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Abstract—Autonomous robots are increasingly used in remote
and hazardous environments, where automated recovery given
damage to sensory-actuator systems would be extremely benefi-
cial. Such robots must therefore have controllers that continue
to function effectively given unexpected hardware malfunctions
and damage. We evaluate various controller types (oscillator-
style central pattern generators and artificial neural networks),
for producing adaptable gait behaviors. These controller types
are run for hexapod robot gait control in concert with the
Intelligent Trial and Error (IT&E) and Map-Elites algorithm
to maintain behavioral diversity. Specifically, we investigate the
impact of behavior map-size in MAP-Elites (the first phase of
the IT&E algorithm), in company with various controller types
for multiple leg failures scenarios using a simulated hexapod
robot. Results support previous work demonstrating a trade-off
between adapted gait speed and controller adaptability across
leg-damage scenarios, where map-size is crucial for generating
behavioral diversity required for adaptation.

Index Terms—Evolutionary Robotics, Behavioral Diversity

I. INTRODUCTION

As autonomous robots are deployed for various complex
tasks in remote, unpredictable, and hazardous environments
[1], the risk of incurring hardware damage and failing to
complete tasks increases [2]]. Thus, a pertinent problem is
how to generate effective controllers that adapt to hardware
damage [3|], [4]], such that the robot continues to function
[5. This is especially pertinent in environments where in
situ repair is not possible [6]. Legged robotic gait evolution
is an established benchmark in evolutionary robotics, where
task performance is typically evaluated as locomotion
speed and number of generations (evaluations) required
to evolve effective gaits [7]. Previous work investigated
gait evolution across various robotic platforms (bipeds [S8],
quadrupeds [9], and hexapods [10]), but largely ignored gait
adaptation given changing morphologies (due to incurred
sensor-actuator damage during the robot’s runtime [5]).
Evolutionary controller adaptation is effective for robot
behavior adaptation given sensor-actuator (morphological)
damage [5], [7], [11], [12]. For example, Intelligent Trial
and Error (IT&E) and Map-Elites [5] have adapted hexapod
locomotion under various leg failure scenarios [5], [[10]-[13].
IT&E and Map-Elites have adaptability benefits (suitably
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balancing exploration of new gaits versus exploitation of
functional gaits), over comparative robotic gait adaptation
methods including model-based reinforcement learning [14],
[15]. Another benefit of IT&E and Map-Elites is that it
generates adapted behaviors for various controller types, such
as oscillator-style Central Pattern Generators (CPGs) [16]]
and evolved neural networks [[17]. However, the impact of
various controller encodings in company with specific IT&E
and Map-Elites parameters on behavioral adaptation given
morphological damage, remains relatively unexplored [[12].

Previous gait adaptation work using IT&E and Map-
Elite indicated behavior map-size impacts adaptive gait
performance [[12], where small versus large map-sizes shifted
behavioral (gait) adaptation from exploitation to exploration.
Though, previous work investigated few map-sizes with
one controller type. Indirect controller encodings such as
HyperNEAT |[[18] have also been demonstrated for gait
adaptation over various robot morphologies [19], [20]. Thus,
this study investigate the adaptability of various controller
encodings with behavioral diversity maintenance (Map-Elites
behavior map-sizes), given various leg-damage scenarios.
Given demonstrated effectiveness of Map-Elites in related
work [5[], [10], [12]], we focus on Map-Elites controller
evolution for adapting hexapod locomotion to leg-damage.

We evaluate five hexapod robot controller encodings for
adaptive gait behavior. All use Map-Elites [5] for behav-
ioral diversity maintenance and were evaluated for various
behavior-map sizes and damage scenarios. First, we evaluate a
kinematic-trajectory based open-loop controller [12]]. Second,
a CPPN [21]] encoded open-loop controller using non-linear
oscillators (CPGs) [22]. Open-loop controllers were selected
for these controller types given already demonstrated efficacy
for generating highly adaptable gaits [5], [ 7], [[11]], [23]]. Third,
we evaluated CPPN connection weight encoding of an artificial
neural network (ANN) controller [24]]. Fourth, we evaluated an
ANN controller, where hidden-layer topology and connection
weights were evolved by NEAT [25]]. NEAT, a direct-encoding
neuro-evolution method, was selected to gain insights into
potential benefits of indirect versus direct controller encod-
ings, when used with various Map-Elites behavior-map-sizes.
Finally, we evaluated a CPPN encoded Single Unit Pattern
Generator (SUPG) [7].



We also address the limitations of related work on hexapod
gait adaptation [[12]], offering three contributions. First, we
comparatively evaluate five controller types for a range of
behavior-map sizes and leg damage scenarios, whereas related
work only evaluated an open-loop kinematic controller. Sec-
ond, we evaluate Map-Elites behavior-map sizes: [k, 10k,
20k, 40k] per controller and damage scenario, whereas related
work only tested two map sizes for one controller. Third, we
present insight into which behavior-map size, controller type
coupling elicits the most adaptable gaits (Section [[V).

II. METHODS

The core methods were five hexapod controller encodings
(Section |II-AHII-E)), adapted with IT&E and Map-Elites (Sec-
tion [[I-F). Evolved gaits were then optimized online during
hexapod runtime (Section [[I-G). Iterated Racing for Automatic
Algorithm Configuration [26] automated parameter tuning for
all controllers, Map-Elites and online optimization.

A. Reference (Open-Loop) Controller

The reference (kinematic) gait controller and all controller
parameters are as in related work [12]. High-level gait com-
mands sent by the user are transformed into foot trajectories
and then servo motions. A straight line trajectory is used for
the support phase foot motion and a sixth order polynomial for
the swing phase foot motion. Foot trajectories are transformed
into joint angles using inverse-kinematics and to servos at
120 Hz. This controller used an open-loop configuration with
base stabilisation turned off. Controller parameterization and
leg trajectories used related work [27]], including fundamental
components of statically stable legged gaits such as support
polygon [28] and foot timing [29], thus producing diverse
symmetrical and asymmetrical hexapedal gaits [30].

B. CPG (Open-Loop) Controller

The CPG controller extends previous work [7], where
outputs were scaled to match the hexapod’s joint limits [12],
and comprised of 18 coupled, amplitude-controlled phase
oscillators determining the joint angle of three servos per leg
on the hexapod. Oscillator behavior equations and controller
parameters can be found in Tarapore et al. [7].

C. CPPN Encoded CPGs

A CPPN encodes the intrinsic amplitudes A; and inter-
oscillator phase biases ¢; ; of 18 CPG oscillators. Oscillators
are configured as a 2D Cartesian grid (substrate), so each
oscillator has a distinct (x,y) coordinate reflecting hexapod
morphology [7]. The intrinsic amplitude per oscillator ¢ is
used for CPPN inputs: (x;,y;). Amplitude outputs are scaled
to the allowable angular range of corresponding motors [12].
CPG oscillators are coupled, so as phase bias for every pair of
adjacent oscillators (¢, j) is a CPPN query with inputs (z;, y;)
and (z;, y;), and scaled output range: [0, 27]. CPG constraints
are as in previous work [7]], with 18 intrinsic amplitude and
18 phase bias parameters encoded by the CPPN.

D. ANN Controller Encodings

ANNSs used 20 input, 18 output and hidden nodes where
node connectivity and weights were directly encoded and
NEAT evolved [25] or indirectly (CPPN [21]) encoded and
HyperNEAT evolved [18|]. ANN inputs were 18 angles per
leg servo (s1, S2, s3) and sine, cosine wave functions at 1
Hz frequency, per simulator time step and multiplied by 7
for periodic gait behaviors. ANN output, per time-step, were
18 values ([—1, 1]), for each servo (s1, s2, S3), scaled to
allowable angular ranges [12]. Outputs were hexapod servo
motor angles per time step. Hidden node inputs were initially
0 so the input layer was (initially) directly connected to the
output layer. For direct encoding, ANN connection weights
and hidden layer connectivity was evolved by NEAT [25]]. For
indirect encoding, NEAT evolved CPPNs [18]], [31], encoding
fixed topology recurrent ANNs (outputs connecting back to
inputs). These ANNs used 20 inputs (s1, So, S3 per leg, and
stne, cosine inputs for periodic gait behaviors [[7]), 18 hidden
and 18 output nodes, where ANN (substrate) node positions
corresponded to hexapod morphology [7]. The CPPN was
iteratively queried with the positions of all source (x1, y1)
and target (z2, y2) nodes, where CPPN output corresponded
to weights of input-hidden and hidden-output neuron connec-
tions. ANN weights were a function of geometric coordinates
of the source and target node per connection. ANN node
coordinates and a constant bias were iteratively passed to the
CPPN to determine each connection weight. Given no hidden
layer, the CPPN had only one output (the weight between the
source input layer node and output layer target node). Given
a hidden layer, the CPPN had two output values, specifying
weights for each connection layer [[18]]. At each time-step, the
ANN was input with previous time-step angle values for the
servos (s1, S2, s2) on each leg and a sine and cosine wave.
ANN output nodes specified new joint angles per leg servo
(s1, s2, S2), per time-step. For both encodings, all connection
weights were randomly initialized as in previous work [[11].

E. Encoding SUPGs with CPPNs

Our SUPG produces repeated cycles of CPPN encoded
activation patterns generating temporal oscillations [[11]]. Three
(coupled) SUPGs were used per hexapod leg (18 total), applied
to coxa and femur joints for joint angle output per time-
step. CPPN input is the position (x, y) of the SUPG in the
substrate and elapsed time ([0.0, 1.0]) since the SUPG was
last triggered. Elapsed time, a SUPG internal timer, increases
from 0 to a maximum of 1 (per period of SUPG output). SUPG
output is a function of its substrate position and the time since
its last cycle was triggered, meaning SUPG outputs specify
the desired angles per servo (si, s2), per leg. The tibia joint
output is a function of the femur output such that tibia tip
is always pointing to the ground. SUPG output per time-step
is then used as CPPN input at the next time-step. For time-
step 1, neutral angle positions are used as CPPN input. The
SUPG’s internal timer is restarted from O given an external
trigger event, where the oscillation period is adjusted to match
hexapod gait and terrain by restarting the SUPG whenever



its associated foot touches the ground, producing closed-
loop control [7]. The three SUPGs actuating each leg were
simultaneously triggered by the corresponding foot touching
the ground. At time-step 1, all legs touched the ground, so all
SUPGs were triggered simultaneously. To avoid hopping gaits,
the first trigger to each SUPG was delayed by an offset. The
CPPN offset output was determined for the s; SUPG per leg
by supplying its coordinates as input. The same offset value
was applied to so SUPG per leg, so as oscillators per leg start
concurrently. Since the SUPG is capable of oscillatory signal
frequencies exceeding 1Hz [7]], and high frequency gaits over-
tax robot motor-servos [32]], we constrained SUPG oscillatory
signal frequency to 1Hz, and the CPPN with summed weights
between timer-input and phase-output nodes to a maximum of
27 radians. SUPG controller gaits were then evolved with the
constrained-CPPN using NEAT (Section [[I-DJ.

F. Behavior (Gait) Map Generation

IT&E’s first stage is generating diverse gaits (quality-
diversity map), representing behaviors used for adaptation [J5].
The map is generated using Centroidal Voronoi Tessellation
(CVT)-MAP-Elites [33]], [34]. CVIT-MAP-Elites begins by
discretizing a behavior space into k£ evenly spaced niches with
a CVT for uniform distribution of behaviors. Once k niches
were created, the map (X, P) is initialized to store solutions
(X) and task performances (P). A random population (G)
of solutions (x) was initialized in the map, where a solution
represented a given controller behavior. Evaluated controllers
elicit a task performance (p, Section and behavior
descriptor (b) for evolved gaits. The behavior descriptor (as in
related work [12]]) determines the behavior per map-niche. Af-
ter random initialization MAP-Elites follows a parent selection
and genetic variation loop [35]], with random solution selection
and variation using Simulated Binary Crossover (SBX) [36].
Varied solutions (x’) are added to the map if the niche is
empty (P(c) = () or the current niche (solution) is lower
performance (P(c) < p). Selection and variation ran for 40
million evaluations (as per related work parameter settings [5]])
to fill the map with gait behaviors. Other Map-Elites parameter
settings were as in previous work [12]. The second stage of
IT&E is gait adaptation (Section [[I-G), occurring online during
hexapod operation (gait adaptation task, Table [II).

G. Gait Adaptation

Given leg damage, the hexapod adapts via searching the
behavioral map (Section for a new gait using the Map-
based Bayesian Optimisation Algorithm (M-BOA) [3]. Gait
performance prediction (P) is modeled with a Gaussian pro-
cess (N), using the expected performances from the map (P)
as a prior [37]. The gait predicted to perform the best is
selected using the upper confidence bound (UCB) function.
Predicted gaits are trialed on the robot and gait performance
(pt+1) updates the prediction model. This process repeats,
improving gait performance prediction, terminating if actual
performance (p;41) is within o of maximum predicted perfor-
mance. Evaluation metrics were gait speed and trials required

TABLE I: M-BOA and MAP-Elites Parameters.

M-BOA 02 ise 0.001
a: 0.9
p: 0.4
K: 0.05

MAP-Elites Map dimensions: 6

Controller dimensions: 32

Number of niches: 5000, 10000, 20000, 40000
Evaluations: 4 % 107

Batch size: 2390

Random initialization: 1% of niches (Default)

for adaptation, with each gait trial lasting 5seconds (Table
). M-BOA gait performance feedback (p;11) used related
work parameters [5]], and the task performance metric (Section
and simulator used for map generation (Section [[I-F).

III. EXPERIMENTS

Experiments simulate a custom hexapod robo{'} with 18
degrees-of-freedom, where each leg has joints (servos) at
the coxa, tibia and femur joints [12]]. Our simulator uses
the PyBullet [38|] physics engine running at 240 Hz, using a
Unified Robotics Description Format (URDF) hexapod model.
Experiments evaluated the impact of five controller types and
Map-Elite map-sizes (bk, 10k, 20k and 40k niches), given
IT&E and Map-Elites adapted gait performance over four
leg failure scenarios (S1—S4, Table , and a benchmark no
leg-damage scenario (SO, Table [I). Each controller type was
evaluated for 5 seconds (1200 simulation time-steps), over the
leg failure scenarios, where leg failure was approximated by
locking a leg in a retracted position. Per controller type and
map-size coupling, average gait performance (Section |III-A)
was calculated over 20 runs for each failure scenario.

A. Task Performance Function

Gait performance (p) was the average velocity of the center
of the hexapod along a single axis. Velocity along a single axis
encouraged gaits exhibiting straight line motion in a forward
direction. To discourage unsafe gaits the following conditions
resulted in simulation termination and a task performance of 0
m/s: Collisions between the legs, collisions between the base
and the ground, and leg kinematic singularities.

B. Behavior-Performance Map Size

Behavior-performance map size in Map-Elites is determined
by the number of niches (k), controlling overall behavioral
(gait) map diversity. Exploratory experiments indicated map-
sizes over 40k niches, yielded negligible task performance
increases, thus we tested relatively small map-sizes (5k—40k)
in comparison to related work [S[], [[11f, [12]], [33]].

'Experiment source code, data, and videos are available online: https:/
github.com/AlePouroullis/SSCI2025_Hexapod


https://github.com/AlePouroullis/SSCI2025_Hexapod
https://github.com/AlePouroullis/SSCI2025_Hexapod

TABLE II: Failure Scenario and Controller Adaptation Experiments

TABLE III: Average (20 runs, all damage scenarios) QD scores

Experiment Failure Scenario — Controller Type Map-Sizes
1 SUPG [5k, 10k, 20k, 40k]
S1: Reference [|12] [5k, 10k, 20k, 40k]
One failed leg CPG [5k, 10k, 20k, 40k]
ANN (NEAT) [5k, 10k, 20k, 40k]
ANN (HyperNEAT)  [5k, 10k, 20k, 40k]
2 SUPG [5k, 10k, 20k, 40k]
S2: Reference [[12] [5k, 10k, 20k, 40k]
Two failed legs CPG [5k, 10k, 20k, 40k]
seperated ANN (NEAT) [5k, 10k, 20k, 40k]
by two functional legs ~ANN (HyperNEAT)  [5k, 10k, 20k, 40k]
3 SUPG [5k, 10k, 20k, 40k]
S3: Reference [[12] [5k, 10k, 20k, 40k]
Two failed legs CPG [5k, 10k, 20k, 40Kk]
seperated ANN (NEAT) [5k, 10k, 20k, 40k]
by one functional leg ~ ANN (HyperNEAT)  [5k, 10k, 20k, 40k]
4 SUPG [5k, 10k, 20k, 40k]
S4: Reference [12] [5k, 10k, 20k, 40k]
Two adjacent CPG [5k, 10k, 20k, 40k]
failed legs ANN (NEAT) [5k, 10k, 20k, 40k]
ANN (HyperNEAT)  [5k, 10k, 20k, 40k]
10 Controller Performance Controllers
% ME-10k SUPG per controller and map-size. Overall highest scores in bold.

= ME-40k CPG
ME-10k NEAT
o ™ ME-5k HyperNEAT
© == ME-10k Reference
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Fig. 1: Average maximum (20 runs) gait quality (normalized
fitness: [0.0, 1.0]) per fittest controller for no-damage (S0) and
damage (S1—S4) scenarios (legend: controller type, map-size).

C. Gait Behavior Quality Metrics

To gauge evolved gait quality-diversity per method (con-
troller, map-size coupling), we measured maximum behavior
quality (gait speed), and computed the Quality-Diversity (QD)
score [39] per map for the best performing gait (for a given
damage scenario). The QD score was calculated as the overall
quality (task performance) in filled cells within a map corre-
sponding to the highest performing behavior (gait) for a given
run, and the average QD score computed over 20 runs. A high
average QD score indicates controllers yield a high average
behavioral diversity (gait types) and quality (gait speed).

IV. RESULTS AND DISCUSSION

MAP-Elites was run for 20 runs (40 million evaluations per
run) per controller type and map-size (5k, 10k, 20k and 40k),
and average maximum gait speed (Section [lII-A]) computed

Reference CPG SUPG NEAT HyperNEAT

QD Score 0.52 0.15  0.70 0.89 0.75
Map-size Sk Sk Sk Sk 5k

QD Score 0.61 0.10  0.72 0.90 0.65
Map-size 10k 10k 10k 10k 10k
QD Score 0.55 0.11  0.61 0.78 0.68
Map-size 20k 20k 20k 20k 20k
QD Score 0.57 0.19 0.65 0.74 0.69
Map-size 40k 40k 40k 40k 40k

per leg failure scenario. For all results, Kolmogorov—Smirnov
normality tests with Lilliefors correction [40]] indicated
non-parametric data. Mann—Whitney U statistical tests [41]]
were then applied in pair-wise comparisons with Effect
Size [42]] treatment. Figure [I] presents box-plots of average
maximum task performance (gait speed) per controller per
damage scenario (SO—S4, Table [MI). Figure [I] illustrates that
for all leg-damage scenarios (Table [[), the NEAT controller
(map-size: 10k) yielded highest average gait quality (0.68 of
maximum gait speed, Figure [I). Figure [2] presents QD maps
(computed over 20 runs) for the highest quality (fastest) gaits
across damage scenarios (S1—S4, Table evolved by IT&E
and Map-Elites per controller. Gait diversity is indicated by
filled niches (shaded regions) and color intensity represents
gait quality. Map-sizes yielding gaits with the highest quality-
diversity are: 10k, 40k, 10k, 5k and 10k for the Reference,
CPG, NEAT, HyperNEAT and SUPG controllers, respectively.

Figures [I] (average gait quality), [2] (average quality-
diversity) indicate, the highest quality gaits across leg-damage
scenarios, were yielded for small (10k) map-sizes. Each



Reference Controller map - 10k niches

CPG Controller map - 40k niches

SUPG Controller map - 10k niches
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Fig. 2: Average (20 runs, all leg-damage scenarios) QD maps for fittest gaits using: (top-left—bottom-right) Reference, CPG,
SUPG, NEAT, HyperNEAT controllers (map-size for each indicated). Gait diversity is indicated by niches filled. Gait guality
is indicated by color intensity (lighter shade: higher quality gaits, darker shade: lower quality gaits).

controller type evolved using 5K, 10K map-size yielded
significantly higher (p < 0.05) average gait quality compared
to controllers evolved using larger (20k, 40k) map-sizes
across leg-damage scenarios. The exception was the CPG
evolved with a 40k map-size. However, the CPG yielded a
significantly lower (p < 0.05) average gait quality compared
to other controllers (Figure[T). This is consistent with previous
results [[12]], [33], attributing increased selection pressure and
higher gait quality given fewer search space niches and thus
lower gait quality given more search space niches.

Average QD maps per controller type and leg-damage
scenarios (Figure [2) further support the benefits of MAP-Elites
controller evolution using small map-sizes (Figure [I). The
overall highest average QD score (0.90 for NEAT, map-size:
10k, Table [IM) was significantly higher (p < 0.05) than
average QD scores for comparative controllers for map-sizes:
5k, 20k, 40k (Table . NEAT evolved controllers using these
larger map-sizes still yielded significantly higher (p < 0.05)
average QD scores compared to other controllers evolved with
the same map-sizes (Table [II). For the given leg-damage
scenarios, this supports the suitability of NEAT evolved
controllers and MAP-Elites behavior diversity maintenance
using small map-sizes. Supporting the benefit of small

maps-sizes in Map-Elites behavioral diversity maintenance,
the Reference, SUPG and HyperNEAT controllers similarly
yielded their highest average gait quality when coupled with
10K map-sizes (5K for HyperNEAT). Furthermore, QD maps
(Figure indicate that if the map-size is too small then
this inhibits the discovery of consistently high-quality and
adaptable gaits across leg-damage scenarios. The exception
was HyperNEAT (highest QD score overall for a 5k map-size,
Table m) All other controllers evolved with 5k map-size
yielded significantly lower (p < 0.05) average QD scores.
Results thus indicate specific map-sizes mitigate the behavior
space exploitation versus exploration trade-off, highlighting a
relationship between direct controller encoding, map size and
controller adaptability across damage scenarios.

Direct controller encoding benefits are also evidenced by
comparing QD search efficacy of NEAT versus HyperNEAT
evolved gaits, across leg-damage scenarios. Given the QD
maps generated for the highest quality NEAT and HyperNEAT
evolved gaits (Figure [2), one observes visible gaps (white-
space) in the search-space coverage of HyperNEAT despite
using a smaller map-size (bk) compared to NEAT (10k) for
the same damage scenarios. Comparing the search space
coverage of the highest quality Reference, CPG and SUPG



controllers, we observe lower quality-diversity (fewer niches
filled and darker shading per niche, Figure for the QD
maps corresponding to gaits evolved by these controllers.
This observed lower quality-diversity of the Reference, CPG
and SUPG controllers is also supported by the significantly
lower QD scores (p<0.05) of these controller gaits versus the
NEAT gait (Table [[I). Thus NEAT’s direct encoding evolution
coupled with Map-Elites behavioral diversity maintenance is
suitable for discovery of sensory-actuator patterns (irregular
but coordinated leg movements) with high quality gaits for all
damage scenarios. Behavioral diversity maintenance benefits
are also indicated by NEAT’s full coverage of the QD-map
(Figure [2) and the highest average QD score (Table [ITI).

This contrasts to related work [7]], [L1], [20] indicating
HyperNEAT’s indirect controller evolution (with Map-Elites
behavioral diversity maintenance) affords discovery of highly
adaptable gaits. However, this considered HyperNEAT’s
indirect encoding evolution beneficial for adapting gait
regularity in legged robots [24], [43], [44] given regular
tasks, where robots had no (leg) damage. Whereas, our results
extend work on direct versus indirect controller evolution for
legged robot adaptation [45]] across regular (no leg-damage)
and irregular (leg-damage) scenarios. We define regularity
versus irregularity in-line with work on regularity of structure
compressibility (reducible repeating components) [46]] and
symmetry [47]. Specifically, we define gait adaptation as
regular, given hexapod symmetry: equal numbers of legs
along the hexapod’s horizontal axis (spine). Similarly, the
task is irregular given an unequal number of legs along
the hexapod’s spine. Thus, we define irregularity in these
gait adaptation tasks as the number of disabled legs, where
irregularity increases with leg-damage (Table [[I), and the
hexapod had to adapt its gait to asymmetrical movement.

Whereas related work leveraged HyperNEAT’s capability
to exploit task-based geometric properties [18], [24], [43],
[44] such as symmetry and regularity in adapted locomotion,
in this case HyperNEAT’s core benefits were not suitable for
evolving behavioral irregularities necessary to generate stable
gaits on irregular damage scenarios. Similarly, results indicate
that parameterized controllers (Reference, CPG and SUPG:
Sections [[I-AHII-E), evolved with Map-Elites behavioral
diversity maintenance, were ineffective for producing gaits
adaptable across leg-damage scenarios (Figures [I] [2). Similar
to HyperNEAT’s evolutionary design method, this is theorized
to result from such parameterized controllers being specifically
designed produce rhythmic body movements using artificial
neuron based central pattern generators that act as nonlinear
oscillators to produce stable gaits via coordinated motor-
neuron oscillations [48]]. These parameterized controllers
exploit robot morphological symmetry to produce cyclic gait
(leg-actuator) patterns to generate a stable and fast gaits [[12]].
However, such benefits are diminished due to the irregular
leg-damage scenarios (Table [l), and the irregular gaits
required for high task performance (Section [[II-A).

This study presents two key contributions. First, the impact
of the map-size parameter in behavioral diversity maintenance
(Section [[I-F)), coupled with controller evolution (gait adapta-
tion) across leg-damage scenarios. Small map-sizes (10k), set
as a Map-Elites behavioral diversity maintenance parameter,
were beneficial for evolving gaits across leg-damage scenarios
(Table [M). Results also demonstrated that too small or too
large of a map-size negatively impacts the task performance of
adapted gaits generated across leg-damage scenarios. Second,
NEAT’s direct controller encoding was suitable for evolving
asymmetrical gaits on irregular leg-damage scenarios (Table
[, and thus the potential suitability of direct-encoding evo-
lution and behavioral diversity maintenance for generating
gaits that are suitable adaptations to robotic (morphological)
damage. The adaptability of NEAT evolved controllers (with
all map-sizes), was supported by the significantly higher task
performance of adapted gaits across leg-damage scenarios.
A key overall contribution is thus that evolving directly en-
coded ANN controllers in company with behavioral diversity
maintenance using specifically (small) map-sizes mitigates the
exploitation versus exploration trade-off in the evolutionary
search for suitably adapted irregular gaits.

V. CONCLUSION

We evaluated the evolution of Single Unit Pattern Generator
(SUPG), Central Pattern Generator (CPG) and direct (NEAT)
and indirect (HyperNEAT) controller encodings, using Infel-
ligent Trial and Error (IT&E) and Map-Elites to maintain
behavioral diversity in evolved hexapod gaits. We evaluated
the efficacy of these controller encodings on various irregular
gait adaptation tasks (leg-damage scenarios). Results indicate
that overall small Map-Elites maps-sizes coupled with a direct
ANN controller encoding (NEAT) elicits maximal average
task performance across a range of leg-damage scenarios.
The core contribution of these results is two-fold. First, that
use of behavioral map-sizes that are too small or too large
of a map-size is disadvantageous to the evolutionary search
for suitable gaits (adapted to leg-damage). Second, NEAT’s
direct controller encoding was more suitable, compared to
comparative indirectly coded and parameterized controllers,
for evolving asymmetrical gaits in response to leg-damage.
Overall results indicate potential for the coupling of direct-
encoding evolution and behavioral diversity maintenance given
robotic controller damage recovery tasks. Ongoing work is
investigating the impact of lifetime learning coupled with
artificial evolution [49] on gait adaptation across complex task
environments [50] for automating robot damage recovery with
the objective of achieving self-sustaining robotic systems [51]].
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