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Abstract—Behavioral heterogeneity yields problem solving
benefits in biological collective behavior systems such as insect
colonies and human societies and in artificial collective behavior
systems such as distributed computer networks and swarm-
robotics systems. In this study, we investigate comparative
methods for two-step collective behavior evolution designed to
encourage the evolution of behavioral diversity in swarm robotic
applications. Specifically, we investigate behavioral diversity evo-
lution given pre-evolved behaviors in collective behaviors that
are effective across increasingly complex and difficult collective
herding task environments. Results indicate that a minimal com-
plement of pre-evolved (lower task-performance) collective herd-
ing behaviors was suitable for achieving high task performance
across all environments and task difficulty levels. Results support
the efficacy of the two-step approach for evolving behaviorally
heterogeneous groups in collective behavior tasks that benefit
from groups comprising various complementary behaviors.

Index Terms—Swarm-robotics, Behavioral Diversity

I. INTRODUCTION

An open issue with evolving behaviors in swarm-robotic
systems is ensuring that the evolutionary design method
produces behavioral heterogeneity in collective behaviors
sufficient for problem-solving across complex tasks [1].
Behavioral diversity in collective behaviors, emerging in
response to changing task environments have demonstrated
benefits across swarm-robotic applications [2]–[9]. Various
evolutionary diversity maintenance methods, including novelty
search [10] and quality-diversity [11] methods have elicited
behavioral diversity in evolving collective swarm-robotic
behaviors. Novelty search generates sets of behaviorally
diverse controllers, where evolved controllers are optimized
for behavioral diversity instead of task specific behaviors,
meaning behavior repertoires evolved by novelty search task-
agnostic [12]. Quality diversity [11] combines the benefits
of novelty search with evolutionary directed search [13],
[14]. For example, Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites) [15] evolves repertoires of behaviorally
diverse controllers according to user defined behavioral
characteristics. MAP-elites has been applied to evolve various
behaviorally diverse, high performance collective behaviors
for various swarm-robotic tasks [8], [9], [16]–[18].

Since novelty search and quality-diversity methods produce
repertoires containing various evolved behaviors, recent work

has focused on automating behaviorally diverse swarm-
robotic group design via selecting complements of behaviors
from pre-evolved behavioral repertoires. Such methods
attempt to boost collective behavior efficacy via optimizing
behavior allocations in groups to quickly adapt swarm-robotic
behaviors to changing task environments. For example, [19]
proposed an automated collective behavior design approach
where repertoires of Artificial Neural Network (ANN)
modules (diverse low-level behaviors) were automatically
generated using a quality-diversity evolutionary algorithm
[11]. The authors introduced the Nata method (an instance of
AutoMoDe [20]), to automatically generate probabilistic Finite
State Machines (FSMs), where states were selected from
the repertoire of ANN controllers and transition conditions,
selected from rule sets specific to the swarm-robotic platform.
The behavioral repertoire and sets of transition rules were
automatically generated a priori and FSM controllers were
assembled from behavioral modules and transition rules using
the irace optimizer [21]. The authors demonstrated Nata for
automating collective behavior design for aggregation and
foraging tasks in physical swarm-robotic systems.

Others have demonstrated swarm-robotic controllers for
multiple tasks, where such controllers dynamically switch
between tasks to accomplish complex collective behaviors, via
selecting between diverse behaviors in MAP-Elites evolved
repertoires of behavior primitives [17]. MAP-Elites has
been applied to evolve repertoires of genetic programming
trees, which constitute behavioral primitives combined
into a single swarm-robotic controller (complete behavior
tree), suitable for solving a collective foraging task [18].
Mkhatshwa and Nitschke [9] applied the MAP-Elites based
environment driven quality-diversity method [6] to co-evolve
suitable degrees of behavior-morphology diversity to boost
swarm-robotic task performance across increasingly complex
collective gathering tasks. The authors demonstrated the
benefits of behavioral diversity for maintaining a consistently
high quality collective behaviors as collective behavior task
difficulty increased.

Other approaches to evolving diverse behaviors in swarm-
robotic systems includes multi-objective optimization [22] and
surprise minimization [7]. In the former case, evolutionary



multi-objective optimization was applied to evolve a diverse
set of behaviors via encouraging the evolution of behaviors
that encapsulated trade-offs associated with optimizing for
multiple task objectives. The authors demonstrated that their
evolutionary multi-objective optimization method evolved
diverse behaviors suitable for achieving high task performance
for a flocking and cooperative swarm-robotics task [22]. In
the latter case, the emergence of diverse swarm-robotic
collective behaviors was driven by a fitness function that
minimized surprise (maximized prediction accuracy). Each
robot in the swarm used an actor-predictor pair of ANN
controllers. Direct selection pressure from minimizing
surprise was applied to the predictor ANN, while the actor
ANN received indirect selection pressure from its predictor
pairing. Behaviorally diverse collective behaviors emerged as
a by-product of surprise minimization, with aggregation task
performance comparable to that evolved by novelty search [7].

However, methods evolving ensembles of diverse behaviors
that are further evolved into composite collective behaviors
have received relatively little attention [8], [18]. This study ad-
dresses two research objectives. First, to demonstrate the col-
lective herding task-performance benefits of behavior alloca-
tion evolution over direct behavior evolution. Second, to ascer-
tain a suitable method for evolving behaviorally heterogeneous
groups across increasingly difficult collective herding (sheep-
dog) tasks. To address this second objective, we evaluate
two methods: Allocate SSGA Heterogeneous (Section II-C3)
and Allocate MAP-Elites Heterogeneous (Section II-C4). Each
method uses behavior allocation evolution meaning collective
behaviors in groups of dog robots are evolved as composites
from repertoires of pre-evolved behaviors (section II).

II. METHODS

This section describes the dog and sheep agent controllers
(Sections II-A, II-B), evolutionary methods to evolve dog
collective behaviors (Section II-C) and the collective herding
task environment and objective function (Section II-D).

A. Evolved Agents: Dogs

Dogs use fully connected feed-forward Artificial Neural
Network (ANN) controllers (tanh activation functions) adapted
with the SHOM and MHOM method (Sections II-C1, II-C2)
for the collective herding task. Dogs had an array of proximity
sensors positioned about a circular periphery to detect the
nearest object type (dog, sheep and wall) within a given range
and Field Of View (FOV). Dog controllers comprised nine
sensory input nodes, 10 hidden nodes and two motor outputs,
corresponding to 110 evolvable connection weights (Table I).
Each sensory input used distance and angle readings from
three proximity sensors (one per object type), and distance
and angle readings from a target zone (Section II-D) sensor.
Distance values were normalized in the range [0.0, 1.0], where
0.0 denotes undetected and 1.0 denotes an object is as close
as possible to the dog. Angle values were also normalized
to [-1.0, 1.0], where -1.0 corresponds to -180 degrees and

1.0 corresponds to +180 degrees. The motor output values
indicated the dog’s translation and rotation from its current
position. The translation value was normalized to [-1.0, 1.0],
where -1.0 was the maximum translation speed backwards
and +1.0 was the maximum forward translation speed. The
dog’s rotation value was normalized to [-1.0, 1.0], such that
-1.0 denoted the maximum rotation speed to the left and +1.0
denoted the maximum rotation speed to the right.

B. Heuristic Agents: Sheep

Sheep used a pre-defined heuristic controller causing them
to wander as a herd. Sheep had the same sensory input and
motor output configuration as the dogs (Section II-A), but with
different sensor ranges and FOV values (Table I). The sheep
used a Boids [23] controller to direct collective movement
according to avoidance, coherence and alignment parameter
values in Boids rules (Table I). Avoidance rules used proximity
thresholds for each object type, ordered by priority, so as sheep
first avoid dogs and then avoid the target zone. Coherence
controlled the speed with which sheep moved towards one
other, and alignment controlled the degree to which sheep
followed the average direction of neighboring sheep.

C. Dog Behavior Evolution Methods

The dog ANN controllers were encoded as genotypes of
floating point ANN weight vectors (normalized to the range
[-1.0, 1.0]), that were then evolved by the SHOM or MHOM
methods (Sections II-C1, II-C2). Controller genotypes were
evolved with the fitness objective of optimizing collective
(herding) behavior (Section II-D1). The ASHET and
AMHET methods used archives of already evolved behaviors
(previously evolved by the SHOM and MHOM methods),
where the allocation of behaviors (per dog in the group) was
evolved. Each of the behavior evolution methods (SHOM,
MHOM), and behavior allocation evolution methods (ASHET,
AMHET), are fully described in previous work [8]. For all
methods (SHOM, MHOM, ASHET, AMHET), per generation,
each controller in the population was systematically run and
collective herding fitness assigned (Section II-D1), for three
task trials, where collective herding fitness was averaged
over the three task trials. Each method was run for each of
the simulation task environments: no maze, simple maze,
medium maze and difficult maze for the two difficulty levels:
easy and difficult, where sheep speed equaled and was 1.25
times the dog speed, respectively (Table I).

1) SHOM: SSGA Homogeneous: SHOM used the SSGA
[24] method for dog controller adaptation (collective herding
evolution). The genotype population was randomly initialized,
where each genotype corresponded to one dog ANN controller
and the same controller was copied N times to compose a
(homogeneous) dog group (Table I). Per generation, genotypes
were selected using tournament selection [25] (tournament
size, k=3). Selected genotypes underwent two-point crossover
and Gaussian mutation [25], with given probability (Table I).



(a) No maze (b) Easy maze (c) Medium maze (d) Difficult maze

Fig. 1: Task Environments. No maze and three maze environments of increasing complexity. Target zone at center.

2) MHOM: MAP-Elites Homogeneous: MHOM used
MAP-Elites [15] for collective herding evolution. MHOM
evolved a repertoire of diverse dog behaviors, where behaviors
were defined according to a descriptor containing d user-
defined characteristics, defining a d-dimensional archive,
discretized into b bins. Each behavior was mapped to a
bin according to its descriptor. Each bin retained a single
behavior with the best fitness found thus far for the given
bin (behavioral descriptor value). We defined three behavioral
characteristics: (1) average distance between each dog and
the nearest dog, (2) average distance between each dog
and the nearest sheep, (3) average distance between each
dog and the target zone. Each behavioral characteristics
was normalized to the range [0.0, 1.0], where 0.0 was the
minimum average distance and 1.0 was the maximum average
distance observed. The genotype population was randomly
initialized, where each genotype represented a dog controller
and a given controller was copied N times to derive a
homogeneous dog group. The same selection and variation
operators and parameter settings as used for SHOM (Section
II-C1) were used by MHOM to evolve dog controllers.

3) ASHET: Allocate SSGA Heterogeneous: The ASHET
method uses the population of dog controllers (behaviors)
previously evolved by SHOM (Section II-C1), to evolve a
suitable allocation of behaviors for a (heterogeneous) dog
group. That is, the ASHET objective function is to optimize
the behavioral complement of various evolved dog controllers
(behaviors) in order derive a high task performance dog
group. ASHET uses the final population of dog controllers
evolved by SHOM, where each controller in the population
represents the controller used by a (homogeneous) dog team in
SHOM (Table I). Since the final population of SHOM evolved
controllers are likely to be behaviorally similar given the elitist
SSGA behavior [26], underlying SHOM, we pre-processed
the final generation SHOM population in preparation for
ASHET to evolve a behaviorally heterogeneous group.

Specifically, the final evolved SHOM populations (from
20 runs, Table I) are projected into MAP-Elites archives
based on behavioral characteristics (Section II-C2) for each
genotype. These archives are aggregated into a reference

Behavior Evolution Parameters

Generations per experiment run 150

Trial evaluations per dog group 3

Dog genotype population 100

ANN nodes: Input / Hidden / Output 9 / 10 / 2

MAP-Elites archive: Dimensions / Bins 3 / 729

Crossover / Mutation probability 0.5 / 0.2

Simulation Parameters

Runs per experiment 20

Time steps per trial evaluation 800

Initial agent positions Random

Dog, Sheep group size 20

Sheep speed: Easy / Difficult x1.0 / x1.25

Task environment See Figure 1

Arena size (width × height) 600px × 600px

Target zone radius / Position 100px / Center

Dog proximity sensor: Range / FOV (0px, 100px] / [-90°, 90°]

Sheep proximity sensor: Range / FOV (0px, 50px] / [-180°, 180°]

Sheep object avoidance: Wall/Dog/Sheep 15px / 50px / 5px

Sheep zone avoidance: Radius/Strength 50px / 0.25

TABLE I: Evolution and simulation parameters.

archive comprising the (100, Table I) fittest controllers for
all final generation populations. Using this reference archive,
a new genotype population is initialized. Each genotype
comprises 20 genes (representing a dog group, Table I),
where each gene indicates a specific dog controller. Thus
ASHET genotypes are evaluated as various permutations of
dog controllers, where each controller is allocated from the
reference archive based on its index. Per ASHET generation,
parent genotypes were selected using tournament selection
(k=3). Two-point crossover and uniform integer mutation
[25] operators were applied (with given probability, Table
I), per tournament selection operation to produce offspring
genotypes, constituting the next generation of genotypes.

4) AMHET: Allocate MAP-Elites Heterogeneous: AMHET
also evolves an allocation of already evolved controllers per
dog in a group, except controllers being allocated are pre-
evolved by MHOM. AMHET follows the same method for



allocation evolution as ASHET (Section II-C3). The key
difference is that the final evolved population of controllers
is already contained in a MAP-Elites archive (Section II-C2).
All other parameters are the same as for ASHET (Table I).

D. Task Environment

A 2D bounded environment1 was configured with four
environments of increasing task difficulty: no maze, easy,
medium and difficult maze (Figure 1). The 20 dogs had the
objective of herding a flock of 20 sheep into a central target
zone (Table I). Sheep actively avoid entering the target zone,
unless pursued by a dog (Section II-B). Once sheep enter the
target zone, they are marked as captured. This herding task
was designed so as agents with complementary behaviors can
achieve optimal task performance, and is also a surrogate for
various collective robotics tasks such as search and rescue
and toxic waste disposal [8]. The maze environments enable
us to elucidate the capability of behavior allocation evolution
to evolve group behavior compositions that achieve high task
performance across increasingly complex task environments.

F =

n∑
i=1

(
ci
ti

)
÷ n (1)

1) Dog Fitness Evaluation: Dog controllers were evaluated
according to the number of sheep captured, c, out of all sheep,
t, over a task trial (800 simulation iterations, Table I). A score
of zero corresponds to no sheep captured and one to all sheep
captured. Since sheep positions are randomly initialized, dog
fitness is averaged across n evaluation trials (Equation 1).

III. EXPERIMENTS

Experiments2 evaluated the behavior allocation evolution
methods: AMHET and ASHET (Section II) for collective
(herding) behavior evolution across environments: no maze,
easy, medium, and difficult maze (Table II). The herding task
was varied according to environment complexity (no maze,
simple, medium or difficult maze, Figure 1), and second
according task difficulty. That is, sheep moved at the same
speed as the dogs (easy) or 1.25 times the speed of the
dogs (difficult). Each experiment applied a given behavior
evolution method (AMHET or ASHET) to evolve herding
behavior for easy or difficult task settings. Dog behavior
metrics were maximum fitness (sheep captured), QD score
(behavior quality versus diversity), and unique behaviors
(minimal behavior set). The QD score measures quality
versus diversity and is the sum of the highest fitness values
per grid bin Qi, as

∑i=m
i=1 Qi [28]. ASHET and AMHET

used behavioral archives previously evolved by SHOM and
MHOM (respectively). Each behavior evolution (SHOM,
MHOM) or behavior allocation evolution (ASHET, AMHET)
experiment evolved dog group behavior (SHOM, MHOM) or
an allocation of previously evolved behaviors in a dog group
(ASHET, AMHET). Each experiment ran a given method,

1Simulated with the Roborobo! multi-agent simulator [27].
2Source code: https://anonymous.4open.science/r/cec25-sheepdogai

environment, and task difficulty for 150 generations (Table I).
Per generation, dog and sheep groups were run in three task
trials, where each trial comprised 800 simulation iterations
and initialized the dogs and sheep in different initial positions
in a given environment with a given task difficulty. Table I
presents experiment and method parameter values.

IV. RESULTS AND DISCUSSION

This discussion compares two methods for allocation
evolution, ASHET and AMHET (Section II), for evolving
suitable behavioral compositions such that an effective
collective herding behavior emerges across increasingly
complex environments: no maze, simple, medium, and
difficult maze for easy and difficult task settings (Section
III) results. The efficacy of the ASHET versus AMHET
methods is evaluated according to averages (over 20 runs)
of the metrics: maximum fitness, QD score and unique
behaviors, in the evolved collective herding behavior of the
dog group. We tested for statistically significant difference
between comparative results sets using Mann-Whitney U [29]
(p<0.05) in pair-wise comparisons. Levene’s test [30] was
also applied to ensure assumed equal variances.

First, in order to establish the suitability of behaviorally
heterogeneous groups for achieving a high task performance in
the collective herding task (Section II-D), we executed a series
of benchmark experiments. The aim was to illustrate that,
across environments and task difficulty levels, behaviorally
homogeneous groups were unable to achieve an average
maximum fitness comparable to behaviorally heterogeneous
groups. For each environment and task difficulty setting, we
extracted the behavior (evolved controller) comprising the
largest group of unique behaviors from the fittest ASHET
and AMHET evolved groups, and replicated the extracted
behavior 20 times to derive a behaviorally homogeneous
benchmark group. This benchmark group was then run in all
environments, for the easy and difficult task settings, where
average maximum fitness was computed over 20 runs (Figure
2). Pair-wise statistical tests between the average maximum
fitness results of ASHET and AMHET evolved groups versus
the benchmark group, indicate, for all environments and
both easy and difficult task settings, that both ASHET and
AMHET evolved groups significantly outperform (p<0.05)
the benchmark group. This supports our hypothesis that
behaviorally heterogeneous teams are most suitable for
achieving high task performance across all given collective
herding environments and task difficulty settings.

To support our first research objective (Section I), we next
compare results of our behavior allocation evolution (AMHET,
ASHET) versus direct evolution methods (SHOM, MHOM), in
order to demonstrate the effectiveness evolving complements
of various behaviors per group for given environments and
task difficulty settings. Figure 4 presents the average maximum
fitness for groups evolved by ASHET and AMHET, across

https://anonymous.4open.science/r/cec25-sheepdogai


Method Environment
Task Difficulty (Sheep versus Dog Speed)

Easy Difficult

Allocation Evolution
No Maze ASHET, AMHET ASHET, AMHET

Simple Maze ASHET, AMHET ASHET, AMHET

Medium Maze ASHET, AMHET ASHET, AMHET

Difficult Maze ASHET, AMHET ASHET, AMHET

TABLE II: Experiment Setup. Allocation evolution variants: ASHET, AMHET, are used for evolving collective herding in
no maze, simple, medium and difficult maze task environments for varying task difficulty (Sheep speed).

Fig. 2: Benchmark Behavior Evolution. To illustrate the benefit of heterogeneous groups, the behavior (evolved controller)
comprising the largest group of unique behaviors was extracted from ASHET and AMHET evolved groups across environments
and difficulty settings, replicated 20 times and run as a homogeneous group in the same environments for easy and difficulty
task settings. Average maximum fitness (over 20 runs) results for: no maze (cyan), simple (green), medium (blue), and difficult
(red) mazes for easy (Sheep and dog speed the same, left) and difficult (Sheep speed 1.25 times dog speed, right) task settings.

all environments, for the easy and difficult task settings.
For comparison, Figure 3 presents average maximum fitness
results from direct behavior evolution using the SHOM and
MHOM methods (Sections II-C1, II-C2), to evolve behav-
iorally homogeneous groups across all environments and for
easy and difficult task settings. Pairwise statistical tests be-
tween average maximum fitness results of the direct evolution
(SHOM, MHOM) and behavior allocation evolution (ASHET,
AMHET), indicate for all environments, easy and difficult task
settings, that both behavior allocation methods significantly
out-perform both direct behavior evolution methods. The su-
perior performance of ASHET and AMHET was in terms of
both average maximum fitness and QD score (Figures 3, 4).

This supports our first objective (Section I), demonstrating
task performance benefits of behavior allocation evolution
over direct behavior evolution. Since we established the
efficacy of behavior allocation evolution and the suitability
of behaviorally heterogeneity generated by ASHET and
AMHET, we next focus on the suitability of ASHET
and AMHET across all environments and task difficulty
settings. To address our second objective (Section I), we
compare the efficacy of ASHET versus AMHET in terms of

average maximum fitness, QD score, and unique behaviors
(Figures 4, 5). Across all environments, for the easy and
difficult task difficulty settings, pairwise statistical tests were
applied between ASHET versus AMHET average maximum
fitness, QD score and number of unique behaviors. For all
environments and task settings, the average fitness and QD
score of ASHET evolved groups was significantly higher
than AMHET evolved groups. However, the average unique
behaviors within AMHET evolved groups was significantly
higher than in ASHET evolved groups, for all environments
and task difficulty settings (Figure 5).

The higher average behavior quality of ASHET (versus
AMHET) is supported by significantly higher QD scores
across all environments and task difficulty settings,
highlighting that ASHET was better suited for a more
expansive behavior space search, enabling the evolution of
more diverse and higher quality behaviors (Figure 4). The
overall higher average solution quality (fitness, QD score) of
ASHET evolved groups is theorized to result from effective
and efficient behavior evolution of the SHOM (underlying
ASHET) method, with the given population size and number



Fig. 3: Direct Behavior Evolution (SHOM, MHOM): Average maximum fitness and QD scores for evolved dog groups in:
no maze (cyan), simple (green), medium (blue) and difficult (red) maze, for easy (E) and difficult (D) task settings.

of generations. Whereas, to the detriment of MHOM
(underlying AMHET), MAP-Elites has been demonstrated
as most effective given relatively large evaluation budgets:
number of runs and population (behavioral map) sizes [31].
Thus, given this limited evaluation budget, ASHET behavior
allocation evolution effectively leveraged SHOM evolved
behaviors to evolve suitable compositions of group behaviors.
The efficacy of ASHET’s underlying direct evolution method
(SHOM), is also supported by the lower number of unique
behaviors in ASHET versus AMHET evolved groups across
environments and task difficulties. That is, ASHET evolved
a more diverse, higher quality and minimal complement of
behaviors for all environments and task settings (Figure 5).

The higher average fitness, QD score and lower number
of unique behaviors (Figures 4, 5), indicates a two-fold ben-
efit of ASHET. First, that SHOM direct behavior evolution
(underlying ASHET) was suitable for evolving sufficiently
diverse (addressing the collective herding task requirement
for behavioral heterogeneity), high fitness behaviors. Second,
ASHET was better suited for allocating minimal behaviors
necessary to achieve the highest average fitness overall. The
efficacy of ASHET as a two-step collective behavior evolu-
tion method (evolving dog behaviors with SHOM and then

evolving specific behavior allocations within dog groups), is
also supported by lower average maximum fitness and QD
scores of SHOM direct evolution, for all environments and task
settings (Figure 3). Thus, per environment and task setting,
ASHET effectively, given pre-evolved (low fitness) behaviors,
evolved behavior allocations into complements of high fitness
performance collective herding behaviors.

These results highlighting the benefits of ASHET behavior
allocation evolution are also supported by related work [8].
However, this study further demonstrates behavior allocation
evolution (ASHET) is most effective for producing minimal
behavior compositions in groups yielding consistently high
task performance across various environment types and task
difficulty levels. More broadly, these results support related
work on evolving collective behaviors, with results indicating
the benefits of behavioral diversity across increasingly com-
plex collective behavior task environments [6], [8].

V. CONCLUSIONS AND FUTURE WORK

This study investigated comparative methods for behavior
allocation evolution for deriving a composition of behaviors
suitable for forming a collective herding behavior that is
effective across increasing environment complexity and task
difficulty. Four environment types of increasing complexity



Fig. 4: Behavior Allocation Evolution (ASHET, AMHET): Average maximum fitness and QD scores for evolved dog groups
in: no maze (cyan), simple (green), medium (blue) and difficult (red) maze, for easy (E) and difficult (D) task settings.

Fig. 5: Behavior Allocation Evolution (ASHET, AMHET): Average Unique behaviors comprising evolved dog groups in:
no maze (cyan), simple (green), medium (blue) and difficult (red) maze, for easy (E) and difficult (D) task settings.

were tested: no maze, simple maze, medium maze, and
difficult maze. For each environment type, two levels of
task complexity were tested: easy (dogs and sheep moved
at the same speed) and difficult (sheep moved 1.25 faster
than dogs). We first established that behavioral heterogeneity
is beneficial across all environment types and task difficulty

settings for this collective herding task. Results comparing
two behavior allocation evolution methods indicated that a
minimal complement of pre-evolved (lower task-performance)
behaviors was suitable for achieving high task performance
across all environments and task difficulty levels. These results
support the efficacy of the two-step approach for evolving be-



haviorally heterogeneous groups across increasingly complex
collective behavior task environments. Future work will vari-
ous evolutionary machine-learning methods [32] as behavior
allocation approaches for addressing the automated swarm-
robotic behavior design problem [33], [34].
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