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ABSTRACT
This study investigates comparative methods for two-step collec-
tive behavior evolution (evolving group behaviors from pre-evolved
behaviors), to encourage the evolution of behavioral diversity in
swarm-robotic applications. Specifically, we investigate behavioral
diversity evolution given pre-evolved behaviors in collective be-
haviors that are effective across increasingly complex and difficult
collective herding task environments. Results indicate that specific
complements of pre-evolved (lower task-performance) collective
herding behaviors was suitable for achieving high task performance
across all environments and task difficulty levels. Results support
the efficacy of the two-step approach for evolving behaviorally
heterogeneous groups in collective behavior tasks that benefit from
groups comprising various complementary behaviors.
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1 INTRODUCTION
An open issue with evolving behaviors in swarm-robotic systems
is ensuring that the evolutionary design method produces behav-
ioral heterogeneity in collective behaviors sufficient for problem-
solving across complex tasks [5]. Behavioral diversity in collec-
tive behaviors, emerging in response to changing task environ-
ments have demonstrated benefits across swarm-robotic applica-
tions [11, 12, 14, 15, 18–20, 26]. Various evolutionary diversity main-
tenance methods, including Novelty Search (NS) [16] and Quality-
Diversity (QD) [23] methods have elicited behavioral diversity in
evolving collective swarm-robotic behaviors. NS generates sets of
behaviorally diverse controllers, where evolved controllers are op-
timized for behavioral diversity instead of task specific behaviors,
meaning behavior repertoires evolved by NS task-agnostic [9]. QD
[23] combines the benefits of NS with evolutionary directed search
[3, 4]. Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
[22] evolves repertoires of behaviorally diverse controllers given
pre-defined behavioral characteristics. MAP-elites has been applied
to evolve various behaviorally diverse, high performance collective
behaviors for various swarm-robotic tasks [7, 10, 11, 20, 21].
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Since NS and QDmethods produce repertoires of diverse evolved
behaviors, recent work has focused on automating behaviorally
diverse swarm-robotic group design via selecting complements of
behaviors from pre-evolved behavioral repertoires. Such methods
attempt to boost collective behavior efficacy via optimizing behav-
ior allocations in groups to quickly adapt swarm-robotic behaviors
to changing task environments. For example, [13] proposed an au-
tomated collective behavior design approach where repertoires of
Artificial Neural Network (ANN) modules (diverse low-level behav-
iors) were automatically generated using a QD evolutionary algo-
rithm [23]. The authors introduced the Natamethod (an instance of
AutoMoDe [8]), to automatically generate probabilistic Finite State
Machines (FSMs), where states were selected from the repertoire of
ANN controllers and transition conditions, selected from rule sets
specific to the swarm-robotic platform. The behavioral repertoire
and sets of transition rules were automatically generated a pri-
ori and FSM controllers were assembled from behavioral modules
and transition rules using the irace optimizer [17]. The authors
demonstrated Nata for automating collective behavior design for
aggregation and foraging tasks in physical swarm-robotic systems.

Others have demonstrated swarm-robotic controllers for mul-
tiple tasks, where such controllers dynamically switch between
tasks to accomplish complex collective behaviors, via selecting
between diverse behaviors in MAP-Elites evolved repertoires of
behavior primitives [7]. MAP-Elites has been applied to evolve
repertoires of genetic programming trees, which constitute behav-
ioral primitives combined into a single swarm-robotic controller
(complete behavior tree), suitable for solving a collective foraging
task [21]. Mkhatshwa and Nitschke [20] applied the MAP-Elites
based environment driven QD method [12] to co-evolve suitable
degrees of behavior-morphology diversity to boost swarm-robotic
task performance across increasingly complex collective gathering
tasks. The authors demonstrated the benefits of behavioral diver-
sity for maintaining a consistently high quality collective behaviors
as collective behavior task difficulty increased. However, methods
evolving ensembles of diverse behaviors, further evolved into col-
lective behaviors have received little attention [11, 21]. We first
demonstrate task performance benefits of behavior allocation evo-
lution over direct behavior evolution and then a suitable method
for evolving behaviorally heterogeneous groups across increasingly
difficult collective herding tasks. This study evaluates two methods:
Allocate SSGA Heterogeneous and Allocate MAP-Elites Heterogeneous
(Sec. 2), where each uses behavior allocation evolution to evolve a
composite of behaviors from repertoires of pre-evolved behaviors.
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(a) No maze (b) Easy maze (c) Medium maze (d) Difficult maze

Figure 1: Task Environments. No maze and three maze environments of increasing complexity. Target zone at center.

2 METHODS AND EXPERIMENTS
2.1 Agents: Dogs and Sheep
Dogs use fully connected feed-forward Artificial Neural Network
(ANN) controllers, with 9 sensory input, 10 hidden, and two mo-
tor output nodes (tanh activation functions). Dog controllers are
evolved with SHOM and MHOM direct evolutions (Sec. 2.2.1, 2.2.2)
for collective herding. Sheep use Boids [24] controllers to direct col-
lective movement according to avoidance, coherence and alignment
parameter values. Sheep had the same sensory-motor configuration
as the dogs, but with different sensor ranges and fields of view. The
dog and sheep controllers are fully described elsewhere [11], and
so are not further described here. Tab. 1 presents the method and
simulation parameters used for the dog and sheep agents.

2.2 Direct Behavior Evolution: Dog
Dog genotypes (110 evolvable connection weights, Tab. 1) are en-
coded as floating point weight vectors (normalized to: [-1.0, 1.0]),
evolved by the SHOM or MHOM methods (Sec. 2.2.1, 2.2.2). Con-
troller genotypes are evolved with the fitness objective of optimiz-
ing collective (herding) behavior. The ASHET and AMHETmethods
use archives of already evolved behaviors (previously evolved by
the SHOM and MHOMmethods), where the allocation of behaviors
(per dog in the group) is evolved. Each of the behavior evolution
methods (SHOM, MHOM), and behavior allocation evolution meth-
ods (ASHET, AMHET), are fully described in previous work [11].
For all methods (SHOM, MHOM, ASHET, AMHET), per genera-
tion, each controller in the population is systematically run and
collective herding fitness assigned, for three task trials. Collective
herding fitness is averaged over the three task trials. Each method
is run for each environment: no maze, simple maze, medium maze
and difficult maze for the two difficulty levels: easy and difficult,
where sheep speed equals dog speed and is 1.25 times the dog
speed, respectively (Tab. 1). A repertoire of diverse dog behaviors
is evolved using MAP-Elites [22] with a 𝑑-dimensional archive, dis-
cretized into 𝑏 bins. Each bin contains fittest behavior evolved thus
far according to behavioral characteristic values. Behavioral char-
acteristics for this task are: (1) average distance between a dog and
the nearest dog, (2) average distance between a dog and the nearest
sheep, and (3) average distance between a dog and the target zone.

2.2.1 SHOM: SSGA Homogeneous. SHOM uses the SSGA [25]
method for dog collective herding evolution. The genotype popu-
lation is randomly initialized. Each genotype corresponds to one
dog ANN controller and the same controller is copied N times

Behavior Evolution Parameters

Generations / Task trials per generation 150 / 3
Dog genotype population 100
ANN nodes: Input / Hidden / Output 9 / 10 / 2
MAP-Elites archive: Dimensions / Bins 3 / 729
Crossover / Mutation probability 0.5 / 0.2

Simulation Parameters

Experiment runs / Iterations per task trial 20 / 800
Initial agent positions / Group size Random / 20
Task difficulty: Easy / Difficult Sheep speed: x1.0 / x1.25
Environment / Size Fig. 1 / 600px × 600px
Target zone radius / Position 100px / Center
Dog proximity sensor: Range / FOV (0px, 100px] / [-90°, 90°]
Sheep proximity sensor: Range / FOV (0px, 50px] / [-180°, 180°]
Sheep object avoidance: Wall/Dog/Sheep 15px / 50px / 5px
Sheep zone avoidance: Radius/Strength 50px / 0.25

Table 1: Evolution and simulation parameters.

to compose a (homogeneous) dog group (Tab. 1). Per generation,
genotypes are selected using tournament selection [6] (tournament
size, k=3). Selected genotypes underwent two-point crossover and
Gaussian mutation [6], with given probability (Tab. 1).

2.2.2 MHOM: MAP-Elites Homogeneous. MHOM uses MAP-Elites
[22] for collective herding evolution. Each genotype in the pop-
ulation represents a dog controller, copied N times to derive a
homogeneous dog group. The same selection and variation opera-
tors and operator parameter settings as used for SHOM (Sec. 2.2.1)
are used by MHOM to evolve dog controllers (Tab. 1).

2.3 Behavior Allocation Evolution: Group
Given that dog controllers are evolved by direct evolution (SHOM,
MHOM), behavior allocation evolution methods (ASHET, AMHET),
are applied to evolve complements of SHOM,MHOMevolved behav-
iors into various behavioral complements comprising dog groups.

2.3.1 ASHET: Allocate SSGA Heterogeneous. The ASHET method
uses the population of dog controllers (behaviors) previously evolved
by SHOM (Sec. 2.2.1), to evolve a suitable allocation of behaviors for
a behaviorally heterogeneous dog group. TheASHET objective func-
tion is to optimize the behavioral complement of various evolved
dog controllers (behaviors) to derive a high task performance (fit-
ness, QD score) dog group. ASHET uses the final population of dog
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controllers evolved by SHOM, where each controller in the popula-
tion represents the controller used by a dog in SHOM (Tab. 1). The
final evolved SHOM populations (20 runs, Tab. 1) are projected into
MAP-Elites archives based on the behavioral characteristics (Sec.
2.3) per genotype. These archives are aggregated into a reference-
behavior archive comprising the 100 fittest controllers for all final
generation populations. Using this behavior-reference archive, a
new genotype population is initialized. Each genotype comprises 20
genes (representing a dog group, Tab. 1), where each gene indicates
a specific dog controller. ASHET genotypes are evaluated as various
permutations of dog controllers, where each controller is allocated
from the reference-behavior archive. Per ASHET generation, parent
genotypes are selected using tournament selection (k=3). Two-point
crossover and uniform integer mutation [6] operators are applied
(Tab. 1), per tournament selection operation to produce offspring
genotypes, constituting the next generation of genotypes.

2.3.2 AMHET: Allocate MAP-Elites Heterogeneous. AMHET also
evolved an allocation of pre-evolved controllers per dog, except
allocated controllers are pre-evolved byMHOM (Sec. 2.2.2). AMHET
follows the same allocation evolution method as ASHET (Sec. 2.3.1).
The key difference is that the final evolved population of controllers
is already contained in a MAP-Elites archive (Sec. 2.3). All other
method parameters were the same as used for ASHET (Tab. 1).

3 EXPERIMENTS
Experiments1 used four environments: no maze, easy, medium and
difficult maze (Fig. 1). Dogs had the objective of herding sheep into
a central target zone (Fig. 1). Sheep actively avoid entering the
target zone, unless pursued by a dog. Once sheep enter the target
zone, they are marked as captured. Dog fitness was the portion of
sheep captured, averaged over three task trials per generation (Tab.
1). Experiments evaluated the behavior allocation evolution meth-
ods: AMHET and ASHET (Sec. 2) for collective herding behavior
evolution in environments: no maze, easy, medium, and difficult
maze. The task was varied according to the environment (no maze,
simple, medium or difficult maze, Fig. 1), and task difficulty (easy:
sheep moved at the same speed as dogs, or difficult: 1.25 times the
speed of dogs). Each experiment applied AMHET or ASHET to
evolve herding behavior for easy or difficult task settings in a given
environment. Dog behavior metrics were maximum fitness and
QD score. The QD score measured quality versus diversity as the
sum of the highest fitness values per grid bin 𝑄𝑖 , as

∑𝑖=𝑚
𝑖=1 𝑄𝑖 [23].

ASHET and AMHET used behavioral archives previously evolved
by SHOM and MHOM (respectively). Each experiment ran for 150
generations (Tab. 1), with three task trials per generation. Dogs
and sheep were initialized in random positions. Tab. 1 presents
experiment and method parameters and respective values.

4 RESULTS AND DISCUSSION
Fig. 3 presents the average maximum fitness for groups evolved
by ASHET and AMHET, across all environments, for the easy
and difficult task settings. For comparison, Fig. 2 presents aver-
age maximum fitness results from direct behavior evolution using

1Source code, data, videos: https://anonymous.4open.science/r/gecco25-sheepdogai

the SHOM and MHOM methods (Sec. 2.2.1, 2.2.2), to evolve be-
haviorally homogeneous groups across all environments and for
easy and difficult task settings. Pairwise statistical tests (Mann-
Whitney U, 𝑝<0.05) between average maximum fitness results of
the direct evolution (SHOM, MHOM) and behavior allocation evolu-
tion (ASHET, AMHET), indicate both behavior allocation methods
significantly out-perform both direct behavior evolution methods.
The superior performance of ASHET and AMHET was in terms of
both average maximum fitness and QD score (Fig. 2, 3).

This result demonstrates behavior performance and diversity
benefits of behavior allocation evolution over direct behavior evo-
lution. Comparing ASHET versus AMHET in terms of average
maximum fitness and QD score, pairwise statistical tests (𝑝<0.05) in-
dicated the average fitness and QD score of ASHET evolved groups
was significantly higher than AMHET evolved groups (for all envi-
ronments and difficulty settings, Fig. 3). The higher average solution
quality (fitness, QD score) of ASHET evolved groups is theorized
to result from effective and efficient behavior evolution of the un-
derlying SHOM method. Whereas, to the detriment of MHOM (un-
derlying AMHET), MAP-Elites is less effective if given a relatively
small evaluation budget: number of runs and population (behav-
ioral map) size [2]. Overall, ASHET behavior allocation evolution
successfully leveraged SHOM evolved behaviors to derive a suit-
able composition of group behaviors. The efficacy of ASHET as a
two-step collective behavior evolution method (evolving behaviors
with SHOM and then evolving specific behavior allocations within
groups), is supported by lower average fitness and QD scores of
SHOM direct evolution (underlying ASHET), across environments
and task settings (Fig. 2). Thus, ASHET consistently, given relatively
low fitness pre-evolved behaviors, evolved behavior allocations into
complements of high fitness collective herding behaviors.

These results (Fig. 3) indicate a two-fold benefit of ASHET. First,
the underlying SHOMmethod was suitable for evolving sufficiently
diverse (addressing the collective herding task requirement for be-
havioral heterogeneity) and high fitness behaviors. Second, ASHET
was better suited for allocating a suitable number of complemen-
tary behaviors, per environment and task setting, necessary to
achieve the highest average fitness and QD scores overall. The
benefits of ASHET behavior allocation evolution is supported by
related work [11], though we further demonstrated behavior allo-
cation evolution (ASHET) is most effective for producing group
behavior compositions with consistently high task performance
across various environment types and task difficulty levels. More
broadly, these results support related work indicating the benefits
of behavioral diversity across increasingly complex tasks [11, 12].

5 CONCLUSIONS AND FUTUREWORK
We investigated comparative methods for behavior allocation evo-
lution for forming a collective herding behavior effective across
increasing environment complexity: no maze, simple, medium, and
difficult maze. Per environment, easy and difficult tasks were tested
(sheep moved at the same speed and 1.25 faster than dogs). Results
comparing behavior allocation evolution methods indicated that
a complement of pre-evolved (lower task-performance) behaviors
was suitable for achieving high task performance across environ-
ments. These results support the efficacy of the two-step approach

https://anonymous.4open.science/r/gecco25-sheepdogai
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Figure 2: Direct Behavior Evolution (SHOM, MHOM): Average maximum fitness and QD scores for evolved dog groups in: no
maze (cyan), simple (green), medium (blue) and difficult (red) maze, for easy (E) and difficult (D) task settings.

Figure 3: Behavior Allocation Evolution (ASHET, AMHET): Average maximum fitness and QD scores for evolved dog groups in:
no maze (cyan), simple (green), medium (blue) and difficult (red) maze, for easy (E) and difficult (D) task settings.

for evolving behaviorally heterogeneous groups across increasingly
complex collective behavior tasks. Future work aims to evaluate
various evolutionary machine-learning methods [1] as behavior
allocation approaches for the purpose of addressing the automated
swarm-robotic system design problem [27].
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