1 = Tuning Method2 

Ha:  Tuning Method1 ≠ Tuning Method2 

 

 

CNN: Grid vs REVAC (Upward)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.86e-05* 8.32e-03* 1.86e-01 2.38e-01 3.62e-01 5.98e-03* 1.02e-03* 3.62e-04* 1.12e-01 7.15e-12* 

LSTM: Grid vs REVAC (Upward)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.48e-01 2.26e-02* 2.31e-02* 3.07e-01 3.19e-01 1.83e-01 2.26e-02* 3.07e-01 2.31e-02* 1.02e-03* 

SVM: Grid vs REVAC (Upward)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.46e-01 3.62e-01 7.56e-02 5.97e-02 7.85e-01 7.85e-01 9.26e-01 9.26e-01 1.65e-01 3.19e-01 

CNN: Grid vs REVAC (Downward)  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

6.45e-04* 5.08e-03* 6.99e-04* 6.45e-04* 6.45e-04* 1.43e-04* 1.09e-03* 6.45e-04* 6.99e-04* 6.60e-15* 

LSTM: Grid vs REVAC (Downward)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

5.55e-01 8.40e-01 8.70e-01 8.70e-01 4.68e-03* 1.46e-01 2.34e-01 3.14e-01 4.97e-03* 2.66e-02* 

SVM: Grid vs REVAC (Downward)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

8.40e-01 9.97e-02 8.40e-01 3.04e-01 7.03e-01 6.45e-04* 2.82e-01 4.96e-01 8.81e-02 4.44e-01 
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Table A. 4: Wilcoxon signed rank test adjusted p-values for the pair-wise comparisons of the three ML methods within 
province based on the average RMSE errors for all prediction scenarios with combinations of synthetic and original 
data (augmented both upwards and downward) in Experiment III. Recall that REVAC was used to tune parameters of 
all ML models in this experiment (see Table 4.1 for details).  H0 is the null hypothesis while Ha represent the alternate 
hypothesis. * represents p-values that are statistically significant. Please note that H0  (No statistical significance) 
indicates that the performance between ML method 1 and ML method 2 are similar while Ha (Statistically significant 
difference) indicates that the model with smaller RMSE is significantly better than the other (see section 4.6 for details). 

 
 

 

ML Method1 - ML Method2 

H0: ML Method1 = ML Method2 

Ha: ML Method1 ≠ ML Method2 

 

 

LSTM – CNN (Upward augmentation & REVAC)  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

4.40e-01 5.20e-01 1.91e-05* 4.40e-01 1.26e-03* 5.20e-01 8.96e-01 1.09e-01 2.90e-03* 1.35e-05* 

LSTM – SVM (Upward augmentation & REVAC) 
 

 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

4.55e-01 6.00e-03* 2.02e-01 8.40e-01 5.96e-03* 2.00e-01 1.15e-01 1.70e-02* 5.96e-03* 6.62e-09* 

SVM – CNN (Upward augmentation & REVAC)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

4.40e-01 1.26e-03* 4.38e-01 8.40e-01 2.18e-02* 5.90e-02 6.39e-03* 8.40e-01 8.96e-01 2.90e-03* 

LSTM – CNN (Downward augmentation & REVAC)  
 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

3.62e-01 5.51e-02 2.70e-01 2.87e-02* 1.64e-01 1.33e-02* 1.27e-02* 5.51e-02 5.51e-02 1.35e-05* 

LSTM – SVM (Downward augmentation & REVAC) 
 

 

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

2.89e-02* 4.48e-02* 1.96e-02* 1.43e-05* 1.14e-01 4.22e-01 2.01e-02* 1.14e-01 9.54e-05* 6.62e-09* 

SVM – CNN (Downward augmentation & REVAC)  

Eastern 

Cape 
Free State Gauteng 

KwaZulu 

Natal 
Limpopo Mpumalanga 

Northern 

Cape 

North 

West 

Western 

Cape 

Average of 

Provinces 

1.36e-02* 8.41e-01 2.57e-02* 1.43e-05* 7.70e-01 1.22e-01 3.01e-01 4.26e-01 9.54e-05* 2.90e-03* 
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Appendix B  
 

RMSE for all Prediction Scenarios in Experiment II (predictions with combinations of original and synthetic data) 

Table B. 1: RMSE errors from the CNN, SVM and LSTM models for all Western Cape dataset combinations mixed upwards for predictions in Experiment II. The total 
synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  

Western Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 69.16 72.64 69.04 48.02 46.47 46.55 58.30 55.83 56.15 70.21 58.81 60.55 
80/20 percent 69.62 73.62 71.35 48.47 46.81 47.40 58.35 55.74 56.28 70.30 58.95 61.23 
70/30 percent 69.51 74.03 72.36 51.83 47.37 47.37 57.43 55.64 56.87 67.81 59.27 59.62 
60/40 percent 70.06 77.04 74.59 49.76 48.58 48.71 58.67 55.22 54.78 76.16 59.73 62.11 
50/50 percent 72.05 80.38 77.55 53.59 49.02 49.63 60.50 56.54 54.87 71.80 60.87 60.90 

 

Table B.2: RMSE errors from the CNN, SVM and LSTM models for all Western Cape dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  

 

Western Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 68.32 72.07 68.59 48.65 50.01 45.28 57.06 78.79 55.79 69.65 77.97 58.86 
80/20 percent 69.23 71.52 70.14 48.17 54.06 48.53 59.74 95.85 54.57 76.86 98.08 58.25 
70/30 percent 69.56 71.53 71.51 51.07 56.20 50.04 55.56 111.45 55.64 68.61 99.56 61.15 
60/40 percent 75.16 74.24 76.39 50.45 59.40 51.01 60.32 122.51 56.26 79.10 104.13 58.73 
50/50 percent 83.10 81.87 94.61 59.76 75.84 57.56 68.09 114.82 68.19 82.45 108.06 62.67 
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Table B.3: RMSE errors from the CNN, SVM and LSTM models for all KwaZulu Natal dataset combinations mixed upwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  

 

KwaZulu Natal 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 43.14 48.35 44.23 20.47 21.28 19.44 22.71 20.10 19.00 27.76 21.13 20.44 
80/20 percent 41.68 47.09 44.78 20.50 21.41 20.29 21.96 20.18 18.86 25.62 20.90 21.43 
70/30 percent 44.24 47.93 45.33 22.67 21.82 21.56 23.30 20.28 19.50 25.91 20.93 21.61 
60/40 percent 43.49 49.50 46.92 22.34 21.78 20.76 22.88 21.15 20.74 26.71 21.48 22.01 
50/50 percent 45.21 50.90 48.53 21.71 22.27 21.42 23.69 22.28 21.39 26.55 21.88 23.52 

 

 

Table B.4: RMSE errors from the CNN, SVM and LSTM models for all KwaZulu Natal dataset combinations mixed downwards for predictions in Experiment II. The total 
synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

 

 

KwaZulu Natal 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 43.70 49.26 44.29 25.89 28.66 20.01 22.11 33.36 19.56 26.07 33.28 20.11 
80/20 percent 45.95 48.97 45.39 23.38 32.74 21.59 28.97 41.87 19.44 26.59 41.48 21.33 
70/30 percent 45.44 49.06 46.39 28.59 35.29 24.09 29.12 46.46 20.38 30.90 46.69 21.43 
60/40 percent 45.93 48.86 48.02 33.06 36.21 27.22 32.50 52.59 22.30 41.84 52.17 23.55 
50/50 percent 52.24 51.99 52.96 38.15 46.11 36.55 34.21 60.76 28.06 48.89 60.09 28.29 
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Table B.5: RMSE errors from the CNN, SVM and LSTM models for all Limpopo dataset combinations mixed upwards for predictions in Experiment II. The total synthetic to original data 

ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  

 

 

Limpopo Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 4.54 4.86 3.34 2.99 3.22 3.02 3.57 3.35 3.34 3.95 3.38 3.35 
80/20 percent 4.57 4.80 3.47 3.04 3.12 2.92 3.50 3.33 3.47 4.21 3.35 3.40 
70/30 percent 4.47 4.85 3.39 3.20 3.13 2.96 3.78 3.38 3.52 4.03 3.33 4.77 
60/40 percent 4.69 4.97 3.50 3.24 3.19 2.95 3.83 3.42 3.50 3.98 3.42 3.41 
50/50 percent 4.80 5.07 3.44 3.40 3.19 2.95 3.89 3.43 3.44 4.02 3.51 3.51 

 

 

 

Table B.6: RMSE errors from the CNN, SVM and LSTM models for all Limpopo dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

Limpopo Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downw
ards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downw
ards 
(Lag 1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downw
ards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
downw
ards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 4.77 4.99 4.78 3.42 3.38 3.27 4.00 3.63 3.80 4.42 3.62 3.61 
80/20 percent 4.91 5.07 4.99 3.72 3.73 3.68 4.34 3.89 4.09 4.68 3.92 3.88 
70/30 percent 5.34 5.18 5.07 4.35 4.17 4.18 4.67 4.33 4.45 4.93 4.33 4.29 
60/40 percent 5.77 5.83 5.80 5.30 5.01 5.26 5.57 5.16 5.35 5.90 5.41 5.42 
50/50 percent 7.08 7.17 7.05 6.70 6.42 6.54 6.98 6.53 6.58 7.32 6.71 6.71 
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Table B.7: RMSE errors from the CNN, SVM and LSTM models for all Free State dataset combinations mixed upwards for predictions in Experiment II. The total synthetic 

to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Table B.8: RMSE errors from the CNN, SVM and LSTM models for all Free State dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Free State Dataset 
  

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 14.35 15.68 15.45 8.52 8.71 8.42 12.29 11.59 11.24 15.05 13.14 12.53 
80/20 percent 14.48 15.70 15.95 8.77 8.87 9.01 13.52 11.51 11.09 16.76 13.39 13.36 
70/30 percent 14.30 15.53 16.10 8.75 8.83 8.79 12.22 11.77 11.27 15.76 13.49 13.01 
60/40 percent 14.99 16.08 16.60 9.15 9.21 9.15 12.72 12.28 11.69 16.83 13.71 13.15 
50/50 percent 14.48 16.05 16.77 8.84 9.21 9.40 13.43 12.56 12.26 16.45 13.69 13.27 

Free State Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 15.29 15.91 15.01 9.49 9.53 9.12 13.93 12.63 12.32 15.83 14.25 13.52 
80/20 percent 16.20 16.10 15.37 10.19 10.66 10.09 14.27 14.05 13.32 17.44 15.47 14.76 
70/30 percent 15.54 16.18 15.46 10.99 11.65 10.96 15.09 15.07 14.57 20.09 16.76 15.35 
60/40 percent 16.02 16.51 15.88 13.20 12.98 12.46 16.94 16.51 15.58 18.80 17.90 16.18 
50/50 percent 17.57 17.97 17.38 15.06 14.48 13.98 18.34 17.57 17.63 21.20 19.90 17.67 
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Table B.9: RMSE errors from the CNN, SVM and LSTM models for all Mpumalanga dataset combinations mixed upwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Table B.10: RMSE errors from the CNN, SVM and LSTM models for all Mpumalanga dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Mpumalanga Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 9.71 10.92 10.12 6.43 6.52 6.47 7.01 6.65 6.69 8.21 6.86 6.85 
80/20 percent 10.00 11.06 10.43 6.49 6.57 6.51 7.30 6.75 6.68 8.21 6.91 6.80 
70/30 percent 10.00 11.19 10.56 6.85 6.56 6.45 7.35 6.86 6.90 8.73 6.95 6.82 
60/40 percent 9.69 11.26 10.72 6.44 6.51 6.46 7.17 6.85 7.05 8.17 7.02 7.00 
50/50 percent 9.89 11.18 10.58 6.53 6.53 6.66 7.27 6.88 6.91 8.44 7.04 7.00 

Mpumalanga Dataset  
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 11.46 11.18 11.37 8.11 7.65 7.65 8.10 7.45 7.65 9.45 7.74 8.01 
80/20 percent 13.30 12.71 12.50 9.39 8.88 8.85 9.86 8.31 8.86 11.55 8.66 8.84 
70/30 percent 14.67 13.44 13.92 11.15 10.01 10.41 10.61 8.95 9.83 12.70 9.26 9.53 
60/40 percent 15.06 14.15 14.20 11.30 11.01 10.87 11.99 10.23 11.28 13.34 10.45 10.71 
50/50 percent 16.56 15.75 15.92 14.36 12.77 12.66 13.32 12.09 13.02 15.22 12.07 11.93 
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Table B.11: RMSE errors from the CNN, SVM and LSTM models for all Northern Cape dataset combinations mixed upwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

Table B.12: RMSE errors from the CNN, SVM and LSTM models for all Northern Cape dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Northern Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 9.64 9.82 9.84 6.90 7.04 7.06 8.13 7.78 7.62 9.19 7.80 7.66 
80/20 percent 9.62 9.74 9.71 7.05 7.07 7.08 7.91 7.74 7.32 9.54 7.71 7.29 
70/30 percent 9.51 9.61 9.56 7.50 7.05 7.21 8.04 7.79 7.48 10.40 7.70 7.35 
60/40 percent 9.51 9.71 9.63 7.41 7.22 7.19 8.38 7.75 7.55 9.62 7.85 7.57 
50/50 percent 9.53 9.91 9.79 7.39 7.26 7.50 8.23 7.73 7.68 9.47 8.29 8.07 

Northern Cape 
Dataset 

 
Synthetic/Original 

(20,000/3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 9.54 9.73 9.52 6.97 7.06 6.90 8.18 7.75 7.78 10.32 7.97 7.45 
80/20 percent 9.56 9.64 9.64 7.40 7.13 7.18 8.62 7.73 7.59 10.41 8.10 7.69 
70/30 percent 9.72 9.70 9.73 7.61 7.24 7.21 8.56 7.73 7.63 10.01 8.33 7.86 
60/40 percent 9.89 9.78 9.69 8.00 7.67 7.67 8.91 8.13 7.93 10.91 8.74 8.30 
50/50 percent 10.35 10.34 10.43 8.82 8.73 8.37 9.29 8.82 8.52 10.97 9.15 8.81 
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Table B.13: RMSE errors from the CNN, SVM and LSTM models for all North West dataset combinations mixed upwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

Table B.14: RMSE errors from the CNN, SVM and LSTM models for all North West dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

North West Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 8.95 9.36 9.13 8.84 8.34 8.30 10.19 8.83 8.82 11.07 9.15 9.06 
80/20 percent 8.53 9.26 8.89 8.65 8.27 8.24 9.61 8.79 8.79 10.77 9.16 9.08 
70/30 percent 8.65 9.30 9.01 8.38 8.28 8.34 9.74 8.87 9.00 10.95 9.41 9.28 
60/40 percent 8.90 9.32 9.01 8.62 8.18 8.18 9.71 8.87 8.90 10.88 9.35 9.20 
50/50 percent 8.86 9.39 9.09 8.68 8.25 8.26 9.73 9.01 9.05 12.79 9.58 9.36 

North West Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 9.86 10.10 9.73 8.66 8.30 8.25 9.81 8.84 9.03 10.99 9.29 9.27 
80/20 percent 10.63 10.71 10.36 8.88 8.58 8.55 10.21 9.03 8.93 10.51 9.53 9.37 
70/30 percent 11.03 11.00 10.73 9.03 8.73 8.75 10.68 9.13 9.06 10.85 9.71 9.46 
60/40 percent 11.42 11.51 11.69 9.84 9.18 9.18 10.64 9.60 9.62 12.31 10.09 9.75 
50/50 percent 12.45 12.04 12.01 10.44 9.73 9.81 10.79 10.00 9.84 12.33 10.52 10.09 
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Table B.15: RMSE errors from the CNN, SVM and LSTM models for all Gauteng dataset combinations mixed upwards for predictions in Experiment II. The total synthetic 

to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
  

 

 

Table B16: RMSE errors from the CNN, SVM and LSTM models for all Gauteng dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
 

 

 

 

 

Gauteng Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 71.61 76.56 75.10 44.86 44.58 44.77 45.16 42.50 44.27 50.61 42.25 41.48 
80/20 percent 70.91 76.65 75.30 46.59 44.56 44.88 45.52 42.70 42.62 49.28 42.09 40.92 
70/30 percent 71.00 76.77 75.66 47.46 45.58 47.34 46.79 43.70 43.68 48.63 41.85 41.33 
60/40 percent 72.05 77.19 75.58 45.93 45.57 47.06 49.09 45.41 45.60 50.20 41.69 41.99 
50/50 percent 72.98 79.78 77.19 55.76 46.76 47.46 50.90 45.89 46.32 51.97 42.52 43.17 

Gauteng Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 70.00 75.54 73.90 46.32 46.02 46.97 46.67 43.05 43.17. 53.62 42.43 44.45 
80/20 percent 71.47 74.13 73.57 50.51 47.43 48.34 47.89 44.87 44.75 52.16 43.9 45.20 
70/30 percent 72.28 73.03 74.45 49.76 48.94 49.45 52.99 46.25 46.47 54.43 45.01 47.48 
60/40 percent 79.55 73.48 74.26 56.47 51.29 52.07 51.67 48.89 49.94 57.54 48.41 48.36 
50/50 percent 81.24 77.09 78.01 62.69 57.26 57.12 61.18 56.80 56.82 64.34 55.48 55.42 
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Table B.17: RMSE errors from the CNN, SVM and LSTM models for all Eastern cape dataset combinations mixed upwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa.  
  

 

 

 

Table B.18: RMSE errors from the CNN, SVM and LSTM models for all Eastern cape dataset combinations mixed downwards for predictions in Experiment II. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

 

Eastern Cape Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 33.74 34.58 35.04 13.79 13.53 13.57 14.16 14.80 12.93 16.13 12.89 12.67 
80/20 percent 32.83 33.95 33.75 14.21 13.70 13.66 14.88 13.20 12.96 15.86 13.32 12.84 
70/30 percent 32.22 33.14 33.30 14.67 14.16 14.09 15.14 13.71 14.47 17.06 13.89 13.47 
60/40 percent 31.23 31.97 31.97 16.27 14.70 14.80 16.52 14.45 14.23 18.24 15.34 14.62 
50/50 percent 31.49 31.41 31.25 18.57 16.83 16.77 17.54 16.76 16.55 20.22 17.53 17.27 
 

 

Eastern Cape Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 33.01 34.14 34.20 13.68 13.42 13.94 13.59 13.14 13.16 14.69 12.46 12.03 
80/20 percent 33.87 33.43 34.01 13.62 13.46 13.62 13.89 12.96 13.01 14.96 12.56 12.07 
70/30 percent 33.13 33.93 34.75 14.52 13.72 14.11 14.04 12.97 13.29 14.87 12.78 12.64 
60/40 percent 32.92 33.26 34.01 13.87 13.89 14.11 14.34 13.22 13.10 15.10 12.83 12.34 
50/50 percent 33.15 34.00 34.20 14.82 13.88 14.33 14.89 13.51 13.50 15.77 13.03 12.59 
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Appendix C 
 

RMSE for all Prediction Scenarios in Experiment III (predictions with combinations of original and synthetic 

data and REVAC parameter tuning) 

Table C. 1: RMSE errors from the CNN, SVM and LSTM models for all Western Cape dataset combinations augmented upwards for predictions in Experiment III. The 
total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-
versa. 

Western Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 69.22 76.62 69.22 46.68 48.21 46.62 56.76 57.04 54.24 59.42 59.17 58.49 
80/20 percent 69.72 75.53 68.86 52.85 47.46 47.68 58.49 56.86 54.88 58.84 59.48 58.59 
70/30 percent 70.23 75.78 68.94 48.64 47.49 47.03 55.65 57.42 55.62 60.96 59.02 58.78 
60/40 percent 71.80 75.13 71.23 51.10 47.31 49.76 58.82 56.93 56.12 61.61 59.04 58.02 
50/50 percent 72.81 82.68 73.21 49.20 47.82 48.77 56.81 56.70 57.09 65.13 60.16 59.04 

 

Table C.2: RMSE errors from the CNN, SVM and LSTM models for all Western Cape dataset combinations augmented downwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-

versa. 

Western Cape 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 67.89 74.00 68.75 46.09 53.40 45.32 54.28 70.26 54.16 58.16 72.36 58.18 
80/20 percent 70.75 72.92 68.58 46.96 58.02 46.12 57.80 78.69 56.77 58.41 82.62 57.13 
70/30 percent 69.21 72.36 69.90 48.53 61.86 45.89 52.73 85.35 53.18 58.91 87.16 58.08 
60/40 percent 75.10 74.31 73.94 49.98 64.75 49.36 56.44 89.79 56.63 59.84 90.47 57.71 
50/50 percent 83.69 80.44 87.89 59.67 77.24 55.57 62.81 93.91 62.28 64.86 97.86 64.20 
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Table C.3: RMSE errors from the CNN, SVM and LSTM models for all KwaZulu Natal dataset combinations augmented upwards for predictions in Experiment III. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

 

KwaZulu Natal 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 43.46 47.82 43.49 20.42 20.89 20.53 23.98 19.44 20.22 25.25 21.19 20.44 
80/20 percent 42.01 46.49 42.76 20.36 21.01 21.23 25.04 20.08 20.90 24.89 20.99 21.06 
70/30 percent 43.62 47.41 44.66 21.38 22.36 20.96 23.18 20.25 21.70 23.49 21.09 21.97 
60/40 percent 43.11 48.92 45.76 21.39 21.37 21.86 23.51 20.95 21.94 23.01 21.68 22.85 
50/50 percent 44.57 50.31 46.36 21.42 21.85 22.46 24.44 22.04 22.72 23.61 22.29 23.88 

 

Table C.4: RMSE errors from the CNN, SVM and LSTM models for all KwaZulu Natal dataset combinations augmented upwards for predictions in Experiment III. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

  

KwaZulu Natal 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 43.66 48.77 44.51 21.66 26.76 19.82 22.47 35.98 20.81 22.48 34.28 19.51 
80/20 percent 43.54 48.61 43.11 22.12 31.32 22.83 24.00 45.65 20.29 21.98 42.54 22.00 
70/30 percent 45.81 48.83 44.69 22.18 34.56 23.20 24.12 49.37 24.05 23.35 47.42 21.68 
60/40 percent 44.18 48.79 45.16 23.51 32.48 25.11 33.87 56.76 23.71 28.89 54.38 26.11 
50/50 percent 49.97 52.25 49.97 30.14 43.51 28.33 30.84 65.02 29.53 30.77 62.61 28.99 
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Table C.5: RMSE errors from the CNN, SVM and LSTM models for all Limpopo dataset combinations augmented upwards for predictions in Experiment III. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

  

Limpopo Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 4.55 4.69 4.54 3.12 2.97 3.00 3.45 3.35 3.16 3.46 3.45 3.28 
80/20 percent 4.60 4.64 4.56 3.18 3.02 3.01 3.47 3.32 3.25 3.52 3.45 3.27 
70/30 percent 4.57 4.69 4.56 3.27 3.10 3.02 3.45 3.39 3.27 3.46 3.51 3.24 
60/40 percent 4.77 4.81 4.65 3.54 3.23 3.12 3.63 3.47 3.68 3.63 3.56 3.53 
50/50 percent 4.96 4.95 4.83 3.60 3.22 3.06 3.86 3.58 3.53 3.71 3.65 3.47 

 

Table C.6: RMSE errors from the CNN, SVM and LSTM models for all Limpopo dataset combinations augmented downwards for predictions in Experiment III. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

  

Limpopo Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 4.75 4.95 4.76 3.32 3.33 3.24 3.66 3.36 3.62 3.69 3.67 3.55 
80/20 percent 4.88 5.04 4.87 3.70 3.7 3.67 3.97 3.89 3.89 3.99 3.99 3.81 
70/30 percent 5.13 5.15 5.04 4.27 4.16 4.32 4.53 4.36 4.28 4.39 4.4 4.29 
60/40 percent 5.78 5.82 5.69 5.13 5.02 5.22 5.23 5.17 5.20 5.35 5.5 5.42 
50/50 percent 7.00 7.17 6.95 6.62 6.4 6.45 6.29 6.57 6.45 6.31 6.8 6.51 
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Table C.7: RMSE errors from the CNN, SVM and LSTM models for all Free State dataset combinations augmented upwards for predictions in Experiment III. The total 

synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and vice-versa. 

 

Free State Dataset  
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 14.55 14.99 14.94 8.55 8.30 8.36 11.55 12.29 11.31 12.73 14.16 13.09 
80/20 percent 14.40 14.93 14.60 8.52 8.39 8.48 11.44 12.14 11.24 12.92 14.44 13.23 
70/30 percent 14.51 14.75 14.44 8.60 8.34 8.41 12.04 12.43 11.14 13.51 14.56 12.92 
60/40 percent 15.07 15.34 15.42 8.89 8.81 8.56 11.95 13.04 11.97 13.42 14.83 12.90 
50/50 percent 14.50 15.15 15.24 8.59 8.78 8.40 11.87 13.06 11.90 13.77 14.64 13.13 

 

 

Table C.8: RMSE errors from the CNN, SVM and LSTM models for all Free State dataset combinations augmented downwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and 

vice-versa. 

 

Free State Dataset  
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 14.89 16.18 14.76 9.24 9.83 8.99 12.51 12.70 11.87 13.83 14.22 13.47 
80/20 percent 16.41 16.33 15.29 9.84 10.75 9.92 14.47 13.91 13.22 15.71 15.24 15.53 
70/30 percent 15.31 16.38 15.77 10.65 11.63 11.00 15.34 14.71 14.59 17.50 16.27 15.50 
60/40 percent 16.05 16.65 15.87 12.14 12.88 12.22 16.04 15.76 15.99 19.32 17.37 17.10 
50/50 percent 17.31 16.18 17.27 13.33 14.16 13.94 17.63 16.79 17.76 18.94 18.72 18.10 
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Table C.9: RMSE errors from the CNN, SVM and LSTM models for all Mpumalanga dataset combinations augmented upwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and 

vice-versa. 

 
Mpumalanga  

Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 9.66 9.93 10.12 6.50 6.18 6.39 6.80 7.05 6.49 6.72 7.41 6.88 
80/20 percent 9.72 10.03 10.09 6.52 6.22 6.46 6.92 7.10 6.69 6.92 7.49 7.01 
70/30 percent 10.16 10.14 10.42 6.70 6.24 6.69 6.91 7.21 6.94 6.88 7.53 6.82 
60/40 percent 9.71 10.20 10.28 6.44 6.10 6.70 6.77 7.26 6.70 6.99 7.59 6.84 
50/50 percent 9.76 10.22 10.01 6.32 6.20 6.68 6.88 7.18 6.68 7.31 7.63 6.77 

 

Table C.10: RMSE errors from the CNN, SVM and LSTM models for all Mpumalanga dataset combinations augmented downwards for predictions in Experiment III. 

The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

 

Mpumalanga 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 11.53 11.71 11.47 7.64 7.66 7.64 7.73 7.56 7.77 8.25 7.85 8.07 
80/20 percent 13.32 12.66 12.43 8.60 9.01 9.04 8.86 8.56 8.59 9.85 8.94 9.28 
70/30 percent 14.19 13.45 13.70 10.10 10.31 10.19 9.53 9.21 9.32 10.03 9.63 9.47 
60/40 percent 14.92 14.23 13.88 10.56 11.27 10.45 11.06 10.53 10.90 10.90 10.86 10.46 
50/50 percent 15.89 16.01 15.64 12.38 13.12 12.03 13.07 12.42 13.25 13.40 12.39 12.02 
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Table C.11: RMSE errors from the CNN, SVM and LSTM models for all Northern Cape dataset combinations augmented upwards for predictions in Experiment III. 

The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

  

Northern Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 9.38 9.64 9.60 6.95 6.83 6.88 7.58 7.84 7.42 7.55 8.03 7.39 
80/20 percent 9.41 9.58 9.60 7.00 6.87 7.03 7.44 7.79 7.31 7.71 7.93 7.24 
70/30 percent 9.55 9.45 9.60 7.00 6.85 6.98 7.61 7.80 7.33 7.65 7.92 7.60 
60/40 percent 9.40 9.54 9.56 7.16 7.02 7.20 7.49 7.81 7.38 7.58 8.15 7.45 
50/50 percent 9.46 9.68 9.68 7.12 7.06 7.30 7.59 7.83 7.80 7.94 8.58 7.82 

 

Table C.12: RMSE errors from the CNN, SVM and LSTM models for all Northern Cape dataset combinations augmented downwards for predictions in Experiment 

III. The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

  

Northern Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 9.51 9.64 9.57 7.00 6.98 6.94 7.70 7.88 7.50 8.10 8.23 7.61 
80/20 percent 9.68 9.56 9.61 7.02 7.09 7.15 7.87 7.86 7.44 8.09 8.36 7.66 
70/30 percent 9.71 9.64 9.66 7.28 7.20 7.25 7.73 7.87 7.62 8.21 8.59 7.99 
60/40 percent 9.66 9.72 9.75 7.71 7.64 7.66 8.26 8.26 7.82 8.57 8.99 8.26 
50/50 percent 10.32 10.28 10.37 8.42 8.32 8.23 8.96 8.88 8.36 9.50 9.48 8.67 
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Table C.13: RMSE errors from the CNN, SVM and LSTM models for all North West dataset combinations augmented upwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and 

vice-versa. 

 

North West Dataset  
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 8.71 9.07 8.86 8.56 8.15 8.21 9.02 8.91 8.83 9.86 9.53 9.47 
80/20 percent 8.59 8.95 9.01 8.68 8.09 8.01 8.88 8.90 8.93 9.42 9.57 9.27 
70/30 percent 8.77 9.00 8.79 8.29 8.07 8.08 9.31 8.95 8.94 9.83 9.80 9.46 
60/40 percent 8.76 9.05 8.91 8.08 8.01 8.02 8.86 8.96 8.79 9.59 9.68 9.06 
50/50 percent 8.69 9.10 8.99 8.16 8.11 8.22 9.04 9.12 8.90 9.62 9.86 9.39 

 

 

Table C.14: RMSE errors from the CNN, SVM and LSTM models for all North West dataset combinations augmented downwards for predictions in Experiment III. 

The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

 

North West 
Dataset  

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwa
rds 
(Lag1) 

SVM 
RMSE 
when 
mixed 
downwa
rds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 9.44 9.71 9.65 8.30 8.14 8.21 9.02 9.01 8.88 9.57 9.75 9.17 
80/20 percent 10.18 10.29 10.52 8.64 8.44 8.55 9.08 9.20 8.82 9.88 9.95 9.30 
70/30 percent 10.60 10.60 10.75 8.79 8.63 8.61 9.27 9.37 8.93 10.13 10.17 9.36 
60/40 percent 11.38 11.18 11.60 9.29 9.16 9.15 9.81 9.88 9.38 10.50 10.53 9.79 
50/50 percent 12.05 11.72 12.42 9.81 9.71 9.71 10.35 10.30 9.93 11.41 11.01 10.28 
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Table C.15: RMSE errors from the CNN, SVM and LSTM models for all Gauteng dataset combinations augmented upwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and 

vice-versa. 

 

Gauteng Dataset 
 

Synthetic: Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 73.17 75.68 71.56 45.98 43.89 44.51 43.29 42.39 42.94 43.17 42.39 41.76 
80/20 percent 73.47 75.75 71.23 45.60 43.91 44.72 46.60 42.69 43.99 43.86 42.31 40.78 
70/30 percent 74.25 75.81 72.63 47.05 44.81 45.78 45.12 43.78 44.01 43.26 42.19 42.68 
60/40 percent 73.85 76.34 72.75 46.50 44.83 44.84 47.02 45.45 45.44 43.68 42.04 41.25 
50/50 percent 74.99 78.83 73.07 47.42 46.08 45.46 48.27 45.90 44.06 45.31 42.90 43.15 

 

 

Table C.16: RMSE errors from the CNN, SVM and LSTM models for all Gauteng dataset combinations augmented downwards for predictions in Experiment III. The 

total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model and 

vice-versa. 

 

Gauteng Dataset 
 

Synthetic: 
Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 70.92 74.66 75.12 47.11 45.47 47.46 44.13 43.03 45.27 43.70 42.75 44.12 
80/20 percent 71.04 73.49 74.01 48.17 47.03 48.69 45.85 44.49 46.39 50.60 44.31 45.68 
70/30 percent 71.65 72.47 73.63 51.49 48.96 49.49 49.36 46.32 47.12 47.59 45.45 46.43 
60/40 percent 76.25 73.09 73.56 52.26 51.45 51.29 50.27 49.25 49.06 50.56 48.77 48.84 
50/50 percent 77.83 77.01 78.41 59.22 57.75 56.36 59.00 57.06 55.72 57.09 55.82 56.01 
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Table C.17: RMSE errors from the CNN, SVM and LSTM models for all Eastern Cape dataset combinations augmented upwards for predictions in Experiment III. 

The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

 

Eastern Cape 
Dataset 

 
Synthetic: Original 

(20,000:3763) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag1) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag1) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag5) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag5) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag14) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag14) 

CNN 
RMSE 
when 
mixed 
upwards 
(Lag21) 

SVM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
upwards 
(Lag21) 

90/10 percent 32.94 34.01 32.97 13.20 13.28 13.08 12.82 13.05 13.65 12.62 12.61 12.64 
80/20 percent 32.63 33.26 32.73 13.46 13.30 13.29 13.69 12.98 13.93 12.18 12.72 12.12 
70/30 percent 33.02 33.78 33.23 14.15 13.52 13.86 13.05 13.04 13.25 12.27 12.90 12.32 
60/40 percent 32.58 33.10 32.97 13.64 13.71 13.61 13.31 13.24 13.31 13.21 12.90 12.65 
50/50 percent 33.06 33.78 33.55 13.76 13.74 13.72 13.71 13.60 13.78 13.29 13.21 13.31 

 

 

Table C.18: RMSE errors from the CNN, SVM and LSTM models for all Eastern Cape dataset combinations augmented downwards for predictions in Experiment III. 

The total synthetic to original data ratio is used in the proportions shown in the table. Lower RMSE percentages indicate better prediction accuracy of the model 

and vice-versa. 

 

Eastern Cape 
Dataset 

 
Synthetic: 

Original 
(20,000:3763) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag1) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag 
1) 

CNN 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

SVM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

LSTM 
RMSE 
when 
mixed 
downwar
ds (Lag5) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag14) 

CNN 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

SVM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

LSTM 
RMSE 
when 
mixed 
downwar
ds 
(Lag21) 

90/10 percent 33.39 34.41 33.83 13.51 13.40 13.86 12.99 13.16 13.10 12.73 13.02 12.51 
80/20 percent 32.83 33.77 33.20 14.06 13.58 13.76 13.02 13.25 13.37 13.08 13.50 12.94 
70/30 percent 31.66 32.98 32.36 14.21 14.08 14.23 13.58 13.78 13.88 13.65 14.06 13.22 
60/40 percent 30.33 31.81 31.23 14.75 14.66 14.67 14.71 14.65 14.59 14.99 15.53 14.96 
50/50 percent 30.56 31.34 30.88 16.78 16.85 16.90 16.92 17.03 16.48 17.59 17.97 17.53 
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 Appendix D 
 

Final Parameters for the Grid Search Tuner  

Table D 1: Final parameters for the CNN, SVM and LSTM models for each Province with Grid the search tuning. 

 

Parameters Western 
Cape  

Eastern 
Cape 

Gauteng Northern 
Cape 

North West Mpumalanga KwaZulu 
Natal 

Free State Limpopo 

C (SVM) 29.747 2.62 8.464 1.333 
 

7.392 
 

10.234 
 

90.671 2.322 38.095 
 

Gamma (SVM) 0.005 
 

0.004 0.009 0.011 
 

0.005 
 

0.002 
 

0.002 0.001 0.001 
 

Neurons (LSTM) (16,100,100) (12) (6,18,32) (16) (50,18,32) (12,100) (28,100,12) (16,18) (64) 

No of epochs (LSTM) 120 100 120 40 100 40 50 120 50 

Batch size (LSTM) 32 32 4 16 64 32 4 32 18 

No of stacked LSTM 
layers 

3 1 1 1 3 2 3 2 1 

Learning rate (LSTM) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Convolution layers 
(CNN) 

2 3 2 1 3 3 3 3 2 

Kernel size (CNN) (32,32) (18,6,6) (28,6) (12) (24,16,18) (28,32,18) (24,16,16) (64,6,12) (18,64) 

No of epochs (CNN) 100 50 50 40 40 50 60 50 40 

Pool size (CNN) 1 1 1 1 1 1 1 1 1 

Batch size (CNN) 16 64 32 18 4 16 64 32 64 

Learning rate (CNN) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
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Table D2: Final parameters for the CNN, SVM and LSTM models for each Province with the REVAC search tuning. 

Parameters Western 
Cape  

Eastern 
Cape 

Gauteng Northern 
Cape 

North West Mpumalanga KwaZulu 
Natal 

Free State Limpopo 

C (SVM) 17.847 0.566 2.894 0.697 5.907 0.049 41.524 3.276 10.331 

Gamma (SVM) 0.002 0.004 0.004 0.008 0.005 0.005 0.001 0.001 0.003 

Neurons (LSTM) (6) (12,6,32) (12) (12) (16) (50,18) (16,64,12) (28,12) (24,32) 

No of epochs (LSTM) 40 50 60 100 100 40 70 50 40 

Batch size (LSTM) 64 18 64 18 32 64 18 64 18 

No of stacked LSTM 
layers 

1 3 1 1 1 1 3 2 2 

Learning rate (LSTM) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Convolution layers 
(CNN) 

2 2 1 2 2 3 3 3 1 

Kernel size (CNN) (12,16) (12,12) (6) (12,16) (32,32) (16,18,16) (6,28,24) (24,6,28) (12) 

No of epochs (CNN) 100 100 60 150 50 40 150 50 50 

Pool size (CNN) 1 1 1 1 1 1 1 1 1 

Batch size (CNN) 64 18 16 16 64 64 32 16 4 

Learning rate (CNN) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
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