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Abstract

Recently there has been an increasing amount of research into autonomous vehicles
for real-world driving. Much progress has been made in the past decade with many
automotive manufacturers demonstrating real-world prototypes.

Current predictions indicate that roads designed exclusively for autonomous vehicles
will be constructed and thus this thesis explores the use of methods to automatically
produce controllers for autonomous vehicles that must navigate with each other on
these roads.

Neuro-Evolution, a method that combines evolutionary algorithms with neural
networks, has shown to be effective in reinforcement-learning, multi-agent tasks
such as maze navigation, biped locomotion, autonomous racing vehicles and fin-less
rocket control.

Hence, a neuro-evolution method is selected and investigated for the controller
evolution of collective autonomous vehicles in homogeneous teams.

The impact of objective and non-objective search (and a combination of both, a
hybrid method) for controller evolution is comparatively evaluated for robustness
on a range of driving tasks and collection sizes.

Results indicate that the objective search was able to generalise the best on unseen
task environments compared to all other methods and the hybrid approach was able
to yield desired task performance on evolution far earlier than both approaches but
was unable to generalise as effectively over new environments.
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1Introduction

„To be clear, Tesla is strongly in favour of people
being allowed to drive their cars and always will
be. However, when self-driving cars become safer
than human-driven cars, the public may outlaw
the latter. Hopefully not.

— Elon Musk
(Entrepreneur, inventor and Tesla CEO)

Recently, autonomous vehicles have been of increased interest for various automotive
companies. Future intelligent transport systems are envisaged to have thousands of
autonomous vehicles which detect objects, avoid collisions and predict accidents, all
whilst collectively traversing optimal paths through highways and road networks.
Autonomous vehicles from different manufacturers will have to negotiate and navi-
gate with each other and thus employing a distributed control method which does
not rely on external control systems, leaving behavioural autonomy to individual
vehicles (Martinoli et al., 2002) will be required.

For a distributed system of autonomous vehicles to operate effectively, controllers
(behaviours) of individual vehicles play a critical role in the safe collective flow of
traffic. Moreover, current engineering design methods are not appropriate for the
design of autonomous vehicles that must elicit a distributed collective behaviour
(Zhang et al., 2003) for the safe and constant flow of traffic at given speeds for a
vast range of roads and highways.

Therefore, using traditional engineering methods, traffic systems can be viewed
as complex systems where it is difficult to determine what the controller for each
vehicles should be such that an optimal collective behaviour is synthesized.

This research thus investigates the evolution (adaptation) of controllers for au-
tonomous vehicles in a simulated environment using neuro-evolution directed by
objective (Stanley and Miikkulainen, 2002), non-objective search (Lehman and
Stanley, 2011) and a combination of both (hybrid) to automate the autonomous
vehicle controller design process.
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1.1 Motivation and Problem Statement

Distributed autonomous vehicle control is a complex process, especially when col-
lective behaviour needs to be synthesized. Moreover, current driving systems rely
on vision, rather than more advanced technologies such as smart infrastructure or
vehicle-to-vehicle communication. Current self-driving cars attempt to replicate hu-
man actions but at a more efficient level, thus still relying on traditional vision-based
driving requirements and road rules.

In the future, it is predicted that all vehicles on roads will be autonomous. If this
situation arises, the need for road rules that govern the way humans drive will
no longer be appropriate and thus vehicles could rather travel in a more optimal
fashion: simultaneously avoiding obstacles (other autonomous vehicles, road obsta-
cles, pedestrians) and keeping within road barriers without the need for lanes or
intersections that require stopping.

For this research we assume all vehicles will have fully-functioning sensor systems to
properly detect other vehicles and obstacles around it (for example, LIDAR sensors
(Levinson et al., 2011)) along with a vehicle tracking system (for example, GPS
(Space-Based Positioning and Timing, 2017)) so that vehicles are aware of their
positions relative to its destination.

Autonomous vehicles will be tasked with navigating a simulated environment with
various static and dynamic obstacles. These autonomous vehicles will need to
collectively navigate whilst avoiding collisions with each other and other obstacles
whilst minimising travel time by following the optimal path at high speeds and thus
utilising energy effectively.

Currently, there is no distributed control system for collective fully-autonomous
vehicles that must navigate roads whilst accounting for other autonomous vehicles,
obstacles and unpredictable events such as pedestrians or animals crossing. This
research attempts to address this gap by presenting neuro-evolution methods for
this application.

1.2 Methods

The main objective of this research is to automate the production of autonomous
vehicle controllers that operate in a distributed fashion on any given environment.
This means that controllers will be generalisable to unseen road networks that differ
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from the training environment and be robust to different group sizes of autonomous
vehicles.

Neuro-Evolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen,
2002) is used to adapt the vehicle controllers. NEAT is an approach to adapt artificial
neural networks by evolving network connection weights and the network’s structure
(topology).

We investigate three methods: a traditional objective based approach (using a
fitness function): NEAT Objective Controller Evolution (OCE), a non-objective based
approach: NEAT Novelty Controller Evolution (NCE) (based on novelty search (NS)
by (Lehman and Stanley, 2011)), and a hybrid (HCE) approach where the fitness
function from OCE is combined with the novelty score from NCE.

In our experiments, vehicles act in homogeneous teams whereby morphology (shape,
type, sensor configuration) and controller are the same for individual vehicles during
evolution process. Homogeneous (clones) teams allow for many instances of a
controller to be tested simultaneously, and is thus more efficient to adapt. Much of
the literature uses homogeneous teams (Waibel et al., 2009) as they are easier to use
(Trianni et al., 2006), scale more easily and are more robust to failures of individuals
(Bryant and Miikkulainen, 2003) within teams when compared with heterogeneous
teams (Floreano and Mattiussi, 2008). To adapt heterogeneous teams, each variant
controller would compound the overall evaluation if it were to have been evolved
with the same rigour as in the homogeneous team.

1.3 Contributions

NE has demonstrated the ability to produce ANN controllers that yield behaviours
successful at a wide variety of complex control tasks such as maze navigation, biped
locomotion (Lehman and Stanley, 2011) and pole balancing (Gomez et al., 2006),
along with a variety of autonomous driving research (Togelius and Lucas, 2006;
Ebner and Tiede, 2009; Drchal and Koutník, 2009).

A non-objective search approach for NE, NS has also been demonstrated to out-
perform (in terms of search speed and ability to avoid getting trapped in local
optima) traditional objective based methods in certain domains (Lehman and Stan-
ley, 2011).

Furthermore, the combination of the objective and non-objective methods (a hybrid),
has demonstrated the ability to outperform pure approaches (Huang et al., 2015).

1.3 Contributions 3



In this research, we assess the efficacy of traditional objective, novelty search and a
hybrid methods on the collective autonomous driving task.

Prior research on autonomous driving using NE have focused on adapting controllers
to navigate a single vehicle through a track using either objective or non-objective
methods, rarely combining the two or adapting controllers to yield collective driving
behaviours.

Given past research demonstrating the capability of hybrid approaches outperforming
traditional (pure) methods, we hypothesize that the hybrid approach will adapt
controllers that will generalise more effectively across various unseen environments
when compared with the pure-objective and pure-novelty methods in this collective
self-driving task.

The ability to successfully synthesize collective vehicle control behaviours could aid
in designing future transportation systems where autonomous vehicle manufacturers
develop safe and efficient autonomous fleets that do not rely on costly centralised
control systems.

1.4 Thesis Structure

Chapter 2

This chapter provides the background of this research and introduces neuro-evolution,
evolutionary search methods and autonomous vehicles.

Chapter 3

This chapter gives an overview of the specific implementations were employed for
this research including details of the simulator, implementation and parameters for
Neuro-Evolution of Augmenting Topologies (NEAT), the evaluation functions defined
for each evolutionary search method and further details on our implementations for
novelty search (NS) and hybrid approaches.

Chapter 4

This chapter describes the experiments, simulated vehicles and environments along
with all permutations of experiments undertaken to assess performance between
each search method. Results are then presented with graphs and statistical tests.

Chapter 5

The penultimate chapter presents a detailed analysis of the results and relates them
back to the initial hypothesis.
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Chapter 6

Finally, this chapter discusses the results and describes some limitations with this
work and future research.

1.4 Thesis Structure 5





2Background

This chapter provides background on methods used in our research and a literature
review of existing research on autonomous vehicle controller design. It is divided
into three sections.

The first section introduces Neuro-Evolution (NE) and explores the underlying
technologies: artificial-neural networks (ANN) and evolutionary algorithms (EA).
Neuro-Evolution of Augmenting Topologies (NEAT) is discussed in detail as it is the
method used to adapt vehicle controllers in this research. In section 2, evolutionary
search methods are discussed with focus on objective, non-objective and hybrid
methods to guide NE. The non-objective method, Novelty Search (NS) is elaborated
in more detail as it is the focus of this research.

In the final section, research in controller design for autonomous vehicles is surveyed
and the current state-of-the-art self-driving technology in production and prototype
vehicles outlined.

2.1 Neuro-Evolution

Neuro-Evolution (NE) is the evolution of Artificial Neural Networks using Evolution-
ary Algorithms. NE thus combines the power of two biologically inspired methods:
the brain and the evolutionary process that derived the brain over generations. NE
presents an alternative method to traditional reinforcement learning (RL) problems
as solutions are not modified during evaluations (ontogenetic) but rather, through
recombination of individuals in a population. This population-based or phylogenetic
learning gradually moves the population towards the solution where an individual
that exhibits a desired behaviour on a given task (highest fitness) is found.

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) is a computational model based on the biological
neural networks found in the natural brain. ANNs are powerful problem solvers as
they are universal function approximators, are generalisable and can retain memory
(through recurrent networks) (Gomez, 2003). Similar to how a brain’s neural
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network is comprised of a vast array of neurons and their connections (axons and
dendrites), an ANN is created by combining multiple artificial neurons.

The artificial neuron (depicted in the inset in figure 2.1) is a referred to as a node
and it receives inputs via its input connections and produces a single output based
on the input connection’s weights and the node’s activation function. The input
values from the input connections are multiplied by the connection weights and a
bias value is added to create a net input value using the following equation:

z =
∑
i

wijOi + θj (2.1)

where wij is the weight between current node j and incoming node i, Oi is the
output value of node i and θj is the bias.

The net input, z is then passed to the activation function. Figure 2.2 depicts four
commonly used activation functions. The output from this node thus depends on its
inputs and the type of activation function used (for example, if a sigmoid function
was selected, the output would be: σ(z)).

Multiple neurons are connected together to form an ANN. In the application of
such networks, the structure, connection weights or both are modified and tuned
to enable it to learn and create desirable outputs based on given inputs. Figure 2.1
depicts a fully-connected feed-forward neural network with a total of 10 nodes (4
input nodes, 5 hidden substrate nodes and one output node). Layers are used to
describe where nodes reside in the network. Input nodes are in the input layer and
these nodes have no incoming connections from other nodes. Output nodes are in
the output layer (they terminate and have no outgoing connections into other nodes)
and nodes that have both incoming and outgoing connections to and from other
nodes are referred to hidden nodes in the hidden layer. There can be any number
of hidden layers but only one input and one output layer. The network structure
(number of nodes and connections between them) are referred to as the network
topology.

Each input node can receive some numerical feature or signal of the task or envi-
ronment. In a supervised learning task, an example in image processing would
map each input node to a cluster of pixels on an image. Similarly, in reinforcement
learning such as control systems, inputs would be signals from sensors that receive
information about its environment. Outputs from these networks would either be
classification of an image or some action that is taken by the control system to
influence the environment.

8 Chapter 2 Background



Fig. 2.1: An example fully-connected feedforward artificial neural network. The inset
depicts an aritficial neuron or node from the hidden layer consisting of inputs x1
through xn. A connection weighting w1 through wn for each input connection,
an activation function and an output. Inputs are multiplied by their weights,
combined and passed through the activation function which then creates an output
signal. Based on diagram from Yegnanarayana (2009).

ANNs have been applied in a wide-array of supervised, unsupervised and reinforce-
ment learning tasks with examples such as image recognition, machine translation
and control systems such as autonomous vehicles, respectively (Ciregan et al., 2012;
Bahdanau et al., 2014; Pomerleau, 1991).

Different ANN representations are used depending on the learning type and task.
Examples include: the recurrent neural network or the feed-forward neural network
both of which can be partially or fully-connected. Figure 2.1 depicts the most
straight-forward representation, a fully-connected feed-forward neural networks
which has no cycles in the network.

Various techniques exist in adapting an ANN to solve problems. Traditional methods
focus on tuning parameters of a single ANN repeatedly until some criteria is satisfied.
These developmental processes are referred to as being ontogenetic. The most basic
form of an ontogenetic method is the Gradient Descent Algorithm (Baldi, 1995).
Evolutionary methods adapts the whole population of ANNs towards a solution
through reproductive and mutative processes, instead of adapting parameters of
individual ANNs. This phylogenetic method recombines and mutates individual ANNs
to produce desirable offspring which eventually moves the population towards the
solution where an individual in that population yields the desired behaviour.

2.1 Neuro-Evolution 9
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Fig. 2.2: Activation Functions commonly used include the logistic sigmoid σ(z) and the
hyperbolic tangent tanh(z). Other activation functions include the linear function
f(z) and the step function s(z). (Krishna, 2018)

In this research, evolutionary algorithms are used to adapt ANNs. The next sub-
section thus describes this phylogenetic method and its process on ANN adaptation
in more detail.

2.1.2 Evolutionary Algorithms

Evolutionary Computation (EC) and Evolutionary Algorithms (EA) are optimisation
methods inspired by the process of natural evolution. The power of evolution in
nature is evident in the diverse species that make up our world and how they survive
in its own niche. The fundamental process of natural evolution is trial-and-error and
it has proved to be a powerful method and thus is used as the main metaphor that
EC uses for problem solving in computing (Eiben and Smith, 2003).

EA methods maintain a population of candidate solutions encoded in a chromosome.
The chromosome represents properties of the solution depending on the encoding
scheme. Depending the the specific EA and task, solution representations vary:

• Genetic Algorithm (GA; (Goldberg and Holland, 1988)) methods represent
solutions with a vector of bits or real-valued numbers.

• Evolutionary Programming (EP; (Fogel and Fogel, 1995)) uses finite state
machines (FSM) and its chromosomes encode the various components in a
transition table.
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• Genetic Programming (GP; (Koza, 1994)) uses tree-structures and thus chro-
mosomes encode each node and branch.

• Neuro-Evolution (NE; (Wieland, 1991)) evolves ANNs and thus chromosomes
encode the network structure and connection weights in some way and is
discussed in further detail in section 2.1.3.

For example, using a GA to solve the Travelling Salesman Problem (Applegate et al.,
2006) (a travelling salesman visiting multiple cities has to minimise travel distance.
The task is to find the shortest path), an appropriate encoding of this problem
would be to store each city’s identifier as a gene in the solution’s genotype. Each
subsequent gene would store the next city the salesman should travel to and thus
this representation maps directly to the problem whereby cities and order of travel
is encoded (Grefenstette et al., 1985).

The EA process is a guided-random (stochastic) search which proceeds as follows:

1. A population of candidate solutions are initialised - either randomly or using a
heuristic. Invalid solutions are removed or prevented from being created by
some rule.

2. Each individual is evaluated against a criteria. A measure of fitness is assigned
to the individuals.

3. Individuals are selected by a selection criteria (for example, fitness propor-
tionate, elitism) which are then recombined to produce offspring (Eiben and
Smith, 2003). Invalid or damaged offspring are either discarded and recreated
or prevented from being produced.

4. Offspring are mutated and then evaluated where fitness is assigned to each
offspring.

5. Using a replacement criteria (for example: fitness based, elitism), offspring
replace parents in the population.

6. Steps 2 - 5 are repeated until a stopping condition (solution found or maximum
number of evaluations) is met.

Selection pressure in steps 3 (recombining solutions that perform well) and 5
(replacing weak parents with fit offspring) forces newer generations to have high
fitness and thus guides the search in finding good solutions in a reasonable time.

2.1 Neuro-Evolution 11



Fig. 2.3: The feedback nature of neuro-evolution (Gomez et al., 2008). Genotypes en-
code an individual neural network’s structure. The neural networks are then
evaluated in an environment which provides feedback on a genotype’s fitness.
Following the evolutionary process described in section 2.1.2, networks adapt to
the environment.

The use of a population of candidate solutions gives EAs the advantage in that it
can sample many points in the search space simultaneously which makes them less
susceptible to local optima than ontogenetic methods. It also means that they are
capable of climbing up multiple peaks in high dimensional search spaces, increasing
the chances of reaching the global optima. These attributes make EAs suitable for
solving complex problems (Gomez, 2003).

2.1.3 Evolving Neural Networks

EAs can be used to adapt different features of an ANN including connection weights,
activation functions and topology or a combination of these. The most common way
of using EAs for evolving ANNs is by evolving connection weights, as this is the most
straightforward method and can also proxy topology modification (as weights set to 0
disconnects parts of a network) (Gomez, 2003). Evolving only a networks connection
weights limits the complexity of solutions as networks are limited to a maximum
predefined number of nodes and connections. Effective network topologies have to
be predetermined and designed by a human with in-depth domain knowledge.

A genotype representing an ANN’s properties can be encoded using a direct encoding
scheme wherein each node, their connections and weights are represented (Wieland,
1991; Moriarty and Mikkulainen, 1996; Stanley and Miikkulainen, 2002) or via
an indirect encoding scheme where rules for generating or developing a network is
encoded instead (Gruau, 1993; Clune et al., 2011; Stanley et al., 2009). Directly
encoded genotypes map to the ANN phenotype which makes it easier to adapt and
evaluate. However, upper bounds of the network size is limited as large network
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representations need to be stored in memory. Indirectly encoded genotypes can
thus be more compact as only the plans for generating a network is stored, allowing
for much larger ANN phenotypes. Figure 2.4 shows the indirect scheme used in
Cellular Encoding by Gruau (1993) and direct encoding used in NEAT (Stanley and
Miikkulainen, 2002).

NE searches through the behaviour space for a network that performs well at a
given task (Stanley and Miikkulainen, 2002). Figure 2.3 shows how a NE algorithm
proceeds. Each genotype is transformed into an artificial neural network (phenotype)
and evaluated on the task. In a reinforcement learning task, the neural network
receives input from the environment and produces an output signal that affects
the environment. Thereafter, a fitness is assigned to the network according to its
performance on the problem. Therefore, networks that perform well according to
the objective (and thus have high fitness) are recombined to generate new networks
in the following generations (see section 2.1.2) (Gomez et al., 2008).

By combining the capabilities of ANNs (universal function approximation, gener-
alisability, memory) with the efficient EA search method, NE is a powerful tool for
solving complex, noisy and partially observable control tasks (Gomez, 2003), such
as autonomous vehicle control.

Below is a survey of relevant NE methods for RL tasks:

• Conventional Neuro-Evolution (CNE; (Wieland, 1991)) uses a single popula-
tion and each chromosome represents a complete neural network. Networks
are encoded with binary numbers and fully recurrent neural networks are used.
Only weight values are evolved in this case.

• Symbolic, Adaptive Neuro-Evolution (SANE; (Moriarty and Mikkulainen, 1996))
evolved two separate populations simultaneously in a cooperative co-evolutionary
fashion. A population of neurons and a population of network blueprints that
form complete networks are evolved and combined randomly at each gener-
ation. Neurons and blueprints that yield high fitness networks are rewarded
independently in their own populations for further evolution. Topologies are
fixed in SANE and not adapted by evolution.

• Enforced SubPopulations (ESP; (Gomez and Miikkulainen, 1997)) is an ex-
tension of SANE and also uses cooperative co-evolution but it uses split pop-
ulations of neurons instead of network blueprints. One neuron from each
sub-population is used for each hidden unit in the network. This allows neu-
rons to specialise within their own sub-population and thus optimising the
performance of each part of the network simultaneously.

2.1 Neuro-Evolution 13



Fig. 2.4: TOP: Indirect encoding used in Cellular Encoding (Gruau, 1993). Grammar trees
are encoded in the genotype and are used to generate network structure. Bottom:
Direct encoding used in NEAT (Stanley and Miikkulainen, 2002). Genotypes
expliclity encode each node and connection for the network structure.
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• GeNeralized Acquisition of Recurrent Links (GNARL; (Angeline et al., 1994))
is a Topology and Weight Evolving Artificial Neural Networks (TWEANN) that
specifically adapts recurrent networks. GNARL only performs mutation on
genotypes as authors question the efficacy of recombination.

• Neuro-Evolution of Augmenting Topologies (NEAT; (Stanley and Miikkulainen,
2002)) is also a TWEANN. It uses a direct-encoding scheme and starts off
with minimal networks, gradually increasing the network complexity by either
adding more nodes or connections. NEAT employs both mutation and recombi-
nation and solves many issues plaguing topology adaptation in past TWEANN
algorithms. NEAT is described in further detail in the next section, as it is the
focus of this research.

2.1.4 Neuro-Evolution of Augmenting Topologies (NEAT)

Neuro-Evolution of Augmenting Topologies (NEAT) is a Topology and Weight Evolv-
ing Artificial Neural Networks (TWEANNs) by Stanley and Miikkulainen (2002). It
is a complexification algorithm in that it starts out with very simple, minimal neural
networks and progressively increases the number of neurons and connections be-
tween them. This process is analogical to biological evolution where species increase
in complexity over evolutionary generations.

The advantage of using a complexification algorithm, such as NEAT for evolving
ANNs, is due to the progressive difficulty of training increasingly complex (many
nodes, layers and connections between them) networks. Furthermore, a simple
network might achieve similar results to a complex network, but with the advantage
of being easier to evolve without changing their behaviour drastically and thus
avoiding large networks that are slower to adapt.

Representation

The NEAT algorithm uses a direct genetic encoding that is designed to allow corre-
sponding genes to be easily lined up during recombination. A genotype1 consists
of multiple genes (see figure 2.4 Bottom). The authors chose direct over indirect
encoding as it does not restrict the phenotype networks and they demonstrate ex-
perimentally that an indirect encoded algorithm (Cellular Encoding (Gruau, 1993))
is not necessarily more efficient than a direct encoded algorithm (Stanley and Mi-
ikkulainen, 2002). Furthermore, upper-bound network size limitations for direct

1A genotype’s gene in NEAT specifies one connection between nodes whilst the whole genotype
represents the complete ANN.
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encoding scheme does not affect this method as NEAT is biased towards solutions
that have minimal networks.

Each gene has historical markings known as innovation numbers which denote when
the gene was added. This unique feature in NEAT solves two problems experienced
by TWEANN algorithms.

A common issue with TWEANNs is that structural changes (additions of connections
or nodes) usually cause a drop in fitness as the addition is unlikely to bring utility as
soon as it they are introduced and a few generations are required before they are
optimized. Such innovations to the structure are often discarded by the EA as they
are ranked lower in terms of fitness.

To address this and ensure topological diversity, many TWEANNs initialise the
population with a random collection of topologies. Solutions in these random
populations may produce infeasible networks where nodes have no connections
from its input and outputs and require additional effort to clean up. These random
populations also take longer to optimize as they have larger number of parameters
(often many unnecessary nodes and connections to achieve behaviours that can be
elicited with smaller networks).

Instead of initialising a random population of large solutions, NEAT starts with
minimal networks and protect innovations by using its innovation numbers to niche
or speciate genotypes (group individuals with genetic similarity) to prevent them
from being evaluated with the whole population. Fitness sharing in a species of
genotypes is employed by NEAT and giving new genes some time to adapt, protecting
innovative genes from being discarded. The ability to protect innovations also allows
NEAT to minimise network sizes throughout evolution without having to incorporate
a penalty on network size in the fitness function as in Zhang and Muhlenbein (1993),
which may have undesirable effects of on the search and requires further tuning as
it is unclear what the penalty should be in relation to task performance.

Since NEAT uses a direct encoding scheme, solutions that are genetically similar
are topologically similar and thus niches are groups of networks that are similar in
structure (see 2.1.4).

The second issue in TWEANNs is the Competing Conventions Problem where there are
many genotypic ways to express a solution. When genotypes that are functionally
equivalent crossover, they are likely to produce damaged offspring. Innovation
numbers allow genes that are equivalent in two different genotypes to line-up solving
the problem.
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Speciation

The innovation numbers allow us to line-up genes in a genotype that are similar
and determine disjoint and excess genes. The number of disjoint and excess genes
between solutions (see figure 2.7) can thus be used as a measure of compatibility
distance between a pair of genotypes:

δ = c1E

N
+ c2D

N
+ c3 ·W (2.2)

where E and D is the number of excess and disjoint genes and W , the average
weight differences of matching genes (including disabled genes). c1, c2 and c3 are
constants that are adjusted to weight importance of each of the three factors and N
is the number of genes in the larger genotype, used for normalisation. The distance
measure δ allows speciation of genotypes using a compatibility threshold δt.

The the end of a generation, each genotype (g) in the population is placed into
species. Compatibility is determined for each species s sequentially (via a maintained
list of species, S) by using a random representative genotype (sg). The genotype is
placed in first the specie where genotype’s δ(g, sg) ≤ δt. The average compatibility
of g compared with all the genotypes in s, but practically, using a single genotype
(sg) is sufficient and faster (constant time). If g is not compatible with any species
(∀s ∈ S, δ(g, sg) > δt), a new species is created and g becomes a member of the new
s.

Explicit fitness sharing is used within species, this means that all individuals in
the species share the niche’s fitness. This fitness of an individual, i is calculated
according to the distance δ from every other individual j.

Competing Conventions

The competing conventions problem also known as the permutations problem is when
there is more than one way to express a neural network solution. When genotypes
representing the same solution do not have the same encoding, crossover is likely
to produce damaged offspring. Figure 2.5 depicts the problem for a solution with
three hidden nodes in two permutations. The hidden nodes can be configured in
3! = 6 different permutations (in general, for n hidden nodes in a network, there
are n! functionally equivalent permutations) and when one of these permutations
recombines with another, critical information in the network is lost. For example,
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Fig. 2.5: Competing conventions problem: Two possible permutations (of 6) of a net-
works that compute a specific function but with hidden nodes appearing in different
orders. Below the networks are two single-point crossover children between these
two permutations, both missing one of the three components present in both
parents (Stanley and Miikkulainen, 2002).

recombining [A, B, C] with [C, B, A] can result in [A, B, A], a solution that has lost
one-third of the information that both parents had: C.

NEAT takes inspiration from nature’s gene alignment in sexual reproduction so that
the correct genes are crossed with their counterparts in another genotype. In nature,
a special protein, RecA ensures homology between two genes (genes are homologous
if they are alleles of the same trait) before crossover (Radding, 1982). Homology
can be found in the historical origin (via innovation numbers) of two genes if they
originated at the same time. This allows NEAT to line these genes up for crossover
without losing functional information in the resultant child (see figure 2.7).

Mutation and Recombination

Mutation in NEAT can occur in two different ways in NEAT: connection weights
mutation and structural mutation and as with any other NE method, mutation of
connection weights either occur or do not occur on a gene in each generation.

Structural mutation in NEAT occurs by either adding new connections or adding
new nodes to the genotypes. When adding a new connection, a connection is made
between two previously unconnected nodes. A gene representing the new connection
is added to the end of the sequence and assigned the next incremental innovation
number (see figure 2.6).
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Fig. 2.6: Mutations in NEAT: The top number in each gene represents the innovation
number, below that the connection between two nodes is represented. A gene
can either be enabled or disabled (which are denoted by DIS and shaded in gray)
(Stanley and Miikkulainen, 2002).

When adding a new node, an existing connection is split and the new node is placed
where the connection used to be. The old connection is disabled and two new
connections are added to the genotype. The new connection leading into the new
node receives a weight of 1, and the new connection leading out receives the same
weight as the old connection (see node 6 in figure 2.6).

Both of these mutations (adding a new node or adding a new connection) expand
the size of the genotype by adding new genes (Stanley and Miikkulainen, 2002).

During mutation in a generation, there is a chance that an identical mutation occurs.
To prevent an explosion of innovation numbers (added to each new gene), a list
of innovations for the current generation is maintained. When the same mutation
occurs again within a generation, the new gene is assigned the same innovation
number as before.

When recombination occurs in NEAT, parent genomes are recombined by matching
up their genes’ innovation numbers. Genes with matching innovation numbers are
inherited in the offspring randomly from either parent. Disjoint genes (those that do
not match in the middle) and excess genes (those that do not match in the ends)
are inherited from the parent with higher fitness (see figure 2.7). In the case that
fitness of both parents are the same, random inheritance of these genes also occurs
(Stanley and Miikkulainen, 2002).
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Fig. 2.7: Recombination: Genes in parent genotypes are matched up using the innovation
numbers to ensure offspring produced retain functional aspects of both parents
(Stanley and Miikkulainen, 2002).

2.1.5 Why NEAT?

Experiment results on various tests by Stanley and Miikkulainen (2002) demonstrate
that NEAT outperforms other NE (TWEANN and WEANN) methods: CE, SANE and
ESP. Results from the pole balancing task, a useful proxy for control systems showed
NEAT not only adapted controllers in far less evaluations, but also adapted desired
control behaviours with smaller network configurations.

These results along with the long list of related research (Cardamone et al., 2010;
Willigen et al., 2013; Jallov, 2014; Watson and Nitschke, 2015; Parker and Nitschke,
2017) using NEAT to adapt controllers and its suitability for Novelty Search (section
2.2.2) used in our research provides evidence of NEAT’s suitability for our purpose
of adapting controllers collective autonomous vehicle control and using it as a
foundation to assess impacts of objective and non-objective search.
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2.2 Evolutionary Search Methods

Different search methods are be used to guide the evolutionary process. In this
section, objective and non-objective search methods are described.

2.2.1 Objective and Non-Objective search

EAs require some criteria to evaluate individuals candidate solutions during the
search process, as described in steps 2 - 4 in section 2.1.2 above.

This is often described as the objective or fitness function. The reason for this
nomenclature is due to a solution’s success measurement at a given task or objective.
It measures how well a solution performs at a given task based on some function
predetermined by the researcher. Furthermore, the choice of function to use can
vary an EAs performance significantly.

Non-objective search methods, on the other hand, do not require researchers to
craft fitness functions to assess a genotype’s performance. Many researchers (Gould
(1996), Miconi (2008) and Sigmund (1995)) have argued that fitness functions,
which induce selection pressure (pressure to adapt in a certain way) actually restricts
the search and opposes innovation.

In many problem domains, it is also extremely difficult to craft effective fitness
functions, as it requires an a priori understanding of the fitness landscapes and
stepping stones to the objective (Woolley and Stanley, 2011). An oversight made
by the researcher when designing a fitness function could cause the search to
prematurely converge or be trapped in local optima.

In a non objective method, stepping stones that would have been thrown away by
an objective method because they appear to be far away from the objective, will be
preserved. These stepping stones may lead to the ultimate objectives and prevent
solutions from getting trapped by deception (Lehman and Stanley, 2011)2.

Various non objective methods exist such as novelty search by Lehman and Stanley
(2011) which explores the behaviour space instead of the problem space, curiosity-
driven exploration by Pathak et al. (2017) which uses an intrinsic reward mechanism
(prediction error as a proxy for curiosity) instead of extrinsic or objective rewards.

2Local optima that appear to be close to the objective, but prevents solutions from ever reaching the
ultimate goal.
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Despite the advantage of not having to craft fitness functions, non-objective search
still requires the researcher to craft and use some other metric to determine solution
quality in a non-objective manner. One example would be the novelty metric in a
non-objective method novelty search which is used to define how to measure solution
novelty or behavioural distance.

2.2.2 Novelty Search

Novelty search is a non objective neuro-evolution algorithm, proposed by Lehman
and Stanley (2011) where solutions are rewarded by a novelty metric based on
how significantly different or novel their behaviours (phenotypes) are in respect to
previous solutions.

Novelty search presents a new way of traversing the search space. It operates on the
premise that novel solutions provide the stepping stones (ones that objective-based
methods would have discarded as they appear to be too far away from the objective)
to the final objective. This way, novelty search ensures that solutions are not trapped
or deceived into a local optima, which plagues objective-based methods.

Novelty search has been experimentally demonstrated by Lehman and Stanley (2011)
to vastly outperform objective search in the maze navigation (see figure 2.8) and
biped locomotion domains.

The novelty search algorithm encourages novelty and diversity in its genotypes via
the maintenance of a novelty archive. This is achieved by keeping a permanent
archive of past genotypes whose behaviours were highly novel when they originated.
Newly produced genotypes are measured against its own population and the archive.
The aim is to characterize how far away in the behaviour space (rather than the
solution space) new genotypes are from the rest of the population and its predeces-
sors. Thus, a good novelty metric should compute the sparseness at any point in the
behaviour space.

The Novelty Search NEAT algorithm has been adapted by Lehman and Stanley
(2011). The adaptation is straightforward as all that was required was to replace the
fitness function with a novelty metric and an addition of a novelty archive because
the underlying algorithm of NEAT ensured that the ANNs became more complex
as solutions were being explored. Implicitly, this means that once simple ANNs
have been explored, more complex ones will create novel behaviours (that were not
producible by simpler ANNs), ensuring that the search is not random and revisiting
already explored areas.
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Fig. 2.8: Novelty Search Maze Navigation Resuts: starting positions in the medium (a, c)
and hard (b, d) maps are located at the top left and bottom left, respectively. The
objective or goal for the medium and hard maps are located at the bottom right
and top left, respectively. Each black dot represents the final locations of maze
navigation robots at the end of each evolution generation until either the goal or
when the maximum number of evaluations were reached. In both maps, novelty
was able to traverse far more of the maze space earlier when compared to the
fitness-based method. All methods were able to reach the goal with the exception
of the hard map (d). The fitness function used was a distance of the navigators
position from the goal (straight-line distance). Novelty metric used to measure
behavioural sparsity: location (x, y co-ordinates) of the navigator (Lehman and
Stanley, 2011).
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This implication shows that NEAT is an effective algorithm for novelty search and
encourages exploration of the search space effectively.

2.2.3 Hybrid Search

Researchers (Cuccu and Gomez, 2011; Inden et al., 2013; Huang et al., 2015) have
demonstrated that combining objective and non-objective search methods can yield
superior performance over just using pure approaches.

Combination between objective and non-objective methods can be implemented
in multiple ways. For purposes of illustration and due to our non-objective choice,
Novelty Search, we will discuss combination methods between fitness and novelty
search.

Selection by fitness and novelty: individuals in this hybrid method are selected
using fitness-based tournament selection and novelty. A proportion of the
population are selected for based on their fitness and the remaining, novelty.
(Inden et al., 2013)

Novelty-based speciation: instead of speciating individuals based on fitness or
genotypic similarity, species are maintained based on solutions’ behavioural
similarity. (Inden et al., 2013)

Weighted-sum of novelty and fitness: novelty scores and fitnesses are combined
linearly to create a hybrid measure of performance. (Inden et al., 2013; Huang
et al., 2015)

The weighted-sum approach was selected for its simplicity and its ability to out-
perform nearly all other more complex methods in Inden et al., 2013 on the pole
balancing, four patterns task.

2.2.4 Applications

Objective and non-objective search methods, specifically novelty search have been
used as evolutionary search methods across many applications. These include a
range of simulated and physical task environments in the field of evolutionary
robotics (ER).

Many (Gomez and Miikkulainen, 1999; Gomez et al., 2008; Igel, 2003) have
demonstrated the efficiency of using objective-based evolutionary search methods to
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successfully solve the non-markovian double pole-balancing task. Later, it was shown
that non-objective and hybrid search methods are able to successfully solve the same
task with greater efficiency (Mouret and Doncieux, 2012; Cuccu and Gomez, 2011;
Inden et al., 2013; Huang et al., 2015).

Although these tasks demonstrate the method’s feasibility in single-agent control,
researchers have extended the literature with experiments using objective, non-
objective and hybrid approaches for multi-agent and collective swarm ER tasks.

Gomes et al. (2013a), Gomes et al. (2016), and Nitschke and Didi (2017) have
shown that NE was suitable for multi-agent ER tasks and hybridizing objective and
non-objective search methods can yield better results.

Our research focuses on a multi-agent collective self-driving task where all vehicles
have homogeneous controllers testing various search methods.

2.3 Autonomous Vehicles

Recently there has been increasing research attention focused on overcoming the
technical challenges for producing self-driving vehicles (KPMG, Center for Auto-
motive Research, 2012). Some companies have demonstrated working production
prototypes (Ackerman, 2015), the successors of which are speculated as eventually
displacing the need for human drivers on public roads (Motavalli, 2012; Bilger, 2013;
Bamonte, 2013).

Our research focus is on automated methods for deriving optimal controllers in self-
driving vehicles that are able to generalise across new environments such as different
road networks and traffic conditions. In this section we explore past research on
controller and morphology design as well as the current state-of-the-art in terms of
self-driving vehicles in the real-world.

2.3.1 Controller Design

There has been a significant amount of work on evolving driving behaviours for
simulated (Togelius and Lucas, 2006; Ebner and Tiede, 2009; Drchal and Koutník,
2009; Talamini et al., 2018) and physical vehicles (Beeson et al., 2008; Kesting
et al., 2010; Furda and Vlacic, 2011) though such studies produce controllers that
are suitable for the given task environment and evolved driving behaviours rarely
function across a broad range of environments (Togelius and Lucas, 2005; Togelius
and Lucas, 2006; Cardamone et al., 2010).
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In Togelius and Lucas (2006), ANNs were utilised and a 3-layer neural network with
fixed topology was used. The input layer consisted of at least three input nodes,
a bias input of value 1, an input for the speed of the vehicle and an input for the
waypoint sensor. Each vehicle had a waypoint sensor which informed the network
at what angle the vehicle was approaching the next waypoint on the track. Further
inputs were from range-finder or laser sensors with values of distances to obstacles
recorded by each sensor. The network finally had two outputs, which were for the
vehicle’s throttle and steering. Only the connection weights were adapted by the EA.
The test environment was a 2-dimensional top-down simulation, with no physics
simulation other than moving the vehicle in the direction of travel and collision
detection with walls.

Ebner and Tiede (2009) demonstrated a method of evolving controllers using Genetic
Programming. Genetic programming is another EA that is out of the scope of this
research, however, of interest in this particular research is that they used The open
race car simulator (TORCS), which is a more realistic 3-dimensional racing simulator
with more realistic physics (gravity, friction) simulation. Similarly, Cardamone et al.
(2010) also used the TORCS framework but utilized NE, specifically online-NE to
learn on-the-fly so that trained controllers can learn to drive on new tracks. In both
instances however, the task was limited to driving a single vehicle around a racetrack
as fast as possible, avoiding the track barriers.

Drchal and Koutník (2009) used ANNs for their vehicle controllers and HyperNEAT
as the EA. Here, both network weights and topologies were evolved with HyperNEAT,
a variant of NEAT that uses indirect encoding. Simple two-wheeled vehicles were
trained to drive around an inter-connected roadway. Vehicles had to stay within the
boundaries of the road, and not collide with each other if they had to cross paths.
The output of the network controlled each wheel individually, thus allowing turns
and rotations to be made. Figure 2.9 provides an overview of past research.

Talamini et al. (2018) assessed the impact of ANN evolution using global (system-
wide) versus local (individual vehicle) fitness in terms of speed, safety and efficiency
for a collective driving task using NEAT in a simulated two-dimensional environment.
Individual vehicles had five laser sensors spread out in 180◦ which provided input
into the network for three distances: to the closest car, to the closest roadside,
and to the closest intersection. Besides these three inputs from each sensor, three
additional inputs were added: current car speed, distance to the target and direction
of the target resulting in 18 input nodes. There were two outputs from the network:
steering and acceleration (or braking, in the case of negative acceleration). Results
did not show statistical significance between local (selfish) and global optimisation
but did show that selfish fitness may yield more robust controllers, generalisable
to different environments. Although this task was collective, vehicles started at
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Fig. 2.9: Clockwise from Top Left: 1. Simplistic simulated 2D environment, road network
and test vehicles with sensors in Drchal and Koutník (2009). 2. 2D simulated
environment in (Togelius and Lucas, 2006) with limited physics, shown here is
the sensor configuration on the test vehicle at a corner of a track. 3. Ray-cast
sensor configuration used in Cardamone et al. (2010) for online-NE in TORCS, a
high fidelity simulation framework. Sensors used to determine distance to track
boundaries. 4. TORCS framework used by Cardamone et al. (2010) and Ebner
and Tiede (2009) and various other researchers to test controller designs.

different points in the road network and only encountered each other later on,
namely, they were not tasked with travelling in a group.

To the best of our knowledge and the presented past research above, most vehicles
travelled in isolation and had to avoid either static or occasionally dynamic obstacles.
Collective behaviour evolution has received significant attention in the context of
swarm robotics (Beni, 2004; Werfel, 2007) and collective robotics Kube and Zhang,
1994; Watson and Nitschke, 2015, however, there has been relatively little research
on the evolution on the evolution of collective driving behaviours on road networks
where vehicles are tasked with travelling in a group.
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2.3.2 Current Self-Driving Vehicles

Due to the rapid interest by automotive companies to produce autonomous vehicles,
significant progress has been made in the past few years. This section will provide
a survey of current production and prototype vehicles by various automotive and
technology companies.

Furthermore, the National Highway Traffic Safety Administration (NHTSA) has
proposed a formal classification system (Highway and Administration, 2013) for
different levels of vehicle autonomy.

• No-Automation (Level 0): The driver is in complete and sole control of the
primary vehicle controls – brake, steering, throttle, and motive power – at all
times.

• Function-specific Automation (Level 1): Automation at this level involves
one or more specific control functions. Examples include electronic stability
control or pre-charged brakes, where the vehicle automatically assists with
braking to enable the driver to regain control of the vehicle or stop faster
than possible by acting alone. Almost all modern vehicles have this level of
autonomy as ESC and Anti-lock braking systems (ABS) are now mandatory for
all new vehicles sold in the United States. (NHTSA, 2016)

• Combined Function Automation (Level 2): This level involves automation of
at least two primary control functions designed to work in unison to relieve the
driver of control of those functions. This level of autonomy is often achieved
by utilizing radar technology combined with camera imaging techniques to
determine road bounds and "follow" traffic at safe distances. An example of
combined functions enabling a Level 2 system is adaptive cruise control in
combination with lane centering. Tesla’s autopilot in its Model S, Model 3 and
Model X’s is currently considered Level 2 autonomy. (Kenwell, 2018)

• Limited Self-Driving Automation (Level 3): Vehicles at this level of automa-
tion enable the driver to cede full control of all safety-critical functions under
certain traffic or environmental conditions and in those conditions to rely
heavily on the vehicle to monitor for changes in those conditions requiring
transition back to driver control. The driver is expected to be available for
occasional control, but with sufficiently comfortable transition time. This level
requires a larger suite of sensors, cameras and advanced image recognition
software (often using deep-learning) to determine the bounds of the road and
road obstacles. Highly-detailed maps are often required for accurate naviga-
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tion and pre-planning to aid with the rest of the control systems. Waymo’s
self-driving car is an example of limited self-driving automation. Recently, Audi
has launched an A8 with Level 3 autonomy capabilities. (Wasef, 2018)

• Full Self-Driving Automation (Level 4): The vehicle is designed to perform
all safety-critical driving functions and monitor roadway conditions for an
entire trip. Such a design anticipates that the driver will provide destination or
navigation input, but is not expected to be available for control at any time
during the trip. This includes both occupied and unoccupied vehicles.

Almost all new vehicles today have Level 1 as a safety standard and Level 2 is often
an optional safety feature available from many manufacturers. A few manufacturers
have released either production (such as Tesla’s vehicles for a short period) or
experimental vehicles (Waymo’s self-driving vehicles) and Audi demonstrating Level
3 capabilities.

2.4 Conclusion

In this chapter, evolutionary algorithms, neuro-evolution with a focus on NEAT and
Novelty Search were reviewed. These are algorithms employed in this research for
the collective self-driving task. A survey of existing literature on self-driving research
using evolutionary methods were listed as well as state-of-the-art technology used in
production self-driving capabilities of today’s road vehicles.

Current research using evolutionary methods is largely limited to training individual
vehicles to drive and testing them in isolation and technologies used in today’s pro-
duction vehicles have achieved level 3 autonomy. Furthermore, existing evolutionary
methods only use objective-based search.

Our research is focused on Level 4 or full automation by NHTSA’s classifications for
self-driving vehicles traversing road and highway networks in a collective fashion.
We utilize the NEAT neuro-evolution algorithm and investigate the impact of using
objective-based and non-objective-based search methods to elicit collective self-
driving behaviours where all vehicles traverse multiple routes simultaneously whilst
avoiding each other and other obstacles en-route to their destination.
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3Methods

The focus of this research is on adapting autonomous vehicles to traverse various
road environments in a collection and assessing the performance impact of the
search method used to guide evolution. This chapter describes the implementation
details for the simulator used in this research, algorithmic implementations of NEAT
(objective, non-objective and hybrid) and the evaluation functions used for each
search method.

3.1 Simulator and NEAT Implementation

An extension of UnityNEAT (developed by Jallov (2014)) based on SharpNEAT by
Green (2003) (written in C#) was used to simulate physically realistic 3D vehicles,
sensors, roads and obstacles. Unity1 is a multi-platform game engine that allows for
easy development of 2D or 3D games.

The vehicle controllers are evolved with the goal of being able to maximize the
average distance traversed (measured by way of checkpoints passed) on tracks with
obstacles, perpendicular traffic and oncoming traffic whilst minimizing collisions
with obstacles and other vehicles. Sensory input and motor output layers are fixed
and NEAT adapts the number of hidden layer nodes and connectivity between
sensory inputs and motor outputs.

The simulation is performed for homogenous teams where groups of vehicles travel-
ling together on the track have identical controllers.

NEAT Parameters

The parameters used in NEAT for the experiments are outlined in table 4.1 and
discribed in more detail in the next chapter. The default activation function employed
by NEAT, the steepened sigmoid function is used for our research:

1http://unity3d.com
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σz = 1
1 + e−4.9·z (3.1)

The sigmoid function σ(z) is graphed in figure 2.2, top-left.

3.2 Evaluation Functions

A focus area of this research is to investigate the different methods used to direct
evolutionary search in NEAT. To determine the impact these methods have on search
efficiency, this section will discuss the three different evolutionary search methods
used: objective search (fitness), novelty search (NS) and hybrid search. Experimental
set-up and parameters are described in more detail in the next chapter.

3.2.1 Fitness Function

In the objective search method, controllers were awarded a fitness equalling the
portion of the track’s length covered (via checkpoints) over 45 simulation (task trial)
iterations:

fitness(x) = 1
cars

cars∑
i=0

(cppassed
cptotal

∗ 0.9coll) (3.2)

where cars represents the number of cars in a group, cppassed denoting the number
of checkpoints vehicles successfully pass, cptotal is the total number of check-points
on that track, and coll is the number of collisions2 that a vehicles was involved in.
Collisions cause an exponential decay to the fitness of an individual, thus allowing the
evolution to be lenient individuals that collide rarely but penalise them exponentially
as collision counts increase.

Thus vehicle controllers that minimized the number of collisions and maximized the
number of check-points passed, were selected for by NEAT.

3.2.2 Novelty Metric

The non-objective approach, NS, requires a novelty metric to determine an controller’s
behavioural novelty. This novelty is described by sparseness (equation 3.3), which

2The value of 0.9 for the base was selected after experimenting with a few other values during
preliminary experiments. Values lower than 0.9 (in increments of 0.1) resulted in slower evolution
and often caused evolution to stagnate.
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is a combination of a behaviour characterisation (which describes an controller’s
behaviour) and a distance metric. An individual’s novelty is thus a relative score
on how different its behaviour is compared to others in the population and novelty
archive.

A novelty archive is maintained to store novel controllers as they appear ensuring
that previously novel behaviours are not lost and reappear during evolution.

K-nearest neighbours (composed of other behaviourally similar solutions in the
novelty archive and solutions in the population at the same given generation) are
used to compute a controller’s sparseness and thus novelty. Sparseness is defined
as:

Sparseness(x) = 1
k

k∑
i=0

dist(x, µi) (3.3)

where µ is the ith-nearest neighbor of x with respect to the novelty metric, and
where the distance component in equation 3.3 uses the Euclidean distance derived
by the Pythagorean theorem (Gower, 1982).

Novelty Archive

The top fifteen of the population (100) most novel solutions at each generation are
added to the novelty archive. The novelty archive is unbounded which means the
maximum size of the novelty archive is 15×ngenerations at the final generation. Table
4.1 presents the archive size and addition rate for novelty search and population size
for the experiments.

Behaviour Characterisations

The behaviour characterisation (BC) describes the dimensions(s) chosen for the
novelty metric and has an impact on the search as it induces pressure to exhibit
novel behaviour based given attributes. To ascertain which BC yields the highest
performance (relating to the task), three BCs were tested and compared:

• Speed: Individual vehicle’s velocity measured in meters per second (m/s).
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• Speed and Cohesion: Individual vehicle’s velocity and the distance between
the vehicles. The distance between the vehicles is the line-of-sight distance in
meters.

• Location: Vehicle locations (x and z coordinates) in the simulated environ-
ment.

For each of the metrics, values were sampled at fixed time-steps in the simulation
and vectors of behaviours were compared with each other to determine an individual
solution’s sparseness.

Behaviour Sampling

The behaviour characterisation is a vector comprised of values that are sampled at
fixed intervals of 1/100th of total simulation time-steps per generation. Each value
in the vector is a dimension that is used to compare against other individuals using
the pythagoras equation.

One hundred samples are collected for each vehicle (sampling rate, table 4.1) in
a group and since each vehicle has their own values during sampling, the vector
of behaviour characterisation values are combined for each vehicle in the group
making a final vector used for sparseness calculation.

To ensure that an individual vehicle’s behaviour is compared to the most similar
vehicle’s behaviour in another solution’s behaviour vector, the final behaviour vector
is sorted by the aggregate values of the sub-vectors.

3.2.3 Hybrid Function

The hybrid search method used in this research linearly combines novelty and fitness
as in Huang et al. (2015) to create a weighted sum. The score that each individual
receives for the hybrid method is defined as:

score(i) = ρ.fit(i) + (1− ρ).nov(i) (3.4)

Where, ρ = 0.5, combining fitness and novelty equally which are normalized accord-
ing to:

fit(i) = fit(i)− fitmin
fitmax − fitmin

, nov(i) = nov(i)− novmin
novmax − novmin

(3.5)
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Where, novmin, fitmin are the lowest novelty and fitness values in the population,
respectively and novmax, fitmax are the highest.

It was shown in Huang et al. (2015) increasing or decreasing the ρ value biased
the results heavily to either objective performance or NS performance. As it is also
unclear for general tasks whether objective or NS will perform better and only with
a priori experiments for either pure approached will an experimenter know if it is
better to bias a weighted-sum hybrid approach to either objective or fitness. To
remove this bias and leave ρ as a parameter-tuning excercise, we selected ρ = 0.5.

3.3 Conclusion

In this chapter, the simulator used for these experiments along with the NEAT imple-
mentation was outlined and the three different evaluation function implementations
for fitness, novelty search and hybrid described.

The behaviour characterisation for novelty search and hybrid may have effect on
search performance and thus we comparatively assess three different metrics, speed;
speed and cohesion and location.

For simplicity and supported by previous research, we create a equally-weighted
linearly-combined fitness-novelty hybrid approach that will be used to assess whether
our hypothesis that hybrid approaches can generalise over various task environments
is correct.
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4Experiments and Results

The ANN controllers are adapted by NEAT for each evolutionary search method, ob-
jective, non-objective and hybrid. Thereafter, generalisability tests (evaluations) are
performed for each of the adapted controllers to determine performance differences
for each search method.

This chapter describes the simulated vehicles, task environments and experiments
that will be run followed by results.

4.1 Vehicle Simulation

The vehicles in this simulation have a BMW E46 M3 body model. The simulation
vehicle has similar acceleration and braking to that of a real-world vehicle. Maximum
steering angle is 25◦ and top speed is capped at 120km/h.

Each vehicle has five radar sensors that surround the front of the vehicle as depicted
in figure 4.1. These simulated sensors have a pyramidal shape and when an obstacle
is in range, the distance between the vehicle and the obstacle is fed into the ANN
controller. Each sensor represents an input node in the ANN controller. Three more
inputs are fed into the ANN controller, the bias input θ, angle to the next way-point
and current vehicle velocity.

ANN controllers manoeuvre the vehicle along the track and avoids obstacles using
inputs from its sensors. When a vehicle reaches a way-point, its destination is
updated to the next way-point along the track. A total of 8 input nodes and two
outputs are predefined in the network. Hidden nodes and connections between all
nodes are adapted by NEAT. An example evolved network is depicted in figure 4.2.

For training, groups of three vehicles are adapted together in homogeneous teams.
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Fig. 4.1: Sensor Configuration: Each vehicle has five pyramidal sensors covering the for-
wards direction of the vehicle. An example of the sensor detects objects is depicted
in red where sensor no. 4 has detected an obstacle. This fan layout surrounding
the front of the vehicle is consistent with past research (Drchal and Koutník, 2009;
Togelius and Lucas, 2006; Cardamone et al., 2010) and was thus selected.

Fig. 4.2: Example ANN controller: each sensor on the vehicle correspond to an input node
in the ANN (S1 to S5). Other inputs include the bias input, θ, angle to the next
way-point, a and current speed of the vehicle, v. This example has one hidden
node, H1. The controller outputs control behaviour via its output steer and
acceleration nodes.
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Fig. 4.3: Vehicle group layouts for 1, 3 and 5 vehicle set-ups. The three vehicle set-up is
used for controller adaptation by NEAT whilst all set-ups are used for evaluation
on unseen tracks.
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Parameter Value

NEAT Population size 100
NEAT Species count 10
NEAT Activation scheme Acyclic
NEAT Activation function SteepenedSigmoid
NEAT Complexity regulation strategy Absolute
NEAT Complexity threshold 21
Novelty Search archive size Unbound
Novelty Search archive addition rate 15 per generation
Novelty Search K-nearest neighbours 15
Behaviour Characterisation Sampling Rate 1/100th run length (100 Samples)
Hybrid Weighted-Sum Proportion (ρ) 0.5

Tab. 4.1: Neuro-Evolution (NE) and Experiment Parameters. Parameters with minimal
impact on evolution are excluded.

4.2 Task Environments

The different tracks used in this research are divided up into training and evaluation
tracks. The training track is where vehicles controllers are adapted by NEAT. The
controllers are then evaluated on unseen evaluation tracks that present different
challenges for the controllers.

Further to evaluating controllers in unseen environments of varying difficulty, vehicle
group sizes are also varied to simulate increased traffic.

4.2.1 Checkpoints

Checkpoints are placed along the tracks to guide the vehicles (in their default driving
heuristic) along the track’s path, similar to how GPS navigates a route. Checkpoints
are also used to determine how far a vehicle has travelled. The fitness function
(see section 3.2.1) accounts for the number of checkpoints each vehicle has passed,
where the number of checkpoints a vehicles passes, relative to the total checkpoints,
contributes to controller fitness.

To ensure normalisation across tracks, all tracks have a total of 10 checkpoints that
are spread equally apart.
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Fig. 4.4: Tracks used for evolution and evaluation of ANN controllers. Each track has ten
checkpoints denoted in red (green and yellow for secondary checkpoints) for each
starting position (denoted by blue). Top-left: Training track used for adapting
ANN controllers. Two static obstacles are placed between the third and forth
target and fifth and sixth targets. Dynamic obstacles (denoted by a and b) in
the form of vehicles crossing the road and oncoming traffic also make this track
more difficult to complete. The other three tracks (top-right: 2, bottom-left: 3
and bottom-right: 4) are unseen by controllers and present different challenges
for controllers. Each unseen track has three variants with increasing number of
obstacles to vary difficulty.
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Fig. 4.5: Track 2. Left to right: easiest track contains three obstacles, medium track contains
four obstacles and most difficult track containing nine obstacles.

Fig. 4.6: Track 3. Left to right: easiest track contains three obstacles, medium track contains
nine obstacles and most difficult track containing seventeen obstacles.
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Fig. 4.7: Track 4. Left to right: easiest track contains no obstacles, medium track contains
seven obstacles and most difficult track containing sixteen obstacles.

Fig. 4.8: Unlike the training track and track three, tracks two and four have height variances
which could affect sensor coverage. These tracks simulate real-world hill scenarios.
Track four has three starting points which means three groups of vehicles start at
the different locations and they all end up meeting in the center lane. The starting
positions all start on varying heights.
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Evolution Parameters
Parameter Value

Number of vehicles 3
Number of runs 20
Task trial duration (seconds) 45
Generations 100
Evolutionary search methods 3 + 3 BC for NS
Tracks 1
Total Runs 20 ∗ 6 = 120

Generalisability Evaluation Parameters
Parameter Value

Number of vehicles [1, 3, 5]
Number of runs 20
Maximum trial duration (seconds) 100
Controllers Tested 60
Tracks 1 + (3 * 3) = 10
Total Runs 20 ∗ 60 ∗ 3 ∗ 10 = 36000

Tab. 4.2: Top: Experiment runtime parameters for NE controller adaptation. Bottom:
Generalisability test runtime parameters.

4.3 Neuro-Evolution Experiments

Twenty runs of 10 000 (100 generations, 100 population size) (see tables 4.1 & 4.2)
evaluations are performed on the training track (figure 4.4, top-left) using vehicle
group configuration 3 (figure 4.3, top-right) for each evolutionary search method
described in chapter 3. To ascertain the best-performing behaviour characterisation
(section 3.2.2) for use in the hybrid search method and as the candidate to represent
NS results, three non-objective search method characterisations are run.

4.4 Generalisability Evaluations

These experiments evaluate an adapted controller’s ability to traverse unseen envi-
ronments. Each track (figure 4.4) has checkpoints which contribute to controllers’
fitness as vehicles pass. However, the fitness earned by controllers when passing
checkpoints in these evaluations differ from that described by equation 3.2. Instead
of penalising controllers on collisions, the vehicle is immediately stopped on colli-
sion, preventing controllers from earning more points by passing checkpoints. If a
controlled vehicle collides with another, the other vehicle is also stopped. This is to
mimic real-world instances where vehicles should completely avoid collisions.
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Given that the fitness measurement differs in these experiments, the original training
track is included here so that results can be fairly compared with unseen tracks.
Table 4.3 outlines all the generalisability experiments that will be run. Since each
evolutionary search method produces twenty champions, each evaluation will be
run sixty times as described in table 4.2.

4.5 Results

Overall experimental results are discussed in the proceeding section. Neuro-Evolution
Results including results behaviour characterisation tests for NS are first presented,
followed by controller generalisability results. Objective-based search refers to the
search method utilizing the only the fitness function. Non-objective refers to the NS
search method and hybrid refers to the combination of both. Refer to section 3.2 for
more information on each.

4.5.1 Neuro-Evolution (NE) Results

Three behaviour characterisations (see 3.2.2) were tested for the non-objective NS
search method. The best-performing was selected to be the candidate to represent
the non-objective search method and to be implemented for the hybrid search. Thus,
these results will be presented and discussed first before a comparison is made
between objective, non-objective and hybrid results.

Behaviour Characterisation Comparison

Results from NE controller adaptation comparing the three behaviour characteri-
sations speed, speed & cohesion and location indicate that there was no statistical
significant difference between them (see figure 4.9). Thus, speed was selected for
comparison between the other search methods and for use in the hybrid method
since it had the highest mean fitness overall. A simpler version of the training track
(figure 4.4 top-left) was utilized for these these experiments (namely, the obstacle
between target 3 and target 4 removed).

Overall NE Results

Results from NE controller adaptation comparing the three search methodologies,
objective (fitness), non-objective (NS) and hybrid show that there was a statistical
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Fig. 4.9: Novelty Search Behaviour Characterisations: Average fitness of the fittest in-
dividual over 20 runs for top: each generation and bottom: final generation.
Mann-Whitney U, p ≤ 0.05 statistical tests indicated no statistical difference be-
tween characterisations in the final generation.

46 Chapter 4 Experiments and Results



significance between hybrid (it outperformed both) and the other two methods but
no statistical significance between fitness and novelty search (refer to table 4.4).

To determine the effectiveness of each method in adapting NE controllers, heat-
maps visualising the portion of genotypes in each task performance bucket per
generation is shown in figure 4.11. The hybrid approach has a more even spread
of genotypes throughout all generations except the first generation, where a large
concentration of genotypes are found at 0.2 task performance. It is also clear that
for the objective-based search approach, a larger proportion of the genotypes start
at higher task performance in early generations compared to the other methods and
most genotypes remain in this region with few high-performers in later generations
(this is evidenced in figure 4.10 right, where a large variability of solutions in the
final generation exist for the objective-based approach). For almost all generations
for novelty search, genotypes are spread evenly across the performance space. As
outlined in related work (Lehman and Stanley, 2011; Velez and Clune, 2014), this
could be due to the more explorative nature of novelty search, maintaining genotype
diversity throughout generations but unfortunately at the cost of task performance
in this study.

4.5.2 Generalisability Results

The generalisability evaluations test the ability of the different search methodologies’
controllers to navigate completely new environments.

Controllers were tested in unseen track environments as well as varying vehicle
configurations to assess their robustness. The three methodologies’ controllers were
tested on 10 different tracks (9 unseen) and 3 different vehicle configurations (group
sizes). Refer to section 4.4 for more details on these experiments.

These results present overall performance and is followed by performance grouped
by vehicle configuration sizes and performance grouped by track.

4.5.3 Overall Evaluation Results

All three search methods yielded above 60% task performance on the NE experiments
with Hybrid significantly outperforming NS and Fitness.

However, the aggregate results for all evaluations indicate that the methods were
only able to succeed between 15-30% of the desired fitness. This is expected as
the evaluation tasks are significantly more difficult as controllers have to navigate
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Fig. 4.10: All NE Results: Average fitness of the fittest individual over 20 runs for top:
each generation and bottom: final generation. Mann-Whitney U, p ≤ 0.05 sta-
tistical tests indicated statistical significance between search methods [hybrid,
fitness] and [hybrid, novelty search] but no statistical significance between search
methods [fitness, novelty search] in the final generation.
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Fig. 4.11: Heat-maps showing portions of genotypes evolved via each method (Top: Fitness,
Middle: Novelty Search and Bottom: Hybrid) per generation. Darker shading
indicates a higher portion of genotypes.
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unseen environments and vehicles are completely stopped when collisions occur.
Figure 4.12 present all aggregate results with fitness outperforming both the NS
and hybrid search methods, despite performing the worst (tied with NS) in the NE
experiments. All results are statistically significant with hybrid performing the worst
(see table 4.4).

4.5.4 Evaluation Results by Vehicle Configuration

To ascertain whether some vehicle configurations performed better than others for
specific search methods, results were grouped by vehicle configuration sizes and
presented in figure 4.13. Table 4.5 outlines all statistical tests between each method
for each vehicle configuration. All results are statistically significant at p ≤ 0.05. NS
outperformed all other methods for vehicle configuration 1 (see figure 4.3, top-left)
for all tracks and fitness outperformed all other methods for vehicle configurations 3
and 5 for all tracks.

4.5.5 Evaluation Results by Track

To determine if some tracks were more difficult for controllers than others, results
were grouped by track and aggregated over vehicle configurations and is presented
in figure 4.14. Table 4.6 outlines all statistical tests between each method for each
track. Besides statistical insignificance between fitness and NS on track 3 for all
difficulty variants and statistical insignificance between fitness and hybrid on track 3
easy, all other results are statistically significant at p ≤ 0.05 (see table 4.6). On the
training track, the hybrid-based controllers were able to outperform and generalise
over all vehicle configurations far better than objective-based and NS controllers.
Otherwise, for all other tracks except track 3 easy (due to statistical insignificance),
hybrid performed the worst. On tracks 2 and 4, fitness outperformed all other search
methods for all vehicle configurations.
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Fig. 4.12: All Generalisability Evaluation Results: Average fitness of the fittest individual
over 20 runs for each search method on unseen tracks and different vehicle group
sizes. Mann-Whitney U, p ≤ 0.05 statistical tests indicated statistical significance
between all search methods.
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Fig. 4.13: Generalisability Evaluation Results per Vehicle Configuration: Average fit-
ness of the fittest individual over 20 runs for each search method on unseen
tracks grouped by vehicle group sizes.
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Fig. 4.14: Generalisability Evaluation Results per Track: Average fitness of the fittest
individual over 20 runs for each search method for various vehicle group sizes,
results grouped by performance per track.
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Track Difficulty Variant Cars Trials

Training (Track 1) N/A 1 20
Training (Track 1) - same as evolution N/A 3 20
Training (Track 1) N/A 5 20

Track 2 Easy 1 20
Track 2 Medium 1 20
Track 2 Hard 1 20
Track 2 Easy 3 20
Track 2 Medium 3 20
Track 2 Hard 3 20
Track 2 Easy 5 20
Track 2 Medium 5 20
Track 2 Hard 5 20

Track 3 Easy 1 20
Track 3 Medium 1 20
Track 3 Hard 1 20
Track 3 Easy 3 20
Track 3 Medium 3 20
Track 3 Hard 3 20
Track 3 Easy 5 20
Track 3 Medium 5 20
Track 3 Hard 5 20

Track 4 Easy 1 20
Track 4 Medium 1 20
Track 4 Hard 1 20
Track 4 Easy 3 20
Track 4 Medium 3 20
Track 4 Hard 3 20
Track 4 Easy 5 20
Track 4 Medium 5 20
Track 4 Hard 5 20

Tab. 4.3: Schedule of Generalisability Experiments: Each of the listed experiments are
run for all sixty controllers from the three evolutionary search methods.
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Result Search Methods p ≤ 0.05 (Statistically significant)

Controller Evolution (NE) Fitness vs Hybrid Y
Controller Evolution (NE) Fitness vs NS N
Controller Evolution (NE) Hybrid vs NS Y

Generalisability Fitness vs Hybrid Y
Generalisability Fitness vs NS Y
Generalisability Hybrid vs NS Y

Tab. 4.4: Mann-Whitney U Statistical Tests for each search method for controller evolu-
tion and generalisability evaluations.

Vehicles Search Methods p ≤ 0.05 (Statistically significant)

1 Vehicle Fitness vs Hybrid Y
1 Vehicle Fitness vs NS Y
1 Vehicle Hybrid vs NS Y

3 Vehicles Fitness vs Hybrid Y
3 Vehicles Fitness vs NS Y
3 Vehicles Hybrid vs NS Y

5 Vehicles Fitness vs Hybrid Y
5 Vehicles Fitness vs NS Y
5 Vehicles Hybrid vs NS Y

Tab. 4.5: Mann-Whitney U Statistical Tests for each search method per vehicle configura-
tion, aggregated over tracks.
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Track Search Methods p ≤ 0.05 (Statistically significant)

Track 1 Fitness vs Hybrid Y
Track 1 Fitness vs NS Y
Track 1 Hybrid vs NS Y

Track 2 (Easy) Fitness vs Hybrid Y
Track 2 (Easy) Fitness vs NS Y
Track 2 (Easy) Hybrid vs NS Y

Track 2 (Medium) Fitness vs Hybrid Y
Track 2 (Medium) Fitness vs NS Y
Track 2 (Medium) Hybrid vs NS Y

Track 2 (Hard) Fitness vs Hybrid Y
Track 2 (Hard) Fitness vs NS Y
Track 2 (Hard) Hybrid vs NS Y

Track 3 (Easy) Fitness vs Hybrid N
Track 3 (Easy) Fitness vs NS N
Track 3 (Easy) Hybrid vs NS Y

Track 3 (Medium) Fitness vs Hybrid Y
Track 3 (Medium) Fitness vs NS N
Track 3 (Medium) Hybrid vs NS Y

Track 3 (Hard) Fitness vs Hybrid Y
Track 3 (Hard) Fitness vs NS N
Track 3 (Hard) Hybrid vs NS Y

Track 4 (Easy) Fitness vs Hybrid Y
Track 4 (Easy) Fitness vs NS Y
Track 4 (Easy) Hybrid vs NS Y

Track 4 (Medium) Fitness vs Hybrid Y
Track 4 (Medium) Fitness vs NS Y
Track 4 (Medium) Hybrid vs NS Y

Track 4 (Hard) Fitness vs Hybrid Y
Track 4 (Hard) Fitness vs NS Y
Track 4 (Hard) Hybrid vs NS Y

Tab. 4.6: Mann-Whitney U Statistical Tests for each search method per track, aggregated
over vehicle configurations.
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5Discussion

This chapter presents a discussion of each method’s (objective, NS and hybrid)
capabilities, how they balance solution space exploration and exploitation, if they
were able to produce controllers that had desired task performance and their ability
to generalise over unseen task environments.

A detailed analysis of each along with evolved controller complexity is presented
to show how it compared with the literature where hybrid approaches are more
suitable at adapting controllers with desired task performance more efficiently and
our original hypothesis that the hybrid approach will adapt controllers that will
generalise more effectively across various unseen environments when compared with the
pure-objective and pure-novelty methods in this collective self-driving task (see section
1.3).

5.1 Evolved Task Performance

The NE experiment results showed that all search approaches investigated in this
work were appropriate for the collective self-driving task. That is, they were able to
evolve controllers capable of achieving 80% task performance given the constrains
of a population size of 100 and runs of 100 generations. Furthermore, it showed that
the hybrid approach significantly outperformed the objective and NS approaches and
was the most suitable for adapting controllers that can yield desired task performance
at least 3 times quicker, that is, hybrid was able to achieve 80% task performance
by generation 30 whereas the other methods only reached these levels close to
generation 100 (see figure 4.10).

Although the NS approach initially outperformed the objective method (up to gener-
ation 50), it stagnated in producing more effective controllers between generations
50 and 90 with objective outperforming (but not statistically significantly) at around
generation 70.

These results support previous research where hybrid approaches significantly out-
perform pure objective or non-objective methods in both single-agent tasks (Huang
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et al., 2015; Inden et al., 2013; Gomes et al., 2015) and collective behaviour
(multi-agent) tasks (Nitschke and Didi, 2017).

5.2 Behavioural Space Analysis

The genotype heat-maps shown in figure 4.11 present the behaviour space of each
method’s population. The objective approach had most of its population in the 20% -
30% task performance space for almost all generations with a few genotypes moving
into higher task performance spaces in later generations. The population evolved by
novelty search was more evenly spread with most genotypes in the 0% - 20% space
consistently throughout all generations. Only outlying genotypes reached the desired
task performance by generation 100. The hybrid approach evolved the largest spread
of genotypes across the behaviour space as genotypes were spread in an upward
task-performance trajectory. By the later generations, almost all genotypes (above
50%) achieved desired task performance. At the final generation, around 20% of
all genotypes were able to achieve 70% task performance whereas less than 5% of
genotypes evolved with objective search and novelty search were in this space.

The result where NS produced a more evenly spread population is consistent with
previous research (Lehman and Stanley, 2011; Gomes et al., 2012; Velez and Clune,
2014) showing that NS results in more exploration of the behaviour space when
compared with traditional objective approaches. Furthermore, the hybrid results are
consistent with previous research which shows that NS is less effective in complex
tasks with high-dimensional solution spaces and combining NS with an objective
approach can help the exploitation of good regions in the broad exploration achieved
by NS (Cuccu and Gomez, 2011; Gomes et al., 2013b).

5.3 Generalisability Evaluations

In order to determine whether adapted controllers were able to generalise over new
unseen environments, evolved controllers were evaluated over unseen tracks with
varying vehicle group sizes as described in section 4.4.

Results presented in figures 4.12, 4.13, 4.14 present the controller performance
in the generalisability tests for all results aggregated, results grouped by various
vehicle configurations and results grouped by various tracks respectively. In all
tests except Track 1 in figure 4.14 (which is consistent with evolution results), the
hybrid controllers performed the worst when compared with NS and fitness based
controllers.
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Our original hypothesis that controllers adapted by the hybrid approach would be
able to generalise better over new environments is thus rejected as these controllers
performed the worst when compared with controllers adapted via NS and objective
search.

In order to understand why the hybrid controllers may have underperformed over
unseen environments, we analyse controller complexity of each approach.

5.3.1 Controller Complexity

Network complexity is defined by the number of connections of a controller. Our
results (see figure 5.1) showed that there was a statistical significance between the
objective-based method (fitness) and NS. This is consistent with previous research
demonstrating that NS can produce comparable task performance with simpler
networks (Lehman and Stanley, 2011; Gomes et al., 2013b). Although there was
no statistical significance between either pure (objective or NS) search methods
and the hybrid method (see figure 5.1), the average (mean) complexity for hybrid
controllers at 7.5 was lower than controllers yielded by the objective-based search
(11.25) and NS (8.55)

Given that network complexity results for the hybrid search method and other
methods were not statistically significant, further research will need to be done
to ascertain if network complexity may be the cause of under-performance of the
hybrid approach when compared with pure fitness and NS based controllers.

Limiting analysis to controllers which were to achieve desired task performance,
that is, controllers that were able to achieve at least 80% task performance (over 20
runs, objective-based search yielded 9 such controllers, NS yielded 3 controllers and
hybrid yielded 19 controllers), we are able to see a larger difference in controller
complexity. Figure 5.2 presents the top three controllers from each method and it is
clear from these that the controllers from the hybrid approach were far simpler than
either fitness or NS.

A possible explanation may be that the hybrid was able to cover the behaviour space
quickly given its NS component however may have over-specialised to the training
track too aggressively, simplifying controllers along the way. The hybrid approach
we implemented equally weighted the novelty score and fitness components equally
(see section 3.2.3). As shown in previous research (Huang et al., 2015), varying
the weighting biases the search to either NS or fitness. In our study, this may have
yielded different results for hybrid controllers on unseen tracks and is an avenue for
future research.
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Fig. 5.1: Network Complexity of controllers: Average network complexity of champions
at the final generation averaged over 20 runs. Mann-Whitney U, p ≤ 0.05 statistical
tests indicated statistical significance between search methods [fitness, novelty
search] but no statistical significance between search methods [fitness, hybrid] or
[hybrid, novelty search]
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Fig. 5.2: Controller Networks: Top three networks from each search method. Networks
displayed are selected for highest task performance and lowest complexity. Top:
Fitness, Middle: Hybrid. Bottom: Novelty Search.
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6Conclusion

This final chapter summarises our findings and how they relate to our original
hypothesis and concludes with known limitations and future work.

6.1 Summary of Findings and Results

This work aimed at applying Neuro-Evolution (NE) to the collective self-driving task
(chapter 4), an area of vast scientific and commercial interest as it may present the
next frontier of personal transportation systems.

We examined three different search methodologies for a popular and well-researched
NE framework, NEAT. Our research supported previous work with consistent results
where hybrid approaches are able to outperform pure objective and NS approaches
in terms of task performance and evolution speed.

Furthermore, we presented generalisability experiments that aimed at contributing
to the literature in terms of showing how each approach, Objective-based, NS and
Hybrid perform on unseen task environments. Based on related work (Huang et al.,
2015; Inden et al., 2013; Cuccu and Gomez, 2011), our hypothesis was that the
hybrid approach will not only outperform both pure approaches in the training task,
but also unseen tasks.

However, our results did not support this hypothesis and hybrid ultimately were
outperformed by objective-based search and NS. This result contrasted the hybrid
method’s ability to outperform pure objective-based and NS methods, highlighting
hybrid’s inability to generalise to unseen environments.

6.2 Known Limitations

The track widths in the simulator were significantly wider than real-world roads.
Each tracks’ width was at least 15 vehicles wide which is unrealistic. This was due
to controllers unable to adapt when track widths were narrower which would cause
sensors to detect obstacles constantly.
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Sensors also did not distinguish between detected object types. All objects that it
detected (walls, static obstacles, other vehicles in its group, dynamic obstacles) were
all treated the same way.

Since the unity game engine produces a physically realistic simulation, randomness
is part of the simulation and our NE task trials were only run once per genotype
per generation. This means that randomness could cause some genotypes to have
higher fitness than others in the NE adaptation phase which we did not average over
multiple runs (this was done in the evaluations, however).

6.3 Future Work

Given our simple (equal weighting) implementation of our hybrid approach, testing
various degrees of weighting between fitness and novelty may yield significantly
different results.

Improving the simulator with sensors which consider object types and narrower
roads could also affect task performance and adapting controllers on more than just
one track and varying the environment or vehicle sizes could possibly yield different
results since the given track may have biased a specific search methodology.

Implementing the three different approaches in related collective behaviour tasks
(such as, swarm robotics) may yield different results, especially our result where
hybrid doesn’t generalise over a range of unknown tasks and may indicate domain-
specific reasons relating to poor task generalisability.

Finally, given our observed results, introducing a more robust evolution (training)
track by introducing more noise (beyond traffic randomness) during evolution may
yield different results by mitigating the risk of the various search approaches to
overspecialising to the training track.
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