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Abstract

Identifying chemical compounds with optimal properties for specific applications presents
a fundamental challenge in materials science. Traditional methods, based on trial-
and-error, are inefficient and costly. This thesis introduces an innovative integration
of Computational Chemistry and Machine Learning (ML) with Evolutionary Multi-
Objective Optimisation (EMOO) techniques to streamline compound design. This
approach automates the design process by leveraging ML to accurately predict compound
properties and using EMOO to select compounds that meet various criteria. The
significance of this work lies in its potential to transform the traditional development
process, facilitating the creation of chemical products that fulfill multiple objectives
more efficiently. This study not only demonstrates the synergy between advanced ML
and optimisation techniques but also presents a comprehensive comparison of the Multi-
Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES) and Non-
dominated Sorting Genetic Algorithm II (NSGA-II), including two novel meta-heuristics
for enhanced molecular exploration. Our findings reveal that MO-CMA-ES, especially
when combined with an extended search meta-heuristic, excels in exploring molecular
spaces, establishing it as a preferred method for compound synthesis. This research
promises to accelerate compound development specifically for detergent compounds,
offering significant implications for product design across various industries.
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Chapter 1

Introduction

Chemical product design has experienced a pivotal transformation in recent years, shifting
from conventional trial-and-error synthesis methods to the adoption of sophisticated
computational techniques. These techniques, rooted in the identification and optimisation
of compounds for specific chemical properties, have redefined the design landscape,
hastening cycle times and streamlining design iterations (Chen & et al., 2018; Schneider,
2018; Winter et al., 2019b).

The transition from traditional trial-and-error synthesis to computer-aided product design
has profoundly influenced the field of material design. This paradigm shift, driven by an
iterative methodology, involves continuous refinement of compounds to achieve specific
chemical attributes. The advantages of this methodology are evident across various
applications, from solvents and ionic liquids to polymers and medications (Ng & Gani,
2019). Beyond merely synthesizing new products, it addresses overarching goals such as
reducing aquatic toxicity and enhancing synthetic accessibility (Mayr et al., 2016; Winter
et al., 2019b).

Yet, the chemical design space remains vast and intricate. Some estimates suggest the
presence of over 10200 organic compounds, creating a significant computational challenge
(Reymond, 2015). Bridging this vastness with computational agility has been possible due
to the combination of computational chemistry and Machine learning (ML). Evolutionary
Algorithms (EAs), in particular, have become powerful tools, optimizing the search within
this colossal space (Keith & et al., 2021). This synergy is especially evident in areas like
de novo molecular design, spawning breakthroughs across fields from drug discovery to
materials science (Bender & Cortes-Ciriano, 2021; Paul, 2021; Tkatchenko, 2020).
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Recent research in generative deep learning has added further momentum. Techniques
ranging from auto-encoders (Gómez-Bombarelli & et al., 2018; Jin et al., 2020) to graph-
based methods that encode complex molecular structures (De Cao & Kipf, 2018; Lim et
al., 2020; Samanta & et al., 2019) have seen success. Remarkably, deep recurrent neural
networks now adeptly generate chemically viable molecules (Yuan & et al., 2020).

Yet, challenges persist. The confluence of generative techniques and expansive molecular
datasets (Kim et al., 2019a) emphasizes the enduring dependence on human expertise
(Curtarolo & et al., 2013; Pyzer-Knapp & et al., 2015), especially in the filtration and
selection of optimal solution candidates with targeted properties as shown in Figure 1.1.
The automation of this process remains a crucial frontier.

Figure 1.1: Illustrates the workflow of molecule selection using generative and predictive
models in the current state of the field. Initially, these models generate a large set (> 104)
of potential molecular candidates. Following this, a process of manual filtering is applied,
significantly reducing the number of candidates to fewer than four viable molecules.
This figure highlights the disparity between the initial high-throughput computational
prediction and the intensive manual selection required to identify the most promising
molecules for further development. (Bilodeau et al., 2022a).

Researchers have demonstrated the efficacy of evolutionary algorithms in achieving
competitive outcomes within the realm of chemical product design (Jensen, 2019;
Kwon & et al., 2021; Leguy & al., 2009; Varela & Santos, 2022; Yoshikawa & et
al., 2018), particularly when the chemical design space is defined through specific
molecular encodings. Notably, these algorithms prioritize a single property, rather than
multiple properties for selection and mutation processes. It was quickly realized that
molecules have many properties with trade-offs, such as molecular weight, which impacts
solubility and absorption; molecular complexity, affecting synthesis and stability; XlogP,
influencing bio-availability; and toxicity, which is critical for safety profiles. Balancing
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these properties while keeping the structure of the compound similar to what is known to
work is crucial for the successful design of new chemical entities (“similar structure, similar
property” (Brown, 2009)), presenting a complex optimisation challenge that necessitates
a multi-objective approach.

The multifaceted nature of molecular property optimisation necessitates algorithms
capable of effectively navigating the trade-offs between various objectives. MO-CMA-
ES (Loshchilov & Hutter, 2016) and NSGA-II (Deb et al., 2002) are particularly well-
suited for this task, having been specifically designed for multi-objective optimisation
challenges. MO-CMA-ES is adept at adapting its search strategy to the contours of
complex optimisation landscapes, a feature that is indispensable when seeking to optimize
the interrelated properties of molecules. NSGA-II, with its fast sorting algorithm and
crowding distance mechanism, ensures a diverse and well-distributed representation of
solutions along the Pareto front (set of non-dominated solutions), making it an excellent
tool for discerning the optimal balance between competing molecular characteristics.

The integration of ML techniques with evolutionary algorithms is increasingly becoming
a possible approach in the fields of property prediction and optimisation. While
traditional methods of property prediction are typically deterministic, modern strategies
are being increasingly characterized by probabilistic and data-driven approaches. These
contemporary methodologies capitalize on the proliferation of data, utilizing extensive
datasets to infer predictions and insights, which would be challenging to derive manually.
Today’s ML models, inherently adaptive, are fine-tuned to predict specific properties like
environmental impact. As they access more data, these models continuously refine their
predictions, demonstrating the iterative essence of ML. Integrating these approaches not
only promises a swifter search process but also enhanced precision in property evaluations
(Brown & et al., 2004; Le & Winkler, 2016).

In response to escalating environmental sustainability concerns, the development of
automated methods for chemical product design has escalated significantly. To address
this, we have embarked on an exploration, leveraging the fusion of deep learning and
evolutionary Multi-Objective optimisation (MOO). This novel approach capitalizes on
Geometric Deep Learning for molecular property prediction and Evolutionary MOO for
navigating the chemical design space towards compounds that simultaneously optimize
multiple objectives, such as minimizing aquatic toxicity and maximizing synthetic
accessibility.

3
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A cornerstone of this methodology is our strategy to identify the initial pool of candidate
compounds, marking the boundaries of our exploration. Coupled with the careful
selection of foundational ’seed’ compounds, our approach aims for a holistic sweep of
the design space, revealing promising compound candidates.

This study primarily focuses on the practical application of our methodology for detergent
products: crafting a selection (filtering) algorithm tailored for molecular datasets.
Operating under the guiding principle that molecular similarities typically result in
analogous behaviors (Mitchell, 2014), our research commences with a foundational
reference seed compound. From this starting point, we aim to curate solution candidates
that meet the specified property criteria.

In summary, this research not only aspires to refine molecular design’s efficiency but also
envisions the interplay of ML and evolutionary algorithms in the chemical domain.
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1.1 Motivation

The transformative era of chemical product design, led by computational techniques,
has revolutionized our approach to molecule synthesis and optimisation. However, while
computational methods have streamlined certain processes, they have also unveiled a new
array of challenges and gaps that must be addressed to fully realize the potential of this
domain.

A primary challenge lies in the vastness and complexity of the chemical design space. With
an estimated 10200 organic compounds (Reymond, 2015), the task of efficiently navigating
and optimizing within this space is monumental. While computational techniques offer
promising solutions, the process’s manual aspects, particularly the filtration and selection
of optimal solution candidates, remain a hindrance (Curtarolo & et al., 2013; Pyzer-
Knapp & et al., 2015). The increasing dependence on human expertise limits the
scalability and speed of the design process.

Moreover, the increasing environmental concerns underscore the urgency of refining our
methodologies. The detrimental impacts of certain chemical products on ecosystems,
like aquatic toxicity, have elevated the demand for sustainable and environment-friendly
compounds. Efficiently navigating the design space to identify such compounds, without
incurring excessive costs or time delays, remains a significant challenge.

Furthermore, the evolving landscape of ML and EAs presents both an opportunity and
a challenge. The synergy of these techniques can show remarkable potential, but the
path to optimal and harmonized integration and choice of methods remains nebulous. As
industries globally move towards automation and computational solutions, the pressure
to refine these integrations amplifies.

Given these challenges, our motivation is clear. We aim to devise a method that combines
the strengths of deep learning and EAs, and find better EAs approach to address the gaps
in the current design process. By crafting an efficient filtering algorithm for molecular
datasets, we endeavor to reduce the dependence on manual processes, accelerate the
design timeline, and push the boundaries of what is possible in chemical product design.
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In the broader context, our research holds the potential to drive significant advancements
in diverse industries – from pharmaceuticals to sustainable products. It offers a blueprint
for a more efficient, cost-effective, and environmentally-conscious future in chemical
product design. By laying the foundation for the next era of innovation, we aspire to
bridge the gap between computational promise and practical reality.
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1.2 Research Questions

The core of this research interrogates the efficacy of combining advanced computational
techniques, specifically Multi-Objective Evolutionary Algorithms (MOEAs) and
Molecular Property Prediction Models, in refining the molecular optimisation process
for chemical product design. This investigation is structured around a primary
question, supported by secondary questions that delve into comparative analyses and
methodological efficacies, as delineated in sections pertaining to motivation (1.1) and
methodological frameworks (3.1, 3.3, 3.4).

In detail, this research undertakes a comparative analysis of the exploration capabilities
and solution quality provided by the Multi-Objective Covariance Matrix Adaptation
Evolution Strategy (MO-CMA-ES) and the Non-dominated Sorting Genetic Algorithm
II (NSGA-II), as discussed in Sections 3.3 and 3.4 respectively. This examination seeks to
answer secondary questions 2.1 and 2.2, focusing on understanding the intricate dynamics
of exploration and solution quality when employing MO-CMA-ES or NSGA-II alongside
meta-heuristics like direct correlation and extended search (Section 3.2), specifically
within the context of optimizing product design.

1. Primary Research Question: How do advanced computational methodologies,
particularly Evolutionary Optimisation Algorithms combined with Molecular
Property Prediction Models, enhance the efficiency and accuracy of molecular
optimisation in chemical product design?

2. Secondary Research Questions:

2.1. How do the exploration capabilities of Multi-Objective Covariance Matrix
Adaptation Evolution Strategy (MO-CMA-ES) and Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) compare in the context of identifying
optimally designed molecules in molecule space with complex landscapes?

2.2. Between MO-CMA-ES and NSGA-II, which approach yields superior solution
sets for molecular optimisation, assessed through both quantitative metrics
and qualitative analysis?

7
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The evaluation of the exploratory effectiveness by testing both MO-CMA-ES and
NSGA-II, alongside innovative meta-heuristic approaches (Section 3.2), will address the
secondary research question 2.1. The analysis of solution sets generated by these MOEAs,
in terms of both their qualitative and quantitative aspects, will cater to secondary research
question 2.2. Such examinations are designed to pinpoint the most efficacious combination
of methodologies and meta-heuristics for exploring and optimizing the molecular space,
thereby yielding insights pertinent to the primary research question.

Furthermore, the precision of Molecular Property Prediction models will undergo a
thorough evaluation (5.1), as the accuracy of these models significantly enhances the
capabilities of MOEAs. This improvement directly feeds into answering the primary
research question, illustrating the pivotal role of predictive accuracy in the optimisation
process.
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1.3 Contributions

The contributions of this research to the field of product design, particularly through
the integration of advanced computational methods, are multifaceted and profound.
These contributions enhance the practical methodologies employed in the development
of innovative products. The detailed contributions are articulated as follows:

1. This study conducts a comparative analysis of two prominent MOO algorithms, the
MO-CMA-ES and the NSGA-II, supplemented by an evaluation of various meta-
heuristic approaches as detailed in Section 5.2. This comprehensive examination
elucidates the adaptability, efficiency, and scalability of MOEAs within complex
and dynamic search spaces. The insights derived from this analysis are critical
for the ongoing evolution of product design methodologies, providing a method
choice to better navigate the complexities of MOO problems in molecular space.
This contribution is pivotal in enhancing the capability of chemists to address more
sophisticated and nuanced molecule optimisation challenges, thereby pushing the
boundaries of what can be achieved in product development.

2. The research identifies and articulates the conditions under which each algorithm
outperforms the other, providing a nuanced framework to guide practitioners in
selecting the most appropriate computational strategy for their specific design
contexts. This strategic guidance is grounded in empirical evidence and detailed
analysis, ensuring that the selection of algorithms is not only tailored to the unique
requirements of a project but also optimizes the chances of successful outcomes.
Such methodological advancements significantly contribute to the decision-making
processes in molecule design, facilitating a more informed and strategic approach
to the integration of computational methods.
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3. Furthermore, by integrating algorithmic objectives with the predictive insights
afforded by Molecule Property Prediction Models, the study forges a novel
interdisciplinary approach to product design. This innovative methodology not
only expands the computational toolkit available to designers but also incorporates
a forward-looking perspective into the design process. The capability to predict
and utilize molecule properties in product development represents a significant
leap forward, offering the potential to achieve more targeted and sophisticated
design solutions. This aspect of the research underscores the transformative power
of combining computational chemistry and ML in product design, setting a new
standard for precision and innovation in the field.

Overall, the contributions of this research are poised to have an impact on both the
theoretical frameworks and practical approaches within product design. By offering a
deep dive into the capabilities and applications of advanced computational methods, this
study not only advances our understanding of complex optimisation challenges but also
provides actionable insights for leveraging these technologies in the creation of novel and
effective products. As such, it represents a valuable addition to the corpus of knowledge
in the field, serving as a cornerstone for future research and development efforts aimed
at harnessing computational power to drive innovation in product design.

1.4 Overview

The structure of this thesis is methodically organized into several chapters, each designed
to progressively address the research questions and objectives outlined in the introduction.
The thesis is structured as follows:

Chapter 2 - Literature Review: This chapter is segmented into four pivotal sections.
The initial section delves into the foundational aspects of molecules and molecule
optimisation, setting the stage for subsequent discussions on MOEAs and molecular
property prediction models. The subsequent sections critically review the current
literature on MOEAs and molecular property prediction models, respectively. The final
section identifies the research gap, offering a critical analysis of existing studies and
their contributions to the field, thereby delineating the research’s relevance and potential
impact.
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Chapter 3 - Methodology: Detailed within this chapter are the methodologies adopted
to explore the posed research questions. It elaborates on the selection and application
of various evolutionary algorithms and meta-heuristics, providing a comprehensive
explanation of their relevance and expected contributions to addressing the research
objectives. The chapter ensures a clear understanding of the experimental design and
the rationale behind the chosen methods.

Chapter 4 - Experiments: This chapter presents the experimental framework designed
to evaluate the research hypotheses. It details the experimental setup, including the
configuration of the molecule property prediction model and the application of MO-
CMA-ES and NSGA-II algorithms. The chapter aims to transparently convey the
methodology for assessing exploration behaviors, solution quality, and diversity, ensuring
reproducibility and a clear understanding of the experimental process.

Chapter 5 - Results: Here, the outcomes of the conducted experiments are
systematically presented. This includes the performance evaluation of the molecule
property prediction model, particularly focusing on fish toxicity prediction, then for MO-
CMA-ES and NSGA-II algorithms the comparative analysis of exploration behaviors
and solution qualities produced by different meta-heuristics. The presentation of results
through graphical representations facilitates a nuanced understanding of the findings.

Chapter 6 - Discussion: This chapter provides a critical examination of the
experimental results in light of the established research questions. It delves into the
implications of the findings, comparing them with existing literature and discussing their
relevance to the development of more efficient molecular optimisation strategies. The
discussion extends to the potential real-world applications of the research, highlighting
its contribution to the field.

Chapter 7 - Conclusions: Concluding the thesis, this chapter synthesizes the research
findings, addressing the research questions and evaluating the achievement of research
objectives. It reflects on the study’s contributions to the knowledge base, discusses
limitations, and proposes directions for future research, thereby underscoring the thesis’s
value and potential impact on the field of molecular optimisation.
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Literature Review

The Literature Review chapter is structured into four key sections, each designed to build
a comprehensive background for the study.

Section 2.1 provides an introduction to molecule optimisation, covering fundamental
concepts and computational strategies for exploring molecular properties and design.

Section 2.2 examines the role of Evolutionary Algorithms (EAs) in optimisation,
detailing their application in complex molecular design problems.

Section 2.3 introduces molecule property prediction models, discussing their
development and impact on predicting molecule behaviors and properties accurately.

Section 2.4 synthesizes the literature reviewed, identifying gaps in current research and
framing the study’s contribution to the field.

2.1 Optimizing Molecules for Product Design

This section presents a high-level overview of molecules and their optimisation. The aim is
to highlight its importance, especially using computational methods. Section 2.1.1 defines
molecules, their properties, and how these properties are calculated with computational
algorithms. Section 2.1.2 shows how molecules are represented. Section 2.1.3 presents
the Tanimoto similarity, similarity principle, and its importance on optimisation. Section
2.1.4 shows the significance of the computation algorithms in the chemistry field. Lastly,
Section 2.1.5 delves into molecule optimisation and how more optimized molecules could
be achieved.
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2.1.1 Molecules, Their Properties and Computational

Assessment

Molecules, the fundamental units of chemical compounds, are characterized by a
unique set of properties that dictate their behavior in various physical, biological, and
chemical contexts. These properties, ranging from simple physical attributes to complex
toxicological profiles, are integral to understanding the molecule’s functionality and
potential applications. The connection between a molecule and its properties is profound;
it determines how a molecule interacts with its environment, how it can be utilized in
product design and its overall suitability for a specific purpose.

This thesis will focus on these properties: molecular weight, molecular complexity,
XlogP, reference likeness and fish toxicity. Each has been chosen for its relevance to
the environmental and functional performance of the molecules in question, particularly
as they pertain to the detergent molecules which will be our benchmark product.

Certain molecular properties can be directly calculated using computational algorithms,
leveraging chemical libraries and informatics tools such as RDKit (Bento et al., 2020),
which is an open-source cheminformatics software. For instance:

1. Molecular Weight is a critical parameter in chemistry and materials science,
referring to the total mass of all atoms in a given molecule. Molecular weight
plays a pivotal role in product design, especially in the formulation of polymers and
other complex materials, as it directly influences properties like viscosity, melting
point, and mechanical strength. In the context of detergent molecule design, the
molecular weight is particularly crucial. Detergents, essentially surfactants, rely
on their molecular architecture to effectively break down and remove dirt and
grease (Yangxin et al., 2008). The balance between hydrophobic (water-repelling)
and hydrophilic (water-attracting) components in a detergent molecule is heavily
dependent on its molecular weight. A well-designed detergent molecule with an
optimal molecular weight ensures efficient dirt removal, minimal environmental
impact, and cost-effectiveness in production.

2. Molecular Complexity refers to the structural intricacy and diversity of a
molecule, often characterized by factors such as the number of stereocenters (chiral
centers where the spatial arrangement of substituents is non-superimposable on
its mirror image), rings (cyclic structures that can significantly influence the
chemical behavior and stability of molecules), and functional groups (specific groups
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of atoms within molecules that are responsible for the characteristic chemical
reactions of those molecules). In product design, particularly in the chemical
and pharmaceutical industries, molecular complexity is a crucial consideration
as it can impact the synthesis, cost, scalability, and functional properties of the
product. For example, more complex molecules might offer enhanced specificity
and functionality but could pose challenges in terms of synthesis and cost. In
detergent molecule design, molecular complexity is equally vital. The structural
complexity of a detergent molecule affects its interaction with different types of
soils and stains. A detergent with a carefully designed complex molecular structure
can target specific types of dirt and stains more effectively, enhance solubility, and
improve biodegradability. Moreover, the complexity can influence the detergent’s
behavior in different water conditions, such as hard water (water with high mineral
content, typically calcium and magnesium, which can reduce soap’s effectiveness
and cause scaling) or soft water (water with low mineral content, enhancing soap’s
effectiveness and reducing residue)(Yangxin et al., 2008).

3. XlogP a computational algorithm estimating the logarithm of a compound’s
partition coefficient between n-octanol (a fatty alcohol used as a standard to mimic
the lipid-rich environment of biological membranes) and water (log P). Log P is a key
descriptor of hydrophobicity, influencing a compound’s solubility, absorption, and
distribution properties, essential for predicting a substance’s behavior in various
environments. For detergent molecules, XlogP plays a crucial role in tailoring
surfactant properties, balancing hydrophobic and hydrophilic characteristics to
enhance cleaning efficiency and environmental compatibility (Rosen & Kunjappu,
2012).

4. Reference Likeness: Measures the degree of similarity between a candidate
solution and established, effective molecules. This metric is crucial for balancing
innovation with proven efficacy, as compounds with similar structures often exhibit
comparable behaviors (Brown, 2009). In the optimisation of detergent molecules,
leveraging reference likeness ensures that new compounds maintain the desired
traits of effective predecessors, thereby streamlining the development process and
enhancing the reliability of novel formulations. This approach supports the
identification of molecules that are likely to succeed in practical applications, based
on their resemblance to known, effective compounds.

These properties are typically computed during the initial stages of product design
to screen and select candidates for further development. Other molecular properties,
especially those related to toxicology, are not as straightforward to compute due to their
complexity. For example:
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1. Fish Toxicity, the toxicity of a compound to aquatic life, such as fish, is a
vital consideration in environmental chemistry. The Global Harmonized System
of Classification and Labeling (Winder et al., 2005) provides a framework for
identifying chemical hazards, including acute (short-term) and chronic (long-
term) aquatic toxicity. These properties are not directly calculable due to their
complicated nature, therefore requiring lab tests (Russom et al., 1997). Given the
high probability of detergents entering aquatic ecosystems, their impact on aquatic
life emerges as a critical factor to consider. In line with our objective to develop
a fully automated system, the implementation of a molecule property prediction
model becomes essential.

Advanced algorithms and ML models are employed to predict these non-computationally
calculable properties. These models are trained on lab tested data to learn the
relationships between molecular structures and their biological or environmental effects,
often using vast datasets to improve prediction accuracy (Alves et al., 2015; Mayr et al.,
2016; Russom et al., 1997)

Optimizing a molecule for product development is a balancing act, particularly when
the desired attributes present conflicting interests. Consider the example of an efficient
detergent formulation. Ideal characteristics might include high lipophilicity, which
ensures the detergent’s efficacy in dissolving and removing oily stains. However,
environmental considerations impose additional constraints; when such chemicals
inevitably make their way into aquatic ecosystems, their potential toxicity to wildlife,
such as fish, becomes a pressing concern. A detergent’s lipophilicity and its aquatic
toxicity are often inversely related; as one increases, the other becomes more problematic
(Jimoh & Lin, 2019).

In the domain of product design, the application of molecules can be categorized into
three distinct types based on their utilization: structure-based, substructure-based,
and reaction-based uses. This thesis will concentrate on structure-based utilization,
particularly relevant to the design and formulation of detergents.
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Structure-based molecules are defined as the entirety of a molecule’s structural
composition dictates its physical and chemical properties, which in turn, directly impacts
the functionality and efficiency of the end product. In detergents, the structure-based
functionality is exemplified by the way the long-chain molecules interact with surfaces
and contaminants. The architecture of these molecules, typically characterized by a
hydrophobic tail and a hydrophilic head, allows them to insert themselves between dirt
and the surface. The hydrophobic part of the molecule adheres to grease and oils, while
the hydrophilic part remains interfaced with water, thus effectively detaching grime from
surfaces upon agitation in water (Tadros, 2006).

2.1.2 Molecule Representation

Molecule input systems are a cornerstone in computational chemistry and
cheminformatics, providing structured representations of chemical structures for
computational analysis and modeling. Among these systems, the Simplified Molecular
Input Line Entry System (SMILES) (Weininger, 1988a) (shown in Figure 2.1) is one of the
most widely used due to its simplicity and ease of implementation. However, SMILES
is not without its drawbacks. A notable issue is its potential for ambiguity; a single
SMILES string can sometimes represent multiple molecules, which can lead to significant
problems. For example, one SMILES representation might correspond to two different
molecules, where one could be toxic and the other not, posing a challenge for Molecule
Property Prediction Models.

Self-referencing Embedded Strings (SELFIES) (shown in Figure 2.1) were developed to
address some of the limitations of SMILES. SELFIES (Krenn et al., 2019) are designed to
be 100% robust, ensuring that every string maps to a valid molecular graph. Despite this
advantage, SELFIES are computationally more complex and less intuitive than SMILES,
which can be a barrier to their widespread adoption in some applications.

2D and 3D graph representations (shown in Figure 2.1) of molecules provide additional
information that is not captured in SMILES strings, such as the spatial arrangement of
atoms, which is crucial for understanding molecular interactions and properties. These
graph-based representations are often derived from SMILES strings using computational
algorithms; thus, they inherit any inaccuracies or ambiguities present in the SMILES
representation. Despite this, their use is prevalent, particularly in the training of neural
networks for tasks, where the spatial information can be critical (Duvenaud et al., 2015;
Zhou et al., 2023).
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(a) SMILES representation.

(b) SELFIES representation.

(c) 2D Graph representation. (d) 3D Graph representation.

Figure 2.1: Different representations of widely used detergent molecule Sodium Lauryl
Sulphate. Taken from Pubchem database (Kim et al., 2019b)

In summary, while SMILES is the most preferred due to its widespread use and simplicity,
its limitations, particularly in terms of potential ambiguity, are significant. SELFIES offer
a robust alternative but at the cost of computational complexity. Meanwhile, 2D and 3D
graphs provide valuable spatial information but still carry the foundational issues of the
SMILES format from which they are often derived. This thesis will focus on SMILES
format and 3D graphs that are derived from SMILES format.

2.1.3 The “Similar Structure, Similar Property” Principle and

Tanimoto Similarity

The “similar structure, similar property” principle is a foundational concept in
computational chemistry, which refers that similar molecules will also tend to exhibit
similar chemical properties (Brown, 2009). This principle has been pivotal in developing
computational methods for molecular similarity assessment, such as Tanimoto similarity,
which quantifies the resemblance between molecular structures (Willett, 2006). Tanimoto
similarity, or the Tanimoto coefficient, is derived from the Jaccard index and is specifically
adapted for binary or vector-based representations of molecular features.

MACCS are widely used for similarity searching and structure-activity relationship
studies. They are particularly effective for rapid screening of molecules with a relatively
small and focused set of structural features. For applications requiring rapid screening
with a focus on well-established structural features, MACCS with Tanimoto similarity
may provide sufficiently accurate results with less computational overhead (Kuwahara &
Gao, 2021). For this reasons, in this research we will use MACCS for Tanimoto similarity.
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Tanimoto similarity plays a critical role in cheminformatics by providing a metric to gauge
the similarity between the structural fingerprints of molecules. This metric has been
effectively utilized in the iterative optimisation of molecular structures. By quantifying
the extent of similarity, it is possible to incrementally modify a molecule, adjusting its
properties in a controlled manner to align with the desired characteristics (Bajusz et al.,
2015). Each iteration brings the molecule’s properties closer to the optimal parameters,
thereby leveraging the underlying principle that structurally similar molecules will possess
similar properties.

This concept is vital not just for comparison but for a systematic exploration of design
possibilities. In the field of product design, this approach can be likened to the use
of design similarity algorithms to identify potential innovations from extensive design
databases by screening for features akin to those in successful products. Understanding
the complex network of relationships among design elements enables the formulation of
effective strategies for applying EAs. These algorithms utilize this principle to navigate
through the design space, making ’evolutionary steps’ in enhancing specific features or
functionalities of a product.

The strategic application of Tanimoto similarity within evolutionary computation is not
a matter of observing a correlation between structure and properties. It is an approach
that harnesses this relationship to intelligently navigate the molecular landscape. By
doing so, we can systematically and efficiently evolve molecules towards a set of desired
properties.

2.1.4 Rationale for Computer-Aided Molecular Optimisation

The optimisation of molecules using computational methods has become a cornerstone
in modern product design, particularly in sectors like pharmaceuticals, materials science,
and product design. The adoption of these computer-based approaches is driven by
their unparalleled capacity to manage the immense complexity and diversity inherent
in molecular structures and properties, a task that often surpasses the capabilities of
traditional experimental methods (Brown, 2009). Through computational techniques,
researchers can traverse the vast expanse of chemical space more efficiently and
cost-effectively, facilitating the discovery and optimisation of molecules with ideal
characteristics (Bilodeau et al., 2022b).
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A significant advantage of this computational approach is its ability to dramatically
reduce the time and resources needed for development cycles. In the pharmaceutical
industry, for example, computational methods can expedite the process of identifying
and refining potential drug candidates, compressing a process that typically spans several
years into a much shorter time frame (Hughes et al., 2011). This acceleration is made
possible by predicting key molecular properties, hence rapidly pinpointing the most viable
candidates for further investigation.

Beyond efficiency, the computational approach can enhance the precision of molecular
design. It grants the ability to predict properties like toxicity using molecule prediction
models which otherwise require expensive and time-consuming lab tests.

In essence, optimizing molecules with computational tools is a strategy that goes beyond
mere efficiency and cost-effectiveness; it is a pathway to achieving higher levels of precision
and innovation in product design. As these computational methods continue to advance,
their influence on molecular optimisation is assured to grow even more integral and
transformative.

2.1.5 Current Methodologies in Molecular Optimisation:

Approaches and Advances

Optimizing molecules is a complex challenge that necessitates a multidisciplinary
approach, blending the expertise of computational chemistry, and computer science,
especially when applied to materials science. The core objective is to devise molecules
that are not only structurally sound but also functionally adept for their intended use in
various products.

In recent years, ML algorithms have become a pivotal element in this optimisation
process. Their ability to assimilate and interpret extensive datasets has revolutionized
the identification of patterns and relationships within molecular structures that might
otherwise remain obscured. Deep learning, a subset of these techniques, has proven
particularly effective in predicting molecular behaviors and properties, thereby enhancing
the efficiency of the molecule optimisation pipeline. Notably, neural networks have shown
promise in predicting the toxicity of compounds, which is a vital concern in molecule
development (Butler et al., 2018; Mayr et al., 2016).
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Generative adversarial networks (GANs) and Variational Autoencoders (VAEs) stand at
the forefront of generative molecular optimisation. These models excel in crafting novel
molecular structures by learning from comprehensive databases of existing molecules.
GANs, for example, have been utilized to generate molecules with tailored properties,
which have been instrumental in aligning molecular designs with predefined criteria (De
Cao & Kipf, 2018).

VAEs, on the other hand, offer a slightly different approach. They are particularly
renowned for their ability to learn the distribution of data in a latent space, enabling
the generation of new molecules by sampling from this space. This feature has proven
effective in discovering molecules with specific desired properties, as showcased in a study
by Gómez-Bombarelli et al. (2018). The researchers employed VAEs to generate molecules
that exhibit high synthetic accessibility.

These advancements highlight a paradigm shift in molecular design, where generative
models like GANs and VAEs are no longer confined to theoretical simulations. They
are increasingly being integrated into the real world, offering a faster, more cost-effective
route to molecular optimisation.

In the realm of molecule optimisation using evolutionary algorithms, significant strides
have been made, as evidenced by studies like Douguet et al. (2000), Kwon and Lee (2021),
and Winter et al. (2019b). Winter et al. (2019b) showcases the successful optimisation of
molecules via Particle Swarm optimisation (PSO) and VAEs across multiple objectives
instantaneously. Their methodology innovatively navigates a continuous representation
of chemical space generated by VAEs, utilizing a well-structured objective function
that combines various prediction models. This approach has proven effective in rapidly
identifying molecules with enhanced desirable characteristics.

2.2 Optimisation Algorithms

This section presents an overview of optimisation Algorithms. Section 2.2.1 briefly
introduces EAs. Section 2.2.2 presents the concepts of MOO. Section 2.2.3 introduces
CMA-ES, widely used optimisation algorithm. Section 2.2.4 presents MO-CMA-ES,
adaptation of of CMA-ES for MOO. Section 2.2.5 presents another MOO evolutionary
algorithm NSGA-II for benchmarking. Section 2.2.6 analyzes the strengths and
weaknesses of MO-CMA-ES and NSGA-II.

20



Literature Review

2.2.1 Evolutionary Algorithms

EAs represent a subset of evolutionary computation, a field that draws inspiration from
biological evolution to solve complex optimisation problems. These algorithms employ
mechanisms similar to biological evolution, such as selection, mutation, and crossover, to
iteratively evolve solutions to optimisation challenges (Eiben & Smith, 2015).

A primary characteristic of EAs is their versatility in addressing a wide range of problems.
Their adaptability is particularly evident in optimisation tasks, where they have shown
notable success. Unlike traditional optimisation methods that may struggle with complex
landscapes, EAs are adept at navigating multi-modal and non-linear spaces, making them
suitable for various real-world applications (Eiben & Smith, 2015).

One prominent application of EAs is in engineering design optimisation, where they have
been used to optimize the shapes and materials of components for maximum efficiency and
minimum cost (Coello, 2006). Another significant use case is in financial modeling, where
EAs assist in portfolio optimisation and risk management (Brabazon & O’Neill, 2006).
Moreover, in the field of bioinformatics, EAs have contributed to the understanding
of genetic sequences and protein folding, addressing problems that are computationally
intensive and intricate (Pal et al., 2006).

The adaptability and robustness of EAs in tackling diverse and complex problems
underscore their growing importance in computational research and real-world
applications.

2.2.2 Multi-Objective Optimisation

MOO is a critical process in many designs, where multiple conflicting objectives must be
considered simultaneously. It is a concept from the field of mathematical optimisation
problems, where more than one objective function is optimized concurrently. This area
of multiple-criteria decision-making is widely applied in engineering, economics, and
logistics, addressing the inherent trade-offs between conflicting objectives (Gunantara,
2018).

In MOO, solutions that are Pareto optimal (non-dominated) represent a balance where
improving one objective would worsen another. This concept is visualized as a curve
or line on a graph as shown in Figure 2.2, with each point illustrating an optimal
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balance among competing objectives. The Pareto frontier is essential in decision-making,
marking the most efficient solutions and guiding the identification of the best compromises
in situations involving inevitable trade-offs. As the number of objectives increases,
the complexity of identifying these optimal solutions also grows. This methodology is
particularly significant in product design, allowing for a structured assessment of trade-
offs and facilitating the creation of products that effectively satisfy multiple criteria
(Gunantara, 2018).

Figure 2.2: Illustration of the Pareto Frontier in Multi-Objective Optimisation. Each
dot on the line represents a potential solution evaluated based on multiple objectives.
The black line denotes the Pareto Frontier, where the solutions are Pareto optimal; any
improvement in one objective would result in the deterioration of the other. The solutions
along this frontier offer the most efficient trade-offs between the competing objectives and
are considered non-dominated in the context of the given optimisation problem.

Molecule selection inherently aligns with multi-objective paradigms. Traditionally,
this domain has often been tackled through a sequential, one-objective-at-a-time
approach. However, the advent of multi-objective methodologies, frequently employing
a weighted-sum approach (Nicolaou et al., 2007), has emerged as a means to harmonize
diverse objectives. Notably, the introduction of Pareto-based methods, exemplified
by MoSELECT (Gillet et al., 2002), has sought to address a spectrum of objectives
concurrently.
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2.2.3 Covariance Matrix Adaptation Evolution Strategy

Figure 2.3: Illustration of CMA-ES algorithm (Tan et al., 2019).

The CMA-ES is a widely recognized algorithm in the realm of evolutionary computation.
Its development can be traced back to the late 1990s, with its origins rooted in the
adaptation of covariance matrices in evolutionary strategies. The seminal work by
Hansen and Ostermeier (2001) laid the foundation for CMA-ES, where they introduced
an innovative approach for self-adaptation of the strategy parameters (as shown in
Figure 2.3) in evolutionary algorithms. This approach marked a significant shift in the
evolutionary computation field, as it allowed for more efficient exploration of complex,
multi-modal landscapes.

The applications of CMA-ES have spanned various fields, demonstrating its versatility
and robustness. In the field of engineering, CMA-ES has been instrumental in optimizing
complex design problems, such as aerodynamic shape optimisation (Zhang et al., 2020).
In the realm of machine learning, it has been utilized for neural network training, offering
an alternative to gradient-based methods, particularly in scenarios where the gradients
are difficult to compute (Loshchilov & Hutter, 2016). For the engineering field, specifically
for fault diagnosis of wireless sensor networks, CMA-ES has been used to optimize
fault diagnosis (He et al., 2018). Additionally, in cloud computing, scheduling of the
users’ jobs is explored in the research by Emadi et al. (2017) using CMA-ES. These
varied applications underscore the algorithm’s ability to efficiently navigate complex
optimisation landscapes, making it a valuable tool in numerous scientific and engineering
endeavors.
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The success of CMA-ES in these diverse applications can be attributed to its ability to
adaptively tune the search distribution, effectively balancing exploration and exploitation.
This adaptability makes it particularly suitable for problems with complex, ill-
conditioned, and noisy fitness landscapes. The continual development and refinement
of CMA-ES, including its variants, have further expanded its applicability, making it a
go-to algorithm in the toolbox of evolutionary computation.

2.2.4 Multi-Objective Covariance Matrix Adaptation Evolution

Strategy

The MO-CMA-ES is an extension of the classic CMA-ES, designed to tackle problems
involving multiple conflicting objectives. MO-CMA-ES emerges as a sophisticated
optimisation approach tailored to address the intricacies of MOO problems. Rooted
in the theoretical framework of EAs, MO-CMA-ES integrates the concept of Pareto
optimality to navigate through the trade-offs between objectives. This strategy maintains
a population of solutions, adapting the covariance matrix to reflect the underlying
structure of the Pareto front. The approach allows for a well-distributed set of non-
dominated solutions, providing a comprehensive overview of the trade-offs involved (Igel
et al., 2007).

In practice, MO-CMA-ES has been applied to case studies across a diverse array of
disciplines. For instance, in the field of aerodynamics, it has been utilized for the
optimisation of wing shapes to simultaneously minimize drag and maximize lift (Fasel
et al., 2017). In finance, MO-CMA-ES has been employed to derive investment portfolios
that optimize for both risk and return, offering valuable insights for investors (Lwin et
al., 2014). Moreover, in renewable energy, the algorithm has facilitated the design of
wind farms, optimizing the placement of turbines to maximize energy production while
minimizing environmental impact (Shekar & Shivakumar, 2019).

These applications exemplify the versatility and efficiency of MO-CMA-ES in solving
complex optimisation problems where multiple objectives must be considered. The
strategy has proven to be particularly beneficial in real-world scenarios where the
trade-offs between objectives are not just theoretical considerations but have practical
consequences that must be carefully weighed.
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2.2.5 Non-dominated Sorting Genetic Algorithm II

The NSGA-II is a seminal algorithm in the field of evolutionary computation, specifically
designed for solving MOO problems. Introduced by (Deb et al., 2002), NSGA-II
improved upon its predecessor by introducing a fast non-dominated sorting approach and
a crowding distance operator, which together enhance the diversity-preserving mechanism
and the computational efficiency of the algorithm. The fundamental principle of NSGA-II
is to rank the population of solutions based on the levels of non-dominance, with the goal
of progressively moving towards the Pareto-optimal front (Deb et al., 2002).

The NSGA-II stands out as a seminal algorithm in the field of MOO, making it a natural
choice as a benchmark for various studies. Its superiority in handling MOO challenges
has been well-established in various domains (Rahimi et al., 2023).

NSGA-II has been applied across a broad range of disciplines due to its versatility
and efficacy. In environmental engineering, it has been utilized for water and waste
management optimisation problems (Reed et al., 2013), while in mechanical engineering,
it has contributed to the multi-objective design of composite materials (Vo-Duy et al.,
2017). These use cases demonstrate NSGA-II capability to effectively balance competing
objectives and to find a diverse set of Pareto-optimal solutions.

Comparative studies of NSGA-II with other evolutionary algorithms, such as the
original Non-dominated Sorting Genetic Algorithm (NSGA) and the Strength Pareto
Evolutionary Algorithm (Zitzler & Thiele, 1998), have illustrated its superior performance
in terms of both convergence and diversity. NSGA-II’s ability to maintain a diverse set of
solutions without specifying any sharing parameters make it a preferred choice in many
MOO scenarios (Rahimi et al., 2023).

2.2.6 Comparative Analysis of MO-CMA-ES and NSGA-II

In the literature on evolutionary algorithms, a significant amount of research has been
dedicated to the comparative analysis of different algorithms’ efficiency and effectiveness
in optimisation. The MO-CMA-ES and the NSGA-II are two prominent algorithms that
have been frequently contrasted.
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MO-CMA-ES is praised for its global search capability and the internal mechanism
that adapts the step size, which is highly beneficial in handling complex, multimodal
optimisation problems (Hansen & Ostermeier, 2001). It is particularly effective in
continuous optimisation spaces and has been shown to converge to global optima with
remarkable consistency. However, its computational complexity can be a limitation,
especially for problems with a high number of objectives or constraints (Igel et al., 2006).

On the other hand, NSGA-II is renowned for its ability to maintain a diverse set
of solutions. It employs a fast non-dominated sorting approach, which makes it
particularly effective for problems where the Pareto front needs to be well-defined and
represented. NSGA-II has been successful in diverse domains, from engineering design
to bioinformatics (Deb et al., 2002). However, its performance can degrade in highly
multimodal and complex search spaces, and it may require careful parameter tuning to
achieve the best results (Coello, 2007).

Comparative studies suggest that while MO-CMA-ES can be more suitable for problems
with complex landscapes and fewer objectives, NSGA-II is generally more diverse and
easier to implement for a wide range of multi-objective problems, especially with a
larger number of objectives (Zhou et al., 2011). Both algorithms have their unique
advantages and limitations, and the choice between them is often dictated by the specific
characteristics and requirements of the problem at hand.

2.3 Molecule Property Prediction

This section presents an overview of Molecule Property Prediction models. Section 2.3.1
delineates the foundational aspects and historical advancements in molecule property
prediction. It highlights the pivotal role of predictive models in cheminformatics and
drug discovery, underscoring their contribution to reducing experimental costs and time.
Section 2.3.2 introduces the concept of representation learning for neural networks.
Section 2.3.3 introduces the State-of-the-Art property prediction model, Uni-Mol.
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2.3.1 Molecule Property Prediction Models

Molecule property prediction models are pivotal in the fields of cheminformatics and
drug discovery, offering the ability to forecast a wide range of chemical properties based
on molecular structure. These predictive models serve as essential tools, significantly
reducing the need for costly and time-consuming experimental procedures. They are
typically grounded in Quantitative Structure-Activity Relationships (QSAR) and/or
machine learning techniques, which correlate molecular descriptors with biological
activities or physicochemical properties (Feinberg et al., 2018; Walters & Barzilay, 2020).

Montavon et al. (2012) provided a novel approach to applying deep learning to predict
molecular properties, particularly atomization energy, showcasing the potency of neural
networks in computational chemistry. Gómez-Bombarelli et al. (2018) introduced a novel
method for molecule design using VAEs, enabling the generation and optimisation of
molecular structures in a continuous latent space, a breakthrough for drug discovery
and product design. Complementing these developments, Wu et al. (2018) established
MoleculeNet, a comprehensive benchmark dataset for molecular ML, facilitating the
assessment of diverse ML methods, including graph convolutional networks, in predicting
molecular properties. These studies collectively mark a significant evolution in molecule
property prediction, highlighting the roles of deep learning, data-driven design, and robust
benchmarking in the field.

Despite their successes, molecule property prediction models also face challenges, such as
the need for large and diverse datasets to train on, and the difficulty in interpreting
the models’ predictions, which is critical for scientific validation and understanding
(Polishchuk, 2017).

2.3.2 Representation Learning Models

In recent times, the prevalence of representation learning (pretraining methodologies)
(Bengio et al., 2013; Hamilton et al., 2017; Zhang et al., 2018) has been manifest
across a lot of applications spanning Natural Language Processing (NLP) with models
like Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2018) and Generative Pre-Trained Transformer (GPT) (Brown et al., 2020; Radford
et al., 2018, 2019), and Computer Vision (CV) with the likes of Vision Transformer
(ViT) (Dosovitskiy et al., 2020). A shared characteristic of these applications is the
abundance of unlabeled data compared to limited labeled data. This discrepancy is
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mirrored in the context of classified molecules within the PubChem dataset (Kim et
al., 2019b), where a mere 3% are categorized as toxic to fish. A proposed solution draws
inspiration from representation learning paradigms, commencing with a pretraining phase
to extract meaningful representations from unlabeled data, followed by a fine-tuning step
that capitalizes on the scarcity of labeled data.

Recent advancements in Molecular Representation Learning (MRL) models have
substantially elevated their performance in various property prediction tasks (Fang
et al., 2022; Rong et al., 2020; Wang et al., 2022; Yang et al., 2019; Zang et al.,
2017). Nevertheless, a critical hurdle remains—enhancing performance and expanding
the applicability of existing MRL models. Natural molecules inherently possess intricate
3D structures, and their properties are heavily influenced by these spatial arrangements
(Crum-Brown & Fraser, 1865; Hansch & Fujita, 1964). However, numerous contemporary
MRL approaches initiate by representing molecules as one-dimensional sequential strings
(e.g., SMILES (Wang et al., 2019; Weininger, 1988b; Xu et al., 2017) and International
Chemical Identifier (InChI) (Handsel et al., 2021; Heller et al., 2015; Winter et al., 2019a))
or 2D graphs (Hu et al., 2019; Li et al., 2021; Rong et al., 2020; Wang et al., 2022; Ying
et al., 2021). Such representations potentially constrain the models’ capacity to fully
leverage 3D information for downstream tasks.

2.3.3 Uni-Mol, State-of-the-Art Molecule Property Prediction

Model

Uni-Mol a pioneering Universal 3D Molecular Representation Learning Framework (Zhou
et al., 2022), has surged to the forefront as a state-of-the-art molecule property prediction
model. Distinguished by its pretraining on 3D structures of 210 million molecules,
Uni-Mol delves deeper into understanding molecule structures. These 3D structures
are crafted using the Rdkit (Landrum et al., 2013) from SMILES, employing the
Experimental-Torsion basic Knowledge Distance Geometry with Merck Molecular Force
Field optimisation (ETKDG) (Riniker & Landrum, 2015). This pretraining equips the
model to predict previously intractable properties of molecules.

Uni-Mol leverages transformers, adopting a Pre-LayerNorm architecture to accommodate
3D spatial data. It integrates invariant spatial positional encoding, pair representation,
and an SE(3)-Equivariance coordinate head. To facilitate the preservation of positional
encoding under global rotation and translation, Uni-Mol employs relative positional
encoding. This involves using Euclidean distances between atom pairs and a pair type-
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aware Gaussian kernel. Moreover, transformers are adeptly designed to encompass both
token-level and pair-level representations. Token-level representations serve as a baseline
for downstream fine-tuning, while pair-level encoding encapsulates spatial positions,
enabling a more nuanced grasp of 3D spatial relationships.

Figure 2.4: Uni-Mol graph transformer. Left: Pre-training architecture. Middle: Inputs,
including masked objects and spatial positional encoding created by pairwise Euclidean
distances are used for training. Right: Pairwise and individual object representations
comprise foundations for model.

Self-supervised learning emerges as a potent strategy for molecule property prediction,
capitalizing on extensive datasets of unlabeled molecules. Uni-Mol employs a masked
atom prediction task for self-supervised learning, with a special atom [CLS] representing
the entire molecule. However, as the 3D spatial positional encoding encodes pair distances
and corresponding atom types, the existing masked atom prediction task falls short of
encouraging meaningful learning. To mitigate this, Uni-Mol introduces a 3D position
denoising task, injecting uniform noise into coordinates and recalculating positional
encoding based on the perturbed coordinates. Additionally, two heads are employed
to recover accurate spatial positions—a pair-distance prediction head and a coordinate
prediction head. The overall pre-training process and architecture of Uni-Mol are
illustrated in Figure 2.4.

The intricate architecture and pretraining methodology of Uni-Mol demonstrate its
adeptness at integrating 3D molecular information for enhanced property prediction,
laying the foundation for improved molecule design and selection strategies. The
incorporation of spatial relationships, self-supervised learning, and transformative
architecture positions Uni-Mol at the forefront of molecular representation learning,
fostering a deeper understanding of intricate molecular properties and interactions.
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2.4 Synthesis of Literature and Identification of

Research Gap

VAEs and GANs occupy a leading position in the field of generative molecular
optimisation. However, the ’black-box’ nature of these networks, coupled with their
ability to produce a vast number of molecular structures and huge chemical datasets like
PubChem (Kim et al., 2019b), necessitates an efficient search algorithm. The research
gap lies in developing a method that would filter through the provided datasets to select
the most favorable candidates, as depicted in Figure 2.5.

Figure 2.5: This diagram depicts the initial dataset being subjected to an automated
filtering mechanism, which effectively reduces the number of candidate molecules. This
filtration is to address the research gap where existing methodologies may yield an
overwhelming number of potential compounds, thus complicating the selection process
for practical applications.

When presented with a molecular graph and a set of attributes, it is intuitive to frame
the design challenge as a MOO problem. The objective is to identify a group of molecules
that collectively optimize these attributes. The MOO approach is particularly relevant
for designing detergents, where efficacy and environmental safety are often at odds. Ideal
detergents have high XlogP to break down oils and stains, but this can lead to increased
aquatic toxicity. MOO helps in finding a balance, optimizing for effective cleaning while
minimizing environmental impact. While single-objective EAs (Guimaraes et al., 2017;
Kusner et al., 2017; Winter et al., 2019c; Yang et al., 2019; Zang et al., 2017) and MOEAs
(Namasivayam & Bajorath, 2012; Winter et al., 2019c) have been proposed, however yet
again these methods lean towards generative strategies.
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The dynamic landscape of molecular optimisation (continuously changing scenarios and
parameters) necessitates methodologies that can efficiently explore and exploit a multi-
dimensional solution space. MOEAs, such as MO-CMA-ES and NSGA-II, offer a
significant advantage over current ML methods used in molecular property optimisation.
MOEAs excel in handling complex optimisation problems characterized by multiple, often
conflicting, objectives (Deb et al., 2002; Hansen et al., 2003). Unlike ML methods that
may require predefined data patterns or rely heavily on training data, MOEAs are adept
at discovering a diverse set of solutions through evolutionary processes that mimic natural
selection and genetics. This attribute makes MOEAs particularly suited for optimizing
molecular properties, where the solution space is not only vast but also poorly understood.

Employing MOEAs for molecular property design allows for the generation of a Pareto
front of optimal solutions, optimized according to a variety of criteria such as cost, efficacy,
and toxicity (Coello, 2007; Zitzler et al., 2001). This capability is invaluable, as it provides
a spectrum of trade-off solutions, each with its own set of advantages and limitations.
For pharmaceutical companies, this means access to a diversified portfolio of molecular
compounds, each optimized for a different set of properties. The ability to simultaneously
optimize for multiple criteria is indispensable in the pharmaceutical industry, where the
development of a new drug requires a delicate balance between efficacy, safety, cost, and
regulatory compliance.

This thesis endeavors to explore MOEAs as an initial step towards harnessing their
full potential in the field of molecular optimisation. By presenting methodologies that
demonstrate the utility of MOEAs in navigating and optimizing complex molecular
landscapes, this research aims to lay the groundwork for future explorations in this
domain.

In the domain of MOO, MO-CMA-ES and NSGA-II stand out most making them ideal
methodology, given the vast, complex, and multi-modal molecular space. They offer a
robust promise for identifying optimal solutions that meet diverse criteria, a capability
that has been substantiated in numerous applications, as detailed in section 2.2.5 and
section 2.2.4.
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Although our focus deviates from the broad search scope MO-CMA-ES typically excels
in, due to the application of the algorithm with the Similar Property Principle, its ability
to traverse through complex landscapes remains a compelling rationale for its adoption.
While we intend to modify this algorithm to align with our distinct approach, capitalizing
on its computational efficiency presents a promising avenue. By tailoring the algorithm
to our needs and assessing various modifications, we aim to uncover the adaptations that
yield optimal outcomes.

As for NSGA-II, it’s robustness in handling multiple objectives and diverse frontiers
becomes particularly relevant, as mentioned before in section 2.1.1, product design
often involves conflicting objectives. NSGA-II’s ability to handle multiple objectives,
identifying a range of optimal solutions along the Pareto frontier, makes it a suitable for
this work.

As we transition from the synthesis of existing literature to the exposition of our
methodological contributions, it becomes apparent that the exploration and application
of MOEAs, particularly MO-CMA-ES and NSGA-II, are not merely academic exercises.
Instead, they represent a concerted effort to address the challenges of molecular property
optimisation. The forthcoming methods section will delineate the specific adaptations
and innovations introduced in this study, positioning MOEAs as central to advancing
the frontier of molecular design. This approach not only fills the identified research gap
but also sets a precedent for the application of EAs in solving complex, MOO problems
inherent in molecular science.
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Methodology

This section presents the methodology adopted in this study, comprising two main areas:
the development and application of the Uni-Mol model for molecule property prediction
and the implementation of multi-objective optimisation algorithms for molecular design.

Section 3.1, utilizing the fish toxicity dataset from PubChem, details the training of
the Uni-Mol model, emphasizing data preprocessing, handling of imbalanced datasets,
and fine-tuning strategies. The methodology underscores the exclusion of disconnected
structures and duplicates, application of oversampling techniques, and the employment of
optimal hyperparameters (found with trial experiments) to ensure the model’s robustness
and accuracy in predicting molecule properties.

Section 3.2 elaborates on the customization of MOEAs to meet the specific requirements
of molecular design. It describes the integration of the Uni-Mol model within MOEAs to
guide the evolutionary search process, highlighting two novel heuristic approaches: direct
correlation and extended search. The methodology focuses on exploring and optimizing
the molecular search space, detailing the configuration of algorithms, generation of diverse
candidate solutions, and the strategic balance between exploration and exploitation.

Section 3.3 and 3.4 provide comprehensive insights into the implementation of
MOEAs, specifically detailing the MO-CMA-ES and the NSGA-II. Each algorithm’s
implementation is discussed, including the selection of offsprings, building of solution
frontiers, varying meta-heuristics and iterative optimisation processes aimed at
identifying near-optimal compounds. The algorithms’ parameters, constraints, and the
iterative refinement process of candidate compounds are meticulously outlined, offering
a clear view of the operational framework.
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3.1 Molecule Property Prediction Model, Uni-Mol

This study employs the fish toxicity dataset acquired from the PubChem database, to
train the Uni-Mol model. The dataset, primarily in SMILES format, comprises 300,000
non-toxic and 30,000 toxic molecules relative to fish. The toxic subset includes a mix of
acute (short-term) and chronic (long-term) toxicity molecules, amalgamated due to the
limited availability of toxic fish molecule data.

A thorough analysis of the dataset revealed the presence of a period symbol (“.”), a
conventional disconnect symbol in SMILES notation. This symbol indicates disconnected
structures within a molecule, representing components that are not chemically bonded.
Given the design limitations of Uni-Mol, which can process only singular molecular
entities and not mixtures, molecules containing this disconnect symbol were excluded
from the dataset.

Post exclusion of mixtures and duplicate entries, the refined dataset consisted of
approximately 250,000 non-toxic and 3,000 toxic molecules. Training Uni-Mol on this
imbalanced dataset posed a significant risk of bias towards non-toxicity predictions. To
mitigate this, oversampling techniques were applied, as suggested by Mohammed et al.
(2020). Furthermore, the optimal hyperparameters for Uni-Mol, as recommended in its
originating publication, were employed in the model training process.

The same data pre-processing pipeline was employed during fine-tuning to maintain
consistency with the pre-training process. For molecules, multiple random conformations
can be generated quickly, making it possible to use them as data augmentation during
fine-tuning to enhance performance and robustness. In cases where 3D conformations
could not be generated, the molecular graph was used as a 2D conformation. Like natural
language processing and image analysis, the representation of [CLS], which represents
the entire molecule or the mean representation of all atoms, was used with a linear head
to fine-tune downstream tasks.
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3.2 Multi-Objective Optimisation (Search) Algorithm

The implementation and customization of MOEAs cater specifically to the intricate
demands of molecular design. The objectives and constraints aligned with desired
molecular properties are defined. The algorithm’s configuration should focus on
generating a diverse set of promising candidate solutions while respecting predefined
constraints. Leveraging Pareto-based techniques facilitates efficient navigation of the
multi-objective landscape, enabling the identification of a spectrum of optimal solutions.

The integration of Uni-Mol into the MOEAs, as depicted in Figure 3.1, constitutes a
pivotal step. This model’s predictive capabilities guide the evolutionary search process,
aiding in the identification of molecules with higher potential to meet desired property
criteria. Strategic measures are devised to strike a balance between exploring new
regions within the chemical space and exploiting regions containing promising solutions.
Additionally, hybridization strategies synergize the strengths of both algorithms, leading
to heightened efficiency and accuracy.

In this study, we propose the integration of two novel heuristic methodologies within
the framework of MOEAs for the enhancement of molecular search space exploration,
commencing from predetermined seed molecules; direct correlation approach and
extended search approach.

1. Direct correlation explores correlations between perturbations on molecular
structures and variations in properties of interest, selecting the seed molecules as
starting point. Then search space is explored outwards to find optimal compounds.
This meta-heuristic is demonstrated in Figure 3.1.

2. Extended search, in turn, initially selects a set of molecules featuring a specified
similarity level with respect to the seed molecules, and then uses the selected
molecules as starting molecules for direct correlation instead of the original seed
molecules. This meta-heuristic is demonstrated in Figure 3.2.
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Figure 3.1: Overview of proposed method with meta-heuristic direct correlation: given
an initial chemical design space, a search space is selected based on MACCS Tanimoto
similarity T̂0; from this set, initial offsprings are identified based on Tanimoto similarity
T̂ to the seed compound; high-risk compounds are removed using Geometric Deep
Learning (GDL) and optimised compounds are identified using Evolutionary Multi-
objective Optimisation (EMOO), thus building a solution set; the obtained solution set is
used as a new set of initial compounds to iterate the process and build new generations
of optimised compounds, until stability is reached; the final result is the set of suggested
compounds for consideration for product design.

There are four hyper-parameters that control the behavior of the traversal of the set of
candidate compounds for each MOEAs:

1. Initial similarity threshold T̂0: T̂0 is a similarity threshold for creating search space
from the dataset. Larger T̂0 ensure that solutions will be similar to the reference
compound; M0 by hard constriction, which can be good when priority is given to
preserving the structural properties, at the cost of reducing possibilities for finding
more novel compounds.

2. Generic similarity threshold T̂ : T̂ is responsible for finding offspring from parent
where each offspring is bigger than the similarity threshold T̂ . Larger T̂ slow down
convergence, possibly inducing the method to go through additional cycles to reach
stabilization.

3. Generation size β: For each generation β parents are selected from previous
solution space. Larger β increase explorations, subsequently possibly increasing
computational time.

4. Generation size λ: For each generation λ offsprings are selected from each
parent. Larger λ decrease the randomness in the generation step with the cost
of computational time.
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Figure 3.2: Overview of proposed method with meta-heuristic extended exploration: given
an initial chemical design space, a search space is selected based on MACCS Tanimoto
similarity T̂0; then starting compounds are identified using some Tanimoto similarity
value to the seed compounds; from this set, initial offsprings are identified based on
Tanimoto similarity T̂ to the starting compounds; high-risk compounds are removed
using Geometric Deep Learning (GDL) and optimised compounds are identified using
Evolutionary Multi-objective Optimisation (EMOO), thus building a solution set; the
obtained solution set is used as a new set of initial compounds to iterate the process and
build new generations of optimised compounds, until stability is reached; the final result
is the set of suggested compounds for consideration for product design.

We also have implemented constraints on properties. There are 2 types of constraints;
Generation property constraints (Aconstr) and Final property constraints (Aconstr_final).
Generation property constraints control direction of each step as we do not want some
property values to exceed some values. It is expected this will occur as there is trade
off between properties. Final property constraint is more extreme to get a solution set
with the values in range of what we want. The Final property constraint only applied at
the end of run, otherwise it will negatively impact exploration of the algorithms causing
pre-mature convergence.

Figures 3.1 and 3.2 presents an overview of this automated optimisation (filtration)
algorithm’s process. After constraining dataset with T̂0, EAs, from starting compounds,
explores the space. In each step, selecting offsprings depending on the size β, λ and T̂ ,
then evaluating offspring with Uni-Mol, generation constraints and other properties by
algorithmic calculations.
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Broadly, we characterize our problem as an Information-geometric Evolutionary Multi-
objective Optimisation task:

• Given a set A of relevant properties which can be ascribed to specified compounds
(and which are assumed to have domains ranging through real-valued intervals); a
subset Aopt ⊆ A of those properties which must be optimised, i.e. either minimised
or maximised; a subset Aconstr ⊆ A of those properties which define constraints,
i.e. such that for each property Ac ∈ Aconstr we have defined two values vmin

c , vmax
c ,

where vmin
c ≤ vmax

c ; and a set of compounds to be considered as candidate solutions
for the problem;

• Find a set of compounds which are good enough approximations of the compounds
that optimise the properties in Aopt while ensuring that properties Ac ∈ Aconstr

belong to the interval [vmin
c , vmax

c ].

The objectives the implemented methods will try to optimize are molecule weight and
complexity, XlogP, and reference-likeness, where reference-likeness is MACCS Tanimoto
similarity between the seed compound and offspring. The other objective will be
fish toxicity of the molecules which will be evaluated just after offspring selection for
computational efficiency.
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3.3 Implementation of MO-CMA-ES

Algorithm 1 MO-CMA-ES
1: function Select_Offpsprings

2: Randomly select β molecules from Si−1.
3: Select λ molecules using T̂ similarity to the each selected
4: β molecules from search space.
5: Filter out molecules using Aconstr and Uni-Mol.
6: end function

1: function Build_Frontier

2: Remove duplicates from M c
k [1]

3: frontier ←M c
k [1] ▷ Initialize frontier

4: for i← 2 to length(M c
k) do

5: Compute boolean array s based on Aopt:
6: if Aopt is ’max’ then
7: s←M c

k [i] ≥ frontier

8: else if Aopt is ’min’ then
9: s←M c

k [i] ≤ frontier

10: end if
11: domij ← all(s) ▷ Check if i dominates
12: domedij ← any(s) ▷ Check if i is dominated
13: if domij not empty then
14: Remove dominated from frontier

15: Add M c
k [i] to frontier

16: else if domedij not empty then
17: if M c

k [i] ≡ frontier then
18: Recompute s with inverted Aopt

19: domedij ← all(s)
20: if domedij empty then
21: Add sim_props[i] to frontier

22: end if
23: end if
24: end if
25: end for
26: end function

1: function Main

2: Iteratively build frontiers, adjusting β and λ accordingly.
3: end function
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For the implementation of MO-CMA-ES the strategy to navigate towards near-optimal
compounds given specified properties Aopt and Aconstr will follow the conceptual
framework of MO-CMA-ES, adapted to a non-parametric setting, without mutations
meaning with selection from defined search space and modified dynamic approach.

Reference points in the search space are determined using either direct correlation or
extended search given M0 and T0, thus defining the set M c

0 . By definition, M0 ⊆M c
0 ; the

set M̃ c
0 ⊆ M c

0 is then selected based on Aconstr and removal of toxic molecules identified
using Uni-Mol. From these, Pareto optimal solutions are built with the properties
calculated, considering Aopt, thus assembling the initial Pareto optimal solution set S0.

Given a generation size determined by β and λ, a randomly selected β parent molecules
{m01, ..., m0β} ⊆ S0, random λ offsprings are selected using T similarity with the
respective parent. Offspring are then combined to form M1 which are candidates for
the new solution space S1. This procedure is repeated to build S2, S3, . . . , until a run-
time limit is reached or some stability criteria is reached in SN for some finite N – for
example, no change observed in all the frontiers combined after removal of dominated
molecules. To help avoid local optima, we also include, following the strategy of MO-
CMA-ES, a growth factor G > 1 for β and λ: if |Mk+1|

|Mk|
< 1, then both is updated to

×G, and if |Mk+1|
|Mk|

> 1, then they are updated to × 1
G
. The final solution set, combining

S1, . . . ,SN with dominated molecules removed, comprises the molecules suggested as
potential solutions.
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3.4 Implementation of NSGA-II

Algorithm 2 NSGA-II
1: function Select_Offpsprings

2: Randomly select β pair of molecules from Si−1.
3: Select λ molecules from each intersection set created by
4: T similarity to the selected β pairs of molecules.
5: Filter out molecules using Aconstr and Uni-Mol.
6: end function

1: function NonDominatedSorting

2: for each molecule i in population do
3: Initialize ni and Si

4: for each molecule j in population do
5: if i dominates j then
6: Add j to Si

7: else if j dominates i then
8: Increment ni

9: end if
10: end for
11: if ni = 0 then
12: Assign rank 1 to i

13: end if
14: end for
15: Extract first front from population
16: while population is not empty do
17: Create next front based on domination counts
18: end while
19: Calculate crowding distances for each front
20: end function

1: function Main

2: Iteratively build frontiers, adjusting β and λ accordingly.
3: end function

Following the methodology outlined for MO-CMA-ES in Section 3.3, the implementation
of NSGA-II in our framework also aims at identifying near-optimal compounds. However,
it diverges by incorporating NSGA-II’s robust non-dominated sorting mechanism, coupled
with a unique offspring selection process based on the union of parent spaces. This
approach aligns with the non-parametric nature of our problem, where the selection is
entirely based on the properties of whole molecules.
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Initially, we start with a set of candidate compounds similar to MO-CMA-ES. For NSGA-
II, the primary focus lies in establishing an efficient non-dominated sorting process, which
categorizes compounds based on Pareto dominance considering the properties in Aopt.
This results in a set of Pareto fronts, with the first front representing the current best set
of non-dominated solutions.

For each compound in the population, two entities are initialized:

• Domination Count ni: The number of compounds that dominate the given
compound.

• Dominated Set Si: A set of compounds that the given compound dominates.

In contrast to MO-CMA-ES, NSGA-II emphasizes the selection of offspring from a union
of parent spaces. β parent pairs are selected randomly from the best non-dominated front.
This is followed by a selection of λ number of offspring through a crossover mechanism
that explores the union space of the each β parent pairs.

The iterative process of NSGA-II involves updating the population with new offspring,
followed by another round of non-dominated sorting. Similar to MO-CMA-ES, we
iterate this process until a run-time limit or stability in the solution set is reached.
The adaptability in the number of parents and offspring generated (β and λ) is also
maintained, as described in the MO-CMA-ES section, to ensure diversity and escape
from local optima:

The final output of the NSGA-II implementation is a refined set of compounds,
representing the most promising solutions according to the defined optimisation and
constraint criteria. This process ensures a comprehensive exploration of the solution
space, leveraging the strengths of NSGA-II’s non-dominated sorting and unique offspring
generation methodology.
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3.5 Summary

The research methodology refined the application of MOEAs, specifically MO-CMA-ES
and NSGA-II, for the sophisticated task of molecular design. It elaborated on the strategic
configuration and algorithmic enhancements of these MOEAs to seamlessly integrate
with the predictive insights of the Uni-Mol model. This tailored approach facilitates a
targeted exploration within the molecular space, driven by the objective of identifying
compounds that simultaneously maximize beneficial properties and minimize adverse
ones. By generating a diverse set of potential solutions through an iterative optimisation
process, this methodology underscores a balanced exploration and exploitation strategy.
Leveraging accurate molecular property predictions to guide the search, it avoids
the pitfalls where mere exploration can lead to decreased computational efficiency
(since molecule datasets are extensive), and mere exploitation may result in premature
convergence. This balanced approach ensures that the search is both thorough in
discovering new possibilities and efficient in converging to optimal solutions.

Furthermore, the methodology introduced novel meta-heuristic strategies —direct
correlation and extended search — to innovatively navigate the molecular landscape
starting from known seed molecules. These meta-heuristics are designed to expand the
search dynamically, either by delving deeper into the vicinity of seed molecules or by
broadening the exploration to new regions, thereby enhancing the effectiveness of the
MOEAs in discovering optimal molecular configurations. Through these methodological
advancements, the research establishes a comprehensive and efficient framework for
molecular design, illustrating the potential of customized MOEAs combined with
predictive modeling for advanced molecule space exploration.
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Experiments

The Experiments section delineates a comprehensive approach to validate the efficacy
and applicability of Uni-Mol and EAs in filtering and optimizing molecules with specific
properties, primarily focusing on environmental safety and optimum property values in
molecules.

Section 4.1 sets up experimenting ground for the application of EAs, specifically MO-
CMA-ES and NSGA-II, in optimizing detergent molecules against a set of predefined
objectives.

Section 4.2 explains the fine-tuning of Uni-Mol using a vast dataset of organic
compounds to predict molecular toxicity.

The experiments are conducted on a high-performance system equipped with an AMD
Ryzen 9 5950X 16 core CPU running at 4.9GHz with 32GB RAM and Nvidia 3080 Ti
12GB GPU.
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4.1 Evolutionary Algorithms

In the experiments chapter, this section aims to address the primary research question
by systematically responding to the secondary research questions 2.1 and 2.2 through
designing an experimentation setup, as outlined in Table 4.1, that covers both secondary
research questions.

Table 4.1: Overview of Experiment Setup

Parameters Setup
MOEAs MO-CMA-ES or NSGA-II
Meta-heuristics Direct Correlation or Extended Search
Seed Molecule CCCCCCC(C)CCCCCCCCCOS(=O)(=O)O
Objectives Molecule weight, Molecule Complexity, XlogP,

Reference Likeness, Fish Toxicity
Aopt Molecule weight (<), Molecule Complexity (<),

XlogP (>), Reference Likeness (90%),
Fish Toxicity (remove)

Aconstr Molecule weight (< 500), Molecule Complexity (< 500),
XlogP (> 4), Reference Likeness (>70%),
Fish Toxicity (remove)

Aconstr_final Molecule weight (250<.<350), Molecule Complexity (250<.<350),
XlogP (5<.<10), Reference Likeness (>70%),
Fish Toxicity (remove)

T̂0 70%
T̂ 90%
Beta 10
Lambda 50

We will run MO-CMA-ES and NSGA-II with both meta heuristic approaches; direct
correlation and extended search. The direct correlation approach will initiate with a seed
patented detergent molecule, specifically CCCCCCC(C)CCCCCCCCCOS(=O)(=O)O
(as illustrated in Figure 4.1). Conversely, the extended search approach will commence
with an analysis of five selected compounds that exhibit an 80% similarity to the seed
compound, thereby expanding the initial search parameters.
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Figure 4.1: 2D structure of CCCCCCC(C)CCCCCCCCCOS(=O)(=O)O. This detergent
compound functions as a surfactant due to its hydrophobic hydrocarbon chain, which
attaches to oils and greases, and a hydrophilic sulfonate group that dissolves in water.
This dual nature allows the molecule to form micelles, encapsulating oil particles and
effectively removing them when washed away with water. Thus, it effectively breaks
down and cleanses oily substances in various cleaning applications.

The optimisation objectives (Aopt) for these experiments encompass several critical
attributes: molecular weight, molecular complexity, XlogP, reference likeness, and fish
toxicity. These attributes have been selected based on their relevance to the efficacy
and environmental impact of the detergent molecules. The optimisation attributes are as
follows:

• Reference likeness targeting an optimal similarity of 90%,

• Minimization of molecular weight,

• Minimization of molecular complexity,

• Maximization of XlogP, and

• Complete elimination of molecules featuring fish toxicity.

Within the experimental framework, setting a reference likeness threshold of 90%
represents a strategic balance between maintaining similarity to proven compounds,
such as the seed compound, and the introduction of novel structural properties. This
methodology embodies a compelling approach to optimisation, where the objective is to
fine-tune towards a specific value of likeness. Such a parameterization has a direct impact
on the navigational behavior of the optimisation methods, as the search space itself is
defined by a measure of similarity akin to this property. This setup is expected to subtly
modulate the solution diversity produced by the optimisation methods, constraining
their exploratory capacity to some extent. However, this constraint is a deliberate
choice, serving as one of the essential factors in managing the trade-offs among various
optimisation objectives.
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Table 4.2: Solution Step Property Limits

Property Aconstr Final Step Aconstr

Reference Likeness ≤ 70% ≤ 70%
Molecule Weight ≤ 500 250 ≤ · ≤ 350
Molecule Complexity ≤ 500 250 ≤ · ≤ 350
XLogP ≥ 4 5 ≤ · ≤ 10
Fish Toxicity Remove Remove

Table 4.3: Properties of the seed compound

Property Value
Reference Likeness 1.00
Molecule Weight 336.54
Molecule Complexity 327.55
XLogP 5.53
Fish Toxicity 0

The minimization of molecular weight and complexity is aimed at reducing production
costs, while a higher XlogP value is indicative of improved oil absorption capabilities—a
desirable characteristic for detergents. Lastly, the exclusion of compounds with fish
toxicity is a crucial consideration for environmental safety. Through these optimized
parameters, our study seeks to explore and identify efficient multi-objective compound
selections for chemical product design using EAs.

When it comes to optimisation constraints (Aconstr) and (Aconstr_final) they are tuned
for our experiments as presented in Table 4.2. These values are chosen according to
our seed compound to be able to evaluate resulting solution space according to the seed
compound. Its properties are listed in Table 4.3.

Parameters for the experiments can be seen in the Table 4.4. Choice of β and λ values
are chosen according to some testings as these values were found to be optimal. For T̂0

70% is chosen as we want to have high similarity to the seed molecule and for T̂ 10%
is chosen as we do not really want to methods to get stuck in the gaps of search space.
The experiments were run for 50 generations for each method (for extended search meta-
heuristic 10 generations for each of the 5 starting compounds) over 20 runs to examine the
consistency. Convergence criteria is deliberately excluded to assess comparative method
capabilities in escaping local optima and to examine exploratory behaviour. Solution set
diversity is empirically assessed using the quantity of non-dominated molecules.
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Table 4.4: Parameters for the experiments

Parameter Value
β 10
λ 50

T̂0 70%

T̂ 90%

The experimental setup, as delineated in Table 4.4, specifies the parameters utilized across
the optimisation processes. Notably, the values for β (parents selected) and λ (offsprings
selected) are subject to dynamic adjustments during the runs, which is anticipated to
minimize their direct impact on the experimental outcomes. This adaptive strategy
ensures that the optimisation process remains responsive to the evolving search landscape,
thereby enhancing its efficiency and effectiveness and being able to deal with empty gaps
in the search space.

The selection of T̂0 at 70% underscores our intent to maintain a strong resemblance to the
seed molecule at the outset of the optimisation, facilitating a targeted exploration of the
molecular space that builds upon the seed’s advantageous properties. Conversely, a higher
threshold of 90% for T̂ is chosen to prevent the optimisation methods from becoming
overly constrained by the immediate vicinity of the search space, thus promoting a broader
exploration and avoiding potential stagnation in local optima.
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4.1.1 Evaluation of the Methods

In this section of our experiments chapter, we aim to address the primary research
question by systematically responding to the secondary research questions 2.1 and 2.2
by generating a series of graphs and plots depicting the solution sets and the processes
leading to their formulation. These visual representations will serve as the foundation
for our analysis, enabling a comprehensive evaluation of the solution sets derived from
the optimisation methods under investigation. By examining these graphs and plots, we
intend to extract insights that will directly contribute to answering the secondary research
questions. This analytical approach is designed to elucidate the comparative effectiveness
and characteristics of the solution spaces generated by the respective optimisation
strategies, thereby providing empirical evidence to support our conclusions regarding
the optimisation of molecules for product design.

One of the evaluation of the algorithms will be conducted through a line plot graph of
the unique molecules explored in each generation, providing a quantitative measure of
the algorithms’ search efficiency and breadth. This line graph will help us to answer
secondary research question 2.1.

Subsequently, the search trends of the algorithms will also be visualized using a MDS
plot. This plot will encompass the entire search space, the compounds examined during
the search, and the found solution space, thereby offering a graphical representation
of the algorithms’ behavior within the complex molecular landscape. From the MDS
plot, insights into the navigational strategies employed by the algorithms, including their
exploration and exploitation tendencies, can be inferred. This visualization facilitates an
intuitive understanding of how each algorithm traverses the search space, highlighting
patterns of convergence towards optimal solutions or diversification across the space.
These visualization plots will help us to answer secondary research question 2.1.

Further, the diversity and quantity of the solution spaces generated by each method will
be assessed through the creation of box-plots for the properties of the solution spaces.
These box-plots will provide a statistical summary of the distribution of key molecular
properties within the solution spaces, enabling a comparative analysis of the diversity
and quality of solutions identified by each algorithm. These box-plots will help us to
answer secondary research question 2.2.
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Runtime for each method will be logged across 50 generations, and to synthesize the
findings, all solution spaces generated by the algorithms will be combined, followed by
a non-dominated sorting process. This step is designed to identify the most successful
compounds—those that are not outperformed across all objectives by any other compound
in the combined dataset. The outcome of this non-dominated sorting will serve as a
crucial metric for determining which algorithm was most effective in discovering superior
molecules, thereby providing a comprehensive evaluation of the algorithms’ performance
in the context of multi-objective molecular selection for chemical product design. This
finding will help us to answer secondary research question 2.2.

4.2 Uni-Mol

In order to effectively pre-train Uni-Mol, a large-scale data set composed of organic
compounds will be used. The molecular pre-training data set used in our experiments
consisted of approximately 19 million compounds, which were sourced from multiple
public data sets. To obtain the 3D conformations, a combination of ETKGD and Merck
Molecular Force Field optimisation from RDKit tool will be used to generate ten unique
conformations for each compound. Additionally, a 2D conformation will be generated for
each compound to address rare cases where 3D conformations could not be generated.

The dataset underpinning our experiments encompasses 251k molecules, with a mere 2%
previously annotated for aquatic toxicity. To enhance training accuracy, our experimental
design consolidates acute and chronic toxicity categories. To rigorously assess Uni-Mol,
we segment the dataset into training, validation, and testing subsets, adhering to an 80-
10-10 split ratio, utilizing a scaffold-split strategy. This method, based on the molecular
scaffolds, presents more challenge than random splitting and is instrumental in evaluating
the model’s robustness.

Addressing the imbalance between toxic and non-toxic molecules within the dataset, we
implement random oversampling for toxic molecules in the training set. Among the 20
models trained with varied hyperparameters, we identify and report on the performance
of the model that exhibited superior efficacy on the test set. Training of these models
will aim to achive the highest macro-average accuracy between toxic and non-toxic
molecules, serves as the benchmark for our evaluation. This systematic approach ensures
a comprehensive and robust evaluation of Uni-Mol, positioning it to effectively predict
molecular toxicity.
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This segment of the experimental investigation contributes to addressing the primary
research question, though not representing the ultimate goal of this thesis. Its inclusion
introduces an additional layer of complexity to the objectives of our Evolutionary
Algorithms (EAs), serving as an enhancement rather than the core focus. Specifically,
the aim is to extend beyond the utilization of molecule properties that can be determined
through conventional chemical algorithms. Instead, we integrate molecule property
prediction models capable of forecasting more intricate properties. This approach
is designed to refine and enhance the process of identifying optimal molecules. By
leveraging predictive models, we aim to incorporate a broader spectrum of molecular
characteristics, thus facilitating a more comprehensive and informed search within the
molecular optimisation framework. This addition, while valuable, should be viewed as
an auxiliary feature that complements the primary objectives of employing advanced
computational methods for molecular optimisation in product design.

4.3 Summary

In this chapter, we presented a detailed experimental setup for evaluating the performance
of Uni-Mol and evolutionary algorithms in optimizing detergent molecules with specified
objectives and constraints. We employed a large-scale dataset for fine-tuning Uni-
Mol, focusing on molecular toxicity prediction, and used a scaffold-split strategy to
enhance model robustness. For evolutionary algorithms, we explored two meta-heuristic
approaches using MO-CMA-ES and NSGA-II, targeting optimisation of detergent
molecules’ molecular weight, complexity, XlogP, reference likeness, and eliminating fish
toxicity. The experiments were designed to assess the algorithms’ ability to generate
diverse, non-dominated molecule solutions efficiently, with a focus on environmental safety
and production cost-effectiveness. The methodologies and parameters were meticulously
chosen to ensure a comprehensive evaluation of the algorithms’ performance in navigating
the complex search space for finding optimal compounds.
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Chapter 5

Results

The Experiments Results chapter presents the findings obtained from the study’s
empirical investigations, structured into two primary sections, each focusing on a distinct
aspect of the research.

Section 5.1 is dedicated to evaluating the performance of the Uni-Mol model, specifically
its ability to predict the toxicity of compounds towards fish. Through a detailed Table 5.1,
this section showcases the model’s predictive accuracy across different epochs, illustrating
the significant role of training duration on its performance.

Section 5.2 shifts the focus to the application of EAs in the optimisation process,
exploring their efficiency through Direct Correlation and Extended Search heuristics. This
section aims to compare the exploration capabilities of different optimisation methods
under identical generational constraints. This comparative analysis underscores the
impact of algorithmic designs on the methods’ ability to explore solution spaces effectively,
contributing valuable insights into the strengths and limitations of each optimisation
approach.

5.1 Uni-Mol

Table 5.1 presents the performance metrics of the model that achieved the highest
Macro Average Accuracy in predicting compounds’ toxicity towards fish, as per the test
data. The table is structured to display accuracies across several epochs, underlining
the significant impact that the number of training epochs has on the model’s predictive
accuracy. This impact is particularly pronounced due to the imbalance inherent in the
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dataset.

Epoch Non-Toxic Toxic Average Macro Average
Num Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

1 55.2 86.3 55.6 70.8
2 73.2 72.0 73.2 72.6
3 84.2 58.5 83.9 71.4
4 91.3 38.4 90.6 64.9
5 90.3 42.1 89.7 66.2
6 94.6 28.7 93.7 61.6
7 96.0 25.9 95.1 61.0
8 93.8 32.3 93.0 63.1
9 96.1 22.9 95.1 59.5
10 96.2 23.2 95.2 59.7

Table 5.1: Uni-Mol prediction accuracies of the best model (model with highest Macro
Average Accuracy) across its training epochs. Epoch Num refers to the sequential
count of complete passes the model has made over the entire dataset during training.
Non-Toxic Accuracy quantifies the model’s precision in predicting compounds that
are known to be non-toxic to fish. Toxic Accuracy quantifies the model’s precision
in predicting compounds that are known to be toxic to fish. Average Accuracy:
represents the general prediction accuracy of the model across all labels. Macro Average
Accuracy: mirrors the average accuracy but emphasizes equal consideration of all labels,
providing a balanced measure of performance across categories. Bold highlights highest
Macro Average Accuracy for all criteria.

The accuracies reported include the model’s performance in identifying non-toxic
compounds, its accuracy in predicting toxic compounds, the overall accuracy across all
categories, and the Macro Average Accuracy. By delineating these accuracies across
successive epochs, the table illustrates how the model’s predictive capabilities evolve with
additional training, providing insights into the dynamics of learning in response to dataset
imbalances. This format allows for a nuanced understanding of the temporal development
of model accuracy, highlighting the critical role of epoch progression in enhancing the
model’s ability to discern between toxic and non-toxic compounds accurately.
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5.2 Evolutionary Algorithms

In this section, we present the outcomes obtained from our EAs, employing both the
Direct Correlation and Extended Search heuristics. These outcomes are presented with
line plot graph (Section 5.2.1), MDS plot graphs (Section 5.2.2), box-plot graphs (Section
5.2.3) and finally run-time and solution quality comparisons (Section 5.2.4 and 5.2.5).

Statistical tests, specifically the Friedman test (p<0.05), were conducted for each method
over its 20 runs to assess the presence of variation between runs. The Friedman test
revealed no significant differences across the runs, suggesting that each method’s own
runs consistently found very similar optimas. This consistency across runs justified
our decision to select a random run from each method for diagram plotting. The
choice of the Friedman test was further supported by preliminary analyses using the
Kolmogorov-Smirnov normality test with Lilliefors correction, which indicated non-
parametric distributions of the results (Ghasemi & Zahediasl, 2012; Sheldon et al., 1996).

Statistical analyses were performed to evaluate the differences in molecular properties
that are being optimized in experiments. The Kruskal-Wallis test (p<0.05) (McKight
& Najab, 2010) was employed for each property to assess the presence of significant
differences among the methods. Where significant differences were identified, post-hoc
Dunn’s tests (Dinno, 2015) with Bonferroni correction (Weisstein, 2004) were conducted
to determine pairwise differences between methods.
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5.2.1 Exploration Line Plot Graph

Figure 5.1: Discovered unique molecules per generation given selection by MO-CMA-ES,
NSGA-II, direct correlation pruning and extended search pruning chosen from random
run over 10 runs for each method.

The line plot diagram Figure 5.1 is designed to facilitate a comparative analysis of the
exploration capabilities inherent to different optimisation methods from randomly chosen
runs, as Friedman test (p<0.05) indicated there is no significant difference between runs in
each method. Given that each method is constrained to operate over an identical number
of generations (50 generations), the observed variations in exploration efficiency and
strategy can be attributed solely to the architectural nuances of the methods themselves,
rather than external factors such as the duration of the run or pre-mature convergence.
This controlled setup ensures that any differences in the exploration patterns across
methods are indicative of their inherent algorithmic designs and settings.

An initial search space, comprising approximately 700,000 molecules in SMILES format,
was sourced from the PubChem database, and then refined to 30,000 molecules
considering a neighbourhood around seed detergent molecule. This refinement process
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utilized the MACCS Tanimoto similarity measure, with a threshold (T̂0) set at 70%.

This Figure 5.1 highlights which method demonstrates a more explorative approach by
visualizing the extent to which each method probes various regions of the search space
over the course of the optimisation process. Methods that exhibit a greater degree of
exploration are expected to sample a broader and potentially more diverse set of solutions,
reflecting a proactive search behavior that avoids premature convergence on local optima
and seeks out global optima with greater efficiency.

5.2.2 Visualization of Search Behaviour

Figures 5.2, 5.3, 5.4, and 5.5 present search space topology corresponding to various
elements: the reference molecule (in the case of direct correlation this is starting seed
molecule), starting molecules (in the case of extended search these are starting molecules
derived from seed molecule), frontier (final solution set), searched space (all offspring),
and search space for all the methods. To facilitate these visualizations, molecules were
sampled based on a uniform distribution. Both the search space and the searched space
were down-scaled by a factor of five relative to their original volume. This reduction was
essential to produce images that are both visually interpretable and informative.

The MDS visualization plots use MACCS Tanimoto similarity serving as the metric for
distance measurement. In these visualizations, the axes, denoted as Similarity Distance,
inversely correlates with the Tanimoto similarities between molecules. 0.1 distance
indicates 10% similarity distance. The Grid circles also expand with 10% similarity.

56



Results

Figure 5.2: This figure depicts an MDS visualization of the MO-CMA-ES algorithm’s
exploration strategy using the Direct Correlation meta-heuristic, chosen from random run
over 10 runs. It highlights three key areas: unexplored compounds, explored molecules,
and the optimally selected solution set, with the seed detergent molecule as the reference
point for initiation. The visualization employs a similarity distance metric, where a 0.1
unit indicates a 10% difference in similarity, and uses expanding grid circles to represent
this variance, effectively illustrating the algorithm’s explored part of the molecular search
space.
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Figure 5.3: This figure depicts an MDS visualization of the MO-CMA-ES algorithm’s
exploration strategy using the Extended Search meta-heuristic, chosen from random run
over 10 runs. It highlights three key areas: unexplored compounds, explored molecules,
and the optimally selected solution set, with the seed detergent molecule as the reference
point for initiation. The visualization employs a similarity distance metric, where a 0.1
unit indicates a 10% difference in similarity, and uses expanding grid circles to represent
this variance, effectively illustrating the algorithm’s explored part of the molecular search
space.
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Figure 5.4: This figure depicts an MDS visualization of the NSGA-II algorithm’s
exploration strategy using the Direct Correlation meta-heuristic, chosen from random run
over 10 runs. It highlights three key areas: unexplored compounds, explored molecules,
and the optimally selected solution set, with the seed detergent molecule as the reference
point for initiation. The visualization employs a similarity distance metric, where a 0.1
unit indicates a 10% difference in similarity, and uses expanding grid circles to represent
this variance, effectively illustrating the algorithm’s explored part of the molecular search
space.
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Figure 5.5: This figure depicts an MDS visualization of the NSGA-II algorithm’s
exploration strategy using the Extended Search meta-heuristic, chosen from random run
over 10 runs. It highlights three key areas: unexplored compounds, explored molecules,
and the optimally selected solution set, with the seed detergent molecule as the reference
point for initiation. The visualization employs a similarity distance metric, where a 0.1
unit indicates a 10% difference in similarity, and uses expanding grid circles to represent
this variance, effectively illustrating the algorithm’s explored part of the molecular search
space.
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5.2.3 Box-Plot Diagrams of Solution Spaces

Figures 5.6, 5.7, 5.8, and 5.9 display box plots that compare the quality of the final
solution sets with respect to various optimized variables: molecular complexity, molecular
weight, XlogP, and reference likeness. The data for these variables was normalized within
a range of 0 to 1, based on the maximum and minimum values derived from the Final
Step Aconstr as outlined in table 4.2. Reference likeness was already normalized, given its
inherent representation as a percentage value. Random run was chosen from the 10 runs
for each method to plot these box-plots.

The properties of the seed compound are prominently featured in the box-plots to enable
a detailed comparison with the properties of the solution set. This approach allows for an
analytical assessment of how the characteristics of the compounds identified by the EAs
align with the benchmark properties of the seed detergent. Through this comparative
analysis, we can discern the extent to which the solution set mirrors the desired attributes
of the seed molecule, highlighting the efficacy and precision of the search and optimisation
process.

Statistical analyses employing the Kruskal-Wallis test (p<0.05) followed by post-
hoc Dunn’s test with Bonferroni correction reveal no significant differences in the
performance of MOO approaches regarding the optimisation outcomes. In contrast,
notable distinctions were identified through box-plot between MO-CMA-ES, NSGA-
II direct correlation and NSGA-II with extended search concerning molecular weight
(as illustrated in Figure 5.6), molecular complexity (Figure 5.7), and reference likeness
(Figure 5.9). These findings suggest a more stable and better efficacy of MO-CMA-ES
methods in optimizing these molecular properties. Conversely, for the property XlogP,
the box-plot reveal no significant differences across the examined methods, indicating a
comparable performance in optimizing this specific criterion.
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Figure 5.6: Box-plot Comparisons of Molecule Weight Properties of Compounds in
Solution Spaces Derived from Various Methods (chosen from random run over 10 runs).
The weight of the seed molecule is highlighted with a red dot to facilitate direct
comparison. The properties of the molecules have been normalized to fall within the
range [0,1].

Figure 5.7: Box-plot Comparisons of Molecule Complexity Properties of Compounds in
Solution Spaces Derived from Various Methods (chosen from random run over 10 runs).
The complexity of the seed molecule is highlighted with a red dot to facilitate direct
comparison. The properties of the molecules have been normalized to fall within the
range [0,1].
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Figure 5.8: Box-plot Comparisons of Molecule XlogP Properties of Compounds in
Solution Spaces Derived from Various Methods (chosen from random run over 10 runs).
The XlogP of the seed molecule is highlighted with a red dot to facilitate direct
comparison. The properties of the molecules have been normalized to fall within the
range [0,1].

Figure 5.9: Box-plot Comparisons of Reference Likeness of Compounds in Solution Spaces
Derived from Various Methods (chosen from random run over 10 runs). The reference
likeness of the seed molecule is highlighted with a red dot which is 100%. The values are
percentage and fall within the range [0,1].
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5.2.4 Runtime of the Methods

EA MH SS Size Time (min)
MO-CMA-ES Direct Correlation 13 15
MO-CMA-ES Extended Search 15 13
NSGA-II Direct Correlation 6 30
NSGA-II Extended Search 2 55

Table 5.2: Comparison of Solution Sets and Computational Time. EA: Evolutionary
Algorithm, MH: Meta-heuristic, SS Size: Solution Set Size, Time: Time required in
minutes for 50 generations.

Table 5.2 presents runtime for each method experimented. MO-CMA-ES and direct
correlation produced a solution set comprising 13 molecules within a time frame of 15
minutes. When extended search pruning was employed, MO-CMA-ES generated a slightly
larger solution set of 15 molecules, but remarkably, in a reduced duration of 13 minutes.
In contrast, NSGA-II and direct correlation yielded a solution set of only 6 molecules
after 30 minutes. Furthermore, when extended search was used, the solution set was
limited to only two molecules, and the algorithm required the significantly longer period
of 55 minutes.

5.2.5 Quality of Solution Sets

EA MH Contributed Molecules
MO-CMA-ES Direct Correlation 12
MO-CMA-ES Extended Search 15
NSGA-II Direct Correlation 1
NSGA-II Extended Search 0

Table 5.3: Contributions to the Collective Solution Set. EA: Evolutionary Algorithm,
MH: Meta-heuristic, Contributed Molecules: Number of molecules contributed by each
method to the collective set of 17 non-dominated molecules.

Table 5.3 presents when we consider the combined solution sets generated by all
methods, we observed the following. Upon aggregating all the non-dominated
molecules, the collective set comprised 17 molecules. Given this set, MO-CMA-ES with
direct correlation, contributed 12 molecules, while MO-CMA-ES with extended search
contributed with 15 molecules. However, NSGA-II with direct correlation contributed
with only one molecule and NSGA-II with extended search did not contribute any
molecules.
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5.3 Summary

In this chapter, we systematically presented the experimental results, focusing on the
predictive accuracy of a molecule toxicity model then the exploration and optimisation
capabilities of EAs, and the comparative quality of their solution sets. Key findings
include the significant impact of training epochs on model accuracy, the superior
exploration and solution diversity offered by the MO-CMA-ES algorithm, especially when
combined with extended search meta-heuristics, and the comprehensive evaluation of
solution sets across various molecular properties. The results underscored the effectiveness
of the employed computational methods in navigating complex molecular spaces, offering
insights into their applicability for optimizing molecule design for specific properties.
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Discussion

This chapter provides an in-depth analysis and interpretation of the findings in relation to
the research questions posed in this study. It comprises two main sections, each addressing
critical aspects of chemical space exploration and compound optimisation using EAs and
the Uni-Mol model.

Section 6.1 addresses the primary research question by detailing the integration of
the Uni-Mol model with EAs. It highlights the balance between training duration and
accuracy in predicting compound toxicity, identifying the limitations of the SMILES
format and suggesting improvements for model precision in future research.

Section 6.2 directly addresses secondary research questions 2.1 and 2.2, evaluating the
exploration dynamics and solution quality generated by MO-CMA-ES and NSGA-II
in the realm of chemical space exploration. This section underscores the exceptional
performance of MO-CMA-ES in navigating complex molecular landscapes, showcasing
its ability to produce diverse and highly optimized solution sets. It highlights the
instrumental role of strategic exploration methodologies in augmenting the effectiveness
of EAs for advanced compound identification, thereby facilitating a more nuanced and
efficient approach to chemical compound discovery.
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6.1 Predicting Fish Toxicity with Uni-Mol

This study advances the field of chemical space exploration for optimal compound
identification by integrating Uni-Mol with the EAs, addressing the primary research
question with a sophisticated approach. The experimental observations reveal a
strong trade-off between the training duration (epochs) and the model’s proficiency in
distinguishing toxic from non-toxic compounds, as detailed in Section 5.1, Table 5.1.
Notably, enhanced accuracy in recognizing toxic molecules minimizes false positives,
while improved detection of non-toxic molecules reduces false negatives. An increase in
training epochs consistently amplifies the accuracy for non-toxic molecule identification,
simultaneously diminishing toxic molecule detection accuracy, a phenomenon likely
attributed to the data set’s skewed distribution of non-toxic labels.

In selecting a model for our EAs, we prioritized the one exhibiting the optimal balance
of toxic and non-toxic detection accuracies (macro average accuracy), as emphasized in
bold within Section 5.1, Table 5.1. This chosen model demonstrates an efficacy on par
with, yet distinct advantages over, existing methodologies (Chen & et al., 2018; Pu et al.,
2019; Schneider, 2018; Schneider & Fechner, 2005) due to its avoidance of the traditional,
resource-intensive optimisation processes.

Despite the promising accuracy of our premier model (referenced in Section 5.1, Table
5.1), it is crucial to acknowledge its limitations in fully replacing laboratory testing.
Nevertheless, it provides valuable preliminary insights into the fish toxicity of compounds,
facilitating the early-stage chemical analysis. The ambition of this thesis extends beyond
mere predictive accuracy; the model, even with its current limitations, is instrumental in
guiding EAs towards the discovery of optimal compounds.

To further refine the model’s accuracy, the utilization of the SMILES format for generating
three-dimensional structures is identified as a potential limitation. The SMILES format,
despite its ability to represent molecular structures, fails to capture the complexity of
toxicological responses, as evidenced by molecules with identical SMILES representations
exhibiting divergent toxicological profiles. Advancing the model’s predictive accuracy
necessitates exploring alternative input modalities capable of encapsulating the nuanced
spatial characteristics of molecules, thereby enhancing the model’s reliability and utility
in the optimisation process.
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6.2 Optimizing Compound Discovery in Chemical

Space Using Evolutionary Algorithms

In Chapter 5, we presented findings pertinent to the secondary research questions 2.1 and
2.2. This section delves into a comprehensive discussion and analysis of the algorithms’
exploration strategies (Section 6.2.1) as well as the diversity and quality of solutions
generated (Section 6.2.2).

6.2.1 Analyzing the Exploratory Dynamics of Evolutionary

Algorithms in Chemical Space

Section 5.2.1, illustrated by Figure 5.1, we delve into the comparative analysis of the
unique molecules identified throughout the evolutionary search processes employed by
MO-CMA-ES and NSGA-II. A particular focus is given to the impact of utilizing direct
correlation versus extended search strategies. The implementation of extended search
notably enhanced the diversity of the solution sets, a phenomenon that was especially
pronounced when applied in conjunction with MO-CMA-ES. Relative to NSGA-II, MO-
CMA-ES exhibited a consistent superiority in generating a broader array of solution
sets, affirming its efficacy in maintaining elevated levels of diversity throughout the
evolutionary search, while being a lot more computationally efficient (Section 5.2.4, Table
5.2). These observations reinforce the adeptness of MO-CMA-ES in navigating complex
solution spaces, underscoring its value in the context of molecular optimisation.

Further insights into the search behaviors of these methods are presented in Section
5.2.2, through Figures 5.2, 5.3, 5.4, and 5.5. These visualizations facilitate a nuanced
comparison of the exploratory efficiency and effectiveness of MO-CMA-ES versus NSGA-
II and their meta-heuristics. Highlighted within these figures are the noticeable gaps
within the solution space, representing regions that pose significant challenges to both
methods. These gaps often funnel the exploration efforts towards local optima, presenting
obstacles to the attainment of global solutions. This analysis sheds light on the inherent
complexities of the solution space and the adaptive responses of the EAs in their quest
to identify optimal molecular configurations.
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Section 5.2.2, as depicted in Figure 5.2, showcases the MDS visualization for MO-CMA-
ES employing direct correlation. This visualization reveals a tendency of the method
to remain within close proximity to the initial seed compound throughout the search
process. This phenomenon is attributed to the objective of achieving a 90% likeness to
the reference molecule, which confines the search primarily within the smallest grid circle
indicative of this threshold. Nevertheless, the algorithm occasionally ventures further
afield in pursuit of exploration, discovering non-dominated compound that maintain
roughly 80% similarity to the reference molecule. This behavior indicates a balance
between explorative actions and the avoidance of becoming ensnared in local optima.

In contrast, Section 5.2.2 Figure 5.3 elucidates the MDS visualization for MO-CMA-
ES with extended search, illustrating a markedly more explorative approach than its
direct correlation counterpart. The initiation of search from molecules distanced from the
reference molecule facilitates a broader exploration of the search space, with a noticeable
trend of movement towards the reference molecule driven by the likeness objective. This
strategy diverges from the outward movement observed in the direct correlation setting,
highlighting the dynamic exploration capabilities of MO-CMA-ES when augmented with
extended search criteria.

Section 5.2.2 Figure 5.4 examines the MDS visualization for NSGA-II utilizing direct
correlation. This method appears to struggle in navigating the search space, failing
to identify non-dominated compounds even within close proximity to the seed. This
limitation suggests a constrained exploratory scope, potentially hindering the method’s
ability to uncover viable molecular configurations.

Lastly, Section 5.2.2 Figure 5.5 provides the MDS visualization for NSGA-II with
extended search, demonstrating a superior exploration of the search space relative
to its direct correlation iteration. Despite this expanded exploratory effort, the
method falls short in identifying compounds that satisfy the constraints (Aconstr) and
(Aconstr_final), indicating challenges in balancing exploration with the achievement of
specified optimisation criteria.

These observations collectively underscore the distinct behaviors of MO-CMA-ES and
NSGA-II under different meta-heuristics, emphasizing the critical role of initial conditions
and objective settings in influencing the exploration dynamics and solution quality within
complex chemical spaces.
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The extended search implementation of MO-CMA-ES underscores its enhanced ability
to navigate the search space more effectively, discovering a broader and more diverse set
of non-dominated molecules. This is contrasted with the narrower scope of exploration
and the found solution sets of NSGA-II, which tend to exhibit greater similarity to the
seed molecules and are less varied in their distribution across the molecular property
objectives.

The empirical findings suggest that the adoption of NSGA-II might lead to a more
constrained and potentially less innovative exploration process when juxtaposed with
the capabilities of MO-CMA-ES. This is further evidenced by the solution sets generated
by NSGA-II, which not only closely resemble the seed molecules in terms of chemical
structure but also are quantitatively smaller, indicating a potential limitation in the
algorithm’s ability to foster innovation within the chemical space.

An intriguing aspect of the study’s findings is the observation that the spatial distribution
of feasible molecules, as depicted in Section 5.2.2, Figures 5.2, and 5.3, reveals areas
of sparsity within the search space. This characteristic poses a challenge especially to
NSGA-II’s strategy, which inherently seeks to diversify solutions but is constrained by
the algorithm’s similarity threshold for including solutions in the solution sets.

The contrast between conservative and more assertive exploration strategies, such as those
exemplified by direct correlation versus extended search, respectively, illuminates the
inherent differences in the MOO capabilities of MO-CMA-ES and NSGA-II. Specifically,
the application of extended search strategies has been shown to accentuate these
differences, facilitating the fine-tuning of hyper-parameters to optimize the exploration
of search spaces and the identification of viable solution sets.

Empirical evidence from the study highlights MO-CMA-ES’s superior performance in
search-space exploration over NSGA-II, across various exploration strategies. This
performance advantage is attributed to MO-CMA-ES’s more liberal criteria for non-
dominated selection and its less conservative approach in offspring selection, enabling a
broader exploration of the search space and yielding a more diverse and populated set of
solutions.
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Furthermore, the findings suggest that the offspring selection mechanism of MO-CMA-
ES plays a pivotal role in its effectiveness, surpassing the impact of offspring selection
diversity. This mechanism facilitates continuous exploration and prevents the premature
convergence seen in NSGA-II, thereby underscoring the robustness of MO-CMA-ES in
maintaining an ongoing discovery process of new non-dominated molecules, as supported
by the results presented in figure 5.1. These insights affirm the critical influence of
offspring selection diversity on the performance of MOO algorithms in navigating and
populating complex solution spaces.

In addressing the secondary research question 2.1 concerning the comparative
performance of MO-CMA-ES and NSGA-II in the context of navigating the complex
molecular space for identifying molecules with optimal properties, the empirical evidence
and analytical observations presented in this study elucidate distinct advantages and
limitations inherent to each algorithm. MO-CMA-ES demonstrates superior capability
in exploring and exploiting the molecular space, facilitated by its adaptive strategy
that effectively balances exploration and exploitation through a dynamic adjustment
of its meta-heuristic approaches. This adaptability enables MO-CMA-ES to discover a
broader and more diverse array of non-dominated solutions, signifying its effectiveness
in identifying molecules with optimal properties amidst the vast and complex molecular
landscape.

Conversely, NSGA-II, while being very exploitative in its approach, exhibits limitations
in its exploratory scope, often resulting in solution sets that are less varied and more
closely aligned with the initial seed molecules. This tendency, coupled with a proneness
towards premature convergence in certain contexts, underscores a potential constraint in
NSGA-II’s ability to innovate and identify novel compounds within the chemical space.

The comparison thus reveals that MO-CMA-ES’s exploratory dynamics, characterized
by a more flexible and adaptive mechanism for navigating the search space, render it
more efficacious than NSGA-II in the context of this study’s objectives. MO-CMA-ES’s
proficiency in generating diverse and expansive solution sets, coupled with its robustness
against premature convergence, positions it as the more favorable algorithm for the task
of identifying molecules with optimal properties within the complex molecular space.
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6.2.2 Assessing the Solution Quality of Evolutionary Algorithms

in Compound Optimisation

The assessment of solution diversity is predicated on the cardinality of the solution sets,
with the underlying assumption that a greater cardinality indicates a richer diversity of
alternatives for experimental scrutiny. Solution quality is evaluated through independent
box plot analyses of each property, where optimized mean values and reduced variance
for each property are indicative of superior solution quality.

Section 5.2.3, Figures 5.6, 5.7, 5.8, and 5.9, box plots elucidate the final solution sets’
quality as determined by the EAs across various optimized variables, including molecular
complexity, weight, XlogP, and reference likeness.

In the context of minimizing molecular weight to reduce potential detergent compound
production costs (Cheng et al., 2020), Section 5.2.3, Figure 5.6 showcases that MO-CMA-
ES yielded a diverse array of solutions with generally lower molecular weights compared
to the initial seed detergent molecule. The results from both of it’s meta-heuristics
were somewhat similar, indicating no significant difference. NSGA-II’s solution sets,
especially those from the extended search, were markedly heavier (box-plot analysis),
diverging significantly from both MO-CMA-ES’s solutions and its own solutions under
direct correlation, which exhibited lesser diversity.

Similarly, for molecular complexity, aimed to be minimized to lower production costs,
MO-CMA-ES consistently identified compounds with reduced complexity relative to
the seed, across both heuristic strategies. In contrast, NSGA-II’s performance varied
significantly (box-plot analysis) between strategies, with its direct correlation approach
yielding compounds close in complexity to the seed molecule, whereas its extended
search identified compounds with notably lower molecular complexity. MO-CMA-ES
found molecules significantly lower (box-plot analysis) in terms of molecular complexity
compared to NSGA-II.

Regarding XlogP, aimed to be maximized to enhance oil solubility, MO-CMA-ES
identified molecules with a broader range of XlogP values, including those higher than
the seed molecule’s. Conversely, NSGA-II was less successful in this regard, often failing
to find molecules surpassing the seed molecule’s XlogP. Yet, there was no significant
difference between methods.
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In terms of similarity to the seed molecule, while MO-CMA-ES effectively identified
compounds around the 90% similarity mark, its extended search demonstrated a capacity
for greater exploration, identifying less similar molecules, aligning with the goal of
balancing property trade-offs. NSGA-II, however, showed a stark difference (box-plot
analysis) between its search strategies, with direct correlation finding highly similar
molecules and extended search yielding compounds at the lower threshold of 70%
similarity, deviating from the optimisation objectives. Solution sets produced by MO-
CMA-ES was significantly closer (box-plot analysis) to 90% than solution sets from
NSGA-II.

MO-CMA-ES exhibited a consistent ability to discover compounds with lower molecule
complexity, molecule weight and higher XlogP values compared to NSGA-II, regardless of
the heuristic applied. This suggests an overall superiority of MO-CMA-ES in optimizing
for compound complexity, weight, and solubility properties. Moreover, MO-CMA-ES’s
performance in maintaining reference likeness across strategies contrasts with NSGA-II’s
variable outcomes, further underscoring the former’s stability and the latter’s sensitivity
to search strategy.

These findings, supported by the comprehensive comparison in Section 5.2.5, Table 5.3,
where MO-CMA-ES’s solutions outperformed those of NSGA-II across all properties,
highlight the differential exploration efficacy of these MOO methods in discovering
optimized molecules. MO-CMA-ES’s adaptability and exploratory depth enable it to
uncover a wider array of optimized solutions, thereby proving its efficacy over NSGA-II
in the realm of molecular optimisation within complex chemical spaces.
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This analysis addresses secondary research question 2.2, focusing on the comparative
performance of MO-CMA-ES and NSGA-II in the context of identifying molecules with
optimal properties. The findings reveal that MO-CMA-ES, regardless of the specific meta-
heuristic applied, significantly surpasses NSGA-II in its efficacy to discover molecules
that excel across various desired attributes. Notably, MO-CMA-ES demonstrates
superior capability in identifying molecules that are not only of lower weight and
complexity—which implies a potential reduction in production costs—but also exhibit
higher XlogP values, enhancing oil solubility. These enhancements open up new
possibilities for discovering detergents that are more optimal than the seed reference
detergent, offering avenues for innovation in detergent formulation that are cheaper to
produce and more oil soluble. Additionally, this approach successfully maintains close
reference likeness to the predetermined criteria. These results underscore the robustness
and efficiency of MO-CMA-ES in optimizing molecular properties, thereby offering a
compelling answer to the posed research question and illustrating its practical advantages
in molecular design optimisation.

6.3 Summary

In this chapter, the study’s results were analyzed and interpreted in light of the research
questions, focusing on the EAs for chemical space exploration and compound optimisation
and innovative integration of the Uni-Mol model. Two central sections form the crux of
the discussion, each providing critical insights into the study’s findings.

The section 6.1 directly tackled the primary research question, illustrating how the
integration of Uni-Mol with EAs enhanced the prediction accuracy for toxic versus
non-toxic compounds. This analysis underlines a significant trade-off between training
duration and model accuracy, shedding light on the limitations inherent to the SMILES
format and suggesting pathways for refining model precision.

In addressing the secondary research questions, Optimizing Compound Discovery with
EAs evaluates the exploratory dynamics and solution quality produced by MO-CMA-ES
and NSGA-II. This section 6.2 highlights MO-CMA-ES’s superior capability in generating
diverse and optimized solutions, emphasizing the pivotal role of exploration strategies in
bolstering the efficiency of compound discovery processes.
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The findings underscored the MO-CMA-ES algorithm’s adeptness in navigating the
complex molecular landscape, affirming its effectiveness in identifying a broader, more
diverse array of optimized solutions compared to NSGA-II. This comparison elucidates
the nuanced strategies and dynamics at play in EAs exploration of chemical spaces,
offering valuable perspectives on algorithm selection and the strategic deployment of
meta-heuristics for compound optimisation.

Overall, this chapter not only dissected the intricacies of molecular optimisation and
toxicity prediction but also paves the way for future research directions aimed at
enhancing the accuracy, efficiency, and applicability of computational models and EAs in
the realm of chemical product design.
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Chapter 7

Conclusions

The primary objective of this thesis is to assess the exploration and efficacy of MOEAs,
specifically MO-CMA-ES and NSGA-II, in the optimisation of molecules within a complex
landscape, augmented by molecular property prediction models. This investigation
aimed to enhance the automated molecular discovery process through a comprehensive
comparative analysis of these leading MOEAs, supplemented by the introduction of novel
meta-heuristic approaches, Direct Correlation and Extended Search. The contributions
of this research offer significant advancements in the methodology of molecule design and
optimisation.

Firstly, the comparative analysis between MO-CMA-ES and NSGA-II, enhanced by the
innovative meta-heuristics, illuminated the adaptability, efficiency, and scalability of
MOEAs in navigating the intricate molecular spaces. This detailed examination provided
a framework for selecting the most suitable MOEAs for specific molecular optimisation
tasks. The empirical evidence and detailed analysis underpinning this framework allow
for a strategic selection of computational strategies, optimizing the likelihood of success
in various molecular design contexts.

Furthermore, the introduction of the Direct Correlation and Extended Search meta-
heuristics represents a strategic advancement in the exploration and optimisation of
the molecular search space. These meta-heuristics, focusing on outward and inward
exploration respectively, offer a nuanced approach to navigating the search space, thereby
enhancing the effectiveness of automated molecular optimisation applications. The
empirical evaluations of these approaches have yielded critical insights, contributing
significantly to the field’s understanding and development.
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The interdisciplinary integration of algorithmic objectives with the predictive capabilities
of Molecular Property Prediction Models stands as a final contribution of this thesis.
This approach infuses the design process with predictive insights. Such integration
facilitates the achievement of more targeted and sophisticated molecular designs, marking
a transformative step forward in the precision and innovation of molecular product design.

The insights gleaned from this research suggest that MO-CMA-ES, particularly when
augmented with the Extended Search heuristic, is a superior choice for addressing complex
MOO problems in molecular discovery, specifically over NSGA-II. This algorithm,
supported by the novel meta-heuristics, has demonstrated the potential to generate a
diverse and viable set of molecules with desirable properties, thus establishing MO-CMA-
ES as significantly better in molecule optimisation.

In conclusion, the contributions of this thesis significantly advance the automated
molecular discovery field, enhancing the understanding of MOEAs in complex
optimisation scenarios and paving the way for future research at the intersection of
computational chemistry and MOEAs. Through a strategic framework for algorithm
selection, novel meta-heuristic approaches, and the integration of predictive modeling,
positions MO-CMA-ES as a choice for MOO in the ongoing advancement of chemical
product design and automated molecular discovery.

7.1 Future Directions

To extend the contributions of this thesis, several avenues for future work are proposed:

1. Integration of Generative Models: The development and implementation of
molecule generative models capable of interpolating and extrapolating within the
search space could uncover novel molecules with optimal properties. Fine-tuning
these models with the discovered optimal molecules could further enhance their
effectiveness.

2. Advancements in Molecular Representation: Exploring beyond the
limitations of SMILES representations could offer more accurate and diverse
molecular characterizations. Alternative representations may better capture
molecular similarities and differences, facilitating improved optimisation processes.
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3. Conservation of Molecular Substructures: Incorporating an objective to
conserve specific molecular substructures during the optimisation process with
MOEAs could address the requirements of certain chemical products that
necessitate particular substructures. This approach would ensure that essential
molecular features are retained in the optimized molecules.

These proposed directions aim to not only address the limitations identified through
this research but also to push the boundaries of what is currently possible in automated
molecular discovery and optimisation. By pursuing these avenues, future research can
continue to enhance the efficiency and applicability of computational methods in chemical
product design, contributing to the discovery of innovative molecules with significant
commercial impacts.
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