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Abstract—In evolutionary robotics, Multi-Level Evolution
(MLE) has been demonstrated for effective robot designs using
a bottom-up approach, first evolving which materials to use
for modular components and then how these components are
connected into a functional robot design. This paper evaluates
MLE robotic design, as an evolutionary design method on various
task (robot ambulation) environments in comparison to human
designed robots (pre-designed robot controller-morphology cou-
plings). Results indicate that the MLE method evolves robots
that are effective across increasingly difficult (locomotion) task
environments, out-performing pre-designed robots, and thus pro-
vide further support for the efficacy of MLE as an evolutionary
robotic design method. Furthermore, results indicate the MLE
method enables the evolution of suitable robotic designs for
various environments, where such designs would be non-intuitive
and unlikely in conventional robotic design.

Index Terms—Evolutionary Robotics, Multi-Level Evolution.

I. INTRODUCTION

One proposed solution for solving critical societal
challenges is the commercialization of autonomous robots
[1] that can be rapidly and economically designed, produced,
and deployed on-demand [2]. However, current robots are
still not widely used in applications such as agriculture,
environmental cleanup, civil infrastructure maintenance, and
natural disaster management [3]. The core problem is that such
applications are too varied, too dynamic, and too complex
for economically viable pre-engineered robot designs. As
such, even state-of-the-art robots such as Mars rovers are
still directed by human operators [4]. Another limitation is
that current robot morphologies (sensory-motor hardware)
and controllers (control software) must be re-engineered
for every new application. Current robots are also fragile
meaning any change in task environment or hardware and
software failures requires engineering teams to reconfigure
hardware, software or even scrap robots. This greatly limits
what societal challenges autonomous robots can help us solve.

This paper presents research extending and contributing
to automated evolutionary robot design methods. The Multi
Level Evolution (MLE) framework [5], [6] has been proposed
as one such method. MLE is a bottom-up multi-layered
evolutionary design framework that enables the generation of
novel robot designs via first evolving materials to comprise

robot components (material level), then evolving the types of
components to comprise the robot morphology (component
level), and finally evolves the composition and interaction of
components as a complete body-plan (morphology level).

The exploration versus exploitation trade-off of the MLE
optimization process is based on quality-diversity methods
[7], where solutions are discovered via exploring various
feature dimensions. In this case study, this feature space is
defined by a range of material values (defining material type),
modular component geometries (defining robot building
blocks), and robot morphologies (defining in complete
robot designs). The main benefit of MLE is its multi-level
bottom-up approach enables the discovery of a vast range
of robot designs by virtue of solutions optimised at each
level comprise re-usable solutions optimised at the level
below. That is, evolved robot morphologies comprise evolved
modular components which in turn comprise evolved material
properties, where evolved solutions are re-used by the upper
levels. A second benefit is that MLE is scalable to a higher
number of features per level since MLE evolutionary search
concurrently and independently operates on each level [5], [6].

Designing optimal robots for unknown task environments
is difficult given innumerable non-trivial interactions between
morphology and controller. However, evolutionary robotics
[8] is an ideal experimental platform for investigating various
controller-morphology (body-brain) optimization methods in
company with robotic simulators or even physical robots
[9]. A key benefit of evolutionary robotics is that it supports
the robot design process, removing design bias of human
engineers, while exploring a body-brain design space, leading
to non-intuitive, unconventional yet near optimal designs [10].
However, due to the intractable computational complexity of
the body-brain design search space, for all but the simplest
robot designs, the scope of body-brain artificial evolution
is typically limited, for example, adapting neural controller
connection weights in concert with switching sensors on
and off [11], [12]. This is especially problematic if we
intend to evolve robot designs for complex tasks in unknown
environments [2], since highly constrained morphologies
greatly limits the complexity of possible behaviors [13].
MLE is proposed as a potential solution, since it is a means



to search a vast space of possible designs, enabled via the
bottom-up level approach, where suitable materials and
components evolved at lower levels are re-used at the higher
level of optimising complete robot designs. Thus the MLE
bottom-up, multi-level design approach is hypothesized to
be more efficient compared to current evolutionary robotic
body-brain design approaches, where functional robot designs
generated by MLE can also be more complex resulting in
a broader range of possible behaviors, meaning that overall
MLE can evolve robot designs suitable for a broader range
of task environments.

MLE uses Quality Diversity (QD) to balance exploitation
versus exploration of vast solution spaces (indicative of,
for example, robot body-brain design). QD methods [7] use
specially designed evolutionary optimization via maintaining
maps of high quality (high task performance solutions) but
diverse solutions, and have received significant attention
in evolutionary robotics. Specifically, such QD methods
have been demonstrated as an effectively maintaining
controller (brain) and morphological (body) diversity during
evolutionary optimization of robot designs in varying
environments. For example, QD methods have co-evolved
the controller-morphology (body-brain) designs of soft
robots moving to goal areas via deforming their shape
[14], robots that effectively ambulate across increasingly
difficult gait adaptation tasks [15]–[17], as well as robots
designed for more complex tasks such as reconnaissance and
gathering [18]–[20]. This study’s primary objective is thus
to extend previous work on MLE legged robot design [6],
providing further evidence supporting the efficacy of MLE
for evolutionary robotic design.

Evolutionary robotics has also been used as an experimental
platform to address questions about the evolution of
morphological complexity given increasing environment
complexity (task difficulty) [12], [20], [21]. Other work
[21] demonstrated the evolution of increasing morphological
complexity given robot morphology-behavior (body-brain)
adaptation to ambulate across increasingly difficult terrains.
Related work on co-evolving body-brain complexity of robots
using novelty-search [22], over increasingly complex terrains
with specific environment features such as obstacles [23],
enabled the evolution of robots with high task-performance
and high body-brain complexity. However, experiments
evaluating evolving morphological complexity for increasingly
complex collective gathering tasks indicated that robots with
simpler morphologies yielded task-performances comparable
to those with more complex morphologies [12], [20].

Given such conflicting experimental evidence on evolving
morphological complexity given increasing environment
complexity, our secondary objective is to further elucidate
the impact of environment complexity (task difficulty) on
evolving robot morphological complexity. This objective is
also relevant from the practical perspective of robot design.

That is, it is desirable to keep robot design as cheap and
effective as possible whilst enabling optimal or near-optimal
behaviors. Thus if evolutionary robot design methods can
generate minimal but effective robot morphologies for given
simulated task environments, then this would benefit the
engineering of counter-part physical robotic systems.

Overall, this study presents results of MLE applied to
evolve robots over increasingly difficult task environments,
where evolved robot designs are compared to pre-designed
robots. Results contribute to the larger objective of AutoFac
methods [2] for automating robotic systems tailor designed
for optimal operation in specific environments. Such AutoFac
methods would enable automated robot design for applications
without optimal and economical robotic solutions. Example
applications include automated environmental cleanup, natural
disaster management and search and rescue operations [1].

II. METHODS

This section overviews the Multi-Level Evolution (MLE)
method used for robot behavior-morphology evolution in this
study (section III). MLE uses CVT-MAP-Elites [24] for multi-
level evolutionary design. The bottom level is the materials
level (comprising materials with pre-generated properties),
next is the components level (combining point-based shape
grammars to generate robot legs), and last is the robot level
(combines legs into complete functional morphologies). Al-
gorithm 1 presents an overview of the MLE pseudo-code,
however the MLE method is fully described in previous work
[6], so here we present a summarized version only.

A. Material, Component and Robot Representation

At the material level, material types are represented as
combinations of friction and restitution coefficient values [25],
constrained to the range: [0.25, 0.50, 0.75, 1.0], resulting in 16
material types. At the component level, sets of connected com-
ponents (robot legs) are represented as shape grammars [26],
[27], where individual component shapes (irregular polygons)
are represented as point clouds [28] with an associated material
type. At the robot level, morphologies are represented as a
rectangular torso (component length: [1, 8, 16]), connecting
[2, 4, 6] legs, where minimum and maximum torso length
corresponds to the minimum and maximum number of legs.

B. Material, Component and Robot Evolution

Map-Elites [24] (Algorithm 1) was applied to evolve both
components (comprising robot legs) and robot morphologies
(how legs were connected to the robot torso), where four
features at the component level and three features at the
robot level (table I), ensured that morphological diversity was
maintained in the evolutionary selection of components and
subsequent morphologies comprising evolved components.

Material types were evolved via selecting combinations of
friction and restitution values to associate with components,
and subsequently selecting varying component shapes, where



Algorithm 1 Multi-Level Evolution (MLE) Method [6]
Input: MLE and environment parameters P ; Materials M ;

Components C; MAP-Elites(P ,M ); MAP-Elites(P ,C)
Output: Optimized robot design r (behavior-morphology)

1: for i = 1, . . . , N (Generations) do
2: C ← MAP-Elites(P , M )
3: R← MAP-Elites(P , C)
4: end for
5: return Fittest robot (r)

such components (evolved shapes) are connected together
by an evolved grammar (forming a complete leg). At the
component layer, components and how components are con-
nected (to form legs) are mutated using one of four (randomly
selected per generation) component mutation operators (table
I). Similarly, at the robot level, one of four mutation operators
(randomly selected per generation) are used to adapt leg
actuation (joint movement-types: fixed or revolute (Leg can
move in robot’s forward-backward or upwards-downwards
axis) between each leg component) and the number of legs
(table I). An evolved number of (pairs) of evolved legs are
attached to the robot torso (applied symmetrically), to form
a complete robot morphology. The component level fitness
function averages the volume to surface area ratio across all
components comprising a leg, selecting for evolved leg shapes
that are compact, by maintaining an appropriate proportion
between volume and surface area. The robot level fitness
function was defined as the portion of an environment’s length
(normalized to: [0.0, 1.0]) that an evolved robot traversed in
a task trial (table I).

C. Robot Controller Evolution

Multiple (N) controllers actuated N joints connecting all
leg components, where controller output was the change in
joint position for joint j (at time step t), where N depended
upon the number of components (in each leg), and each
controller was defined by a sinusoidal wave actuation [6].
All controller variables (amplitude, frequency, phase, and
offset), normalized to: [-1.0, 1.0], were optimized using a 1
+ 1 EA [29], where the number of variables depended on the
number of components and non-fixed joints. The evolution of
all controller parameters and the interaction of all component
controllers thus determined a robot’s overall (gait) behavior.

Fig. 1. Pre-designed robot morphology as per related work [6], using material
type: friction, restitution = (0.75, 0.75), indicated by blue legs).

TABLE I
SIMULATION AND EXPERIMENT PARAMETERS

Parameter Value
MAP-Elites

Generations (Both levels) 1000
Component level features Mean component friction

restitution, leg size
leg complexity [6]

Robot level features Mean leg friction
restitution, leg size

Niches 1000
Initial proportion of filled niches 0.1

Simulation Environment
Starting points (On starting line) 5 (random)
Surfaces (flat, incline) 0◦, 15◦

Task trial (duration) 15 seconds
Ground friction (low, high) 0.05, 0.9

Robot Morphology
Component mutation operators Shape, Connection rule

Torso connection shape
Material type

Robot mutation operators Replace leg, Joint-type
Number of legs
Controller only evolution

Torso (constituent blocks) size [1, 8, 16]
Leg maximum length 24 (2 legs)
Leg number range [2, 4, 6]
Leg component size range [0.01, 0.16]
Maximum components per robot 64
Joint upper limit (radians) 0.2
Joint lower limit (radians) -0.2
Joint delta movement (radians) [-0.05, 0.05]

Controller Evolution: 1 + 1 EA
Task trials (per generation) 5
Runs (1000 generations) 10

D. Pre-Designed Robots

To demonstrate the efficacy of MLE evolved robots across
various task environments (section III) we evaluate a set of
16 pre-designed robots, where each of the 16 is denoted by
a specific property type. That is, specific values (property
types) derived from each discrete value combination for
the coefficient of friction and restitution properties (section
II-A). Figure 1 presents the (hexapod) morphology of the
pre-designed robot, selected given its use in previous relevant
experiments [6], where the key difference is previous work
only tested one property type (friction = 0.75, restitution =
0.75, blue components in figure 1), whereas we evaluated 16
material types.

As in previous work, each leg comprised four square
polygons, each with friction and restitution coefficients of
0.75. In the context of the robot simulator [6], the robot torso
is 0.16 units in length, each leg component block is 0.01
units in length. For comparison, maximum task-performance
(1.0) is gained if a robot traverses 1.0 unit in any given
environment (section III).



E. Morphological Complexity Definition

We define morphological complexity [12], as a function of
the number of modular robot building blocks (components),
number of legs and number of components per leg. Component
material composition was not factored into this calculation
given a lack of universal material complexity classification
metrics [30], [31], especially in robotics [32]. Robot morpho-
logical complexity (M , equation 1) is defined as the given
number of legs N , where each leg li comprises a number of
blocks out of a maximum number of blocks L (that could
comprise any robot). The maximum number of blocks (L) per
robot (table I) was determined by trial simulations using pre-
designed robots (section II), testing varying numbers of legs
and leg lengths, and gauging task-performance across the same
environments as used for MLE experiments (table II). This
maximum value (L=54, table I), was the maximum number
of components used by functional (ambulating) robots evolved
for all environments (section III). To limit the morphological
search space to functional robot designs, MLE evolved mor-
phologies were constrained to [2, 4, 6] legs, where minimum
robot complexity was two legs (one component each and one
torso component), and maximum complexity was six legs
(each comprising eight blocks and 16 torso components).

M =

n∑
i=1

(
li − ∧Li

∨Li − ∧Li

)
(1)

Where, n is the number of legs (n ∈ [0, N ]) and the
complexity of composite leg i (li) is defined as:

li − ∧Li

∨Li − ∧Li
: Fraction of total possible blocks used by li.

III. EXPERIMENTS

Experiments ran on custom robot simulator [33] using
MLE [6] to evolve legged robot designs suitable for various
environments (table II). Task environments (A-D, table II)
used in these experiments are ordered in terms of increasing
difficulty. Surface friction of 0.90 indicated maximum
traction, so coupled with a flat surface, was the least difficult
environment to traverse (simple, table II). However, 0.05
indicated relatively low traction, so coupled with an inclined
surface this was the most difficult environment to traverse
(difficult, table II). Robot task-performance was evaluated as
the portion of the environment length covered during one
task trial (15 seconds, table I). We conducted four sets of
evolutionary and subsequently evaluation experiments.

Each evolutionary experiment ran for 1000 generations,
evaluating a population of 100 robot designs per environment.
Per generation, each robot was evaluated by gauging the
average portion of environment length traversed over five task
trials (15 seconds each). If during any task-trial, robots moved
beyond a given side-lines boundary or changed orientation to
a non-forward moving direction, the simulation was stopped
and the robot assigned a 0 fitness. Per generation, after

all robots had been evaluated, evolutionary operators were
applied to generate the next generation of robot designs.
Average task performance was calculated over 10 runs using
the fittest (highest task-performance) evolved robot per run.

The evaluation experiments entailed testing the fittest MLE
robot evolved for each environment versus a robot pre-
designed (section II-D) for the same environment. To address
our objective (section I) of demonstrating MLE efficacy
for generating effective robot designs across environments,
we evaluated evolved designs versus various pre-designed
robots. First, versus the pre-designed hexapod morphology
with a constant material type per component (friction=0.75,
restitution=0.75) taken from previous work [6]. Second,
versus the best performing of 16 pre-designed hexapod
morphologies [6], where each pre-designed robot used one
of 16 different material types (section II). Specifically,
each evaluation run took, for a given task environment, the
fittest MLE evolved robot after 10 evolutionary runs. This
fittest evolved robot was then evaluated versus the original
pre-designed robot [6], or the pre-designed robot (using one
of the 16 material types, section II) in a simulation task trial
of 15 seconds (table I), replicating each of the four task
environments (table II). These task trials were only used to
evaluate robot ambulation task-performance and as such no
evolutionary adaptation occurred during each task trial.

To ensure statistical viability of robot task-performance
comparisons, for each task trial (replicating one of the four
task environments), we ran 10 repetitions for the fittest MLE
evolved robot versus one of the 16 pre-designed robots. For
each task trial run, robots started in random locations (on a
starting line spanning the width of the environment), and an
average task-performance was computed over the 10 task trial
repetitions for evolved versus pre-designed robots (section IV).
Table I presents all MLE and experiment parameters used in
this study, and unless otherwise described, parameter values
are the same as that used in related work [6] (where a complete
list of MLE and simulation parameters is available). All
experiment simulations were implemented in Python using the
custom robot simulator and MLE engine [6], and executed on a
HPC cluster (2, 10, 25 nodes) comprising Intel Xeon 24 core
CPUs running at 2.6GHz with 64GB of RAM. Experiment
implementation, testing and parameter tuning was executed
on an AMD Ryzen 9 5950X 16 core CPU running at 4.9GHz
with 32GB RAM and Nvidia 3080 Ti 12GB GPU.

IV. RESULTS AND DISCUSSION

A. Evolved Gait Performance and Morphological Complexity

To address our first research objective (section I), we
first examine comparative average task performances of MLE
robots evolved per environment and the highest task perfor-
mance of 16 pre-designed robots (section II) and the four
best performing robots with various pre-defined materials,
for the pre-designed robot morphology (section III), in the
same environments. Pair-wise statistical tests applied between



TABLE II
ENVIRONMENTS AND ASSOCIATED TASK DIFFICULTY. AS PER PREVIOUS WORK [6] SURFACE FRICTION OF 0.90 INDICATES MAXIMUM TRACTION

DURING ROBOT AMBULATION. COUPLED WITH A FLAT SURFACE, THIS IS THE LOWEST TASK DIFFICULTY (SIMPLE ENVIRONMENT). WHEREAS: 0.05
INDICATES LOW TRACTION, COUPLED WITH AN INCLINED SURFACE THIS IS THE HIGHEST TASK DIFFICULTY (DIFFICULT ENVIRONMENT).

Task Environment Environment Type Task Difficulty Surface Friction
A Flat Simple 0.90
B Flat Medium-low 0.05
C Inclined (15◦) Medium-high 0.90
D Inclined (15◦) Difficult 0.05

Fig. 2. LEFT: Average maximum task-performance of evolved (box-plots) versus pre-designed robots per environment (red dot, colored stars in legend).
Note, the pre-designed robots did not evolve morphology-behavior, so there was minimal variation in gait behavior. RIGHT: Morphological complexity of
the highest task-performance robots evolved in each task environment. For each environment, Best Robot corresponds to those visualized in figure 3). Manual
Robot is the pre-designed robot (section II-D). Morphological complexity is normalized to: [0.0, 1.0], where 0.05 and 1.0 indicate the simplest and most
complex possible robot (section II-E), respectively. A: High friction, B: Low friction, flat surfaces (environments A, B: table II), C: High friction, D: Low
friction inclined (15◦) surfaces (environments C, D: table II). Fitness (normalized) is the distance traversed (as portion of environment length).

TABLE III
EVOLVED MORPHOLOGICAL COMPLEXITY AND MATERIAL TYPES (FRICTION AND RESTITUTION VALUES) OF FITTEST (HIGHEST TASK-PERFORMANCE)

ROBOT EVOLVED (FIGURE 3) IN EACH TASK ENVIRONMENT (TABLE II)

Environment Morphological Complexity Materials (Friction, Restitution)
A 0.38 Yellow (1.0, 0.75), Green (0.25, 0.25), Blue (0.75, 0.5)
B 0.27 Yellow (1.0, 0.75), Green (0.25, 0.25), Blue (0.75, 0.5)
C 0.34 Yellow (1.0, 0.75), Green (0.25, 0.25), Red (0.5, 0.25)
D 0.31 Yellow (1.0, 0.75), Green (0.25, 0.25), Blue (0.75, 0.5), Red (0.5, 0.25)

the average task performance results of MLE evolved versus
the pre-designed robot (section III) indicate MLE evolved
robots achieve a significantly higher average task performance
(p<0.05) across all environments (figure 2, left). Results
data were non-parametric, found via a Kolmogorov–Smirnov
normality test with Lilliefors correction [34]. Mann–Whitney
U tests (p<0.05) [35] were applied in pair-wise comparisons
with Effect Size [36] treatment (all statistical test results
are online [33]). For our second objective (section I), to
demonstrate morphological impact in MLE evolved robots, we
examine the morphological complexity (section II-E) of MLE
evolved robots. For comparison we compare morphological
complexity of the fittest robot evolved per environment with
the morphological complexity of the pre-designed robot [6].

Table III presents the morphological complexity (section
II-E) computed for the fittest (highest task-performance) robot
evolved in each environment (table II) and figure 2 (right)
presents the average morphological complexity of the fittest
robots evolved per environment. Statistical tests indicate that
the average morphological complexity of the fittest robots
evolved for environments B, C and D are significantly lower
(p<0.05) than that of the fittest robots evolved for environment
A (figure 2, right). This indicates that as task difficulty
increases a lower morphological complexity suffices to achieve
high performance and supported by related work [12], [37]
similarly demonstrating that simpler robot designs (lower
morphological complexity) can achieve comparable or higher
task task performance compared to more complex designs



Fig. 3. Morphologies of highest performance (fittest) robots evolved in each environment. Left: Hexapod morphology evolved for the high friction, flat surface
(environment A, table II). Center-Left: Quadruped evolved for the low friction, flat surface (environment B, table II). Center-Right: Hexapod evolved for
the high friction, inclined surface (environment C, table II). Right: Hexapod evolved for the low friction, inclined surface (environment D, table II).

(higher morphological complexity). Observing the morpholog-
ical complexity of the fittest robot evolved (figure 2, right) per
environment (table II), we note that, with the exception of en-
vironment B (Low-friction flat) the morphological complexity
of evolved robots is higher than that of the pre-designed robot
(Manual robot in figure 1) (achieving a significantly lower
average task performance (p<0.05) per environments, figure
2, left). These results support the need for automated evolu-
tionary robot design [2], via indicating evolved robots achieve
a high task performance and suitable degree of morphological
complexity for given environments. That is, required degree
of morphological complexity is heavily influenced by the
environment, but cannot be too simple or complex if optimal
or near-optimal behavior is to be achieved (figure 2, right).

B. Evolved Morphologies and Materials

Further supporting the impact of suitable materials for
morphological design, we observe the task-performance
benefits of all evolved morphologies (figure 2, left), across
all environments. That is, for each environment, robots with
evolved material designs significantly out-perform (p<0.05),
the best performing pre-designed robots, including the best
performing that comprise one of 16 pre-set material types
(section III). In terms of evolved material designs, figure
3 presents the morphology of the fittest robot evolved in
each environment, where components are coloured either
green, red, blue or yellow to denote different material types
(combinations of varying friction and restitution values,
section II-A). For clarity of visualization, note that specific
component colours denote specific friction values, whereas
restitution values can vary per component colour.

The fittest evolved robots (figure 3) also indicate, in
addition to morphological complexity (figure 2, right), the
importance of the material types in robot composition for
adapting to varying environments. For example, observing
the morphology of the fittest robot evolved for the most
difficult task (figure 3, right), we note this robot uses
all material types, (green, red, blue and yellow blocks
defined by varying friction coefficients: 0.25, 0.5, 0.75, 1.0,

respectively). Whereas, the other fittest robots, evolved in less
difficult environments (figure 3, left, center-left, center-right),
use only three of the material types. Also, the material
composition of the morphology of the fittest robot evolved in
environment D (table II) intuitively suits the environment type.

For example, each front leg is comprised of mostly
high-friction (four blue blocks per leg) material that enables
the robot to gain traction on an inclined slippery surface,
and propel its body forward by force of leg movement. The
middle-legs have a similarly beneficial material composition,
that is mostly very high-friction (four yellow blocks per leg)
material that (coupled with the paddle-like leg shape) enables
the robot to stay fixed on an inclined slippery surface while
the front legs elevate to move forward. The robot’s back legs
also serve the function of helping the robot maintain stability
while the robot’s other legs are moving. The back-legs mostly
used lower friction (two red blocks per leg), where a lower
friction was suitable given that the main function of these
back-legs was to maintain overall stability as either the middle
or forward legs moved. These results are supported by related
work on adaptive robot morphology similarly demonstrating
benefits of evolving material compositions in robot design
[31] and evolving such compositions [38], [39] as a means to
optimise robot behavior across varying tasks.

Figure 3 (left) presents the hexapod morphology of the
fittest robot evolved for high friction, flat surface (environment
A, table II). Each front-leg comprises three blocks and two
material types (one yellow and two green blocks). Each
middle-leg comprises eight blocks and two material types
(five yellow and three blue blocks). Middle leg-ends (arc-
shapes formed by three yellow, two blue blocks) provide these
middle-legs extra flexibility and control. Observing this robot’s
gait in environment A, this enables the robot to use this added
flexibility to gain more traction on a high friction surface and
fling itself forward for added mobility. The two back-legs
each comprise 10 blocks, also of two material types (eight
green, two yellow blocks). These back-legs have four (green)
blocks clumped together into flat flipper-like structures. Gait



observations reveal that these appendages are similarly used
to gain traction and in concert with a jumping motion that
propels the robot forward. Videos of the gaits of the fittest
robots, evolved in each environment, are available online [33].

Figure 3 (center-left) presents the quadruped morphology
of the fittest robot evolved for low friction, flat surface
(environment B, table II). Each front-leg comprises eight
blocks of two material types (six yellow, two green blocks).
This robot’s front legs are longer and more rigidly connected
compared to the fittest robots evolved in other environments.
This enabled these appendages to make connect (at legs
length) with the ground ahead of the robot and use traction
gained to pull itself forward until the legs returned to the
position shown in figure 3. Gait observations also show the
back-legs keep the robot fixed in position while the front-legs
move forward to make contact with the surface ahead of
the robot. As such these back-legs are relatively short,
comprising three blocks each, but with a different material
combination (two green, one blue block). These back-legs
thus enable the robot to maintain traction on a low traction
surface, while the front-legs are not in contact with the surface.

Figure 3 (center-right) presents the hexapod morphology of
the fittest robot evolved for a high friction, inclined surface
(environment C, table II). Each front-leg comprises three
blocks of two material types (two yellow, one red block).
Each middle-leg comprises eight blocks of the same two
material types as front legs (six yellow blocks, two red
blocks), and evolved to uncurl and curl back into the position
shown in figure 3, as part of the robot’s gait. Each back-leg
comprises four blocks of two material types (one yellow,
three green blocks). Overall, the robot’s six legs enable it
to maximize leg contact with the surface, where each leg’s
material composition enables traction, while the robot uses the
uncurling-curling middle legs to propel its body up the incline.

Figure 3 (right) presents the hexapod morphology of the
fittest robot evolved for a low friction, inclined surface (envi-
ronment D, table II). Each front-leg comprises five blocks of
two material types (four blue, one green block). Dissimilar to
the fittest evolved robot evolved for the low traction incline
(environment C), this robot evolved relatively long front-legs
with a material combination better suited to gripping a low
friction (slippery), inclined surface (table III). Also this robot
used movement of its front legs to propel its body forward,
where the middle and back legs are mainly used to maintain
traction on the inclined, slippery surface, while the front-legs
move. Each middle-leg comprises six blocks of two material
types (five yellow, one blue). These middle-legs have evolved a
paddle-like shape which, in contact with the surface, assists the
robot in keeping traction on the inclined surface while other
legs move. As with the fittest robots evolved for environments
A-C, the back-legs are relatively short, each comprising three
blocks of two material types (two red, one yellow).

C. The Efficacy of Multi-Level Evolutionary Robot Design

This study’s results present the next step in evaluating the
efficacy of MLE [5], a multi-level bottom-up evolutionary
quality-diversity [24] robot design method. Evaluation refers
to gauging ambulation behavior performance (in comparison
to pre-designed robots), across increasingly difficult tasks.
Task difficulty is defined as surface friction (low or high,
tantamount to icy or rough terrain) and surface inclination (flat
or sloping upwards). As with previous work [6], we focused
on evolutionary design of legged robots where MLE generates
robot morphologies suitable for given environments, via first
selecting suitable materials to comprise modular components,
then combining components into functional appendages and
finally attaching configurations of appendages to a torso to
achieve a fully functional (ambulating) robot morphology.

Overall, results indicate two key contributions. First, further
demonstrating the efficacy of MLE for evolutionary robot
(morphological) design, where morphologies are embedded
with simple controllers actuating component joints (section
II). MLE evolved robot morphologies generated suitable gaits
as the robot interacted with its environment, significantly out-
performing (distance covered) pre-engineered robot designs.
This also provides support for the morphological computation
hypothesis [40], via further demonstrating the benefits of
adapting material composition to off-load computation for
suitable behaviors (effective gaits in this case) from the
robot’s controller to its morphology (legged structure and
material composition in this case). The benefits of evolving
material compositions as part of robot design for changing
environments has been similarly demonstrated in various
soft-robotic ambulation [38] and object gripping [39] tasks.
More broadly, our results contribute to the notion that the
environment strongly influences one’s morphology which in
turn determines types of possible behaviors [13].

Second, these results contribute to a growing range of
evolutionary robotics studies on emergent morphological com-
plexity in robots that must adapt to various environments [15],
[20], [21], [23] (in this study, environments were increasingly
difficult to ambulate across). Specifically, we further elucidated
the degree of morphological complexity necessary in order
for robots to effectively ambulate across increasingly difficult
environments. Supporting related work [12], [37], our results
indicate that simpler morphologies achieve higher task per-
formance compared to higher complexity morphologies, also
supporting the notion that pre-designed morphologies suitable
for any given task environment is impractical in most cases.

V. CONCLUSIONS

This study applied Multi-Level Evolution (MLE) robotic
design via evolving materials comprising components and
components comprising morphology. Results indicate MLE
evolved robots effectively ambulate across increasingly
difficult task environments, out-performing robots pre-
designed for such environments. MLE evolved robots



comprised component material types suitable for specific
environments. Environment suitability of MLE evolved
morphologies was supported by task-performance comparisons
with pre-engineered robot designs using other materials.
Results also indicate the highest performing MLE evolved
robots were defined by a significantly lower morphological
complexity (compared to pre-engineered and other MLE
evolved designs), further supporting the notion that the
desirable degree of design complexity is non-intuitive and
difficult to ascertain a priori. Overall, our results further
support the efficacy of MLE as an evolutionary robotic design
method. Future work will incorporate a broader spectrum of
materials, components and thus possible morphologies as well
as evaluating the robustness of MLE robot designs across
changing task environments using evolutionary controller-
morphology transfer [41], [42].
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