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ABSTRACT
Sunshades integrated into building facade design critically influence
the building’s thermal conditions, natural lighting, energy usage,
and occupant comfort. However, heuristic designs often neglect
the multi-faceted trade-offs among these objectives. This study
compares two multi-objective evolutionary algorithms, NSGA-II
and MO-CMA-ES, in optimizing five performance metrics: thermal
comfort, Useful Daylight Illuminance (UDI), energy consumption,
outside view obstruction, and cost. We integrate annual energy and
daylight simulations, incorporating real-world weather data from
Cape Town, South Africa, and Nairobi, Kenya. Results indicate that
both MO-EAs generate Pareto-optimal sunshades exceeding the
performance of five traditional designs for all metrics. In cooler
climates, the best solutions featured upward-angled fins to admit
beneficial solar gain, while warmer climates favored configura-
tions blocking high-angle sunlight. These findings underscore the
importance of climate-specific optimization for identifying cost-
effective, occupant-friendly building designs to balance daylight
management and energy efficiency.
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1 INTRODUCTION
Sunshades are essential in regulating solar gains, glare, and daylight
in buildings, yielding lower energy consumption and aligning with
ASHRAE1 90.1 guidelines [1]. However, traditional shading designs
rely on heuristic methods that overlook vital trade-offs across oc-
cupant comfort, cost, and exterior views [2]. Evolutionary methods
have been applied to numerous architectural applications in what is
popularly known as evolutionary design [3]. Such applications in-
clude energy consumption optimization for building climate control
[4], structural design [5], and floor-plan layout design [6]. With no-
table exceptions [7, 8], the evolutionary design of optimally shaped
building facades is less explored in evolutionary architectural de-
sign applications [9]. This is especially the case for multi-objective
evolutionary design applied to optimize facade (sunshade) design
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given competing objectives. For example, multi-objective optimiza-
tion systematically explores such competing objectives, yet existing
methods frequently omit cost or view preservation [10], and ad-
vanced methods like NSGA-II [11] and MO-CMA-ES [12] remain
unused in automated sunshade design [13].

Traditional sunshade (Figure 1, left) design relies on heuristic
methods, where designers iteratively modify overhangs or louvers
to reduce solar gain and glare [2]. While suitable for a few ob-
jectives, such design approaches lack systematic frameworks for
balancing multiple competing objectives associated with modern
commercial (office) building design, including energy use, occupant
comfort, and outside-view aesthetics. This has resulted in limited
design variability and reduced design effectiveness given varying
climates [13]. Since effective building design must satisfy compet-
ing objectives, such as minimizing material cost and maximizing
structural integrity [8], multi-objective optimization (MOO) is a
suitable approach.

NSGA-II [11] and MO-CMA-ES [12] are well-established evo-
lutionary MOO methods. In building applications, NSGA-II has
been applied to effectively balance glare, cooling load, and nat-
ural lighting [14]. MO-CMA-ES extends the CMA-ES method to
multi-objective problems, adapting covariance matrices to navi-
gate complex, high-dimensional solution landscapes [12]. However,
MO-CMA-ES has not been applied to architectural design applica-
tions [13], even though the intricate geometry-climate relationships
of building facade design (for example, mandating maximal and
minimal sunlight in winter versus summer months [15]), makes
MO-CMA-ES an ideal evolutionary design method. In terms of
sunshade design, MOO uses task-performance objectives such as
thermal comfort, daylight, for example, Useful Daylight Illuminance
(UDI), energy consumption, cost, and view obstruction [16, 17]. This
enables architects to suitably weigh priorities and select designs
best suited to project constraints [10, 18].

Although some heating, ventilation, and air conditioning studies
have integrated multiple objectives, few simultaneously address
cost, outside views, and occupant comfort in sunshade design [10].
This study applies NSGA-II and MO-CMA-ES to optimize five ob-
jectives: thermal comfort, UDI, annual energy use, cost, and out-
side view, for evolutionary sunshade design across various climate
types. Climate data from Cape Town (Mediterranean) and Nairobi
(tropical highland) capture seasonal dynamics for a simulated year,
integrating ASHRAE considerations [19]. This study’s key contri-
bution is an initial demonstration that MOO evolutionary design is
a suitable and currently under-used method for generating novel
designs that out-perform heuristic designs across multiple objec-
tives [20]. Despite the demonstrated benefits of MOO optimization
[10, 13] in architectural design, this is the first application of MOO
evolutionary methods to building facade (sunshade) design.
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Figure 1: From far-left: Traditional heuristically designed window sunshades: Horizontal overhang, overhang with three louvers,
sloped 10 fins, steeper sloped overhang, vertical louver with four fins. Inner-right: Example evolved sunshade (Cape Town)
from final NSGA-II Pareto front, with upward-angled fins to admit winter sun. Far-right: Example sunshade (Nairobi) from
final MO-CMA-ES Pareto front, featuring downward-angled fins to reduce solar heat gain.

2 METHODS AND EXPERIMENTS
We simulated2 annual sunlight on a single windowed building
facade using parametric simulation packages to model internal
building temperatures given varying sunlight [21, 22]. Evolution-
ary MOO methods (NSGA-II [11], MO-CMA-ES [12]) were applied
to adapt sunshade design to satisfy objectives for energy use, com-
fort, daylight, cost, and view preservation, given varying sunlight
for two geographic locations. We simulated office spaces in Cape
Town, South Africa, and Nairobi, Kenya, to capture different cli-
mates (Mediterranean and tropical highland conditions, respec-
tively). Each officemeasured 3m x 4m x 3m (width x height x length),
with one window (1.3m x 1.7m x 0.2m). Each simulation evolved a
fin geometry for [1, 10] fins on the building facade. The computa-
tional package Radiance [22] computed annual UDI, factoring in
solar angles, cloud cover, and shading geometry, given climate data
for 2023 Cape Town and Nairobi2. The degree of sunlight that per-
meated through the window was calculated as a percentage of the
maximum. The EnergyPlus package [21] was applied to compute
annual heating and cooling loads based on hourly temperature and
humidity, and cost was calculated as total sunshade volume.

An experiment comprised applying NSGA-II or MO-CMA-ES
for multi-objective sunshade design. Evolutionary design varied
the number of fins, angle, depth, offset, and contour angle of sun-
shademanifolds, enabling both conservative and aggressive shading
strategies. Each experiment initialized a population of randomly
generated sunshades within given design constraints: fin numbers,
angles, depths, and offsets (Table 1). Each experiment executed 10
runs, where Pareto optimal solutions were selected from all runs.
To demonstrate the efficacy of evolved sunshades, we compared
NSGA-II and MO-CMA-ES evolved sunshade designs with five tra-
ditional sunshade designs [23], presented in Figure 1). Since these
designs were fixed, one experiment with a pre-designed sunshade
entailed simulating the impact of sunshade on the five metrics:
energy use, comfort, daylight, cost, and view preservation, given
annual sunlight simulation for a given location.

One run of NSGA-II or MO-CMA-ES comprised 100 generations,
with a population of 100 individuals, a 0.1 mutation rate and elitism
and crowding [11] parent selection (Table 1). Random offspring
injection [24] helped sustain population diversity. NSGA-II sorted
candidate solutions via non-dominated fronts with crowding to
preserve diversity [12]. Offspring were generated via crossover and

2https://anonymous.4open.science/r/SunShadeOptimization/

mutation and combined with parents for elitist selection, ensuring
improvement toward the Pareto front. MO-CMA-ES adapted a co-
variance matrix to capture variable interactions, refining directed
search over time. Such elitist and non-dominated sorting methods
retain top-performing solutions while promoting exploration [11].
Table 1 presents an overview of simulation and evolutionary design
method parameters. NSGA-II and MO-CMA-ES were applied with
the following five optimization objectives:

(1) Minimize energy consumption: Total heating and cooling
loads, reflecting demands for maintaining indoor tempera-
tures under real-world weather data.

(2) Maximize thermal comfort: Derived from occupant comfort
metrics [19], where under- or over-shading directly affects
heating and cooling demands.

(3) Maximize UDI: The proportion of occupied hours within a
comfortable daylight range [22].

(4) Maximize outside view preservation: Unobstructed total area
of the window.

(5) Minimize cost: Total sunshade volume and thus equivalent
material (construction) cost.

3 RESULTS AND DISCUSSION
Figure 2 presents results for NSGA-II and MO-CMA-ES with respect
to the task-performance metrics: First: UDI, where higher values are
desired in building design, second: thermal discomfort, given as the
percentage of office hours outside comfort thresholds where lower
is more desirable for building occupants, third: view obstruction,
defined as the percentage of the window area covered by designed
sunshades, where lower coverages are desirable, fourth: cost, indi-
cating sunshade manufacturing cost, and fifth: energy consumption,
indicating heating and cooling energy loads given varying degrees
of sunlight blocked by evolved sunshades.

For ease of comparison, all metrics have been normalized, and
the Kruskal–Wallis test with Bonferroni correction [25] (p<.05), ap-
plied to comparative result sets. Specifically, comparisons between
NSGA-II and MO-CMA-ES, and between each MOO method and
pre-designed sunshades (Figure 1), with respect to the five task-
performance objectives. In Figure 2, the task performance of the
best performing (of the five) heuristically designed sunshades is
presented as a red diamond per geographic location. Figure 1 (right)
presents examples of Pareto optimal sunshades evolved by NSGA-II
and MO-CMA-ES for simulated office building spaces in Cape Town
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Table 1: Simulation and Experiment Parameters

Simulation Environment
Locations Cape Town (South Africa), Nairobi (Kenya)
Office dimensions Width: 3m, Height: 4m, Length: 3m
Window dimensions Width: 1.3m, Height: 1.7m, Depth: 0.2m
Simulated timeline 1 year
Number of runs 10
Fins on facade [1, 10], increments of 1
Fin Angle [0, 90] Degrees, increments of 5
Fin Depth [0.05, 0.5] Meters, increments of 0.05
Fin Offset [0.01, 0.1] Meters, increments of 0.01
Fin contour angle [0, 360] Degrees, increments of 5

Evolutionary Design Settings
MOO Methods NSGA-II, MO-CMA-ES
Generations 100
Population size 100
Offspring Generation Random injection [24]
Mutation rate 0.1
Parent selection Elitism, Crowding [11]

Task Performance Objectives (Metrics)
Energy consumption Annual heating, cooling (EnergyPlus [21])
Thermal comfort Occupant discomfort (EnergyPlus [21])
UDI Aggregated UDI metrics [17]
Preserved view Window area (%) unobstructed by sunshade
Cost Sunshade volume (As portion of: 0.4m3)

and Nairobi. One may observe these Pareto optimal evolved designs
are variations on the established, traditional, sunshade designs, with
similar configurations of fin numbers and angles.

Statistical tests (p<0.05) indicate NSGA-II and MO-CMA-ES
achieved significantly improved values for all objectives (except
view obstruction) compared to traditional designs. Superior UDI
results support the efficacy of evolutionary design for determining
suitable fin angles and dimensions for balanced daylight provision,
compared to the best of the heuristic designs, which tended to
over-shade or under-shade. Similarly, thermal discomfort results
(Figure 2, second from top), measured as a percentage of hours
outside comfort thresholds (Table 1), indicated both MOO method
designs significantly out-performed the effectiveness of traditional
sunshades. Specifically, in Cape Town, cooler ambient conditions
made shading less important but favored upward-angled fins that
captured winter sun, whereas in Nairobi, evolved designs blocked
high-angle solar rays to reduce cooling loads.

This supports the benefits of an evolved design that is adapted to
the climate (sunlight) conditions across various locations. However,
outside view obstruction results (Figure 2, middle), indicate that
the best heuristic design used significantly less window coverage
compared to NSGA-II and MO-CMA-ES evolved designs. Though
this supports the importance of multi-objective evolutionary design
since the traditional sunshades (Figure 1) were designed to be min-
imally obstructive [23], and the best heuristic designs performed
relatively poorly on the UDI, thermal discomfort, view obstruc-
tion, and energy consumption objectives. That is, evolved designs

balanced moderate obstruction with high daylight and comfort
benefits, whereas heuristic designs favored open views at the ex-
pense of thermal or lighting efficiency (Figure 2). Similarly, since
traditional sunshades are designed to be minimally obstructive they
also have a low material volume (cost, Table 1), whereas evolved
designs concurrently satisfied all objectives and as such a higher
sunshade volume (cost) of ≈30% across Pareto optimal designs was
an acceptable trade-off (Figure 2).

In terms of energy consumption results, NSGA-II and MO-CMA-
ES evolved designs yielded a significantly lower energy consump-
tion (for heating and cooling the office space in winter and summer
months) in the tropical highland climate of Nairobi. Whereas, in a
cooler Mediterranean climate (Cape Town), evolved designs yielded
comparable (MO-CMA-ES) or less energy efficiency (NSGA-II) com-
pared to traditional sunshade designs. This is a result of evolved
trade-offs given competing multi-objective optimization, but is also
likely due to the relatively higher levels of annual sunshine in Cape
Town versus Nairobi (Figure 2, bottom).

However, for all objectives, per geographic location, there was no
significant difference between NSGA-II and MO-CMA-ES evolved
designs, indicating that both MOO methods were suitable for this
evolutionary design task, given the five design objectives (Table
1) and the varying environments (geographic climate simulations).
Though importantly, per location for all objectives, except for sun-
shade volume (cost), MOO evolutionary design significantly out-
performed the task-performance of the heuristically designed tra-
ditional sunshades, supporting further work using evolutionary
design and MOO optimization to satisfactorily address the many
competing design objectives and constraints associated with build-
ing design [10, 13].

4 CONCLUSION
This study demonstrated the efficacy of evolutionarymulti-objective
optimization (MOO) methods (NSGA-II and MO-CMA-ES) applied
to building facade (sunshade) design and optimization, compared
to various manually designed sunshades. This efficacy was demon-
strated for simulated building office spaces (and facades) in two
geographic locations (climates) and for five task performance ob-
jectives: thermal comfort, UDI, energy consumption, cost, and view
obstruction. Results indicated that the evolutionary MOO methods
produced Pareto optimal designs that significantly out-performed
the pre-designed sunshades, per location, for four objectives. This
suggests that MOO evolutionary design is an excellent yet under-
utilized automated design method for generating and optimizing
future architectural designs that must conform to many design
objectives and constraints in green building construction across
changing and diverse climates.

Ongoing work is evaluating NSGA-II, MO-CMA-ES and other
MOO evolutionary design methods on a broad range of locations
(climate conditions) to ascertain core sets of design features that
could be applied as the basis of evolutionary MOO design and
optimization of green buildings for diverse climates [26]. Future
work also aims to apply multi-objective evolutionary design meth-
ods to examine the robustness of automated building design and
construction [27] given regional climate data [28].
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Figure 2: Box-plots showing the five performance metrics
from the evolutionary and traditional sunshade designs (best
selected from simulation of all five). Top: UDI, where higher
values are better. Thermal Discomfort: Percentage of office
hours outside comfort thresholds (lower is desired). View
Obstruction: Percentage of window area covered (lower is
better). Cost: Total volume of the sunshade, normalized given
maximum feasible sunshade volume (low volume, thus cost
is desired). Bottom: Energy Consumption, defined as office
space heating and cooling loads (low energy is desired).
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