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Abstract— This article presents a survey of prevalent results
within research pertaining to emergent cooperation in swarm-
based systems. Results reviewed maintain particular reference to
research that uses biologically inspired design principles and
concepts, such as emergence, evolution and self-organization, as a
means of attaining cooperative behavior in swarm systems. The
review presents an introduction to emergent cooperation in
artificial life research followed by a survey of emergent
cooperation in swarm-based systems that includes artificial ants,
and simulated multi-robot systems that follow swarm like
behaviors. The mechanisms deemed to be responsible for
emergent cooperation in these systems are elucidated and their
key limitations highlighted. The core of this article argues that
even though emergent cooperative behavior derived within
swarm systems is still in its infancy, it holds considerable future
potential, as a means of problem solving in a disparate range of
application domains where systems comprised of many
interacting components must cooperatively solve some global
task.

Index Terms — Emergence, cooperative behavior, self-
organization, artificial evolution.

I. INTRODUCTION

The global behavior and complexity of biological systems
such as ant colonies and certain distributed artificial systems
are considered to be an emergent property of the interactions
between the different agents that make up the whole system.
Desirable emergent behavior has been observed in many
biological systems, though reproducing these conditions in
artificial systems has proved to be difficult and there is
potential for the emergence of undesirable behaviors. It is
therefore essential to be able to understand the mechanisms
that motivate emergent behaviors in these systems. To date,
research that qualitatively measures and evaluates mechanisms
that underlie and motivate emergent cooperative behavior in
biological, artificial, and real world systems remains largely in
stage of research infancy. Current mathematical and empirical
tools have provided only a partial insight into elucidating
mechanisms responsible for cooperation, and then only in
systems of an abstract or simple nature, The concept of
emergent behavior has propagated many ideas about emergent
cooperative behavior in biological systems. These ideas have
now been adopted by roboticists and computer scientists alike,
and have gained prevalence since the rise of a globalized

information society brought on by the proliferation of glabal
decentralized systems such as the Internet.

In the mid twentieth century, Grey Walter® and his colleagues
studied turtle-like robots equipped with light and touch
sensors and very simple behaviors. When placed together,
these robots exhibited complex social behavior in response to
each other’'s movements [7]. Early research in decentralized
systems [5] suggested that complexity at a group level might
be attainable with very simple individual agents, with no need
for central control. A derivative of this idea is biologically
inspired artificial systems such as swarm systems, that are
typically designed using an evolutionary computation
methodology such that a desired global behavior emerges
from interaction of the systems components [9]. It is argued
by many researchers [31] that the use of biologically inspired
principles such as evolution and emergence in the purposeful
design of complex artificial systems is needed in order to
replace ineffective preprogrammed and centralized design
methodologies.

With relatively few exceptions, and then only in multi-
robol systems containing relatively few robots [20], the
majority of research in emergent cooperative behavior is
restricted to simulated problem domains given the inherent
complexity of applying evolutionary design principles to
collective behaviors in groups of real robots [16]. This is
especially true in swarm-based systems, which by definition
contain thousands of individuals. Hence, this paper surveys
only research pertaining to the study of emergent cooperative
behavior using biologically inspired design principles within
simulated problem domains. An important future direction
that the survey emphasizes is the gaining of more insightful
knowledge into the design of algorithms for emergent
cooperation in swarm systems. If emergent ccoperative
behavior in swarm systems was sufficiently understood,
purposeful design of cooperative behavior could be applied to
benefit a variety of application domains including
telecommunications [10], acrospace and space exploration [6]
and multi-robot systems [21].

As a final introductory note, in the literature various
researchers have adopted the use of various nomenclatures

* Grey Walter was a neuro-physiologist, who in the late nineteen forties
carried oul pioneering research on mubile aulonumous robots al the Burden
Neurological Institute in Bristol, England as part of his goal to model brain
function.
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that are ambiguous in defining the term cooperation. Such
terminology often suffers from the frame of reference problem
[27], as it is typically defined according to the perspectives
and interests of the researchers conducting the study. Thus, for
the purposes of this survey, we are concerned not with a
definition of cooperation, but rather with research that uses
biologically inspired design principles within swarm systems
as a means of motivating two or more individuals to solve a
predefined problem of a global nature that could not otherwise
be solved by a single individual.

II. EMERGENT COOPERATION IN SWARM-BASED SYSTEMS

A. Introductory Note

The validity and importance of large artificial swarm
systems is clear from drawing parallels to the biological
complexity of swarm-based systems such as ant colonies. In
such systems global behavior is considered to be an emergent
property of the interactions of the many different components
that make up the whole system. Desirable emergent behavior
has been observed in many biological systems, though
reproducing these conditions in artificial systems has proved
to be difficult as there is potential for the emergence of
undesirable behaviors. Certain swarm systems model
biological systems that contain hundreds or thousands of
agents, such as ant and termite colonies. Social insect
colonies present excellent examples of how collectively
intelligent systems can be generated by the interaction of a
large number of relatively simple agents. Based on the social
insect metaphor, swarm intelligence has emerged as a novel
approach to the design of distributed systems, with emphasis
upon flexibility, and robustness. There has been a significant
concentration of research on the study of emergent behavior in
simulated ant colonies [9]. Studies of swarm-based systems
have been popularized by certain artificial life simulators and
applications. These include Swarm [17], MANTA [15], Tierra
[28], and Avida [1].

B. Biologically Inspired Artificial Ants

Drogoul ef al. [12], [13], [14] presented a simulation model
of social organization in an ant colony termed: MANTA
(Model of an ANT-hill Activity), which was designed to
explore the contribution of emergent functionality such as
division of labor and sociogenesis’ [32] on emergent
cooperation. Drogoul et al observed the emergence of
cooperative behavior beneficial to the colony, similar to social
phenomena generally observed among eusocial’ insects.
Results elucidated that emergent division of labour improved

* Socio-genesis is defined as a hehavioral process observed in many
species of ants, where the newly fertilized queen initiates a new society alone.

? The term: eusocial describes the most highly developed form of animal
societies, such as those of colonial ants, termites, wasps, and bees. Typically
there is extensive division of labour and cooperation, with various castes each
performing particular tasks, such as food-gathering, defense, or tending to the
young. Reproduction is by an elite group of fertile individuals, assisted by
sterile workers. This definition was taken from the Dictionary of Biology,
Oxford University Press © Market House Books Limited, 2000.

the efficiency of emergent functionality in the population.
Such emergent functionality included cooperative foraging
and sorting behavior. The authors concluded that the notion of
emergent cooperation remains very unclear, difficult to define,
and that many of the behaviors viewed as cooperative
emerged as a result of the competitive interaction that occurs
between individuals in a constrained environment with limited
resources.

In an extended version of MANTA [15], certain
experiments were designed to investigate the evolution of a
process known as sociogeneses, where multiple ant queens
needed to cooperate in order for a new ant colony to emerge
and survive. Two types of sociogenesis experiments were
conducted, those using only a single queen, termed
monogynous sociogeneses, and those using multiple queens,
termed polygynous sociogeneses. The hypothesis for the
Sociogeneses experiments was that emergent functionality
within a population would be improved by the emergence of a
parallel emergent social structure. In this case the emergent
functionality was a cooperative sorting task, and the parallel
emergent social structure was the division of labor. In order to
facilitate the emergence of cooperation for the sorting task at
the colony level, an artificial evolution algorithm was
executed, where the selection and reproduction of each new
generation was based on the individual genetic design of each
artificial ant. In the evolutionary process specialized behavior
emerged which served to removed redundant behaviors and
therefore increase the probability of an ant successfully
completing its task. In the polygynous sociogeneses
experiments, either only a single queen survived, or a single
queen emerged as the leader of the colony while the other
queen ants became analogous to worker ants. An important
trade-off in competitive versus cooperative behavior between
the queens was evident from these experiments. This trade-
off proved to be important for the survival of the ant colony as
a whole. Cooperative behavior emerged between the queen
ants during the initial stage of the colonies growth, where this
behavior took the form of one of the queens taking care of the
larvae while others searched for food. The authors concluded
that emergent functionality at the colony level was potentially
improved via the parallel emergence of a social structure such
as cooperation. In these experiments, emergent cooperation
was facilitated by the concurrent emergence of a division of
labor social structure.

Whilst the parallels between emergent cooperative
behaviors attained under experiments executed using the
MANTA simulation model, and the emergent behavior
observed in real ants makes them intrinsically interesting,
what is lacking in this research is a qualitative analysis of the
emergent behavior and the mechanisms that lead to
cooperative behavior and the concurrent emergence of the
division of labor social structure. Also, the artificial ants
operated within a simple and constrained grid world
environment, so a realistic simulation of ant behaviors was
limited, and only a single case study for emergent collective
behavior was presented. Thus, it remains unclear if the
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approach is suitable to a more generalized simulation of
emergent social structures that would further test the authors’
hypothesis that emergent social structures such as the division
of labor facilitate emergent cooperative behavior, which in
turn strengthens emergent functionality such as a sorting task.

Also in the theme of artificial ant systems, Perez-Uribe et al.
[30] conducted experiments in the context of an artificial
evolution process, in order to study the impact of genetic
relatedness and different types of genetic selection in the
evolution of cooperation for a foraging task. The task was
composed of multiple trials where each trial consisted of two
phases. In the first phase each ant activated one of three pre-
specified behaviors, and in the second phase a group of twenty
ants began searching for the food items in their environment.
The transportation of certain large food items required that
two ants cooperate in order to achieve the task.  This
cooperative foraging task was modeled within a mobile robot
simulator, with which the authors were able to vary
parameters such as the value of food, an ant’s genetic
specification, and the type of genetic selection and
reproduction used by the evolutionary process. Changing
these parameters served to place selective pressure on the
evolution of cooperative behaviors, The authors argued that
the group of robots modeled by the simulator maintained
limitations and properties similar to real ants due to their small
size, as well as stochastic and time dependent dynamics
modeled upon the constraints of a yet to be implemented
counter-part physical setup.

Artificial ants were rewarded differing fitness scores for
either individual or cooperative transportation of food items,
such that the total performance of the colony was maximized
if ants cooperatively transported food items as opposed to
acting individually. In the experimental setup, groups of ants
tested were either homogenous or heterogeneous, where the
method of genetic selection, which either reproduced the next
generation from a collection of individuals from different
colonies or from different colonies as a whole, delineated
homogenous and heterogeneous colonies. The authors
highlighted that the colony-based form of genetic selection
and reproduction favored emergent cooperative behaviors, and
that cooperative behavior had a low probability of emerging in
heterogeneous colonies, where an individual-based form of
genetic selection and reproduction was used. In particular, the
resulting number of cooperative behaviors was higher in
experiments using colony-based selection. The authors stated
this to be a result of colony-based selection favoring
individuals that cooperate and not ones that adopt specialized
behaviors in the foraging of small food items for their own
benefit. The experiments also suggested that genetic
relatedness within an artificial ant colony assumes a role in the
emergence of cooperative behavior, as homogenous colonies
performed better in the cooperative foraging task domain than
heterogeneous ones. The authors argued that these results
maintained biological plausibility, based upon predictions
made by certain biologists [18] stating that groups should be
more efficient when genetic selection acts at the colony-level
and when there is a high degree of relatedness within groups.

Though, the same results also yielded no significant difference
between homogenous colonies using colony-based selection
and homogeneous colonies using individual-based selection,
indicating that future research should continue to investigate
the role of genetic relatedness in facilitaling emergent
cooperative behavior.

It is clear that modeling emergent cooperative behavior in
an artificial ant system using a multi-robot simulator and
evolutionary computation is fruitful, since social insects have
a very long generation time and it is inherently difficult to
study the evolution of complex social structures such as
cooperation. Though, the results illustrated that cooperative
behavior is more likely to emerge under the colony-based
form of genetic selection within a homogenous colony, the
authors did not clearly state the significance of these results,
beyond remarking upon their biological plausibility. Whilst
the inherent complexity of maintaining and analyzing the
behavior of large groups of artificial ants within an artificial
evolution process justifies the use of a simple form of the
cooperative foraging task, only twenty ants, and a simple form
of genetic based behavioral encoding, the authors did not
clearly specify which mechanisms were deemed to be
responsible for cooperative behavior, beyond the conclusion
that performance differences were the result of genetic
relatedness.

Aside from simulations that reproduce cooperative
behavior in swarm-like systems, certain biological principles
that define cooperative behavior in these systems have also
been applied to solving classical artificial intelligence
problems. For example, certain researchers have applied
biological principles from cooperative behavior in real ants to
solving combinatorial optimization problems such as the
traveling salesman problem [15], and the quadratic assignment
problem [19]. Dorigo and Gambardella [11] introduced a
distributed algorithm called Ant Colony System that is based
upon the global behavior of an ant colony and is applied to the
traveling salesman problem. The Ant Colony System is
comprised of many artificial ants, with simple capabilities to
mimic the behavior of real ants, where these ants cooperate in
order to find good solutions to the traveling salesman
problem. The artificial ants use an indirect form of
communication mediated by simulated pheromone trails that
they deposit on the edges of the traveling salesman problem
graph while cooperatively constructing solutions. The Ant
Colony System was inspired by the capability of real ants to
find the shortest path from a food source to their nest via the
use of pheromeone information [3]. The artificial ants
cooperate by exchanging information via an artificial
pheromone. Ants use this pheromone information as the
medium (o communicate information among themselves
regarding path length and which path to travel. The emergent
cooperative behavior as evident from the experiments run is as
follows. Once all ants have traversed the graph, the best
performing ant pheromone deposits its pheromone at the end
of iteration ¢, therefore defining a preferred route for search in
the next iteration of the algorithm. So, during iteration t+/
ants will detect edges belonging to the best traversal of the
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graph and will choose to traverse these edges with a higher
degree of probability. Thus the cooperative behavior that
emerges is a form of auto catalytic behavior where the more
the ants follow a trail, the more attractive the trail becomes as
a potential path for other ants. This process is characterized
by a positive feedback loop, where the probability with which
an ant chooses a path increases with the number of ants that
previously chose the same path. Though, whenever an ant
visits an edge it diminishes the amount of pheromone on that
edge, therefore making these edges less desirable to other ants
in the future. This allowed for the possibility of an improved
future search in the neighborhood of the previous best search.

The authors highlighted the effectiveness of the Ant
Colony System by comparing a cooperative with a non-
cooperative search. The search executed by a given number
of cooperative ants proved superior to that of a search carried
out by the same number of ants, each working independently
from the others. When no cooperation was used the algorithm
slowly derived a sub-optimal solution, while when the ants
cooperated, an optimal solution, not within a local optima,
was quickly found. For this research, the emergence of
cooperative behavior was limited by the constraints of the task
environment, so the applicability of such emergent
cooperation principles to other combinatorial optimization
problems remains unclear.

C. Swarm-bots

Swarm-bots is a research endeavor not concerned with the
modeling or simulation of real world biological systems but
rather with using biologically inspired design principles in the
simulation, and then physical construction of, mobile robots
that exploit concepts such as emergent cooperation, self-
assembly and self-organization in order to accomplish their
goals. The individual robots are called s-bots, where two or
more s-bots that have self-assembled in order to perform some
task are called a swarm-bot [23]. The key idea of the research
is that swarm-bots combine the advantages of swarm
intelligence as well as the flexibility of self-reconfiguration, as
they are able to self-assemble and self-organize so as to solve
problems that could not otherwise be solved by a single s-bot.

As part of the swarm-bots initiative, Nolfi et al [25]
conducted several experiments to address the problem of how
a group of s-bots could coordinate their movements and
actions so as to cooperatively move objects in the environment
as far as possible within a given period of time. This research
differs from other experiments in the swarm-bols endeavor in
that in this case the s-bots are given a task for which they must
cooperate in order to solve. Other swarm-bot research [29]
simply maintained the goal of achieving some form of
aggregated behavior, which the authors stated would be a
prerequisite for various forms of cooperative behavior. Nolfi
et al. [25] conducted a set of experiments designed to facilitate
emergent cooperative behavior, where a group of eight s-bots
were connected to an object, or connected so as to form a
closed structure around an object, and were given the task of
moving the object as far as possible in the least amount of
time. In the first set of experiments the eight s-bots used what

the authors termed the ant formation, which connected all s-
bots to the object, but there were no links between the s-bots
themselves. The result was dependent upon the weight of the
object, such that the s-bots cooperatively negotiated to either
push or pull the object to their destination. In the second set
of experiments, s-bots were assembled so as to form a circular
structure around the object. The results were similar to those
obtained with the ant-formation, with the exception that the s-
bot formation deformed its shape so that some s-bots pushed
the object, while other s-bots pulled the object. The
mechanism deemed to be primarily responsible for these
results was the neural controllers of individual s-bots, which
evolved the capability to cooperatively coordinate movement
when connected to either each other or the object. That is,
each s-bot was inclined to follow the direction that the
majority of s-bots followed at a given time.

Despite the interesting nature of these results, their
contribution to the swarm-bots research initiative, and a
clearly defined task for the evaluation of emergent behavior,
the research lacks formalized methods for the analysis of
emergent cooperative behavior that led to the successful
transport of objects, meaning that emergent cooperative
behavior was only examined from an observational
perspective. Also, given that the s-bots are connected to each
other or the object at the start of the experiment, the s-bots are
forced to cooperate in order to satisfy their individual goals of
moving as quickly as possible to a common destination. A
form of emergent cooperative behavior not based upon an
experimental precondition, but rather based upon a need to
solve an unanticipated problem would have been a more
significant contribution to the swarm-bots initiative; especially
considering one of its potential application domains is in real-
world search and rescue operations [26].

Also as part of the swarm-bots research initiative,
Baldassarre et al [2] presented a set of experiments for
investigating emergent cooperation in the form of flocking
behaviors. The task was for a group of simulated robots to
move in the least amount of time towards a light target. An
artificial evolution process governing the derivation of robot
behaviors over many task trials elucidated emergent forms of
situated and specialized behavior that allowed the group to act
as a single unit. In many cases the individual robots displayed
complementary behaviors in order to form a cooperative
group behavior to satisfy their task. Groups consisted of four
simulated Khepera robots [22], where all experiments were
conducted in simulation using an extended version of the
Evorobot simulator [24]. At the beginning of each task trail
the four robots were placed in random positions and
orientations within a square walled environment, and a light
source elsewhere in the environment was switched on. The
fitness function of the robot group was based upon how
compact the group was with respect to the relative distances
between the robots, and the average speed of the robots as
they moved towards the light source, The fitness of the robot
group for a given task trial was determined with respect to
each robots performance in these two aspects of the fitness
function.  This fitness function produced aggregation of
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groups, and yielded the emergence of several cooperative
strategies. In all executions of the evolutionary process,
individuals evolved some form of cooperation to be able to
form groups, maintain group coherence, and move uniformly
towards the light source. The different group strategies
assumed different formations in one of three different classes
of strategies, termed flock, amoeba, and rose by the authors.
The flock class of group strategies was a particular example
where behavioral specializations emerged, This strategy
required that different individuals were able to assume and
maintain qualitatively different functions in the group. The
flock strategy emerged in few executions of the evolutionary
process, where as the simpler set of strategies in the amoeba
and rose class of strategies emerged more often though were
less successful due to a lack of behavioral specialization in the
formation of group strategies.

Several forms of cooperative behavior were synthesized
via techniques of artificial evolution, though cooperative
behaviors using functional specialization performed the best
according to the evaluation criteria. The authors argued that
functional specialization evolved due to the need to reduce the
interference between conflicting sub-goals such as the need to
turn and move toward the rest of the group and toward the
light target. The problematic aspect of these experiments was
that they aimed to create effective cooperative behaviors
purely through the use of artificial evolution. This made
analysis of the emergent behaviors difficult, so it is known
that behavioral specialization played a key role in the
formation of cooperative strategies but it remains unknown
how behavioral specialization emerged in these experiments.

III. FUTURE DIRECTIONS

The aim of this survey was not to provide an exhaustive list
or compilation of all research in swarm-based systems, but
rather to highlight prevalent examples of when emergent
cooperation facilitates a solution that would not otherwise be
attainable or as efficient without cooperative behavior. The
theme of the survey, argued from these research examples,
that the majority of research into emergent cooperative
swarm-behavior utilizes simple or limited task domains.
Though, given that the mechanisms leading to emergent
cooperation in biological systems such as ant and termite
colonies are still largely a mystery, the use of simple forms of
cooperation and limited task scenarios is justified. It is evident
from the literature that use of swarm systems and their
accompanying biologically inspired design methodologies is
deemed by many researchers, to be an effective means for
investigating the conditions under which cooperation emerges.
This is especially true in simulations where the effects of
parametric changes on emergent cooperative behavior can be
seen in a relatively short space of time, Unfortunately current
swarm systems lack proven methodologies that allow the
transfer of simulated biological mechanisms to algorithms that
can be used effectively in real world decentralized systems.
Additionally, the use of evolutionary computation was
highlighted in many cases as being an effective means for the
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derivation of cooperative behavior. Though, use of artificial
evolution is still largely in a stage of infancy, so evolution of
cooperation is currently limited to simple forms in swarms
comprised of computationally very simple individuals.

In the results outlined and research reviewed, several key
open problems were identified. These problems were not
constrained by the nature of swarm systems themselves, but
rather by the infancy of the biologically inspired design
mechanisms and the distinct lack of analytical methods and
techniques. In each set of results surveyed, each researcher
was using their own approach and development platform for
the synthesis of cooperative behavior as well as different
methods for the interpretation, evaluation and analysis of
emergent cooperative behavior. It is obvious that if emergent
cooperative behavior derived from swarm systems is to be
used to any great benefit, especially in large scale distributed
real-world systems, then it is important that future research
address certain open problems. Specifically, if the notion of
emergent cooperation is to gain any maturity and credence as
a viable means of problem solving, then results yielded must
be quantifiable and comparable with traditional methods of
achieving collective or otherwise multi-agent goals. Ideally,
proven design methodologies for achieving desired emergent
cooperation must be scalable and transferable to a counterpart
real-world application domain, meaning that such
methodologies would need to be defined by algorithms and
methods of analysis that are equally applicable in the physical
world.

Thus the most promising research avenues for future
progress to be made in swarm systems are those that define a
structured and interdisciplinary approach in developing
theories, and design methodologies for evaluating the validity
of emergent cooperation. Even though advantages of
biological inspired design such as redundancy, scalability, and
minimalist component design have been utilized to great
lengths in swarm-based systems, the true potential of a
biological inspired methodology is often overlooked. That is,
in many swarm systems with notable exceptions such as the
ant-based system [11]; biologically inspired methodologies
are used only to demonstrate concepts such as self-
organization, and emergence and their apparent contribution
to ‘swarm intelligence’. Rarely, are swarm methodologies
used for formulating and synthesizing effective forms of
collective behavior, such as cooperation, that can be evaluated
or otherwise conform to a standardized benchmark. This
elucidates the problem that there currently exists no
standardized benchmark or method for evaluation of, or
otherwise classifying emergent cooperative behavior in swarm
systems. Additionally, when emergent cooperation in swarm
systems is achieved it is rarely tested concurrently in a real
world problem domain and results are not compared with
more traditional approaches that do not utilize a biologically
inspired design approach to achieve group or global level
goals. The comparison of results using emergent cooperation
with those attained using more classical distributed artificial
intelligence design approaches is an aspect that is missing
from many current research endeavors, and should form a



greater part of future research if the notion of emergent
cooperation as a means of problem solving is to gam
credibility.

Given the early stage of research and development of
swarm systems and the relative infancy of the notion of
emergent cooperation as a means of solving global or group
level problems, it is justifiable that standardized methods for
deriving, testing, proving the convergence of, and evaluating
emergent cooperative behavior do not yet exist. Though,
much success has already been achieved using relatively
simple synthetic approaches for the design of emergent
cooperation that included a disparate array of preliminary
methods for behavioral analysis. Thus, if particular key
problems highlighted throughout this article are focused upon
as subjects of future research, then the concept of emergent
cooperation as a means of problem solving derived within the
context of a swarm based system, would no longer be
restricted  to  highly  experimental and abstracted
methodologies implemented as constrained simulations.
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