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Abstract—This paper is a preliminary study of the types of
collective behavior tasks that are best solved by Neuro-Evolution
(NE). This research tests a hypothesis that for a multi-rover task,
the best approach (for deriving effective collective behaviors) is
to evolve complete Artificial Neural Network (ANN) controllers,
and then combine controller behaviors in a collective behavior
context. Such methods are called multi-agent Conventional Neuro-
Evolution (Multi-Agent CNE). This is opposed to methods such as
Enforced Sub-Populations (ESP) which evolves individual neurons
and then combines them to form complete ANN controllers.
Single and multi-agent CNE and ESP approaches to evolving
collective behavior solutions are tested comparatively in the
multi-rover task. The multi-rover task requires that teams of
rovers (controllers) cooperate in order to detect features of
interest in a virtual environment. Results indicate that a Multi-
Agent CNE approach derives rover teams with a higher task
performance and genotype diversity, comparative to ESP.

Index Terms—Neuro-Evolution, Collective Behavior, Rover.

I. INTRODUCTION

Research in simulated (multi-agent) [20] and physical
(multi-robot) [19] systems often attempt to replicate the suc-
cess of biological collective behavior systems, such as social
insect societies, for the purpose of solving collective behavior
tasks. Neuro-Evolution (NE) has proven to be an effective
method for designing Artificial Neural Network (ANN) con-
trollers that cooperate in order to accomplish various collective
behavior tasks with applications that include multi-agent com-
puter games [3], collective gathering and construction [12],
and coordinated movement [2] in multi-robot systems.

A key challenge in applying NE to evolve teams of cooper-
ating ANN controllers that solve collective behavior tasks is
selecting an appropriate genotype encoding. Given a direct
encoding approach [9], and depending upon the collective
behavior task, the evolution of complete controllers [15],
versus functional units (for example, neurons [9] and weight
sets [8]), can greatly affect evolved controller (and collective
behavior) task performance.

Typical Conventional NE (CNE) methods directly encode
genotypes as complete ANN controllers [21] and then evolve
a fittest set of controllers for a given collective behavior task.
In solving collective behavior tasks using CNE methods, either
a single population [21] or multiple population cooperative co-
evolutionary approach [17] is adopted.

In single population CNE methods, a fittest genotype (con-
troller) is selected and copied n times to in order to form
a homogenous team of controller clones. Alternatively, n
fittest genotypes are selected in order to form a heterogenous
team of controllers [18]. Both of these approaches have
achieved success in various collective behavior tasks such as
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coordinated movement [13], and cooperative transport [14].
Multiple population CNE methods use a speciation inspired
approach where n ANN controllers are evolved from n separate
genotype populations. Such an approach has advantages in
deriving teams of controllers to solve collective behavior tasks
that require different controllers to adopt complementary and
specialized behaviors [10].

Another approach to NE is to evolve functional units of a
controller instead of entire ANN controllers. For example, the
Enforced Sub-Populations (ESP) method works via allocating
and evolving a separate neuron population for each of the
hidden-layer neurons in a controller. ESP has been effectively
applied to non-Markovian control tasks with sparse rein-
forcement such as double pole balancing, and rocket control
[6], as well as to collective behavior tasks such as multi-
agent computer games [3] and multi-agent pursuit-evasion
tasks [22]. An extension of ESP is Multi-Agent ESP [22].
Multi-Agent ESP allocates one population for the evolution
of each controller in a team of controllers. Each population
is segregated into multiple sub-populations, where each sub-
population evolves each hidden layer neuron in the controller
derived from the given population.

An unresolved issue is what NE methods are most beneficial
for solving collective behavior tasks. This research is a prelim-
inary investigation of the types of collective behavior tasks for
which an NE method that evolves complete controllers is most
appropriate, versus, tasks for which an NE method that evolves
neurons is most appropriate. In applying NE to solve collective
behavior tasks, this is an important question, since methods
that evolve and combine neurons are especially susceptible to
a loss of genetic diversity within each sub-population, and may
consequently evolve neurons that cooperate well with each
other, though behave sub-optimally [7].

Furthermore, if a task does not require or benefit from
controllers comprised of neurons specialized to different func-
tions, then methods such as ESP will offer no advantage
(or even be a disadvantage) in evolving collective behavior
solutions. That is, methods such as ESP and Multi-Agent
ESP applied to a collective behavior task, may lead to the
evolution of neurons that cooperate well together in the form
of a controller. However, due to evolution at the neuron level,
each of the evolved controllers may converge to a behavior
that does not perform well (that is, effectively cooperate with
other controllers) in the context of a team.

This paper presents, for a multi-rover task, a collective
behavior performance comparison of a single and multiple
population implementation of CNE, and an identical imple-
mentation of ESP, for evolving teams of controllers.
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Fig. 1. Example of CNE. CNE is applied to evolve the controllers
of three rovers. Each rover’s controller is constructed via selecting
one of the fittest genotypes (controllers) from the population.

NE is selected as the collective behavior design approach,
given that NE has been successfully applied to complex
collective behavior tasks, for which there is no clear mapping
between the sensory inputs and motor outputs of controllers
that must cooperate [7], [2]. NE methods have also been
successfully applied to the continuous multi-rover task [1].
However, extending this multi-rover task as a means of inves-
tigating the impact of an NE method that evolves and combines
neurons (ESP), versus an NE method that evolves complete
controllers (CNE), has not yet been investigated.

A. Research Goal:

To conduct a comparative study in order to evaluate CNE
versus ESP as methods for deriving teams of controllers in the
multi-rover task. The study is a preliminary investigation into
which types of NE methods are appropriate for solving given
types of collective behavior tasks. ESP and CNE exemplify
two different types of NE methods.

B. Research Hypothesis:

For the multi-rover task, which requires a team of rover con-
trollers to cooperate, the multiple population implementation
of CNE (Multi-Agent CNE) is appropriate for deriving rover
teams that achieve a higher task performance comparative to
CNE, ESP, and Multi-Agent ESP rover evolved teams.

II. METHODS

The Enforced Sub-Populations (ESP) and Conventional
Neuro-Evolution (CNE) methods, both directly encode and
evolve either neurons (ESP) or complete controllers (CNE).
For both CNE and ESP, the crossover and mutation operators
are the same. That is, a child genotype is produced via recomb-
ing two parent genotypes using single point crossover [4],
and burst mutation with a Cauchy distribution [7]. Mutation
changes each gene (connection weight) by a random value in
the range [-1.0, +1.0] with a 0.05 degree of probability. Each
gene is kept within the range [-10.0, +10.0]. Burst mutation
is used to ensure that most weight changes are small whilst
allowing for larger changes to some weights.
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Fig.2. Example of Multi-Agent CNE applied to evolve the controllers
of three rovers. The controller of each rover is constructed via
selecting one of the fittest neurons from each population. That is,
each rover controller is evolved from its own population.

A. CNE and Multi-Agent CNE

The CNE method is similar to that described by Wieland
[21], and operates with either one or n genotype (controller)
populations. One genotype encodes all the parameters (input
and output connection weights) of a complete ANN controller.

In CNE, one population of controllers is evolved (figure
1: left). Each controller is systematically selected from an
elite portion (table I) along with n-1 (randomly selected) other
controllers, and evaluated in the context of n controllers. The
controller is then assigned a fitness. In this research, CNE uses
heterogenous selection to form a team of n controllers. That is,
n controllers are selected from the population’s elite portion,
where the same controller cannot be selected twice.

In Multi-Agent CNE (figure 2: right) n populations of
controllers are evolved. The process used by CNE for selecting
a controller from a population is repeated for n-1 other
populations. That is, a controller (to be evaluated) is selected
from the elite portion of a given population. This controller
is then evaluated together with n-1 other controllers. Each of
the other n-1 controllers is formed via randomly selecting one
controller from each of the other n-1 populations.

For both CNE and Multi-Agent CNE, in order to reduce the
chance that a controller is rewarded a high fitness for partic-
ipating in a lucky team, each controller is evaluated r times
in the same task trial (together with the same n-1 controllers).
An average fitness is calculated for each controller as the sum
of fitness achieved for all task trials divided by the number of
trials the controller participates in.

The key difference between CNE and Multi-Agent CNE is
how a team of n controllers is formed. In CNE, a controller
team is formed via repeatedly selecting controllers from one
population. In Multi-Agent CNE, a controller team is formed
via selecting one controller from each of n populations.
The evaluation and assignment of fitness to all controllers
constitutes one generation in CNE and Multi-Agent CNE.

1) Genotypes: Genotype a (equation 1) directly encodes a
controller, where, a is a string of 200 floating point values,
representing weights connecting 16 sensory input neurons and
9 motor output neurons to 8 hidden layer neurons (figure 6).

a=<a9,01,...,0r > (1)
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Fig. 3. Example of ESP applied to the multi-rover task. Each
rover’s controller (containing three hidden layer neurons) is formed
via selecting a fittest neuron from each sub-population.
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Fig. 4. Example of Multi-Agent ESP applied to the multi-rover task.
Each rover’s controller is formed via selecting a fittest neuron from
each sub-population (for each population). Each controller is evolved
from its own population, where each population comprises three sub-
populations (the number of hidden layer neurons in a controller).
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Genotype a consists of k genes, where each gene represents
an input or output connection weight value.

2) Genotype Evaluations: For CNE and Multi-Agent CNE,
each controller in a given population is successively selected
and evaluated in the context of a rover team. That is, a given
controller is evaluated according to how well it performs
together with n-1 other (randomly selected) controllers.

3) Recombination: At each generation’s end, the elite
portion of controllers are recombined (via randomly pairing
all parent neurons in each population’s elite portion). The
parent controllers produce enough child controllers in order to
completely replace all controllers in each of the populations.

4) Number of Genotype (Controller) Evaluations: q (task
trials) x r (controller evaluations) x m (total number of
controllers) n (team size). ESP and Multi-Agent ESP (section
II-B) use the same number of genotype evaluations.

B. ESP and Multi-Agent ESP

As illustrated in figure 3, ESP allocates and evolves a
separate neuron population for each of u# hidden-layer neurons
in an ANN. A neuron can only be recombined with other
neurons from its own population. ESP is further described in
related work [6].

Multi-Agent ESP [22] is an extension of ESP, and creates
n populations for deriving n controllers. As illustrated in
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figure 4, each population consists of u sub-populations, where
the fittest neuron is selected from each sub-population to
form a hidden layer of one ANN. This process is repeated
n times for the n controllers. In Multi-Agent ESP there is
no recombination between (only within) sub-populations in
different populations.

1) Genotypes: Genotype a (equation 1) directly encodes the
values that represent the weights connecting all input neurons
and all output neurons to one hidden layer neuron (table I),
where a is a string of 25 (16 input + 9 output weights) floating
point values. In genotype a, a¢ is the genotype’s tag, and a;
(1 <7 < k) is a neuron connection weight. Each connection
weight is a floating point value normalized in order to be
within the range: [0, 1]. The genotype’s tag specifies which
sub-population (that is, which position in the hidden layer of
an ANN) the genotype is assigned to. The first gene is not
subject to the evolutionary operators or process of ESP.

2) Genotype Evaluation: In ESP [6], each genotype (hidden
layer neuron) in each of u sub-populations is systematically
selected from the sub-population’s elite portion (table I), eval-
uated in the context of a controller and a team of controllers,
and assigned a fitness. A given neuron is assigned a fitness
according to how well it performs in the context of a controller
(cooperates with u-1 other randomly selected neurons), as well
as how well it performs with n-1 other controllers. That is,
given that a neuron has been selected for evaluation from one
of the u sub-populations, and a controller that includes this
neuron is constructed, another n-1 controllers are constructed.
These other n-1 controllers are formed via randomly selecting
u X (n-1) neurons from the same u sub-populations.

In Multi-Agent ESP [22], the process used by ESP for
selecting and constructing a controller from u sub-populations
is repeated for the n-1 other populations. That is, a neuron
(to be evaluated) is selected from one of u# sub-populations
(in a given population). The other u-1 neurons are randomly
selected from the other u-1 sub-populations (in the given
population). This controller is then evaluated together with n-
1 controllers, where each of these other controllers is formed
via randomly selecting u neurons from each of the u sub-
populations in each of the other n-1 populations.

In order to reduce the chance that a neuron is rewarded
a high fitness for participating in a lucky controller, each
genotype is evaluated in r times together with u-1 other
neurons, as well as with the same n-1 controllers (in the same
task trial). An average fitness is calculated for each neuron
as the sum of fitness accumulated for all trials divided by the
number of trials the neuron participates in.

The key difference between ESP and Multi-Agent ESP is
how each of the n controllers is formed. In ESP, each of the
controllers is formed via repeatedly selecting neurons from the
u sub-populations. In Multi-Agent ESP, each of the controllers
is formed via selecting # neurons from each of the populations.

The assignment of fitness to all neurons (in all u sub-
populations in each of n populations) constitutes one genera-
tion in the ESP (Multi-Agent ESP) evolutionary process.

3) Recombination: At the completion of each generation,
the elite portion of neurons in each sub-population are recom-
bined (via randomly pairing all parent neurons within each
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sub-population’s elite portion). The parent neurons produce
enough child neurons in order to completely replace all
neurons in each of the sub-populations.

4) Number of Genotype (Neuron) Evaluations: n (team
size) x u (sub-populations per population) x 7 (neurons per
sub-population) x r (neuron evaluations) x ¢ (task trials).
Where, U is the total number of sub-populations, and u is
the number of sub-populations per population.

III. EXTENDED (CONTINUOUS) MULTI-ROVER TASK

The extended multi-rover task is an extension of the con-
tinuous multi-rover task described by Agogino and Tumar [1].
Each rover attempts to maximize the value of red rocks de-
tected over the course of its lifetime as well as to maximize the
value of red rocks detected over the course of the rover team’s
lifetime. The extended multi-rover task includes the possibility
for a rover to execute multiple actions (section III-G). These
actions give rovers the possibility of exploiting specialization
to a given action as a means of increasing its own (and the
team’s) task performance. Related research in the extended
multi-rover task [11], elucidated that behavioral specialization
increases task performance at both the individual and rover
team level. Furthermore, this related research demonstrated
that a systematic search method for controlling a rover team
is not appropriate for attaining an optimal task performance in
the extended multi-rover task, where, rover’s are constrained
by limited energy, and sensor and actuator capabilities.

Table I presents the multi-rover simulation parameters.
These include NE and rover parameter settings such as battery
energy, sensor and actuator costs, sensor range and speed
of rover movement. The range values presented for rover
movement correspond to percentage values of the environment
size, where the environment width and height are equal for
these experiments. Environment parameter settings are those
that define the simulation environment, such as the number of
rovers, width and height of the environment and the individual
and total value of red rocks in the environment.

A. Collective Red Rock Detection

Red rock value detection requires that at least two rovers
concurrently activate their red rock detection sensors (figure
5). Each rover’s sensors’ must be activated with a setting that
corresponds to the type of red rock being detected (table II). If
at least two rovers collectively detect a red rock, it is marked as
detected and its value recorded. The red rock is then removed
from the environment so it is not detected again.

B. Continuous Simulation Environment

The simulation environment is a two dimensional contin-
uous plane, where one rover can occupy any x, y position.
Movement is calculated in terms of real valued vectors.
Distance calculation to other rovers and red rocks uses the
squared Euclidean norm bounded by a minimum distance [1].
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Multi-Rover Simulation Parameters
Number of generations 1000
Number of epochs per generation 32
Number of task trials per epoch 4
Iterations per trial (Rover lifetime) 1000
Number of rovers 24
Number of red rocks 720
Total red rock value 36000
Individual red rock value 50
Red rock deviation from centroid positions Variable
Number of red rock sensors per rover 4
Number of rover sensors per rover 4
Red rock / rover sensor range 0.08
Red rock / rover sensor accuracy 1.0
Red rock detection sensors cost 0.05
Rover detection sensors cost 0.0
Rovers required to detect a red rock 2
Number of ANN sensory input neurons 16
Number of ANN hidden layer neurons 8
Number of ANN motor output neurons 9
Elite portion 0.25
Mutation probability per gene 0.05
Rover movement range 0.01
Rover movement cost 1.0
Rover initial energy 1000 units
Initial rover positions Random
Environment width 1.0
Environment length 1.0

TABLE I
MULTI-ROVER SIMULATION PARAMETERS.

Red Rock/Rover De- | Red Rock/Rover | Accuracy| Range| Cost
tector Sensor Setting | Type Detected

Setting A A 1.0 0.08 0.05
Setting B B 1.0 0.08 0.05
Setting C C 1.0 0.08 0.05

TABLE II
RED ROCK / ROVER DETECTION SENSOR SETTINGS.

C. Red Rock Value Distribution

The environment is populated with 720 red rocks, dis-
tributed according to a two dimensional Gaussian mixture
model [16]. The mixture model is specified with four centroids,
set in static locations, where the radius of each determines
the spatial distribution of red rocks. Distributions with various
radii (p) were tested!, and p = 0.65 was selected, given that
this radius, for all NE methods applied to controller evolution,
enabled the derivation the highest performing rover teams. The
radii values are percentages of environment size, where the
environment width and height are equal. Each red rock has
an integer value equal 50, and locations are random within a
given distribution and thus initially unknown to rovers.

A total of 90 p values ranging from 0.05 to 0.95 (in increments of 0.01)
were tested. These p values were selected since they produced red rock
distributions that ranged from four clusters to approximately uniform.
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Fig. 5. Collective red rock detection. To detect the value of a red
rock of a given type, at least two rovers are required to activate their
detection sensor settings with a setting that corresponds to the red
rock type (illustrated as the joint area in the two detection fields).

D. Red Rock Detection Sensors

Four red rock detection sensors covering four sensor quad-
rants provide a rover with a 360 degree Field Of View (FOV).
Red rock detection sensors need to be explicitly activated with
one of three settings, and have a fixed accuracy, range, and cost
(table II). Sensor activation consumes one simulation iteration.
Detection sensor settings are: A, B, and C, which allow a rover
to detect type A, B, and C red rocks, respectively. Accuracy
denotes the degree of probability with which red rocks are
detected. Range is defined as a portion of the width of the
environment, where width and length are equal. Cost is the
energy used when the red rock detection sensors are activated.

When red rocks come within range of a red rock detection
sensor, then that sensor is activated with a value inversely
proportional to the distance to the closest red rock. That is,
red rock detection sensor g, returns the inverse of the distance
between this rover (v) and the location of the closest red rock
in quadrant ¢ (equation 2).

1

e 2
5(LosLra) @

Si(g,t) = J€Jq
is a sensor quadrant,
is this rover,
is simulation time step f,
is the closest red rock to rover v,
is the set of all red rock values in quadrant ¢,
gt (jeJy) is the location of red rock j at time ¢,
v is the location of rover v at time ¢.

NS R

dkﬂ-

E. Rover Detection Sensors

Four rover detection sensors covering four sensor quadrants
provide a rover with a 360 degree FOV. Rover detection
sensors need to be explicitly activated with one of three
settings and have a fixed accuracy, range and cost (table II).
Sensor activation consumes one simulation iteration. When
another rover comes within range of a rover detection sensor,
then the sensor is activated with a value inversely proportional
to the distance to the other rover. Detection of other rovers
also accounts for the other rover’s red rock detection sensors
setting. That is, sensor ¢ returns a value corresponding to the
red rock detection sensor setting being used by the closest
rover (v’), divided by the distance between this rover and rover
v’ (equation 3).
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Fig. 6. Rover ANN controller. SI: Sensory Input, MO: Motor Output.

dv’

SQ(q,v,t) = m 3

q is a sensor quadrant,

v is this rover (the rover that is detecting other rovers),
t is simulation time step ¢,

v is the closest rover to this rover in quadrant g,

dv’  is the red rock detection sensor setting of rover v’.

dv’is: 1,2, or 3 (setting: A, B, or C, respectively),
L, is the location of the closest rover in quadrant g,
L, is the location of this rover at time ¢.

Sensor values are normalized within the range [0.0, 1.0].

F. Movement Actuators

A rover’s heading is calculated from two motor output
values in its controller. That is, MO-7 (dx) and MO-8 (dy)
in figure 6. A rover’s heading is determined by normalizing
and scaling these vectors by the maximum distance a rover can
traverse in one simulation iteration. That is: dx = d 4, (MO-
7 - 0.5), and dy = dpax(MO-8 - 0.5). Where, d;qq is the
maximum distance a rover can move in one iteration.

G. Artificial Neural Network Controller

A recurrent ANN maps sensory inputs to motor outputs
(figure 6), where 16 sensory input neurons ([SI-0, SI-15])
are fully connected to 8 hidden layer neurons. Input neurons
[SI-0, SI-3] accept inputs from four rover detection sensors.
Input neurons [SI-4, SI-7] accept inputs from 4 red rock
detection sensors. Input neurons [SI-8, SI-15] accept hidden
layer neuron activation values from the previous simulation
iteration. Motor outputs ([MO-0, MO-8]) are fully connected
to 8 hidden layer neurons. Hidden and output neurons are
sigmoidal units. Outputs are normalized in the range: [0, 1].

1) Action Selection:: Each time step, the motor output
(figure 6: MO-0 to MO-8) with the highest value is the action
executed.
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Neuro-Evolution Method Diversity Performance

ESP 0.0835 (& 0.0055) | 0.4970 (£ 0.0031)
Multi-Agent ESP 0.3768 (£ 0.0118) | 0.5590 (& 0.0082)
CNE 0.0798 (£ 0.0014) | 0.3638 (£ 0.0049)

Multi-Agent CNE 0.3754 (£ 0.0201) | 0.6059 (% 0.0056)

TABLE III
AVERAGE TASK PERFORMANCES AND DIVERSITY OF ESP,
MULTI-AGENT ESP, CNE, AND MULTI-AGENT CNE EVOLVED
TEAMS (STANDARD DEVIATIONS IN PARENTHESES).

1) MO-0:
2) MO-1:
3) MO-2:
4) MO-3:
5) MO-4:

Activate red rock detection sensors (setting A).
Activate red rock detection sensors (setting B).
Activate red rock detection sensors (setting C).
Activate rover detection sensors (setting A).
Activate rover detection sensors (setting B).

6) MO-5: Activate rover detection sensors (setting C).

7) MO-6: Rover becomes (or remains) idle.

8) MO-7, MO-8: Move. Direction calculated from dx, dy.

H. Rover Team Fitness Evaluation

This section details the global evaluation function used to
evaluate rover team performance, and the private evaluation
function used to evaluate individual rover performance (fit-
ness). Global and private evaluation functions calculate fitness
as a function of the total red rock value detected.

1) Private Fitness Function: gy, calculates the value of
red rocks detected by the detection sensors (v) of rover n over
the course of its lifetime. Equation 4 presents g, .

o TVj ¢ 4
oo Oﬁzgmgv min (8L Ly0)) @
v is the value of red rocks detected by the detection
sensors of rover 7,
t is simulation time step #,
T is the total number of simulation time steps,
Tv;¢ is the value of red rock j at time ¢,
Ji» is the set of red rock values within detection sensor

range of rover v and detected by rover v,

L;: (jeJy) is the location of red rock j at time ¢,
L, is the location of rover v at time ¢,
min  (0(Lyyt, Lj¢)) is the minimum distance between

rover v at time ¢, and red rock j at time ¢.

2) Global Fitness Function: G calculates the sum of the
value of red rocks detected by a rover team. The goal of a
rover team is to maximize G. However, rovers do not maximize
G directly. Instead each rover 7 attempts to maximize its own
private fitness function g, ,,. It is important to note that G does
not guide evolution, but rather provides a measure of rover
team performance, based upon the contributions of individual
rovers. Rather, g, , guides rover controller evolution. For
any given experiment, the average red rock value detected is
calculated over all epochs of all rover lifetime’s. The highest
red rock value detected is selected in order to calculate G
(equation 5).
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Where, V is the set of all rovers.

IV. EXPERIMENTS

Experiments apply ESP and CNE for evolving controllers in
teams of 24 rovers in a given environment (section III-C). Each
experiment executes a method for 20 simulation runs (table
I). A simulation consists of 500 generations. A generation
corresponds to the lifetime of each rover. A rover lifetime
lasts for 32 epochs. An epoch is a set of 4 task trials
that test different rover starting positions and orientations in
the environment. Each task trial consists of 1000 simulation
iterations.

A. CNE and Multi-Agent CNE Experimental Setup

In the single population implementation of CNE, one pop-
ulation is initialized with 24000 genotypes. A heterogenous
rover team is created via randomly selecting 24 genotypes
from the elite portion (table I) of the population. These 24
genotypes are then decoded into a team of 24 rover controllers.

In Multi-Agent CNE, one genotype population is initialized
for each of the 24 rovers, where each of the 24 populations
contains 1000 genotypes. A heterogenous rover team is created
via randomly selecting one genotype from the elite portion
of each of the 24 populations. These 24 genotypes are then
decoded into a team of 24 rover controllers.

B. ESP and Multi-Agent ESP Experimental Setup

In the single population implementation of ESP, eight sub-
populations are initialized, where each sub-population contains
3000 genotypes. A heterogenous rover team is created via
randomly selecting one genotype from each sub-population’s
elite portion. These eight genotypes are then decoded into
neurons which form the hidden layer of a controller. This
process is repeated 24 times in order to form a rover team.

In Multi-Agent ESP, one genotype population is initialized
for each of the 24 rovers, where each of the 24 populations
contains eight sub-populations, and each sub-population con-
tains 125 genotypes. A heterogenous rover team is created
via deriving one rover controller from each population. That
is, for each of the 24 populations, one genotype is randomly
selected from the elite portion of each sub-population. These
eight genotypes are then decoded into neurons which form the
hidden layer of a rover controller.

C. Method Comparisons

Rover teams evolved by CNE, ESP, Multi-Agent CNE
and ESP are compared with respect to their average task
performance (fitness) and genotype diversity.
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1) Performance Analysis: Figure 7 shows the average fit-
ness of teams at each generation when evolved with CNE,
Multi-Agent CNE, ESP, and Multi-Agent ESP. Fitness is
presented as the portion of red rocks detected by a team, where
a value of 1.0 indicates that all red rocks have been detected.

CNE evolved teams yield a higher task performance com-
parative to Multi-Agent CNE (and a task performance ap-
proximately equal to Multi-Agent ESP evolved teams) for
the first 250 generations. CNE evolved teams achieved the
highest task performance at generation 300, and thereafter task
performance remains approximately constant. As expected,
CNE quickly converged to an initially effective behavior. This
in turn leads to the evolution of a fittest team of genetically
similar controllers that converge (early in the evolutionary
process) to a sub-optimal solution (table III: 0.3638 of optimal
task performance). Poor and steady performance between
generations 300 and 1000 supports this statement.

ESP evolved teams did not yield a higher performance,
comparative to CNE evolved teams, until after generation
400. Between generations 500 and 1000, ESP evolved teams
achieved a task performance higher comparative to CNE and
lower comparative to Multi-Agent CNE and Multi-Agent ESP
evolved teams. The ESP sub-population architecture was suc-
cessful in maintaining genotype diversity until generation 400.
However, selecting neurons for all controllers from the same
set of sub-populations, means that all controllers are likely
to converge to a sub-optimal solution, given that each sub-
population is also likely to converge to a set of neurons that
cooperate well, though ultimately constitute poor performing
controllers (in terms of their cooperation in the context of a
rover team). This is supported by table III which presents ESP
evolved teams as attaining 0.4970 of optimal task performance.

Multi-Agent CNE uses a multi-population cooperative co-
evolution architecture that encourages convergence to a team
of controllers that yield a steadily increasing task performance.
That is, selection of a fittest controller from each population
and the collective evaluation of controllers as a rover team
facilitates the evolution of a set of complementary behaviors.
Collectively, these behaviors constitute a high performance
team. The average task performance of Multi-Agent CNE
evolved teams are not optimal (table III: 0.6059 of optimal task
performance), though, it is significantly higher comparative to
CNE, ESP, and Multi-Agent ESP evolved teams.

Multi-Agent ESP also uses a multi-population cooperative
co-evolution architecture. Experimental results indicate that,
whilst such an architecture is generally beneficial, the evolu-
tion of neurons as part of this architecture is not as beneficial as
the Multi-Agent CNE network based evolution. That is, from
each population, a set of fittest neurons that work well together
are selected in order to form a controller. However, these
neurons did not produce controllers that were able to cooperate
effectively in order to yield a high task performance. This is
supported by the significantly lower average task performance
(table III: 0.5590 of optimal task performance) of Multi-Agent
ESP evolved teams, comparative to Multi-Agent CNE teams.

The Kolmogorov-Smirnov (KS) test [5] confirms that task
performance results of CNE, Multi-Agent CNE, ESP, and
Multi-Agent ESP evolved teams (figure 7) conform to normal
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Fig. 7. Progression of average task performance (calculated over 20
simulations) of rover teams evolved by ESP, Multi-Agent ESP, CNE, and
Multi-Agent CNE. The curves demonstrate the short term performance gains
of CNE and the long term performance gains of Multi-Agent CNE.

distributions. In order to determine if there is a statistical sig-
nificance of difference between the average task performances
of rover teams evolved by CNE, ESP, Multi-Agent CNE and
Multi-Agent ESP, an independent t-test [5] is applied. A sta-
tistical significance of 0.05 is selected, and the null hypothesis
is stated as the data sets not significantly differing. These t-
tests?> found that teams evolved by Multi-Agent CNE yield
a significantly higher task performance over teams evolved
by the other methods. This result supports the hypothesis that
Multi-Agent CNE, on average, evolves teams yielding a higher
task performance comparative to other methods (section I).

2) Genotype Diversity Analysis: The average genotype
diversity exhibited by different methods throughout evolution
is also investigated. This diversity analysis demonstrates that
the Multi-Agent (cooperative co-evolution) methods enable
greater diversity between genotypes, which in turn facilitates
the evolution of high performance rover teams. For teams
evolved by each method, genotype diversity is measured after
each generation of the 1000 generations of execution.

To measure the genetic similarity between two genotypes
a (equation 1) and b (identical in structure to @), a Genetic
Distance (GD) between @ and b is defined (equation 6).

Zie{l,...,N} lai — b
N

GD(a,b) = (6)

Where, N is the genotype length.

Figure 8 presents the average genotype diversity of teams
evolved by each method measured at each generation, where
a value of 1.0 indicates maximum diversity. The cooperative
co-evolutionary methods (Multi-Agent CNE and Multi-Agent
ESP) maintain a higher level of diversity over all generations.
For the first 200 generations, Multi-Agent CNE evolved teams
maintained a higher diversity comparative to Multi-Agent ESP
evolved teams. This diversity coincides with a comparatively

2KS and t-tests P values are not presented here due to space restrictions.
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Fig. 8.  Progression of average genotype diversity (calculated over 20
simulations) of rover teams evolved by ESP, Multi-Agent ESP, CNE, and
Multi-Agent CNE. Multi-Agent CNE and Multi-Agent ESP evolved teams
maintain the highest level of genotype diversity throughout evolution.

higher (approximately 10%) average task performance yielded
by Multi-Agent CNE evolved teams (figure 7).

This result, supported by related work [9], is theorized to be
consequent of the speciated nature of the multi-agent methods,
which encourages the evolution of teams that converge to
multiple complementary behaviors. This result also indicates
that the multi-rover task is suited to multi-agent evolution at
the controller level and not at the neuron level. The neuron
based evolution used by Multi-Agent ESP, whilst maintaining
a comparably high level of diversity, converges to teams that
yield a significantly lower average task performance.

Also, figure 8 presents the average genotype diversity main-
tained by CNE evolved teams as being higher comparative
to the average diversity of ESP evolved teams for the first
200 generations. However, between generations 200 and 400
the average diversity of CNE evolved teams is lower than
that of ESP evolved teams. Interestingly, the low diversity of
CNE evolved teams during this period coincides with an on
average 30% higher task performance (figure 7). That is, CNE
causes teams to quickly converge to a set of genetically non-
diverse yet effective controllers. However, the average task
performance (figure 7) and diversity (figure 8) of CNE evolved
teams remains constant between generations 300 and 1000.

V. CONCLUSIONS

This research was a preliminary exploration into a collective
behavior task that benefits from the evolution of genotypes that
encode complete ANN controllers, as opposed to genotypes
that encode individual neurons. Experiments were conducted
that compared the task performances of simulated rover teams
operating with ANN controllers. Controllers were evolved
with the CNE, Multi-Agent CNE, ESP, and Multi-Agent
ESP methods in a multi-rover task. The multi-rover task is
a collective behavior task that requires teams of rovers to
maximize a value for features of interest detected on a virtual
landscape, given time, energy, sensor and actuator constraints.
Results support the research hypothesis. That is, Multi-Agent
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CNE is appropriate for deriving teams that yield a higher
task performance comparative to teams evolved by the CNE,
ESP and Multi-Agent CNE methods. Thus, for this multi-rover
task, the ESP approach which evolves neurons separately and
then combines them into complete ANN controllers, offers
no advantage. The multi-rover task is the first in a set of case
studies which investigate the types of collective behavior tasks
that benefit from NE at the neuron level versus NE at the
controller level.
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