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Abstract

Crowd simulations have become increasingly popular in films over the past decade, ap-
pearing in large crowd shots of many big name block-buster films. An important require-
ment for crowd simulations in films is that they should be directable both at a high and
low level, and be believable. As agent-based techniques allow for low-level directabil-
ity and more believable crowds, they are typically used in this field. However, due to
the bottom-up nature of these techniques, achieving high level directability requires the
modification of agent-level parameters until the desired crowd behaviour emerges.

As manually adjusting parameters is a time consuming and tedious process, this thesis
investigates a method for automating this, using Neuro-Evolution (NE). This is achieved
by using Artificial Neural Networks as the agent controllers within an animated scene,
and evolving these with an Evolutionary Algorithm so that the agents behave as desired.
To this end, this thesis proposes, implements, and evaluates a system that allows for the
low-level control of crowds using NE. Overall, this approach shows very promising results,
with the time taken to achieve the desired crowd behaviours being either on par or faster
than previous methods.
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Chapter 1

Introduction

Crowds are commonplace in real life and can be observed in a variety of forms, such as bird
flocks, pedestrians, concert audiences, and traffic. Due to their ubiquity, it is important
for virtual environments to simulate them in order to appear realistic and believable.
Traditional animation approaches struggle in this context because of the large amount of
work required for artists to animate not only the behaviours of each individual agent, but
also their interactions with other agents. Crowd Simulations are a set of computational
techniques that deal with this problem by automating many of the animations of the
agents within the environment.

Since the introduction of Reynolds’ seminal work on bird flocking [Rey87], there
has been considerable research performed on Crowd Simulations. This research can
be roughly divided into two groups: Macroscopic [PPD07, NGCL09] and Microscopic
[THH00, HBD02] approaches.

Macroscopic approaches aim to simulate crowds in a top-down manner, by performing
the simulation at a group level. These approaches typically use concepts such as flow, fluid
dynamics, and density fields in order to simulate the behaviour of crowds. Macroscopic
techniques are advantageous in that they can typically simulate larger groups of crowds
in real time compared to their Microscopic counterparts, as well as provide an easy way
to direct the aggregate motion of the crowds.

Microscopic approaches simulate crowds in a bottom-up manner, by simulating the
agents on an individual basis with the aggregate crowd behaviour being emergent. Ad-
vantages to these techniques are that agents are capable of interacting within the crowd
and that individual agents can be controlled and directed. This leads to the overall crowd
being more believable.

Crowds are used in a variety of applications such as digital entertainment [MUAT05,
HDK+06], psychology [MPT92, JPVdS01, TSM99], architectural design [SOHTG99, PT01,
TP02], and military training [Woo00, PMGW04]. Given this wide variety of applications,
it is natural that each has differing requirements. For example when simulating evacu-
ations in architecture, the individual agents tend to have rather simple behaviours with
the overall motion of the crowd being the main focus, whereas in Collaborative Virtual
Environments, the crowd must be simulated in real-time as it needs to interact with
participants [THL+04].

In the film industry, the crowds (high-level) and individual agents (low-level) should
be controllable, and their large scale behaviour believable [THL+04]. In order to cater
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Figure 1.1: Images from left to right, top to bottom: “The Lord of the Ring - Return of
the King”, “Happy Feet”, “I, Robot”, and “The Dark Knight” (Source: [CSM]).

for the low-level control and believability requirement, systems employing Microscopic
techniques are typically used. The industry standard, Massive1, is one such system,
and has been used to animate crowd shots in a host of films, including “The Lord of
the Rings”, “Happy Feet”, “I, Robot”, and “The Dark Knight” (figure 1.1). Massive
simulates these crowds using Fuzzy Systems [BT97] for the the individual agent brains,
which determine the agents’ various behaviours and animations.

One problem that microscopic systems, such as Massive, suffer from is accomplish-
ing the third goal of films, high-level control. This is expected, as high-level control is
an opposing requirement to believable crowds [THL+04]. Traditionally, this problem is
solved by artists tuning the low level parameters of the Fuzzy Systems until the desired
behaviours emerge - a tedious and time consuming task.

One method for dealing with this is to use optimization algorithms to find the ideal
parameters so that the high-level crowd behaviour is as desired. This is particularly
relevant in films due to three characteristics: shots are not rendered in real-time thus
there is no real-time requirement; there is no shot to shot coherence; shots are short
[THL+04].

An example of such a method is Jacka’s work [Jac09], where he used Particle Swarm
Optimization [EK95] to optimize the membership functions of the Fuzzy Systems repre-
senting the agents’ brains.

This thesis is focused on exploring another paradigm, namely Neuro-Evolution (NE).
NE is the use of Evolutionary Algorithms [D+91] to evolve Artificial Neural Networks
(ANNs) [Yeg09]. This method can be applied to high-level crowd control by using ANNs
as the brains of the agents within a Crowd Simulation, and then evolving these ANNs
so that the crowd and agent behaviours reflect the desired user specifications, which are
represented as a set of objectives in the fitness function of the NE algorithm.

1http://www.massivesoftware.com/
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This thesis’ intent is to investigate how well NE performs when applied to high-level
crowd simulation control. Since there are many NE algorithms, each with a wide range
of parameters that have problem dependent task performance, we also aim to investigate
the ideal algorithms and parameters for this specific problem.

The main contribution of this thesis is a novel NE method of providing high-level con-
trol to Crowd Simulations, as well as a new application area in which to study NE. Such
an approach has the advantage over Fuzzy System membership function optimization in
that artists are not required to design the brains but rather merely provide objectives
for the crowd simulation. This is desirable for two main reasons: it frees up more of the
artists time, allowing them to be more productive; and that poorly designed brains may
lead to difficulties in finding the desired behaviours. Additionally, compared to other con-
trol techniques, it allows for a much wider variety of agent types and objectives, making
it a more general solution.

Overall, this thesis shows promising results when using NE to control aggregate emer-
gent crowd behaviours, with the evolution times being on par or better than the times
obtained in Jacka’s work [Jac09]. We identified CMA-ES to be the best performing
algorithm for high-level control of crowd simulations.

1.1 Research Goals

Our research goals for this project are as follows:

• Determine whether or not it is possible to control the emergent behaviours of Crowd
Simulations using NE for a range of tasks and environments that require crowd
behaviour.

• Determine if the evolution times are feasible so that this method can be used in the
context of controlling crowd animations in films.

• Find an appropriate NE algorithm for controlling Crowd Simulations.

For the first research goal, we are interested in whether or not it is possible to evolve
controllable behaviours for Crowd simulations using NE. This is important as NE algo-
rithms often become trapped in poor local optima or prematurely converge, which may
result in behaviours that do not reflect those specified by the user.

For the second research goal, we are interested in whether the evolution times when
using NE to control crowds are feasible for possible use in films. This is important
as, although the crowds are not rendered in real-time, the evolution process should not
bottleneck the animation pipeline. In order to determine if the times are feasible, we
will compare our evolution times to the expert user parameter tuning times obtained by
Jacka [Jac09], who implemented a system very similar to Massive.

For the third research goal, we have decided to compare the task performance of four
well established NE algorithms that have been successfully applied to a range of other task
domains [SM02, GM03b, SBM05], together with their respective parameters and opera-
tors when evolving controllable high-level crowd behaviours. These algorithms are Neuro-
Evolution of Augmenting Topologies [SM02] (section 4.1.4), Enforced Sub-Populations
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[GM03b] (section 4.1.2), Conventional Neuro-Evolution [Wie91] (section 4.1.1), and Co-
variance Matrix Adaptation Evolutionary Strategy [HK04] (section 4.1.3). This is im-
portant as the task performance of NE algorithms and parameters often are problem
dependent. These algorithms were selected as they represent the various categories of
NE algorithms discussed in section 3.2. In order to evaluate how these algorithms per-
form, we will primarily look at how well and how quickly they are able to evolve the
desired behaviours defined by the NE algorithm’s fitness function.

1.2 Contributions

The contributions of this thesis are as follows:

• A novel NE method for controlling high-level behaviours in crowd-simulations, to-
gether with an investigation of the performance of NE in this problem area.

• An investigation of the task performance of NE crossover, selection, and mutation
operators in the context of controlling crowd behaviours.

• A comparison of the task performance of four well established NE algorithms when
controlling crowd behaviours.

• Insight into how ANN controller compositions affect the evolutionary process and
the final evolved agent behaviours.

1.3 Scope

This thesis is primarily focused on exploring various NE mechanisms in the context of
controlling crowd simulations. Due to the sheer variety of these mechanisms, several
avenues of research have been excluded in order to limit scope. These include:

• The design and implementation of a user interface that allows users to easily use
the system.

• An in-depth investigation of different user-provided crowd objectives, which may
allow for more complex high-level control (for example crowd formations and inter-
agent interactions), or faster evolution.

• Non-behavioural aspects of crowd simulation, such as optimizing rendering and
animations.

Due to these exclusions, this work serves mainly as a preliminary study of the viability of
using NE for controlling crowds. Further work will be required in the areas listed above
before it can be used in a production environment.
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1.4 Structure

This thesis is structured as follows. Chapters 2 and 3 provide background work and
fundamentals required for the understanding of our research. These chapters explore
previous work in the fields of crowd simulations and NE. Chapters 4 and 5 provide an
overview on the design and implementation of our system, with in-depth elaborations on
the various algorithms used. Chapter 6 details the design of the various simulations and
agents used. Chapter 7 covers details of how we plan to conduct our experiments, as well
as providing parameter tuning results and motivations. Chapter 8 provides insight with
regards to the results obtained in the experiments. Chapter 9 concludes and gives future
directions for our work.
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Chapter 2

Crowd Simulations

Crowd Simulations are a set of techniques that simulate the collective behaviour of agents
within virtual environments. In the last few decades, these techniques have been applied
in a wide variety of fields, including architecture, computer graphics, physics, robotics,
safety science, training, and sociology [Tha07].

Despite the broad range of applications, there has been a lack of cross pollination,
resulting in most approaches being context specific, with different fields focusing on dif-
ferent aspects of crowd behaviour [Tha07]. Despite the differences in these approaches,
their behavioural models can be divided roughly into two categories: Macroscopic ap-
proaches, which aim to simulate the crowd in a top-down manner, with the crowd being
simulated at a group level, and Microscopic approaches, which simulate crowds bottom-
up with the crowd being simulated at an agent-level. The differences in these approaches
result in aggregate crowd behaviour being artist defined for Macroscopic approaches, and
emergent for Microscopic ones.

This chapter provides an overview of the various techniques dealing with the be-
havioural modelling of crowds, examples of applications for crowd simulations, an overview
of other important aspects of crowd simulations, such as rendering and authoring, and a
discussion of crowd simulations in the context of films, our primary field of interest.

2.1 Crowd Simulation Applications

Crowd simulations have been used in a vast variety of fields, each having differing re-
quirements. One field that uses crowd simulations extensively is sociology, where it is
often used to study collective behaviour of pedestrians, such as arcs, rings, and clustering
[MPT92, JPVdS01, TSM99]. Thus, it is important for crowd simulations in this field
to model social structures, such as grouping and queuing. Microscopic approaches are
preferred in this context as they better reflect the decision making process of real-life
humans, and allow for interesting and sometimes unexpected behaviours to emerge from
the crowd.

A large amount of crowd simulation work has also been performed in the field of
architecture, where crowd simulations mainly aim to simulate pedestrians dynamics in
order to accomplish tasks such as planning town centres and assessing the placement of
shops [SOHTG99]. This is achieved by using the crowd simulations to predict and study
the paths [PT01] and behaviours [TP02] of pedestrians in the relevant environments.
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Figure 2.1: The Zheng Zhi Adidas advertisement for the 2008 Olympic games (Source:
[zhe]).

Microscopic pedestrian simulations tend to perform well in this field as, once again,
much of the research aims to study the emergent behaviours and properties of crowds.

Another application for crowd simulations in architecture, as well as safety sciences,
is evacuation simulation [Tha07]. The main aim here is to model the movement and be-
haviours of large groups of people in confined spaces, often in the presence of some hazard.
This enables architects and designers to more easily find flaws in their designs [OM93].
These simulations help the designer answer questions such as: can the area be evacuated
within a specified time? ; and where are the flow bottlenecks? [Tha07]. Thus, modelling
the motion of agents is the most important aspect to these simulations. Both Micro-
scopic and Macroscopic methods work well in this context, with the preferred technique
being scenario dependent. Microscopic simulations, due to simulating individual agents,
allow for more complex behaviours, such as shelter seeking or hiding, whereas Macro-
scopic simulations allow for large numbers of agents, due to reduced computational cost
of simulating at a group level.

Virtual environments are an application area of crowd simulations that has been gain-
ing traction recently, with examples ranging from battle scenes in The Lord of the Rings
(figure 2.2) to crowds of spectators in the Adidas Zheng Zhi advertisement (figure 2.1).
Crowd simulations are used in these virtual environments to enhance realism and im-
mersiveness. The requirements in this field differ from other areas such as evacuations,
sociology, and training in that it is important to have both believable behavioural models,
as well as realistic animations and visualizations. Once again, the techniques used here
are dependent on context. Microscopic techniques work well if the application does not
require real-time response, only needs to simulate small crowds, or requires high qual-
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Figure 2.2: Battle of the Hornbug scene in The Lord of The Rings: The Two Towers.

Figure 2.3: An example of a Cellular Automata model used for evacuating agents from a
room (Source: [KS02]).

ity animations. Macroscopic simulations, on the other hand, are useful for applications
where interactive simulation of large crowds is necessary.

2.2 Microscopic Crowd Simulations

An intuitive way of simulating crowds would be to define the behaviours of individual
agents, and allow the aggregate behaviour of the crowd to emerge. This class of crowd
simulation techniques has been termed Microscopic [THH00, HBD02], Bottom-up [Tha07,
OPOD10], and Agent-based [YCP+08, QH10]. These techniques can be divided up into
three broad categories: Cellular automata systems, Rule-based systems, and Embodied
agent systems.

2.2.1 Crowds with Cellular Automata

The use of Cellular Automata to model pedestrians has proved popular. In these tech-
niques, the environment is modelled as a grid of cells (figure 2.3), with pedestrians and
obstacles being able to occupy these cells. The pedestrians are then moved between cells
based on a variety of factors, such as density, speed, and flow. One such system is Legion,
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Figure 2.4: Birds flocks in Stanley and Stella in: Breaking the Ice simulated using
Reynolds’ boids algorithm (Source: [Rey87]).

a pedestrian simulation system inspired by the work of Still [Sti00], and has been used
for a variety of tasks, such as the planning of stadiums during the Olympic games. In
Legion, an agent transitions between the cells by taking into account its position as well
its local environment.

Cellular Automata crowd simulation systems have been used to study several sce-
narios, such as evacuating ships [KMKWS01], effects of crowds on a person’s mood
[JPVdS01], and self-organization and phase transitions amongst pedestrians [FI99]. De-
spite the success of these systems in studying pedestrian behaviour, they are, unfortu-
nately, limited to applications that do not require highly realistic visualizations, such as
film, because their inherently discrete nature results in limitations as to how the agents
can move around the environment, often resulting in less believable behaviours.

2.2.2 Rule-based systems

The short film Stanley and Stella in: Breaking the Ice, shown at the Electronic Theater
at SIGGRAPH ’87, showcased the revolutionary idea that complex group behaviors can
be achieved by providing simple local rules to the agents within the group, as opposed to
using some set of enforced global rules (figure 2.4). Accompanying this short film was a
technical paper detailing the technique used to simulate the flocking behavior. Reynolds’
paper on boids [Rey87] is now widely considered the first crowd simulation technique.

In boids, each agent is provided with a local perception of the environment, as well
as three simple local rules: cohesion, separation, and alignment. Alignment requires that
an agent should try to match the velocity of its neighbouring agents, separation means
that the agents should attempt to steer away from their neighbours, and cohesion tells
the agents to move towards the centroid of the group. Through these three simple local
rules, Reynolds showed that it was possible for complex aggregate behaviour to emerge
within the flock.
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Figure 2.5: Lane segregation of agents in Helbing and Molnar’s Social Forces model
(Source: [HM95]).

Reynolds has since extended boids to include additional behaviours, such as goal
seeking, obstacle avoidance, path following, and fleeing [Rey99], as well as incorporating
finite state machines into the agent controller model in order to allow for interactions
between groups and users.

Another well known and often used technique is Helbing and Molnar’s [HM95] particle-
based Social Force Model. In their technique, each particle represents an agent within
the crowd, and is provided a mass and a desired velocity. These desired velocities are
changed throughout the simulations through the use of two external forces: force to move
agents away from walls; and force to move agents away from other agents. Helbing and
Molnar found that with this model, certain emergent behaviours, such as lane segregation
(figure 2.5), formed.

A problem with the social forces model is that all the agents have the same behavioral
rules. Braun et al. deal with this by extending Helbing’s model to allow for the modelling
of different behaviours for individuals and groups. They achieved this by adding terms
such as altruism and dependency levels to the model [BMdOB03], as well as providing
agents with the ability to perceive nearby emergencies and alarms [BBM05].

A recent direction for crowd simulation research is modelling the high-level psycholog-
ical state of agents. A well known approach in this area is the High-Density Autonomous
Crowds (HiDAC) system by Pelechano et al. [PAB07]. HiDAC utilizes a 2-tiered archi-
tecture for simulating agents, with the upper-tier defining high-level functions, such as
navigation, communication, decision making, and learning, and the lower-tier defining
low-level motion, such as reactive behaviours and perception (figure 2.6).

In order to simulate the agents, the system implements a parametrized version of the
Social Forces model [HM95], and uses a separate module to model both the psychological
and physiological state of an agent. The high-level layer determines which goal the
agent wishes to move towards (which then acts as an attractor force), decision making,
memory, and orientation abilities. The low-level layer is responsible for collision detection
and avoidance, with detection being performed on all overlapping objects and avoidance
being performed only on objects in the direction of movement. Additionally, the low-
level state of an agent also impacts aspects such as speed, fall probability, and pushing
behaviours.

HiDAC has since been extended with personality models from psychology to represent
the agents’ psychological state. The work of Durupinar et al. [DAPB08] is one such exam-
ple, where they use the popular OCEAN personality model [Wig96] for the psychological
state of the agents. This model separates personality into 5 orthogonal dimensions of
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Figure 2.6: Architecture for the HiDAC system, showing the interactions between the two
tiers and the psychological state of an agent (Source: [PAB07]).

personality space, namely openness, conscientiousness, extroversion, agreeableness, and
neuroticism. The variables of this model are then mapped to specific functions of agents,
such as leadership, sociability, patience, pushing behaviours, walking speed, panic and so
on.

Another well known system that models agent psychological state is Musse and Thal-
mann’s [RMT01] hierarchical ViCrowd system. The hierarchy of this system is separated
into three levels: crowd, group, and individual. Parameters set at higher levels of the
crowd are propagated to the lower levels, with the lower-level parameters also being ad-
justable, overriding the inherited parameters. This allows for groups or individual agents
to specialize. For example, the crowd mental state can be defined as happy, with one
specific group of agents as sad. An additional benefit of the hierarchical structure is
that it allows for optimizing the system for real-time simulation. Musse and Thalmann
achieve this by having group members share the same decision process.

Guy et al. have also proposed various crowd simulation models that take agent psy-
chology into account, including PLEdestrians [GCC+10], based on the theory that living
organisms naturally move along the paths that requires the least effort, as well as using
the Eysenck 3-Factor personality model [Eys92] to define different personalities for agents
in order to achieve heterogeneous agent behaviours within crowds [GKLM11].

A more recent work by Kim et al. [KGML12] aims to adapt the psychological state of
agents during the simulation. They achieve this by modelling the stress that an agent re-
ceives, which gets mapped to their aggressiveness and impulsiveness using Seyle’s [Sel56]
General Adaptive Syndrome. This impulsiveness and aggressiveness are combined with
a statically defined personality for the agent in order to determine the agent’s final be-
haviour.

A different approach to modelling psychological aspects of agents appears in the work
of Yeh et al. [YCP+08], who use composite agents to model aspects such as social priority,
aggression, authority, protection, and guidance. Composite agents are normal agents in a
crowd with a set of proxy agents attached to them. These proxy agents are not visualized,
however, the other agents within the simulation nevertheless react to them. A simple use
case for composite agents comes in the form of modelling aggression (figure 2.7), which is
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Figure 2.7: Composite agents can be used to model aggressiveness in an agent by adding
a proxy agent p in front of the direction of movement of agent A. Larger proxy agents
take up more area and thus signify higher aggression (Source: [YCP+08]).

achieved by attaching a proxy agent in front of a normal agent. This will result in other
agents opening a path in front of the composite agent, which emulates how aggressive
individuals intimidate others.

Data-driven models for controlling agents have also received a lot of recent atten-
tion [CC07, LCHL07, JCP+10]. These techniques typically aim to capture and store
behaviours of real-life crowds in state-action pairs. Agents are then able to query these
during simulation in order to determine what action is desired in a given situation. Due
to the data-driven nature of these systems, they are more flexible than many of the other
methods, as they are not limited to simulating one specific type of agent. Additionally,
as the state-action pairs are obtained from footage of real-life organisms, the behaviours
created are much more realistic.

The drawbacks to these systems are that it is not always possible to obtain the relevant
behavioural data, and because computer vision techniques are used to extract the state-
action pairs, some of the information may be inaccurate. Additionally, these methods
are also often more computationally expensive than others, resulting in difficulties in
simulating dense crowds.

In addition to modelling an agent’s behaviour, it is also important to model how they
interact with their environment. A problem here is that different parts of the environ-
ment require different interactions. For example, a human interacts very differently with
a swimming pool than with a bench, requiring that each agent have a very large set of
behaviours and rules in order to account for all possible objects in the environment. A
different approach to this problem was introduced by Sung et al. [SGC04], who instead
store the behavioural information within various environment structures, termed situa-
tions, and temporarily add this behaviour to interacting agents by appending to their
motion graph the relevant animations (figure 2.8). This technique is advantageous as it
allows for both a more scalable crowd simulation system, as well as the composition of
different situations, allowing for complex agent interactions with multiple situations.

There have also been systems that, instead of providing a predefined behavioural
model, provide a framework that allows users to more easily define them. One such system
achieves this by using timed stochastic parametric conditional Lindenmayer systems (L-
systems) [NTT92, NT93, NT96], a formal grammar that expands a set of symbols into a
larger set of symbols through the use of some production rules. In these systems, the user
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Figure 2.8: In order to temporarily add a situation’s behaviour to an agent in the method
provided by Sung et al., a sub-graph detailing this new behaviour is appended to the motion
graph of the agent at the relevant position (Source: [SGC04]).

defines the behaviour of the agents with a set of production rules. During simulation,
the agents’ environment view along with the current time step is passed to the L-system,
which then determines the performed behaviour and expected position of the agent by
taking into account the production rules and by differentiating the time-step.

Another system that allows for the user to create their own behavioural models is
Massive. This is achieved by allowing users to define the structures of the fuzzy systems
that act as agent controllers. Massive will be discussed in more detail in section 2.6.

2.2.3 Embodied agent systems

All the crowd simulation techniques discussed so far represent agents within the environ-
ment as points, with the behavioural controllers determining how an agent should act and
move. The animations in these systems are created prior to the actual execution of the
simulation, and are merely played when the corresponding action is performed. Although
this approach produces convincing results, there are often cases where the animations do
not perfectly align to reality, leading to a break in immersion. A simple example of this
would be an agent attacking another, where the animations for striking and blocking do
not align properly.

Embodied agent systems aim to resolve this by treating the agent as a full-bodied
system rather than a point in space. The animations for agents in such systems are
not key-framed and assigned to actions prior to the simulation, but rather performed
by modifying the positions and angles of the joints during simulation. This allows for a
much wider variety of possible animations, resulting in more believable agents.
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Figure 2.9: The spring-mass system of an artificial fish with the springs at their rest
lengths (Source: [TT94]).

An early example of this type of system comes from Tu and Terzopoulos [TT94], who
use an embodied system to animate schools of fish. A fish is simulated by separating
its system into 3 subsystems, namely Perception, Decision, and Action. The perception
subsystem is responsible for providing environmental information to the fish. This is
achieved by incorporating two sensors into the fish. The temperature sensor is responsible
for determining the water temperature at the centre of the fish, and the vision sensor is
responsible for conveying information such as the colour, size, distance, and identity of
objects within a 300 degree spherical volume.

The action subsystem deals with the low level motor action. The fish is modelled as
a spring-mass system (figure 2.9), and moves by swishing its tail through the contraction
of its muscle springs, which causes a reactionary force proportional the the amount of
water displaced, propelling the fish forward. This provides realistic movement animation
for the fish, closely resembling how real fish move.

The decision subsystem is responsible for sending orders to the action subsystem so
that the fish knows which action to perform. It does this by sending commands in order
to fulfil the current goal of the fish, which is determined by taking into account the fish’s
perception, habits, and mental state. By modifying the habits of various fish, one is also
able to create more heterogeneous behaviours for the fish in the school. This system
showed very promising results, with the school of fish achieving a variety of interesting
emergent behaviours with minimal intervention by animators.

Another investigation into embodied agent systems was performed by Brogans and
Hodgins [BH97]. They compare three crowds with differing body dynamics: a crowd of
one legged robots; a crowd of cyclists (figure 2.10); and a crowd of points with masses.
In their system, the rule set provided to the agents was similar to that of boids, however,
as the embodied agents have to take into account the mechanics of the agent bodies,
they are not guaranteed to reach the desired position and orientation specified by the
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controller. The authors found that with embodied agents, the movement and animation
quality of the crowd improved significantly compared to the point mass crowds. However,
the complex bodies of the cyclist agents caused them to struggle with many tasks and
made them difficult to control.

Despite the initial embodied agent systems demonstrating high-quality crowd anima-
tions and interesting emergent crowd behaviours, there has been a lack of subsequent
work in this area. This could be attributed to the expense of simulating such systems,
resulting in them being only really viable for simulating smaller crowds. Additionally,
the level of realism achieved by these techniques is not necessary in many fields. Another
issue with these systems is the difficulty of controlling the agents. This is especially
problematic in film as the crowd and agents are often directed to perform specific tasks
in order to enhance story.

Despite not gaining much traction in the crowd simulation domain, there has been
a substantial amount of work in the area of single agent simulation and computational
intelligence, with some recent examples including a neural network to train an embodied
agent to perform bicycle stunts [TGLT14], and training bipedal agents to walk with a
muscle-based control system [GvdPvdS13].

2.3 Macroscopic Crowd Simulations

An alternative to microscopic approaches is to simulate the crowds on a group level.
These techniques are termed group-based [TGMY09, RMT01], top-down [MOS09], or
macroscopic [PPD07, NGCL09] crowd simulations.

2.3.1 Flow-based methods

A traditional view of crowds would be as a collection of agents, with each agent in the
crowd having a separate identity that interacts with other agents in order to achieve
some type of aggregate behaviour. A different approach is to instead treat these crowds
as flows. Hughes [Hug03] argues that this is possible as crowds are similar to fluids, and
not irrational and erratic as was originally believed. In Hughes’ work, he models crowds
with fluid dynamics, and then analyses their properties. Unfortunately, he did not carry
this through to create a simulation for these crowds. Nevertheless his work allowed a
variety of flow-based crowd simulation methods to be developed over the course of the
next decade.

One such system is Continuum Crowds by Treuille et al. [TCP06]. In continuum
crowds, agents within the simulation are divided into groups. For each group, a dynamic
potential field is generated by integrating both the global navigation and the obstacles of
that group, resulting in a map detailing the desired (low potential) and undesired (high
potential) areas of the environment for the group of agents. In order for the agents to
find the ideal next position, they merely need to move opposite to the gradient of this
potential field (as shown in figure 2.11).

In addition to continuum crowds, other well known methods that aim to use flow
to direct agent movement include using velocity fields to direct the movement of agents
[Che04, PVDBC+11], and using fluid dynamics equations for local collision avoidance
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Figure 2.10: Embodied agents in the form of one legged robots and cyclists, which were
then compared to point mass agents (Source: [BH97]).
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Figure 2.11: The simulation process of the continuum crowds system (Source: [TCP06]).

in dense crowds [NGCL09] in order to de-couple the computational expense with the
number of agents.

2.3.2 Macroscopic Data-driven methods

Another macroscopic approach to simulating crowds is to stitch or synthesize precom-
puted or captured behaviours, in order to achieve some desired output behaviour. Group
Motion Graphs [LCF05] is one such technique. In Group Motion Graphs, a series of crowd
motion clips are clustered and stitched together in a graph. In order to generate crowd
motion, this graph is then traversed. A problem with this method is that it has difficulty
with agents that have significant body dynamics. This could cause problems with linking
clusters as the correct agent orientation, position, and body state are unlikely to always
be found. Another problem with this technique is that it cannot deal with the removal
or addition of agents to the simulation.

A different data-driven technique is investigated by Yersin et al. [YMPT09], who
create a large environment with a series of small environmental blocks. Each environ-
mental block has a set of agent paths defined. These blocks can be then stitched together
(figure 2.12) to create a larger environment in such a way that agent paths are aligned
with adjacent blocks, allowing agents to move from one block to another.

Although the above techniques allow for the real-time simulation of large groups of
agents in a variety of different environments, they require a pre-processing step. Ad-
ditionally, they are somewhat rigid as it is not possible to simulate what has not been
catered for prior to the simulation.

2.3.3 Pathfinding

It is often required in crowd simulations that agents move from one location to another.
While not a full crowd simulation system, pathfinding can be viewed as a macroscopic
approach as it aims to plan out the agents’ paths, generally on a group level, by taking
into account the global environment.

In contrast to more traditional path planning, finding the global path is not visually
sufficient for crowd simulations, as it is important to take into account local collision
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Figure 2.12: Two blocks with paths that can link up to form a larger block. Agent paths are
specified in red and green, with the red directing flow to the right and the green directing
flow to the left (Source: [YMPT09]).

avoidance and deviations in different agents’ paths. This has resulted in substantial
research investigating path planning in this context [KO04, FSN09, KGO09, BLA02,
Ger10, GO07].

Most path planning methods for crowd simulations approach the problem in a similar
manner. First, the roadmap of the environment is generated. This can be done either
by artists defining some navigation mesh, or by using techniques such as probabilistic
roadmaps [KSLO96], Voronoi-based methods [For92], or rapidly exploring random trees
[LaV98]. From these roadmaps, a traditional pathfinding algorithm such as Dijkstra’s
shortest path [Dij59] or A* [HNR68] can be used to calculate the global path to reach
the goal. After the path has been constructed, it is then expanded in width to represent
a corridor instead of a line. These corridors are expanded in such a way that they do
not contain any environmental obstacles. Agents are then guided along these corridors
towards the goal, with some local collision avoidance model used so that they do not
collide, and that the agents adopt different trajectories. An example of a fully planned
out corridor is shown in figure 2.13.

2.4 Additional Aspects to Crowd Simulation

Previous sections describe a variety of behaviour models for crowd simulations. However,
there are many additional aspects that need to be considered in order to implement a full
crowd simulation system. As we are primarily interested in the behavioural models, we
will not describe these additional areas in depth. Rather, this section aims to provide a
general high-level overview.

2.4.1 Modelling

Modelling refers to defining the geometric shapes that make up the agents and the envi-
ronment within an animated scene. These modelling methods can be divided into three
categories: creative, reconstructive, and interpolated [MTSC04]. Creative methods re-
quire an artist to define the geometric shapes through either subdivision modelling or
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Figure 2.13: Motion planning for crowds. The green line is first calculated which finds the
path to the destination, after which a corridor is expanded around it (Source: [KGO09]).

through patches, such as NURBS or Bezier curves. These methods are unfortunately
often infeasible for crowd simulations due to the complexity and time required to model
large crowds.

Reconstructive methods aim to capture the geometry of existing objects. This can be
typically done by using 3D scanners, images, or video sequences [Tha07]. Although these
techniques perform well, as they provide both realistic geometry and animation for agents,
they come at the expense of considerable computation. Additionally, the systems and
equipment used in these techniques are often expensive, making them infeasible for most
crowd simulations. Another problem is that it is rather difficult to modify or augment
these meshes according to a user’s intentions, limiting the storytelling freedom of artists
[Tha07].

Interpolated methods aim to blend existing models together in order to create new
ones. These techniques have seen much success, and have been used to produce back-
ground characters for films such as Shrek [Tha07]. However, they do not extend well to
main characters as one often needs to model specific details. Thus, these main characters
are typically modelled with either creative or reconstructive methods, or acted out by
real-life actors, who are then superimposed into the virtual environment.

2.4.2 Authoring

An easy-to-use authoring system is also necessary to produce content for a crowd simu-
lation system. One way to author these crowds is to provide a series of constraints and
crowd configurations, and have the agents attempt to adhere to them. This approach
has been used in the works of Anderson et al. [AMC03] and Jacka [Jac09]. Another
intuitive method of authoring crowds is to use a painting interface, where the user can
specify, modify, and guide agents interactively by drawing various shapes depicting goals
and guiding flows. This approach has been widely used by Ulicny et al. [UCT04], Sung
et al. [SGC04], and Patil et al. [PVDBC+11].

Additionally, there are also systems that allow for the easy authoring of agent be-
havioural models. Massive is one such system, and allows for this by providing an inter-
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face that enables the user to join up various nodes in a directed graph in order to easily
define the rule-set for an agent’s behavioural model.

2.4.3 Rendering

Virtual environments are typically rendered by processing every single geometric object
in the environment on the GPU. This quickly becomes a problem with large crowds of
agents as the geometry being processed becomes infeasibly large. As a consequence, a
series of optimizations are needed to feasibly render these crowds.

Levels of Detail (LoD) [Lue03] is a concept that has been extensively researched in
computer graphics. In LoD, objects that are closer to the camera are defined in more
detail, as their flaws can be spotted more easily. This can be used in the rendering of
crowds to improve efficiency, because only the agents that are close to the camera need
to be rendered in full detail. Agents that are far away can then be rendered using either
Imposters, which are quads with a texture representing the agent [TLC02, DHOO05],
or by pre-baking the agent animations on the CPU, which allows for faster display as
skeletal deformations have already been pre-calculated.

In addition, standard rendering optimizations approaches used for optimizing ren-
dering of normal scenes such as occlusion and frustum culling are also very useful for
rendering crowds [Tha07].

2.4.4 Behavioural Levels of Detail

In addition to performing LoD optimizations for rendering, these techniques can also be
adapted to the behavioural models of the agents. This can be done by simulating only
the behaviour of the visible characters [Bro02]. However, this has the drawback of the
simulation being incoherent, for example looking away and then back at an area can result
in agents being in unexpected positions, or different agents taking the place of the old.
Due to this problem, behavioural LoD is far more complicated to handle than rendering.

A differing LoD approach for behaviour was proposed by Thalmann [Tha07] where the
agents behaviour were separated into various levels, with agents farther away receiving a
lower level of simulation than the agents close by. These levels were set up in such a way
that the agents could transition smoothly from one level to another, thus reducing visual
artefacts.

A hybrid model that incorporates both Microscopic and Macroscopic techniques has
also been used to this effect in order to simulate large-scale traffic [SWL11]. In this
method, the environment is divided up into regions. Regions that are close are simulated
using a Microscopic behavioural model, and regions that are far are simulated using a
Macroscopic one. In order to convert these regions from a Microscopic representation
to a Macroscopic one, averaging is used, whereas to perform the opposite, a Poisson-
like process is used. In order to account for traffic flowing between regions, the agents
are instantiated and disappear according to the flux calculated between the respective
regions. The major problem with this method is that there is no coherency between the
different models, thus alternating them at a fast pace results in a very incoherent scene.
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2.4.5 Collision Avoidance

Collision avoidance is one aspect that all crowd simulation systems need to consider. It is
important as it often allows one to eliminate the use of collision detection, which is com-
putationally expensive, and allows agents to adopt more realistic trajectories. Although
some techniques implicitly handle this [TCP06, Che04], others need to define explicit
collision avoidance for the agents.

Although Social Forces [HM95] can be treated as a full behavioural crowd simula-
tion system, it can also be used purely as a collision avoidance model. However, it has
drawbacks such as the possibility of agents getting stuck if the forces cancel each other
out, and agents sometimes adopting oscillatory behaviours. There has been strong recent
work on collision avoidance for multi-agent systems which deals with many of the issues
of the Social Forces model, with some popular algorithms being velocity obstacles [FS98],
reciprocal velocity obstacles [VdBLM08], and vision-based collision avoidance [OPOD10].

2.4.6 Directability

It is important in certain application areas that the crowd be directable. This refers to
controlling the behaviour of both specific individuals, as well as the crowd as a whole. As
controlling the behaviour of crowds is our primary interest, this area will be discussed in
depth in section 2.5.

2.5 Controlling Crowd and Agent Behaviour

One key requirement for crowd simulations in fields such as film animation, is that the
crowds be directable. The reason for this is that emergent behaviour is often not sufficient
for storytelling, resulting in severe restrictions to the artistic freedom of the writers and
artists.

As a result, there have been a variety of research on directing the behaviour of crowds.
These separate crowd control into two different types: High-level and Low-level control.

2.5.1 Low-Level Control

Low-level control refers to directing the behaviours of select individual agents within the
crowd. Although it is possible to instead key-frame these specific agents, it quickly be-
comes infeasible as the number of agents needing control rises. A more scalable approach
is to allow modifications to the rule-set of those specific agents so that they behave as
desired.

Blumberg and Galyean [BG95] introduce a method that allows users to achieve low-
level control over agents on three different levels (figure 2.14). On the motivational level,
the user is able to modify the high-level motivations of the agent. For example, changing
the hunger levels of an agent from not hungry to very hungry will prompt the agent to
search for more food. Modifications on this level can be viewed as a suggestion to the
agents.

The task-level is responsible for telling an agent what to do, such as moving to a
specific position in the environment. Because the user does not specify exactly how the
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Figure 2.14: Architecture for allowing multi-level control of agents. The motivational and
task levels influence an agent’s decision making process whereas the direct level influences
the low-level motor functions of the agent (Source: [BG95]).

agent should achieve this, the agent still bases its movement on pre-existing behavioural
and environmental rules.

The lowest level of control is the direct-layer. In this layer, the user has direct control
on the motor system of the agent, and can thus specify exactly how an agent should
behave. An example of this would be telling a dog to wag its tail or to raise its left leg.
In addition to low-level control, the layered approach adopted by this system also allows
users to easily author this control, resulting in a very promising approach to controlling
individuals in crowds.

A different approach, termed Cognitive Modelling, was proposed by Funge et al.
[FTT99]. They use a cognitive layer to allow for control of individual agents. Artists
specify the behaviours of agents as a set of logic statements within this cognitive layer,
which is then expanded into a state tree. Subsequently, one can then choose a specific
desired state for the agent, which then results in a tree search for this state with all the
preceding required actions and states being found in the process.

An advantage of this technique is that as long as a state exists, it is possible for the
agent to satisfy it, allowing for very precise control over the agents. Additionally, it is
possible to animate other objects in the scene with this technique, such as cameras and
lights. However, it can be very computationally and memory intensive (for more complex
agent behaviours), as the state tree would grow significantly. A similar technique comes
from the works of Lau and Kuffner [LK06], who use precomputed search trees containing
motion clips for online motion planning of agents. This technique is shown to be very
effective, allowing for the path planning of roughly 150 agents in a real-time and dynamic
environment.

In addition to the above, it should be mentioned that systems that aim to simulate the
psychology of agents [PAB07, DAPB08, KGML12] can all control the behaviors of single
agents to varying degrees by merely modifying the psychological states or personalities
of these agents. In contrast to these systems, Macroscopic techniques have particular
difficulty in enforcing low-level control of crowds. This is primarily because they treat
the crowd on a group level rather than an individual one.
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Figure 2.15: Snapshots of a crowd moving through an environment scattered with obsta-
cles. The agents evade obstacles when they are in close proximity, otherwise they aim to
adhere to the arrow shaped formation (Source: [CL08]).

2.5.2 High-Level Control

In contrast to low-level crowd control, high-level control refers to control of the aggregate
behaviour of crowds. Examples of this include controlling crowd formations, controlling
crowd movement, and determining outcomes of battles. One way of obtaining this control
would be to modify the parameters of agents until the desired crowd behaviour emerges.
However, this is a rather tedious task as it requires a significant amount of trial and
error, as well as expert knowledge. Thus, methods for automating this type of control
are necessary.

Anderson et al. [AMC03] introduce just such an approach for controlling the move-
ment of bird flocks using a variant of Reynold’s flocking model [Rey87]. In their system,
the user defines a set of constraints for the bird flock, such as requiring an agent to pass
through a specific point, the center of mass of the flock to pass through a point, or having
the flock lie within some shape. The algorithm then proceeds to run an unconstrained
version of the simulation, as well as a set of simulations that satisfy the specified con-
straints. They then compare the set of constrained simulations with the unconstrained
one. The constrained model that is most similar to the unconstrained one is then used
as the final simulation.

This technique is interesting in that it allows the flock behaviour to satisfy hard
constraints whilst retaining much of its realism. However, it is specific to bird flocking
due to the behavioural model used. Another problem is that it can only be used for motion
control, and does not deal with other types of high-level control, such as specifying battle
outcomes or determining the number of surviving agents after some emergency.

The shape control constraint in the work of Anderson et al. [AMC03] has since been
further investigated in more recent work. Chang and Li [CL08] create a shape template
system coupled with the use of Fuzzy Systems [BT97] for the agents brains. Fuzzy
systems use Fuzzy Sets, which are based on set logic that takes into account degrees
of membership. This is advantageous as it allows agents to perform actions to varying
strengths. These Fuzzy Sets are represented as Fuzzy Nodes within a directed graph,
and receive input information from either the environment, or from other Fuzzy Nodes,
and produce an output based on rules pre-specified by the designer of the system. Their
technique allows the crowd to attempt to adhere to a user specified formation whilst
taking into account other agents and the environment (as seen in figure 2.15).

In contrast, Ho et al. [HNOC10] use a weighted sum of forces approach. Here, the
force of an agent is the combined weighted sum of an obstacle avoidance force, and a

31

0 II O 0 D Cl 

CJ '" C 

::~l~D DD 
II Cl 

~---g~~ 
0

" 0 

11

0 

" 
a 

a a CJ CJ 
D 

Cl 

II a 
Cl • D • Cl • fl 

0 II 0 

D '" C 

o·:.1~/f~-·~ ··· ·.'·: \> 
a CJ L;:,...;"' 

" 
a 

a D 

0 
Cl • 

Cl 

0 

CJ 

• 
CJ a 

• 



formation adherence force. When agents move closer to obstacles, the weight of the
obstacle avoidance force grows larger, forcing them to break from formation. After they
have passed the obstacle, the weight of the obstacle avoidance force becomes smaller,
allowing the formation adherence force to move the agents back towards their respective
positions.

A more recent approach to high-level control in crowds is provided by Jacka [Jac09].
Much like both Massive and Chang and Li’s method, the agent controllers are defined
using Fuzzy Systems. In order to control the aggregate behaviour of the crowds, the
membership functions of the fuzzy nodes are trained with particle swarm optimization
[Ken10] until the behaviour of the crowd satisfies the user-specified behaviours. This
approach was shown to work well across a variety of control tasks and agents. However,
it does not guarantee the complete satisfaction of the constraints, and also requires expert
knowledge in the modelling of fuzzy controllers, leading to possible difficulty in training
the controllers if they are poorly defined.

In addition to the discussed systems, most macroscopic techniques are able to pro-
vide some degree of high-level control of crowds since they simulate crowds on a group
level. However, as discussed in section 2.3, macroscopic crowds lack the believability that
microscopic crowds provide, and are therefore infeasible for certain applications, such as
film.

2.6 Crowd Simulations in Films

One major application area for crowd simulations is that of crowd shots in films. These
crowd shots serve two major functions: enhancing the virtual environment, allowing
for more immersiveness; and enhancing storytelling capabilities, allowing directors and
writers more artistic freedom. In order to achieve these goals, the crowd simulation
techniques used must allow for believable behaviours, high quality visualizations, a high
degree of automation, easy to use authoring, efficient computation, and directability
[Jac09, Tha07, THL+04]. In addition to these requirements, crowd simulations in film
differ from others in that scenes are not rendered in real-time and shots are short, with
no need for shot to shot coherence [THL+04].

Although many of the crowd simulation systems used by films are developed in-
house [Tha07], there has been one commercial system that gained great popularity and
widespread use within the industry. Massive is a microscopic system that allows for
high-quality crowd simulations, and has been used in a wide variety of fields such as film,
television, games, education, architecture, and engineering [Masc].

As with many of the discussed systems, Massive approaches simulating crowds in
three steps: perception; decision; and action [Jac09]. In the perception subsystem, the
agent reads input from its surrounding environment, and then provides these inputs to
the decision subsystem. Massive provides a set of predefined senses, such as sound,
vision, flow-field, collision, and colour [Lak07]. Most of these senses are self-explanatory,
with perhaps the exception of flow-fields, which can be thought of as guiding forces in
the environment to help an agent move towards a specific location. It should be noted
that although flow-fields are a macroscopic concept, Massive itself is still a microscopic
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Figure 2.16: An example of a brain in Massive, where the nodes represent either rules or
Fuzzy Sets, and the edges represent information flow (Source: [Masa]).

technique as these fields do not force the agents to move in the set direction, but merely
represent a suggestion.

The decision subsystem determines how an agent should act based on its received
inputs, using Fuzzy-Systems as the agent controllers. Figure 2.16 shows an example of
a brain in Massive, where the edges depict information being transferred between nodes,
and the nodes specify either rules, input sensors, or Fuzzy Sets. Unlike many of the
previous systems, Massive itself does not contain any behavioural models, but rather
acts as an easy-to-use authoring system for artists to define these models. However,
Massive does provide some pre-made behavioural models for a variety of different agents
[THL+04].

The action subsystem enables users to define a set of possible actions for agents,
which are then connected up to the various output actions of the decision subsystem.
These actions are connected together in a motion graph, which defines the sequences of
actions that an agent can perform [Lak07]. Each of the actions defined is then linked
to an animation, obtained either by traditional key-framing or motion capture [Lak07].
The action subsystem benefits substantially from the use of fuzzy systems in the decision
subsystem, as the degree to which an agent performs an action helps the action subsystem
blend the motions together.

One problem that Massive, along with other Microscopic techniques, suffers from is
the issue of high-level control. In Massive, this is solved by having an expert modify
the fuzzy system until the crowd behaves as desired. Unfortunately, this is a very time
consuming task. Flow-fields are an alternative for dealing with this control problem.
However, these fields do not act as an absolute command, allowing agents to ignore them,
and they also only deal with motion control. Additionally, despite Massive providing an
easy-to-use interface to define the fuzzy controllers, it still requires expert knowledge,
enabling only a select few individuals to understand and create agent behavioural models.
The interface for building fuzzy controllers becomes particularly problematic when more
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Figure 2.17: Complex agent behaviours in Massive typically result in very complicated
brains, and are usually very difficult to understand (Source: [Masb]).

complex behaviours are required, as it leads to very large brains unreadable to all but
the original creator (figure 2.17).

2.7 Summary

In this chapter we have discussed a wide variety of crowd simulation techniques. These
techniques can be divided into five groups: Microscopic Cellular Automata models,
Microscopic rule-based models, Microscopic embodied agent models, Macroscopic flow-
based models, and Macroscopic data-driven models. These techniques all have their own
strengths and weaknesses, and thus different types of techniques are preferred for different
applications.

In order for a crowd simulation system to be useful for films, it needs to satisfy the
requirements listed in section 2.6. Table 2.1 details how well the various classes of crowd
simulation techniques satisfy these requirements, with a scale ranging from very low to
very high.

Behavioural believability refers to how closely an agent’s behavioural model mimics
reality. Embodied agent systems generally display the most realistic behaviour as they
simulate the full body system of agents, whereas flow-based techniques are the least
convincing due to the overly homogeneous behaviours of the agents, leading to crowds
that often appear more akin to particle systems than crowds of autonomous agents.
Although believability is very important for films, this is only to the point that agent
behaviours are sufficiently convincing.

Visualization quality refers to the quality of the animations and renders that can be
generated by the crowd simulation systems. This is the most important requirement for
film, as no matter how well a system satisfies the other requirements, the final product
is still unrealistic if these aspects are poor. Embodied agent systems once again perform
very well in this area, as the animations are generated during the simulation whilst taking
into account the body dynamics of the agents. Cellular automata systems perform poorly
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Table 2.1: Satisfaction of the various requirements of crowd simulations by different
classes of crowd simulation techniques. As Massive is somewhat of a unique system, it
has been given its own category.

Macroscopic
Techniques

Microscopic Techniques

Flow Data-
driven

CA Rule-
based

Embodied Massive

Behaviour
Believability

low med med high v-high high

Visualization
Quality

low med v-low high v-high high

Automation low med low med v-high high
Authoring high v-low med med low med
Computational
Efficiency

v-high high high low v-low low

Directability med med low low v-low med

in this regard as it is difficult to create convincing animations for these systems due to
their discrete nature.

One of the main benefits of using crowd simulation systems in films is that they
automate much of the work that an artist would otherwise have to perform by hand.
Thus, a crowd simulation that requires a lot of user input is far less useful than one
that does not. Most categories of crowd simulation techniques automate most of the
simulation process, however, some techniques receive a lower rating as they are unable
to generate complex behaviours on their own, resulting in artists having to manually add
animations to the characters.

In order for a system to be useful, it needs to be easy for artists to define the required
crowd behaviours, and to make adjustments. Flow systems are very good at accomplish-
ing this, as using painting interfaces with these techniques is very intuitive. In addition to
defining the initial positions of agents, painting interfaces can also be used to interactively
edit crowd motion by drawing flow-fields onto the environment. Data-driven techniques,
on the other hand, are poor at authoring due to their data-driven nature. Changing a
crowd’s setup often requires new data, resulting in a large amount of work in order to
modify the crowd behaviour.

Although films do not require real-time simulation, it is still important for the tech-
niques to be efficient in order to decrease the render time. Flow-based systems are partic-
ularly efficient and can often simulate hundreds of thousands of agents in real-time. This
is possible as they simulate the crowd at a group level, as opposed to other microscopic
techniques, which aim to simulate the crowd at an individual level. Embodied systems,
due to their complexity, received the lowest score in this category.

The final requirement for crowd simulations in film is directability. As was described in
section 2.5, this can be separated into both high and low level control. Although embodied
agent systems perform poorly in both - high level control due to their microscopic nature,
and low level control due to the fact that they have to take body mechanics into account
- other techniques generally excel in different types of control. For example, macroscopic
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techniques allow for better high-level control, and microscopic techniques allow for better
low level control. There are, however, few systems that are able to perform well for both
types of control.

Since crowds in film do not need to be rendered in real time, the shots are short,
and that there is no need for shot to shot coherency, it is possible to introduce high-level
control to microscopic crowd simulations through the use of optimization techniques. This
is achieved by using optimization techniques to modify the low level crowd behaviours
until the desired behaviour emerges. Jacka [Jac09] approached the problem this way using
Particle Swarm Optimization to optimize the membership functions of fuzzy controllers,
which represented the brains of agents. However, this approach has the drawback that it
is dependent on the defined structure of the fuzzy controller, as a poorly defined controller
leads to difficulty in optimizing behaviours.

We aim to instead evolve Artificial Neural-Networks (ANNs) as the agent controllers.
This has the benefit that no controller structure has to be defined beforehand, allowing
for an easier authoring process. In the next chapter, we will provide an overview of ANNs,
as well as provide promising approaches to training them.
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Chapter 3

Neuro-Evolution

Neuro-Evolution (NE) is a paradigm for training Artificial Neural Networks (ANNs),
which aims to evolve their structure or weights with Evolutionary Algorithms (EAs).
This approach has been applied to a wide variety of tasks, and has been particularly
successful in the domain of automating the design of agent controllers [TGLT14, PB09,
TT12, YM09, GM99]. Due to the plethora of literature that use NE for automated agent
controller design, it is attractive for us to investigate its merits when used in the context
of applying control to crowd simulations.

3.1 Artificial Neural Networks

Self driving cars [GKG96], speech recognition [Lip89], image recognition [LMD+11] and
many other important applications all utilize ANNs, a powerful computational model
inspired by the biological brains of animals [Yeg09].

The base building block of an ANN is the Artificial Neuron (figure 3.1), a node that
takes in a set of inputs and produces a single output. The output is typically obtained by
passing the weighted sum of the inputs through an activation function. These neurons
are connected together in a directed graph to form an ANN.

The Activation functions in the neurons map the weighted combination of the inputs
to an output. Examples of activation functions include linear, sigmoid, and tan functions.

ANNs are desirable for machine learning because each neuron contains weights cor-
responding to its input signals. This allows for one to adjust the weights of the neurons
within the ANN until the desired outputs are achieved. The adjusting of these weights

Figure 3.1: An Artificial Neuron. The inputs z1..zi are combined together with the weights
v1..vi, with the net value passed to the activation function f after subtracting the bias θ.
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Figure 3.2: A simple FFNN with 3 hidden layers (Source: [SKP97]).

Table 3.1: Truth table of the XOR bitwise operator
x1 x2 x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

can be done either by hand, in the case of very simple problems, or via various training
algorithms, which are discussed in section 3.1.2.

3.1.1 Feed-Forward Neural Networks

Feed-Forward Neural Networks (FFNNs) [RHW88] are a type of ANN where neurons
are connected together in a non-cyclical directed graph, with information only being
propagated forward, as seen in figure 3.2. The neurons in a FFNN are typically classified
as either hidden or output neurons, where hidden neurons propagate information to other
neurons and output neurons provide information representing the output of the ANN.
These neurons are typically structured in layers, with each layer of neurons propagating
information to the next.

FFNNs can be divided up into two categories, Single and Multi Layer Perceptrons
[Lip87]. In a Single-Layer Perceptron (SLP), the inputs are mapped directly to the
outputs of the network, with no hidden layer in-between. These networks have the major
drawback that they are only able to learn linearly separable data patterns, which is data
that can be separated by some hyperplane. A popular example of a problem that these
networks are unable to solve is the XOR operator, a bitwise operator with the inputs and
outputs shown in table 3.1.
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Figure 3.3: ANN to solve the XOR operator (Source: [XOR]).

The Multi-Layer Perceptron (MLP) is a FFNN with one or more hidden layers. Unlike
SLPs, MLPs are capable of learning data that is not linearly separable, for example the
MLP solution to the XOR operator is shown is figure 3.3. MLPs are the primary ANNs
of interest to us in this thesis since single hidden layer MLPs are capable of universally
approximating any continuous function on compact subsets of Rn for a specific set of
activation functions (for example sigmoid) [Cyb89]. We are primarily aiming to use these
MLPs as agent controllers within our simulations, where they determine the behavior of
our agents, given a specific set of inputs representing the agents’ view of the world.

3.1.2 Training ANNs

Despite the advantages of ANNs, it is often infeasible to design them by hand for non-
trivial problems, as the networks for these problems are often large and difficult to un-
derstand. However, since the weights of ANNs are adjustable, their design can be easily
formulated as a mathematical optimization problem, with the quality of the ANNs gen-
erated being quantified by a fitness value, which is typically determined by some task
specific fitness function. This section introduces some of the more popular ANN training
algorithms.

Backpropagation

Backpropagation [RHW88] is the most fundamental and well known algorithm for training
FFNNs. In backpropagation, an ANN is provided with a training set, which is a sample
of inputs and their respective expected outputs. The ANN is then fed these inputs, and
their outputs are compared to the expected outputs. A function of the difference (error)
between these outputs is then passed back to the ANN, and the weights are then adjusted
in order to minimize these errors, essentially performing a non-linear regression of the
training set.

Despite the popularity of backpropagation, there are some key drawbacks:
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• Like other supervised training methods, it requires a training set, and therefore is
not feasible for problems where the expected outputs are unknown or difficult to
obtain;

• It is a gradient search technique. Thus, it cannot handle discontinuous fitness
landscapes and also tends to get stuck in local optima [MD89]; and

• It typically requires an initialization pass in order to achieve good training results
for ANNs with deep architectures (having multiple hidden layers) [LBLL09].

Additionally, one has to take the quality of the training set into account, as a poorly
sampled training set will result in the network being unable to generalize to certain
inputs. Another consideration when using backpropagation (as well as other supervised
methods) is overfitting, which is when the ANN has memorized the training set, but has
not learned to generalize to new data. Causes for overfitting include a sample set being
either too small or too large, too noisy, training for too long, and the model having too
many degrees of freedom. Methods of dealing with overfitting include obtaining larger
samples and optimizing network structure [Eng07].

Deep Learning

Despite the fact that single hidden layer ANNs are able to universally approximate any
mathematical function, it is still sometimes desirable to have ANN architectures with
more than one hidden layer. One benefit that deep architectures provide over shallow ones
is efficiency, as circuit complexity theory suggests that deep architectures can be more
efficient than their shallow counterparts, as most functions representable by a compact
deep network would require a large number of components in order to be represented by
a shallow one [BL07]. Deep architectures are also useful for learning representations of
data, where each layer of neurons is viewed as a representation of their inputs.

Despite the advantages of deep architectures, more traditional learning algorithms,
such as backpropagation, struggle to train these networks. This can be attributed to
the fact that with gradient search techniques, using large initial weights often results in
the algorithm getting stuck in poor local minima, whereas using small initial weights
results in very slow training speeds because the error signals propagated become smaller
with each layer [HS06]. Furthermore, due to the additional layers, it may also be more
computationally expensive to train networks with deep architectures.

Due to the difficulty in training these networks, a new set of algorithms are needed,
referred to as Deep Learning algorithms. Delving into the details of these algorithms
falls beyond the scope of this thesis. However, should the reader be interested in these
algorithms, we recommend the work of Hinton and Salakhutdinov [HS06] as a starting
point.

Deep learning has been used for a variety of challenging tasks, such as self driving
cars [HES+08] and speech recognition [HDY+12, DYDA12]. However, for this project we
have decided to not use it, as the networks that we use are generally simple enough to
be trained by other algorithms, and more work in automated controller design has been
conducted in other fields, such as Neuro-Evolution.
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Meta-heuristics

Meta-heuristics refers to a class of search methods that are aimed at finding approximate
solutions for complex optimization problems where more classical methods fail to be
effective or efficient. As training ANNs can be viewed as a search for their ideal weights
and topology, this class of algorithms can also be applied to accomplish such. Meta-
heuristics can be defined as iterative generational processes which aim to use various
strategies to achieve a balance between exploitation and exploration of a search space
[OL96].

Meta-heuristic techniques can be classified into two groups, single solution and population-
based. Single solution techniques aim to iteratively improve a single instance of the
candidate solution, whereas population-based approaches aim to simultaneously improve
many candidate solutions by typically using various population-based characteristics to
guide this improvement. Examples of single solution methods are Simulated Annealing
[AK88] and Iterated Local Search [LMS01], and examples of population-based methods
include Particle Swarm Optimization (PSO) [EK95], Genetic Algorithms (GAs) [Hol92],
and Differential Evolution (DE) [SP95].

Meta-heuristic algorithms are a popular way of training ANNs. A common way of
achieving this is to have a predefined ANN structure, and then represent the weights of
the ANN as a vector. Additionally, certain classes of Meta-heuristic algorithms, such as
variations of Evolutionary Algorithms (EAs) [SM02, MH12, She11], are also capable of
evolving ANN topologies.

Meta-heuristic algorithms are advantageous in that they are domain agnostic, meaning
that they do not need to be modified for different task domains, as long as the represen-
tations of the candidate solutions are consistent, and the fitness function is tailored to
the problem. It is for these reasons that we investigate these algorithms, more specifically
Neuro-Evolution (the use of EAs to evolve ANNs), in the context controlling high-level
crowd behaviour. We chose EAs in particular as they have already been applied to many
similar problems, such as predator-prey scenarios [YM09] and strategy games [BM03],
and have shown promising results.

3.2 Evolving Artificial Neural Networks

One popular approach to training ANNs is to use Evolutionary Algorithms (EAs) to
optimize their structure and weights. EAs are a paradigm of population-based meta-
heuristic algorithms inspired by biological evolution. In EAs, a population of candidate
solutions is iteratively improved through various operators, the most common being:
crossover; mutation; and selection. The primary functions of these three operators are as
follows:

• Crossover combines selected individuals together in order to form offspring that
contain a function of the genes from the parents. Figure 3.4 shows an example of a
discrete crossover operator, where the offspring contains genes from both parents. It
should be noted that certain classes of EAs, such as Evolutionary Strategies (ESs),
typically do not use crossover.
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Figure 3.4: An example of a crossover operator that creates a mask and uses it together
with two parent chromosomes to generate two offspring with opposite genes (Source:
[Eng07]).

Figure 3.5: A mutation operator that flips a random set of genes in a candidate solution
(Source: [Eng07]).
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• Mutation (figure 3.5) adds noise to the genes of individuals, and is used increase
genetic diversity in the population.

• Selection is used both to select the individuals for crossover, and to determine which
individuals survive to the next generation. Selection is typically biased towards
better performing individuals, which results in the population being evolved in the
direction of these individuals.

There has been significant work on using EAs to train ANNs. This field has been
termed Neuro-Evolution (NE). NE has achieved great success in training ANNs, partic-
ularly in the task domain of evolving agent controllers. Accordingly, the benchmark for
NE algorithms is the double pole balancing problem, where the ANN is required to control
a cart on a limited rail with two poles attached to it, and aim to move the cart in such
a way so that the poles are prevented from falling. Double pole balancing exists as an
extension to the single pole balancing problem, which is used as a benchmark for many
fields, including engineering and reinforcement learning [SC66, MC68, And89], reason
being that it is both intuitive and consists of many aspects of temporal credit assignment
[GM99, Sut84].

NE algorithms can be divided into three main categories, based on how they evolve
ANNs. Single population fixed topology approaches typically encode ANNs as vectors of
weights, which can then be evolved as a n-dimensional real-space problem. Cooperative
Co-evolution methods aim to separate the search space into smaller components and
then evolve those components separately. Topology and Weight Evolving Artificial Neural
Network algorithms aim to evolve both the topology and the weights of ANNs.

3.2.1 Single Population Fixed Topology

A straightforward method for evolving ANNs is to have a predefined network topology,
with the chromosomes encoded as vectors of real numbers representing the weights within
the ANN. These chromosomes are subsequently evolved and improved inside a single
population. One of the earliest examples of these techniques comes from the work of
Wieland [Wie91], who used a Genetic Algorithm to evolve ANN controllers for single and
double pole balancing tasks. More recently, Gomez [GM03b] constructed an algorithm
based on this approach for comparison purposes, which he named Conventional Neuro-
evolution (CNE). However, it differs from Wieland’s method in that it uses real numbers
to encode the ANN as opposed to binary, and it uses burst mutation [GM03a] and rank-
based selection [GD91].

A recent development in real-space EAs comes in the form of the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) [HK04]. CMA-ES is used to optimize
problems in a continuous domain. It achieves this by iteratively estimating a covariance
matrix, mean, and step size, which define the multivariate distribution from which the
population in the succeeding generation is sampled.

CMA-ES can be considered state-of-the-art in real-space EAs, and provides numerous
benefits over its counterparts, including:

• It requires far less parameter tuning than many other EAs, as many of its parameters
are self-adapting;
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• It prevents premature convergences more effectively due to large population spread;

• It is a second order approach. Thus, for complex landscapes, the evolutionary path
taken is much more direct than first order methods such as gradient descent;

• It does not utilize gradient information, and thus can be used on non-continuous
and non-smooth domains; and

• It estimates the covariance matrix using information from past and current gener-
ations, thus allowing for far smaller population sizes compared to other EAs.

Due to the vast array of benefits that CMA-ES provides, its good results in real-
space optimization, and the often complex dependencies between the weights of ANNs,
it has also been applied to evolving the weights of ANNs [HMI09]. This approach is
termed CMA-NeuroES. A more detailed explanation of this algorithm can be found in
section 4.1.3.

3.2.2 Cooperative Co-evolution

One problem that EAs, along with various other meta-heuristic algorithms, suffer from
in complex task domains is two steps forward, one step back [VdBE04]. This problem
is characterized by the fact that while certain components of the candidate solution are
moving closer to the optima, others can move away so long as the candidate solution
provides an improvement over previous ones. This is caused by the fitness typically being
evaluated only after a candidate has been fully constructed or updated.

One possible way of dealing with this is to evaluate the fitness of the candidate
solutions after each component update [VdBE04], however, there are a few problems
with this approach:

• It becomes very computationally expensive as the number of fitness evaluations
increase with the number of components within the chromosome. This is a prob-
lem since fitness evaluations are already the bottleneck in population-based meta-
heuristic algorithms;

• It assumes that the components are not correlated;

• In certain EAs, offspring are generated from sampling multivariate distributions.
Since this process is atomic, the above method is not viable.

Potter and De Jong [PDJ94] propose a solution to this problem of two steps forward,
one step back, termed Cooperative Co-evolution. Instead of having a single population
of candidate solutions, they rather simultaneously evolve a set of sub-populations, where
the individual members of each sub-population represent a portion of a candidate solu-
tion. Evolution is performed only within these sub-populations, with the exception being
the fitness evaluation stage, where members from each sub-population are selected and
combined with members from other sub-populations in order to form a candidate solu-
tion. Cooperative Co-evolution, however, assumes that there is no correlation between
components. Thus, if correlated components end up in different sub-populations, poor
performance results [VdBE04].
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Figure 3.6: SANE uses two sub-populations, one of blueprints and another of neurons. A
candidate solution is formed by combining the neurons according to a selected blueprint,
after which it is evaluated and the fitness shared between the participating neurons and
the blueprint. (Source: [GM03b])

Despite the drawbacks of Cooperative Co-evolution, it has been applied to ANNs with
great success. The first attempt at this was called Symbiotic Adaptive Neuro-Evolution
(SANE) [MM96]. In SANE (figure 3.6), two populations are evolved simultaneously, a
population of neurons, and a population of ANN specifications that detail the structure
of the ANN, with the user specifying the number of input and output nodes. An ANN
is constructed for fitness evaluation by selecting neurons and a blueprint, this ANN is
then evaluated in the task domain and the fitness is shared amongst all the participating
neurons and the blueprint. This process is applied multiple times for each neuron and
blueprint as the fitness evaluation process is noisy, since good neurons can be paired with
poor neurons or blueprints. One interesting characteristic of SANE is that towards the
end of evolution, the population of neurons tend to form clusters around good neurons
as opposed to converging towards a single point [MM97], resulting in the specialization
of the neurons and the avoidance of cases where a single good neuron dominates the
population.

One problem with SANE, caused by the lack of explicit neuron specialization, is that
it is poor at evolving Recurrent Neural Networks (RNNs), which are ANN structures with
feedback loops [GM99]. Gomez [GM99] thus proposes Enforced Sub-Populations (ESP),
an extension to SANE which allows for RNNs. In ESP (figure 3.7), a sub-population of
neurons is created for each neuron in the ANN structure, thus allowing for each neuron to
specialize. In order to evaluate the fitness of these neurons, one is selected from each sub-
population and then used to construct the candidate solution, which in turn is evaluated
in the task environment. The fitness is then shared across all participating neurons. Like
SANE, the neurons in ESP also need to be evaluated multiple times in order to combat
noisy fitness evaluation. The main advantage of ESP over SANE is that, since each
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Figure 3.7: ESP separates the neurons into multi sub-populations, with the candidate solu-
tion being constructed by selecting a neuron from each sub-population (Source: [GM99]).

neuron has its own sub-population, one can specialize the neurons to allow for a variety
of non-fully connected and recurrent structures.

In certain problems, it is required that the candidate solution consists of multiple
ANNs. An extension of ESP, termed Multi-Agent ESP [YM09], allows for this. Multi-
Agent ESP is identical to ESP except that each sub-population ahas the information of
which ANN in the candidate solution it belongs to, in addition to its position in the
ANN. Multi-Agent ESP has been tested in the predator-prey problem domain, with the
agents evolved achieving interesting behaviours [YM09], such as role specialization and
communicating via stigmergy.

A problem with both SANE and ESP is premature convergence. A more recent
algorithm, Cooperative Synapse Neuro-Evolution (CoSyNE) [GSM06], deals with this by
evolving ANNs cooperatively at an individual weight level by creating a sub-population
for each weight. These weights can then be encoded in a matrix where the rows represent
the sub-populations and the columns individuals within each sub-population. In order to
evaluate the fitness of these individuals, an ANN is constructed for each column in the
matrix, and then evaluated in the task environment. Recombination is then performed
on the best quarter of ANNs, with new weights replacing the worst weights within each
row. In order to maintain genetic diversity within the sub-populations, the rows are
then permuted in order to construct different networks in the succeeding generation.
CoSyNE can be considered state of the art in Cooperative Neuro-Evolution, and has
achieved excellent results in the double pole balancing problem, outperforming most of
its competitors [GSM06]. Despite the high performance of CoSyNE on double pole-
balancing, there is a lack of literature on it being applied to other domains. Thus, it is
unclear on how well it generalizes to other problems.

3.2.3 Topology and Weight Evolving Artificial Neural Networks

In addition to the weights, topology also plays a part in determining the functionality
of an ANN, as it determines the information flow between neurons. In algorithms where
only the weights are evolved, the topology has to either be pre-determined or pruned
afterwards. This, unfortunately, requires either trial and error for pre-determining net-
work structure, or significantly more processing time when pruning the networks post
training. To overcome this, there are a subset of NE algorithms that aim to evolve both
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the weights and the topology of ANNs, termed Topology and Weight Evolving Artificial
Neural Networks (TWEANNs). Their main benefit is that they allow one to save time
that would otherwise be wasted tuning the network topology [GWP96].

One of the simplest TWEANNs is Dasgupta and Mcgregor’s Structured Genetic Al-
gorithm (sGA) [DM92], which uses a connectivity matrix, encoded as a bit-string, to
represent the connections between the nodes in the ANN, with 1 being an active connec-
tion, and 0 being inactive. This connectivity matrix, along with the connection weights,
is then evolved in a standard GA. One benefit of the connectivity matrix representation is
that it can be evolved without any modifications to the conventional Genetic Algorithm,
since it can be represented as a bit-string. However, this representation is quite memory
intensive(O(n2)), requires a fixed maximum number of nodes because all the bit-strings
must be the same length, and is prone to poor resultant structures as evolving bit-strings
makes it difficult to obtain intelligible graph designs. Another notable drawback is that
the weights have to be evolved for all the connections regardless of whether they are
active or not, typically leading to a very high dimensional search space even on medium
sized ANNs.

Parallel Distributed Genetic Programming (PDGP) [PP98] is a TWEANN that uses
a dual-representation to evolve ANNs. In PDGP, both a grid and a linear representation
are used. This makes it possible to incorporate different types of operators for different
representations. For example, sub-graph swapping and topological mutations are per-
formed on the grid, whereas weight crossover and mutation operations are performed on
the linear representation. Compared to sGA, the more explicit graph structure in PDGP
allows for more intelligible evolution of the ANN topologies, as it is possible to design
graph specific operators. However, it still suffers from many of the same problems of
sGA, such as a set maximum node size and the memory expense.

Neuro-Evolution of Augmenting Topologies (NEAT) [SM02] is a TWEANN that has
gained significant popularity since its inception. NEAT represents an ANN’s chromosome
as a series of connections, with each connection having a from and to node, and can be
either enabled or disabled. Each connection is also provided with an innovation number,
which allows for easy comparison of differing structures without the use of expensive
topological analysis algorithms.

In order to evolve these structures, the population is divided up into disjoint sets
based on similarities between the ANN structures, with evolution between genes occurring
within these sets (also termed species). This process is termed Speciation. Typically,
adding a connection to the ANN structure will result in an initial dip in the ANNs task
performance, until the connection weights can be optimized. Speciation deals with this
problem by only allowing chromosomes to compete within their own species, allowing
them to optimize their weights first before competing with the entire population. The
speciation process in NEAT also uses explicit fitness sharing, where the fitness of the
ANNs are normalized according to the population size of that species. This prevents
a good species from dominating the entire population, which may result in premature
convergence. Speciation also deals with the Competing Conventions (figure 3.8) problem
of TWEANNs. This is when ANNs with similar functionalities have vastly different
structures, with a crossover between the two resulting in damaged offspring. This problem
is remedied by speciation as a chromosome can only reproduce with another if it is in the
same species.
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Figure 3.8: An example of the competing conventions problem (Source: [SM02]).

A problem with many TWEANNs is that since the population of topologies is ran-
domly initialized, they often have many poor initial connections, which are then main-
tained as long as the ANNs perform well in the given task. NEAT deals with this by
initializing genes with no hidden nodes in the initial population. As evolution progresses,
the ANN structure is extended through mutation, with good extensions surviving to suc-
ceeding generations. This approach allows for a minimalistic evolutionary process, where
structural connections have proved themselves throughout the evolutionary process. This
minimalistic approach to evolving structures is termed Complexification.

3.3 Automated Controller Design

Automated controller design, a field concerned with the automated creation and tuning
of robot and simulated agent controllers, has been a popular area of study in Artificial
Intelligence in the last few decades. There has been a variety of methods used in this con-
text, including optimizing Fuzzy Controllers [Bab98], Evolutionary Algorithms [MC96,
QSMH03], Reinforcement Learning [KLM96], Swarm Intelligence [BK11, JLLW08], and
ANNs [SBM05, PSY88].

NE has also been prominent in this field, and has been used in a variety of agent control
tasks, such as video games [MM95, TL05, FHHQ04], pole balancing [SM02, GM03b], and
robotics [FMF+94, Bro89]. This section is aimed at exploring the various techniques,
issues, and challenges for automated controller design, primarily in the context of NE.

3.3.1 Controlling Agents

A popular application area of NE is that of evolving agent controllers, with perhaps
the most well known problem being pole balancing. This control can be achieved by
representing the various performable actions as output nodes in the ANN, with the output
values of these nodes being used to determine the behaviors of the agent.
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Figure 3.9: A Game Tree for Tic-Tac-Toe. Each branch in this tree represents a move,
whereas each node represents the future state corresponding to the taken move (Source:
[Gam]).

One way to interpret these output values is to view them as reward values, with the
agent’s action corresponding to the node with the highest reward chosen as the action to
be performed for that iteration. An example of this approach would be in the work of
Moriarty and Miikkulainen [MM95], where outputs as rewards are used when evolving an
agent to play Othello. The ANN that they used provided 64 outputs, with each output
corresponding to a position on the board, and the activation value interpreted as how
strongly the ANN recommended moving to that position. Other applications of this
output approach involves teaching ANNs to make high-level decisions in the Real-Time
Strategy (RTS) game Wargus [TT12], and teaching ANNs to play Go [RMM98].

Choosing a specific action based on the output values of the output nodes has been
applied with some success, especially in certain game playing environments where only 1
action is possible at every iteration. However, it is limited because it cannot determine
how strongly an action is performed (for example turn by how many degrees), and cannot
be used to perform multiple actions per iteration. Additionally, this approach does not
scale well as various discrete actions, such as turning, can be aggregated into a single
output node since negative values can be used to signify opposite actions.

Another method used in game environments is to replace the heuristic in game trees
(figure 3.10) with an ANN. A game tree details the various states of the game as nodes,
with possible moves as edges (figure 3.10). Chellapilla and Fogel [CF99] use this approach
to train an ANN to play checkers by using a vector of 32 inputs to represent the state
of the cells of the board, and one output node to determine the desirability of a state.
After evaluating the various future states with the ANN, the system then traverses the
edge that leads to the state that yields the highest output. This approach has proven
popular with board games, and has been used in Chess [FHHQ04], Othello [MM94], and
Go [LM01].

ANN driven heuristics work well with certain games, such as board games, as it scales
well because of its single output. However, it is only really viable if there are only a limited
number of possible moves at each iteration, as the game tree would otherwise become
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too expensive to construct and traverse without proper pruning strategies. Another
problem with this approach is that it does not work well with actions that can have
variable intensities (for example, kicking a ball at various strengths) as one would need
to discretise these intensities, leading to a very large branching factor for the game tree.

A popular method of using ANNs to control agents is to have the output values
of the output nodes determine the extent of which an agent should perform an action.
This approach is advantageous as it allows an agent to perform multiple actions on
every iteration, and to differing degrees. One example [PP07] uses this approach when
training an ANN to control agents within the 2D space combat game XPilot. The ANN
is responsible for determining the turning rate, amount of thrust, and whether or not to
shoot. Unlike thrust or turning, shooting is a binary action in XPilot. Thus, a threshold
on the corresponding output node is used to convert the value to binary. Additional
applications of this approach include teaching a bicycle agent to perform tricks [TGLT14],
teaching car agents to race [TL05, TL06, TBL+07, CLL09], teaching agents to play
shooting games [SBM05, PB09], maze solving [LS08], and pole balancing [SM02, GM03b,
GM99, MM96].

3.3.2 Controller inputs

In addition to the design of ANN outputs, modelling their inputs is also important. A
simple way to model these inputs would be to use the global environment information,
an approach that has been popular when training ANNs to play board games [MM95,
CF99, Fog93].

One problem with modelling the ANN inputs with the global environment state is
that many inputs are required for complex environments. This leads to a higher search
space dimensionality, resulting in slower if not infeasible training times. Additionally,
in some situations, such as First Person Shooter (FPS) video games, it might not be
desirable to provide all the information as this may lead to the AI making over informed
decisions, resulting in a possible break in immersion.

An alternative method of modeling the inputs would be to instead provide the agent’s
local view of the environment. This local input can be in a variety of forms, such as ray
sensors [TL05, TL06, TBL+07, CLL09, SBM05], cone sensors [SBM05, CLL09], relative
angles, velocities, positions [PP07, TL05, TL06, TBL+07], additional third person inputs
such as damage taken [CLL09] and distance to goal [WGN14], and raw inputs such as
the render information [PB09, FKMS04] and grids representing the environment directly
surrounding the agent [TKKS09].

Local inputs are beneficial when the environment is too complex to fully represent
as inputs. Additionally, they allow for the reduction in the amount of noisy information
sent to the ANN, as well as allow for more realistic decisions in scenarios where limited
information is provided. Despite this, the modelling of these inputs requires great care
as the given inputs can bias the evolutionary process, which determines what types of
strategies are discovered [SR14].

In addition to manually defining the sensory inputs of agents, there has also been
promising work performed on co-evolving both an agent’s body and controller [BBZ05,
Sim94a, Sim94b]. These techniques show that it is possible to also evolve various aspects
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Figure 3.10: Example of using ray and cone sensors to simulate a car agent’s vision in
the car racing simulator TORCS (Source: [CLL09]).

of an agent’s sensory inputs (for example vision resolution frustum size). However, these
techniques have the disadvantage of further increasing the problem search-space.

3.3.3 Evolving for multiple objectives

The performance of candidate solutions in NE is typically measured in the form of ob-
jectives. For straightforward scenarios, such as pole balancing and maze solving, a single
objective is sufficient. However, given more complex tasks, there are often multiple con-
flicting requirements (for example training FPS agents to deal maximum damage while
receiving minimum damage), giving rise to the need for multiple objectives. As most
learning methods learn only according to a single objective, it becomes necessary to
introduce new methods that allow for multiple objective training [SM08]. These tech-
niques are useful for controlling crowd simulations, as there are often multiple control
requirements for a single simulation scenario.

Treating multiple objectives as a single objective

One way of achieving the evolution of multiple objectives is to represent the fitness of
candidate solutions as the weighted sum of these objectives [SM08, SBM05]. Since this
method combines the multiple objectives into a single scalar value, a major benefit is
that this approach can be used with most other already existing training algorithms.
Additionally, this approach is more computationally efficient than other multi-objective
methods [Coe99]. A major drawback is that the performance of the optimization is
determined largely by the objectives’ weights, which are difficult to determine without
sufficient prior information on the problem [Coe99]. Other approaches that aim to try
reduce the multiple objectives to a single objective include Goal Programming [CC57],
Goal Attainment [CL94], and ε-Constraint [RER94].
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Pareto-based multi-objective optimization

A different strategy for optimizing multiple objectives is to instead use pareto-based
approaches, which aim to generate a set of non-dominated pareto-optimal solutions from
which a final decision can be made [Coe99]. Examples of these techniques include the
Multi-Objective Genetic Algorithm [FF+93], Non-Dominated Sorting Genetic Algorithm
(NSGA) [SD94], and Niched Pareto Genetic Algorithm [rHNG93].

Schrum and Miikkulainen [SM08] studied Pareto-based multi-objective optimization
when training agents in a battle domain where they have to deal maximum damage to
a monster while in turn receiving minimal damage. In their work, they compared the
weighted sum approach with the pareto-based genetic algorithm Non-Dominated Sorting
Genetic Algorithm-II (NSGA-II) [DPAM02] across three different scenarios. They found
that NSGA-II outperformed the weighted sum approach on two of the three scenarios, and
noted that with NSGA-II, the agents were capable of learning more strategies compared
to the weighted sum approach.

An interesting application of multi-objective optimization is introduced in the work
of Agapitos et al. [ATL+08]. They use NSGA-II to generate a diverse array of opponents
in a car racing game, by providing a series of semi-conflicting fitness measures. This is
possible because pareto-based techniques generate a population of solutions on the pareto
front. Thus, allowing for the analysis and selection of differing solutions in order to ensure
that the agents perform differently.

3.3.4 Multi-Agent Systems

Many applications, such as crowd simulations, require the simulation of many agents in
a shared environment. These simulations, termed Multi-Agent Systems (MASs), differ
from their single-agent counterpart in that one has to take into account factors such as
cooperation or competition between the agents, agent communication, and role special-
ization. These factors can be divided up into two axes [SV00], namely communicative vs
non-communicative and homogeneous vs heterogeneous.

3.3.5 Homogeneous versus Heterogeneous teams

One method of designing an MAS is to have separate controllers for each agent [HRBvG95,
YM09, Bal98]. This approach, termed Heterogeneous teams [SV00, BM03], has the ben-
efit that agents within a team are able to have specific roles [SV00]. This allows agents
to have simple controllers that can cooperate with other agents in order to accomplish
complex tasks.

A problem with role specialization, however, is that the failure of one component may
lead to the failure of the entire team [BM03]. This has, however, been addressed by the
works of Prasad et al. [PLL98], where they allow agents to switch roles dynamically in
the case of failure. Another issue with heterogeneous teams occurs when using machine
learning techniques to train controllers for large numbers of agents, as the large number
of controllers needed to be trained together results in large search space dimensionality,
which becomes infeasible to train in a realistic amount of time.

A different approach to simulating MASs is Homogeneous teams, where the agent
controllers are identical. This has the benefit that only one controller needs to be designed,
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which works well in machine learning as it drastically reduces the search space. An issue
with homogeneous teams is behavioural diversity, as agents have identical controllers.
Sen et al. [SAR98] deal with this in a resource gathering use-case by providing the agents
with local inputs, as opposed to global. In this use-case, agents are required to gather
various resources, with under-used resources being prioritized higher. If the agents had
identical controllers and global inputs, they would all move towards the same resource
node. With local inputs, however, their behaviour would deviate as they would move
towards the best local resource node, rather than the global one.

Both homogeneous and heterogeneous teams have been investigated in NE. An exam-
ple of using heterogeneous teams in NE comes from the work of Yong and Miikulainen
[YM09], where they train predator agents in the Predator-Prey domain. In this domain,
predator agents are tasked to catch a prey agent. The prey agent is given a velocity equal
to or greater than that of the predator agents, thus cooperation between the predators is
required in order to catch the prey. Yong and Miikulainen [YM09] found that the agent
controllers specialize, with the predators learning roles such as chasing and blocking.

Homogeneous teams have also been studied in the context of NE, with one example
being the work of Bryant and Miikkulainen [BM03], where they trained ANNs to play
the Legion-I game. Legion-I is a tile based game where the player (or in this case ANN
controllers) has to control legion agents in order to prevent barbarians from pillaging the
land. In the game, there are two types of tiles, garrisons and farmland. If a barbarian
pillages a farmland tile, the player loses one point, whereas if a barbarian pillages a
garrison, the player loses 100 points. In the game, there are more legions than garrisons,
thus, the ideal strategy would be to have two types of legions, one to garrison and another
to search and remove barbarians. In their approach, they assigned an identical ANN
controller to each agent, with the agents providing local inputs to this controller in order
to determine their desired behaviour. It was found that not only did the legions deviate in
their behaviour, they were also able to adopt different roles based on their local context,
showing that agents are capable of adopting significantly different behaviours based only
on their local perception of the environment.

A more in depth study on team composition in NE is performed by Waibel et al.
[WKF09]. In their work, they tested the different approaches on three different simula-
tions, and found that the performance of the type of team used depends largely on the
amount of cooperation required between the agents. They found that in scenarios where
cooperation is not required, heterogeneous teams perform better, whereas in scenarios
where cooperation is important, homogeneous teams perform better.

3.3.6 Communicative versus Non-communicative agents

As agents are often required to cooperate in MASs, it is important to model their com-
munications. This can be achieved by either having the agents explicitly communicate,
or by relying on stigmergy, which is communication through observing the effects that
other agents have on the environment.

Although explicit agent communication is intuitive to understand, care needs to be
taken with regards to what content needs to be sent. One type of content is agent sensor
data, where an agent communicates its perception of the environment. An example of
this is in the work of Tan [Tan93], where he allows predator agents in the predator-prey
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domain to communicate their local environment perceptions. Communicating sensory
inputs is shown to be useful for tasks where agents have a limited perception of the
environment, but require more information to accomplish the task at hand, as it allows
agents to enhance their sensing capabilities via mutual scouting [Tan93]. It was noted,
however, that superfluous sensory information leads to interference with the learning
process. In addition to sensory information, agents are also able to directly communicate
their internal state and goals. Stone and Veloso [SVR99] investigate this method in the
robot soccer domain, finding it to be very effective in enabling the agents to accomplish
their goals.

Stigmergy is another type of communication, where conveying messages across agents
is achieved through environmental interactions. Beckers et al. [BHD94] separates stig-
mergy into two different types. The first type is called active stigmergy, where an agent
alters the environment in order to affect other agents’ senses. Goldman and Rosenchein
[GR94] use this in the Tileworld domain, where agents have to move around a world and
push tiles into holes. They modelled active stigmergy by having agents move tiles, that
they encounter but are not working on, away from obstacles in order to facilitate easier
problem solving for other agents which interact with the tile in the future.

The second type of stigmergy is termed passive stigmergy, where an agent’s actions
that alter the environment affects the future actions of other agents. Holland [Hol96] use
this type of stigmergy when simulating a colony of robotic ants. The ants employ passive
stigmergy in a corpse gathering task, where the density of corpses in an area determines
their probability of picking up and dropping corpses. Passive stigmergy helps cooperation
in this task as eventually the corpses will be gathered into one heap.

Inter-agent communication has also been recently studied in NE. One of the bet-
ter known instances is the work of Yong and Miikkulainen [YM09], where they use
Multi-Agent ESP to control predator agents in the predator-prey simulation. In their
experiments, they compared the performance of a group of agents with explicit sensory
communication with a group with stigmergic communication. They found that the group
of agents that had no explicit communications performed just as well, and more robustly,
than the group of agents that did, showing that stigmergy performs well in this task.

A later work by Rajagopalan et al.[RRM+11] investigates this issue further, and notes
that although stigmergy performs well in simple tasks, explicit communication performs
better in more complex tasks. Additionally, the authors also note that shared fitness
between the agents strongly promotes cooperation.

3.4 Summary

This chapter introduces some theoretical concepts of ANNs, as well as methods of training
them. Additionally, it provides an in depth background on NE and its applications.

The NE techniques introduced were separated into three categories: single population
fixed topology, cooperative co-evolution, and TWEANNs. Although the algorithms from
these various categories have been benchmarked in the double pole balancing domain,
there is little indication of their performance in the context of controlling crowd simula-
tions. For this reason, we aim to compare well established algorithms from each category
in order to determine what type of algorithm is preferred in this domain.
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Our specific algorithms of choice for each category are CMA-ES for single population
weights only methods, NEAT for TWEANNs, and ESP for cooperative co-evolutionary
methods. ESP was chosen over CoSyNE, as although CoSyNE has performed very well in
the double pole-balancing domain, there has been a lack of literature of it being applied to
other domains. ESP, on the other hand, has already been studied and shown to perform
well in MASs [YM09]. In addition to these three algorithms, we will also perform tests
for CNE due to its simplicity. This will allow us to evaluate if more complex algorithms
are actually necessary in this task domain.

In addition to training algorithms, some of the background work performed in MASs
provides insight on how to model and design our simulation scenarios and agents. One
such insight is that of communication modelling. Explicit communications is infeasible in
crowd simulations due to the large numbers of agents, and active stigmergy requires us
to model how an agent behaves as it needs to deliberately alter the environment, which
is not possible as we are aiming to evolve behaviours rather than define them. Passive
stigmergy, on the other hand, appears to be a promising approach as it allows the agents
in our simulations to communicate in a scalable and evolve-able manner.

Another issue that needs to be addressed is whether to use homogeneous or hetero-
geneous teams. It is important to have agents with diverse behaviours when simulating
crowds for films, as agents with overly similar behaviours leads to a lack of believability
in the scene. Although it has been shown that both homogeneous and heterogeneous
teams are capable of generating these diverse behaviours, it remains an open question as
to which performs better, both in achieving the desired behaviours, and in generating the
more believably diverse behaviours. Therefore, we will also aim to investigate what team
compositions perform well in the context of controlling high-level crowd behaviours.
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Chapter 4

Controlling Crowds with
Neuro-Evolution

The main aim of this thesis is to use Neuro-Evolution (NE) to control crowds for the po-
tential use in films. In order to achieve this, we have separated our system into three sub-
systems (Figure 4.1): NE, responsible for evolving the ANNs; Simulation, a distributed
sub-system responsible for running the crowd simulation scenarios and evaluating the
fitness of the ANNs; and Rendering, responsible for visualizing the crowd simulations.
This chapter will aim to detail the design and workings of the NE sub-system. The other
two sub-systems are further elaborated in the succeeding chapter.

4.1 NE Algorithms

The NE sub-system is responsible for evolving the ANN controllers so that the crowd
behaviour adheres to the user-defined requirements. This is achieved by evolving a pop-
ulation of ANNs with one of the four implemented NE algorithms, using the simulation
sub-system for fitness evaluations. The way we store and define the ANNs is through
XML files (appendix A).

The four NE algorithms that we have implemented for this sub-system are Con-
ventional Neuro-Evolution (CNE) (section 4.1.1), Enforced Sub-populations (ESP) (sec-
tion 4.1.2), Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (section 4.1.3),
and Neuro-Evolution of Augmenting Topologies (NEAT) (section 4.1.4). These algo-
rithms were implemented to represent the different categories of direct-encoding NE al-
gorithms. CNE was implemented as it is arguably the simplest algorithm for evolving
ANNs, and gives us an idea if more complex NE algorithms are actually necessary for
solving our problem. This section further elaborates on the brief explanations of these
algorithms, found in section 3.2.

4.1.1 Conventional Neuro-Evolution (CNE)

An easy method of evolving ANNs is by assigning them a fixed topology, and then evolving
the weights of the networks as vectors of real numbers (figure 4.2). This approach was first
introduced by Wieland [Wie91], and is termed Conventional Neuro-Evolution (CNE), as
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Figure 4.1: Architecture of our system.

Algorithm 1: CNE

Initialize chromosome population P ;
Evaluate(P );
while Termination criteria not met do

Select parents S from P using some selection operator;
Produce offspring O from S using some crossover operator;
Mutate O using some mutation operator;
Evaluate(O);
Select chromosomes Pnew from P and O using some selection strategy;
set P to Pnew;

end
return Pbest
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was later coined by Gomez [GM03b], who used the algorithm as a basis for comparisons
in his experiments. CNE is detailed in algorithm 1.

Figure 4.2: CNE process of converting the weights in an ANN to a vector of real values.

Since the ANNs are represented as a vector of real numbers, one is able to select
from a large pool of existing GA operators. The operators implemented in this system
are One-Point Crossover, Two-point Crossover, Uniform Crossover, Simulated Binary
Crossover (SBX), Arithmetic Crossover, Blend Crossover (BLX-α), Heuristic Crossover,
Uni-modal Normal Distribution Crossover (UNDX), Parent Centric Crossover (PCX),
Laplace Crossover, Uniform Mutation, Gaussian Mutation, Cauchy-Lorentz Mutation,
Linear Rank-based Selection, Non-Linear Rank-based Selection, Tournament Selection,
and Boltzmann Selection. These operators are elaborated in sections 4.2 - 4.4.

4.1.2 Enforced Sub-Populations (ESP)

Enforced Sub-populations (ESP) is a cooperative co-evolution approach to NE. Much
like CNE, ESP also evolves ANNs with fixed topologies, with the weights being repre-
sented as vectors of real numbers. However, unlike CNE, ESP evolves ANNs at a neuron
level, having a separate sub-population for each neuron position (figure 4.3). Although in
Gomez’s original work [GM03b], only hidden neurons were evolved with output neurons
being statically defined, we decided to also evolve the output neurons as initial experi-
mentation showed that doing so is beneficial to the speed of evolution. The pseudo-code
for ESP appear in Algorithm 2.

Figure 4.3: In ESP, a sub-population of neurons is evolved for every neuron position in
the ANN structure.
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Algorithm 2: ESP

Set n to amount of neurons in ANN structure;
Initialize n sub-populations P1..Pn;
Evaluate(P1..Pn);
while Termination criteria not met do

foreach Pi do
if Pi stagnated then

BurstMutate(Pi);
else

Select parents Si from Pi using some selection operator;
Produce offspring Oi from Si using some crossover operator;
Mutate Oi using some mutation operator;

end

end
Evaluate(O1..On);
foreach Oi do

set Pi to Oi;
end

end
return Pibest

In order to evaluate the fitness of each neuron, the following process is executed: For
a given sub-population, each neuron is systematically selected and evaluated in company
with neurons randomly selected from each of the other sub-populations. Thus, the eval-
uation of each neuron is in the context of a complete ANN. The fitness achieved by the
constructed ANN is then shared amongst all the participating neurons.

One problem with this approach is that a good neuron can get paired with poor
neurons, resulting in it achieving a poor fitness rating. The way ESP combats this is by
evaluating each neuron multiple times, and then averaging the obtained fitnesses. This
decreases the amount of noise in the fitness evaluation process.

Another problem with ESP reported by Gomez [GM03b] is that, in the case of dif-
ficult problems, the sub-populations often converge prematurely to a sub-optimal area
in the search space. In order to combat this, burst mutation [GM03b] is used on a sub-
population whenever that population stagnates. This re-initializes the entire population
in a distribution (typically Cauchy) around the current best chromosome (figure 4.4).
We detect stagnation in our ESP implementation by checking if a sub-population’s best
chromosome has not improved for n generations.

4.1.3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES)

Like CNE, CMA-ES is a single population approach that evolves the weights of an ANN
by representing them as a vector of real numbers. However, CMA-ES does not make use
any of the operators described in sections 4.2 - 4.4. Instead, it estimates a covariance
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Figure 4.4: Burst mutation re-initializes the entire population in a distribution centred
around the best chromosome in the current population (Source: [GM03b]).

Algorithm 3: CMA-ES

Initialize C = I, m = θinit, σ = αinit, pσ = pc = 0;
while Termination criteria not met do

Generate population P by sampling a multi-variate Gaussian distribution with
m as mean, σ as step-size, and C as the covariance matrix;
Evaluate(P );
Update m by computing weighted average of P ;
Update the step-size evolutionary path pσ;
Update step-size σ using pσ;
Update covariance matrix evolutionary path pc;
Update covariance matrix C using pc;

end
return Pbest

matrix, a step-size, and a mean, which are then used to define a Gaussian distribution
from which the next generation is sampled. The covariance matrix and step-size are
iteratively updated every generation so that the likelihood of sampling better candidate
solutions increases. This is achieved by biasing the covariance matrix estimation towards
better performing candidate solutions from the previous generations, and adapting the
step-size so that the distribution scales effectively. Algorithm 3 provides a high level
overview of CMA-ES, and the rest of this section will aim to elaborate on the specifics.

Generating new offspring

Offspring in CMA-ES are created by sampling a multi-variate Gaussian distribution
[Mor90]. This is a Gaussian distribution defined over n dimensions, and can be visu-
alized as an ellipsoid in hyper-space (figure 4.5). Equation 4.1 shows how to generate
offspring, where N(0, Y ) is a Gaussian distribution with a mean of 0 and covariance ma-
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Figure 4.5: A bi-variate Gaussian distribution (Source: [MVG]).

trix Y , σ is the step size defining the scale of the distribution, and m is the mean of the
distribution. Note that the mean here is not multiplied with the step size, as it would
shift the distribution.

m+ σN(0, C) (4.1)

In our implementation, we sample N(0, C) by performing Eigen decomposition on
the covariance matrix, and then multiplying the square-roots of the Eigen values ob-
tained with values sampled from the uni-variate distribution N(0, 1) [Han05]. Although,
Cholesky decomposition can also achieve this by multiplying the lower triangular matrix
obtained with values sampled from N(0, 1) [WWW65], Eigen decomposition is preferred
as it is also needed to update the step-size evolutionary path pσ later in the algorithm.

Updating the mean

Updating the mean vector m allows the shifting of the distribution to more promising
areas of the search space. In order to achieve this, a weighted average of the best µ
chromosomes is calculated. These weights are determined by the fitness rankings of the
current chromosomes, and are increased logarithmically (equation 4.2), with chromosomes
that have a better fitness receiving a higher weighting. This results in biasing the mean
towards more fit individuals, with the aim of moving the distribution towards better areas
of the search space. The effect of using a logarithmic scale as opposed to a higher order
one is that the algorithm ends up exploring more options, as many chromosomes will have
similar weightings. Equation 4.2 shows how the weights are normalized and assigned and
how the mean is computed, assuming the chromosomes are sorted from best to worst.
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In these equations, λ specifies total population size, µ the number of chromosomes
selected, xi the ith best chromosome, wi the weight corresponding to xi, m the weighted
mean, and n the problem dimensionality.

Updating the Covariance Matrix

In addition to shifting the distribution, changing its shape also has an effect on how well
it covers promising areas of the search space. This is achieved by changing the covariance
matrix C defining the distribution.

The standard method of estimating a covariance matrix from a normally distributed
population is provided by equation 4.3, where λ is the population size and xi is the
ith individual. However, this only estimates an unbiased distribution. Thus, given a
sufficiently large sample size, the distribution will not change over the generations.

C =
1

λ

∑
i=1

λ(xi −m)(xi −m)T (4.3)

In order to update the covariance matrix so that it covers the better performing re-
gions, CMA-ES uses Rank-µ update (equation 4.4). This method combines the best µ
performing chromosomes in a weighted sum manner (equation 4.2), resulting in the distri-
bution for the next generation g being biased towards the better performing chromosomes
from the current generation g − 1.

Cg = (1− cµ)Cg−1 +

µ∑
i=1

wi((xi −m)(xi −m)T ) (4.4)

cµ = min(1− c1, 2
µeff − 2 + 1/µeff
(n+ 2)2 + µeff

) (4.5)

µeff = (

µ∑
i=1

w2
i )
−1 (4.6)
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To allow for faster evolution, λ is typically a small value, as it results in fewer fitness
evaluations per generation. However, this is problematic as a sufficiently large sample size
is required in order to achieve a reliable estimation for the covariance matrix. In order to
alleviate this problem, a learning rate cµ (equation 4.5) is used so that information from
previous generations can also be used to derive the covariance matrix for the current.
The recommended value for cµ is described in equation 4.5, where c1 is the learning
rate for the Rank-One update (explained in the next paragraph), µeff is the variance
effective selection mass (equation 4.6), which represents the amount of bias provided by
the weights, and n is the problem dimensionality (in our case, the number of connection
weights in the ANN).

In addition to using learning rates, CMA-ES also uses Rank-One update to improve
covariance matrix estimation for small populations. This method iteratively updates the
covariance matrix with a single selected step x in order to bias the distribution towards
that step. This is achieved by using the equations 4.7 and 4.8. Performing these equations
for a sufficient number of iterations will subsequently lead to a Gaussian distribution with
an expected value of x.

Cg = (1− c1)Cg−1 + c1xx
T (4.7)

c1 =
2

(n+ 1.3)2 + µeff
(4.8)

Instead of performing the Rank-one update on some selected chromosome within
the population, CMA-ES aims to instead bias it towards an evolutionary path pc, which
represents the weighted series of mean shifts of the distribution from the start of evolution
to the current generation. This can be calculated using equations 4.9 and 4.10, where
cc is the learning rate of pc, m is the mean, and σ is the step-size. The final Rank-one
update is given in equation 4.11.

pgc = (1− cc)pg−1c + 2

√
cc(2− cc)µeff

mg −mg−1

σ
(4.9)

cc =
4 + µeff/n

n+ 4 + 2µeff/n
(4.10)

Cg = (1− c1)Cg−1 + c1pcp
T
c (4.11)

CMA-ES incorporates both Rank-one and Rank-µ updates of the covariance matrix
in order to combine their benefits. Equation 4.12 provides the complete equation for
achieving this.

Cg = (1− c1 − cµ)Cg−1 + c1pcp
T
c +

µ∑
i=1

wi((xi −m)(xi −m)T ) (4.12)

Updating the Step-Size

The step-size of a distribution defines its scale, and is important as it allows the effective
adaptation between exploration and exploitation of a search space. A problem with only
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updating the covariance matrix and mean is that they do not explicitly define the scale of
the distribution, but instead do so implicitly by expanding the distribution towards the
better performing individuals of the current generation, and by phasing out information
from previous generations. This results in change rates in the step-size that are too slow
to achieve evolution times competitive with other NE algorithms [Han05].

Thus, in order to achieve faster evolution, the scale of the distribution also needs to
be evolved in tandem with both the covariance matrix and the mean. This is achieved
with equations 4.13 - 4.16, where σg is the step-size of the current generation, E‖N(0, I)‖
is the expectation of N(0, I), pσ is the conjugate evolution path, cσ is the learning rate,

and dσ is a damping factor. Additionally, C−
1
2 can be calculated with BDBT , where B

is a matrix of Eigen vectors for C, D is a diagonal matrix of square rooted Eigen values
for C, and BDDBT is the Eigen decomposition of C.

σg = σg−1exp(
cσ
dσ

(
‖pgσ‖

E‖N(0, I)‖
− 1)) (4.13)

pgσ = (1− cσ)pg−1σ +
√

2cσ(2− cσ)µeffC
(g−1)− 1

2
mg −mg−1

σg−1
(4.14)

cσ =
µeff + 2

n+ µeff + 5
(4.15)

dσ = 1 + 2max(0,
√

2
µeff − 1

n+ 1
− 1) + cσ (4.16)

Figure 4.6: Step-size evolution in CMA-ES. If previous steps are correlated as seen in
the right image, then the step-size increases, which allows for the population to reach a
specific region in fewer steps. If the previous steps are uncorrelated(left and middle), then
the step-size decreases. This allows for finer exploitation of the area, as well as preventing
steps that cancel each other out as seen in the left image (Source: [Han05]).

Using equations 4.13 - 4.16, the step-size increases when recent previous steps are
more correlated, and decreases when they are uncorrelated, as shown in figure 4.6. This
helps speed up evolution as it decreases the number of steps required for the distribution
to shift towards a well performing region, and allows the distribution to perform a more
refined search when it is already within a good region.

64



Algorithm 4: NEAT

Initialize population P without hidden nodes;
Produces species P1...Pn from P with Speciation;
Evaluate(P );
while Termination criteria not met do

foreach Pi do
Assign a rank based on average fitnesses;
Calculate number of offspring αi to be created for Pi;
Select parents Si from Pi using some selection operator;
Produce offspring Oi from Si using crossover;
Mutate Oi using some mutation operator;

end
Set P to O;
Produces species P1...Pn from P with Speciation;
Evaluate(P );

end
return Pbest

4.1.4 NEAT

NEAT is a NE algorithm that evolves both the weights and topology of ANNs. It achieves
this by using concepts such as a unique chromosome representation, complexification,
speciation, historical markings, and unique mutation and crossover operators. The NEAT
algorithm is detailed in algorithm 4. The rest of this section will elaborate on the specific
operators and workings of NEAT.

Chromosome Representation

Each chromosome in NEAT is represented by two vectors, one for nodes and another for
connections. The node vector lists all the nodes of the network. Each node is given an
identifier and a type denoting whether it is an input, hidden, or output node.

The connections vector details all the connections between the nodes of the network.
The attributes for these connections are as follows:

• Input node id: Specifies the node that sends data through this connection.

• Output node id: Specifies the node that receives input data from this connection.

• Weight: Specifies the weight for the output node to use when calculating its net
input signal.

• Enabled: A boolean signifying whether or not the connection is currently active
in the network. Inactive connections are not used when running the ANN. All
connections are initially enabled, and are only disabled when nodes are added.

• Innovation number: An integer used to denote the historical origin of the con-
nection.
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Figure 4.7 shows an example chromosome for NEAT, and the resultant ANN obtained
from the gene information.

Figure 4.7: A NEAT chromosome and the ANN that it represents. Note that since the
connection with innovation number 4 is disabled, it is not used in the network.

Historical Markings

Since NEAT allows chromosomes with varying topologies, it is important to have some
mechanism to determine the similarity between the chromosomes in order to evolve them.
One possible way to do this is through topological analysis. However, this is computa-
tionally expensive. NEAT approaches this problem by instead using historical markings.

Historical markings are innovation numbers assigned to each connection gene, and
denote that gene’s historical origin. These markings are assigned according to a global
innovation number. Every time a new connection is formed using the NEAT mutation
operator, the global innovation number is incremented and assigned.

When comparing two chromosomes, the connections that have matching innovation
numbers are considered matching connections, whereas the ones that do not match are
termed either disjoint or excess, depending on whether the innovation number is smaller
than the largest innovation number of the other network (disjoint) or larger (excess).
This allows one to determine how different two chromosomes are, as well as provide
information on how to perform crossover.
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Figure 4.8: Crossing over neat chromosomes when the fitnesses of the two parents are
equal. In the case where the fitnesses are not equal, the topology is inherited from the
more fit parent. (Image source: [SM02])

Crossover

Crossover in NEAT allows for inheritance of both topology and weights. When creating a
child from two parents, the topology is inherited from the fitter parent, with the weights
of the matching connections inherited randomly. In the case where parents have equal
fitnesses, the topology is inherited from both parents. This is done by inheriting the
union of the connections and nodes from both parents, with the matching connections
inheriting weights randomly, as shown in figure 4.8.

In order to select parents for crossover, a selection operator is used. We have im-
plemented 4 such operators for our system, which are explained in section 4.4. Details
and motivations for the specific operator used in our experiments are further discussed
in chapter 7. Another aspect of crossover that also needs to be dealt with is crossover
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probability. This refers to the chance of one of the parents moving on unchanged to the
next generation instead of producing offspring.

Mutation

There are three types of mutation used in NEAT. The first is weight mutation, where a
mutation operator (from section 4.3) is used to perturb the value of the weight.

Figure 4.9: Add connection mutation operation of NEAT. A connection is added between
nodes 2 and 5 in this figure. This new connection is assigned a new innovation number,
and added to the chromosome’s connection genotype.

The second is the add connection mutation, where connections are added to the
existing topology, with each unconnected pair of nodes having a connection probability
(figure 4.9). As we are only dealing with Feed-Forward Neural Networks, we prevented
this mutation from forming loops within our networks, as it would result in Recurrent
Neural Networks, which are beyond the scope of the current work.

The last type of mutation is the add node mutation, where a new neuron is incor-
porated into the ANN. In order to add a neuron, a random connection is selected. One
new node, representing the neuron, and two new connections are then created, with these
connections linking the new node to the in-nodes and out-nodes of the previous connec-
tion (figure 4.10). The previous connection is then disabled. The weight of the outgoing
connection from the new node is initialized to the weight of the previous (now disabled)
connection, whereas the weight of the incoming connection to the new node is initialized
to 1. This reduces the initial effect of the mutation [SM02].

Complexification

The operators discussed so far deal with how to change the topology of the chromosomes
in NEAT. Another consideration is how to initialize them. Each chromosome could
be assigned a random ANN topology. However, this often leads to network topologies
with many superfluous nodes and connections, an undesirable trait as minimal network
structures allow for significantly faster evolution times [SM02]. Furthermore, smaller
networks also allow for less degrees of freedom, thus, reducing the risk of overfitting.
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Figure 4.10: Add node mutation of NEAT. The connection between nodes 2 and 3 is
selected and disabled in this figure, with a new node 4 being created. Two new connections
connect node 4 to nodes 3 and 2.

NEAT combats this by initializing the networks without hidden nodes. This mini-
malist approach allows the chromosomes to remain small, with topological innovations
justified because they will only persist if they provide an improvement over previous
chromosomes. This approach is termed Complexification.

Speciation

A problem with modifying ANN topologies is that the topological innovations often lower
task performance in the short term, resulting in them being rejected and not being allowed
time to optimize further. In order to protect these innovations, NEAT uses Speciation.

Speciation separates the population into species, determined by similarity between
the topologies of the chromosomes. Crossover occurs only within these species, therefore
allowing structural innovation preservation by providing time for optimization. To create
these species, a random chromosome is selected to represent each species of the previous
generation. The current population of chromosomes are then compared for similarity with
these representatives, and assigned to the first matching species. This prevents them from
simultaneously existing in multiple species. If a chromosome is not sufficiently similar
to an existing representative, a new species is created with that chromosome as the
representative. Chromosomes in the first generation are all assigned to the same species,
as Complexification causes them to have the same initial structure.

A metric termed compatibility distance is used to determine similarity between chro-
mosomes. This is calculated using c1ε+c2δ

N
+ c3ω, where c1, c2, and c3 are constants, N

is the number of connections in the larger of the chromosomes being compared, ω is the
average of the differences between the weights of matching connections, δ is the number
of disjoint connections, and ε is the number of excess connections. In order for a chromo-
some to be similar to another, the compatibility distance has to be below a pre-defined
compatibility threshold. As this threshold is problem specific, preliminary tests are re-
quired to determine the best performing value. These tests, and our chosen threshold for
our experiments, are discussed in section 7.2.1.
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In order to determine how many offspring each species should generate, the species
are ranked based on their average fitnesses. The number of offspring that each species
produces is based on these ranks, with better ranked species producing a higher number of
offspring. The number of offspring the ith ranked species (assuming the species are ranked

best to worst) generates can be obtained with αi ≈ β−(i−1)
γ

λ, where β is the number of

species, λ is the population size, iε[1, β] is the rank of the species, and γ = β(β+1)
2

is used
to normalize the number of offspring generated against the number of species.

4.2 GA Crossover Operators

Both CNE and and ESP use existing GA crossover operators. However, there is no
indication as to how well each operator will perform in the specific context of controlling
crowd simulations. For this reason, we implement and test ten well established crossover
operators to investigate which operator performs best.

The notation for formulae in this section refer to yij as the jth dimension of the ith
offspring, xij as the jth dimension of the ith parent, U(a, b) as a uniform distribution with
the domain [a, b], and N(a, b) as a normal distribution with a mean of a and a standard
deviation of b.

4.2.1 One-point Crossover

One method of combining chromosomes is to use discrete crossover operators. One-point
crossover [Hol75] is one such operator, where offspring are created from 2 parents by
inheriting all the genes before a specific position r from one parent, and all the genes
after that position from the other. The position is randomly generated by sampling from
a uniform integer distribution between 1 and the number of genomes in one of the parents.
Equation 4.17 is used for generating the offspring, where r ∼ U [1, n], with n being the
dimensionality of the search space.

Figure 4.11: One point crossover performed in two dimensions in a population of three
parents. Offspring are denoted in blue whereas parents are denoted in red.
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yij =

{
x1j if j <= r

x2j if j > r
(4.17)

4.2.2 Two-point Crossover

Two-point crossover [ECS89, DJ75] is another discrete crossover operator that uses 2
parents. Like one-point crossover, offspring also inherit genes from either one parent
or the other depending on the position of the gene. However, it differs in that instead
of one position being generated, two are instead (r1 and r2). The offspring will thus
inherit the genes between the two generated positions from one parent, and the genes
outside the two positions from the other. Mathematically, offspring are generated using
equation 4.18, where r1 ∼ U(1, n) and r2 ∼ U(1, n), with n being the dimensionality of
the search space and r2 > r1. The offspring generated by two-point crossover is identical
to that of one-point crossover in two dimensions (figure 4.11), reason being that there is
only one position (not including the start and end) within a two-dimensional chromosome
where points can be generated. In n dimensions, the offspring that one-point crossover
generates are a subset of two-point crossover, with two-point crossover generating more
diverse offspring when n > 2.

yij =


x1j if j <= r1

x2j if j > r1 and j <= r2

x1j if j > r2

(4.18)

4.2.3 Uniform Crossover

Uniform crossover [Sys89] is another discrete crossover operator, where offspring are once
again generated by inheriting genes from one of two parents depending on the position of
the gene (figure 4.12). In Uniform crossover, the parent from which the gene at specific
position j is determined by sampling rj from a uniform distribution between 0 and 1. If
rj is smaller than or equal to 0.5, the gene is inherited from the first parent, whereas if
it is larger than 0.5, the gene is inherited from the other.

Figure 4.12: In uniform crossover, points specify when the offspring’s gene sequence shifts
from one parent’s to another’s.

yij =

{
x1j if rj <= 0.5

x2j if rj > 0.5
(4.19)

Offspring are generated using equation 4.19, where rj ∼ U(0, 1). The offspring gener-
ated by uniform crossover in two dimensions are identical to one- and two-point crossover
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(figure 4.11). Thus, the rules that apply to the relation between one- and two-point
crossover also apply to uniform crossover. Uniform crossover is able to generate more di-
verse offspring than one-point crossover when n > 2, and than two-point crossover when
n > 3.

4.2.4 Simulated Binary Crossover

A problem with using discrete operators for continuous problems is that the offspring
may not cover the search space adequately. Simulated binary crossover [ADA94] aims
to alleviate this by approximating one-point crossover (in the context of evolving binary
strings) in continuous domains. This is achieved by designing the operator to produce
offspring in a similar probability distribution to that of one-point crossover [ADA94].

Figure 4.13: Simulated binary crossover approximates both the distribution and the search
power of one-point crossover when used with binary strings.

y1j = 0.5((1 + wj)x1j + (1− wj)x2j)
y2j = 0.5((1− wj)x1j + (1 + wj)x2j)

wj =

{
(2rj)

1
η+1 if rj <= 0.5

(1/2(1− rj))
1
η+1 if rj > 0.5

(4.20)

The shape of the distribution is shown in figure 4.13. One should note that this
distribution is symmetrical around the parents, and thus avoids biasing the search process.
To generate offspring, one uses equation 4.20, where rj ∼ U(0, 1) and η > 0. η is the
distribution index that determines how close offspring are generated relative to their
parents. Deb and Agrawal [ADA94] recommends η = 1 as a setting that generally works
well.

4.2.5 Arithmetic Crossover

yij =
n∑
k=1

wkxkj (4.21)
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Another simple continuous crossover operator is arithmetic crossover [Mic96] (fig-
ure 4.14), which produces an offspring that is the weighted average of n selected parents.
Offspring are generated from n parents using equation 4.21, where wk is a random number
between 0 and 1, and

∑n
k=1wk = 1.

A problem with multi-parent operators is that finding the ideal number of parents
would result in too many different test scenarios, leading to us exceeding our time con-
straints. For this reason, we merely use the minimum number of allowed parents, which
for this operator is 2.

Figure 4.14: Arithmetic Crossover. Offspring are generated uniformly in a hyper cube
defined by the min and max values of the parents in each dimension.

4.2.6 Blend Crossover(BLX-α)

A problem with arithmetic crossover is that offspring are only generated between the
parents. Thus, mutation is needed to search in areas not bounded by the parents. Blend
crossover (BLX-α) [ES93] remedies this by expanding the hypercube so that offspring
can also be generated in an area around that defined by the parents. This is achieved
using equation 4.22, where wj = (1 + 2α)U(0, 1)− α, with the recommended value for α
being 0.5 [ES93].

yij = (1− wj)x1j + wjx2j (4.22)

BLX-α has the property that the larger the distance between the parents, the larger
the distance between the offspring and the parents. The offspring are randomly generated
within the range [x1j − α(x2j − x1j), x2j + α(x2j − x1j)] (figure 4.15).

4.2.7 Heuristic Crossover

Heuristic crossover [Wri91] is an operator that takes the fitnesses of the parents into ac-
count, by creating offspring in the direction of the better performing parent (figure 4.16).
It generates one offspring from two parents using equation 4.23, where the fitness of x1j
is better or equal to the fitness of x2j.
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Figure 4.15: Blend Crossover(BLX-α). Given two parents, offspring are generated uni-
formly in a hypercube around the two selected parents. This hypercube has the dimensions
[x1j − α(x2j − x1j), x2j + α(x2j − x1j)]. Thus, with the recommended α = 0.5, each di-
mension is twice as long as the distance between the two parents in that dimension.

yij = U(0, 1)(x1j − x2j) + x1j (4.23)

Figure 4.16: Heuristic Crossover assuming all three parents have the same fitness. Heuris-
tic crossover searches in the area of the better performing parent, thus applying a signifi-
cant amount of selective pressure.

A drawback of this operator is that it will greatly bias the population distribution
towards the direction of the better performing parent, impeding exploration.

4.2.8 Uni-modal Normal Distribution Crossover

Most of the previously discussed crossover operators generate offspring in a uniform
manner. Uni-modal normal distribution crossover [OK97], on the other hand, generates
offspring in a multi-variate Gaussian distribution (figure 4.17) defined by three parents.
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Offspring can be produced using equation 4.24, where xp is the midpoint between parents
x1 and x2 and defines the centre of the distribution; d is the difference vector x1 − x2
and is used as one of the principal axes of the ellipsoid defining the distribution; n is the
dimensionality of the search space; and D is the distance from parent x3 to its projection
on d which is used to determine the scale of the distribution.

yi = xp + ξd+D
n−1∑
k=1

ηkek (4.24)

The orthogonal basis vectors ei span the subspace orthogonal to the vector space
defined by d, and represent the other principal axes of the ellipsoid. The variables ξ ∼
N(0, σ2

ξ ) and ηi ∼ N(0, σ2
η), where N(0, σ2) is a random number sampled from a Gaussian

distribution with a mean of 0 and a variance of σ2, define the standard deviation along
d and the other principal axes respectively. Ono and Kobayashi [OK97] suggest that
ση = 0.35

n
and σξ = 1

2
.

Figure 4.17: Uni-modal normal distribution crossover. Offspring are generated in normal
distributions defined by the three parents.

4.2.9 Parent Centric Crossover

Parent centric crossover [DPAM02] is an extension to uni-modal normal distribution
crossover that generates offspring in a normal distribution centred around one of the
three selected parents (named the female). The effect of this is that the evolutionary
process will search near the parents, as opposed to near the centre of mass of two of the
parents as in the uni-modal normal distribution crossover. Additionally, as the parent
from which to generate the offspring around is selected randomly, the operator essentially
ends up searching around all the parents (figure 4.18).

y = xp + wζ |d(p)|+D

µ∑
i=1,i6=p

wµηke
i (4.25)

From n parents, offspring can be generated using equation 4.25, where xp is the female
parent chosen randomly for each offspring and is used as the centre of the distribution;
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Figure 4.18: Parent centric crossover generates offspring in a normal distribution around
a randomly selected female parent.

d(p) the direction vector xp − g used as one of the principal axes of the ellipsoid, with
g being the mean vector of the µ parents; D being the average of distances of all the
non-female parents from d(p), and is used to define the scale of the distribution; ei being
the µ − 1 orthonormal basis that span the subspace orthogonal to d(p) used to define
the other principal axes of the distribution; and wζ and wµ are zero-mean Gaussian
distributed variables with variance of σ2

η and σ2
µ, respectively. As 3 is the minimum

number of parents needed for this operator, we use that number in our experiments. In
order to modify the distribution of the offspring, one can modify σ2

η and σ2
µ, which will

change the variance of offspring along dp and all other orthogonal directions respectively.

4.2.10 Laplace Crossover

Another parent-centric crossover operator is Laplace crossover [DT07], where offspring are
generated around the parents according to a Laplace distribution (figure 4.19), a distribu-
tion where the probability density increases exponentially towards the mode (figure 4.20).
This differs from parent centric crossover which generates offspring in a Gaussian distri-
bution around the parents. Specifically, the Laplace distribution has fatter tails than the
Gaussian, resulting in the exploration of a larger section of the search space.

y1 = x1 + β|x1 − x2|
y2 = x2 + β|x1 − x2|

β =

{
a+ b log(2u) if u <= 0.5

a− b log(2− 2u) if u > 0.5

(4.26)

In Laplace crossover, two offspring are generated for a pair of parents using equa-
tion 4.26, where u ∼ U(0, 1); a is a constant which determines the location of the dis-
tribution; and b is a constant that determines how close to the parents the offspring are
generated.
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Figure 4.19: Laplace crossover generates offspring around parents in a Laplace distribu-
tion.

Figure 4.20: The Laplace distribution with differing values of the mode µ and b (Source:
[Lap]).

4.3 GA Mutation Operators

In addition to crossover, mutation is also an important operator for GAs. In environ-
ments where sequences of bit-strings are evolved, it is sufficient to merely flip random
bits. However, GAs that evolve chromosomes with a continuous representation must
approach this differently, typically by adding noise sampled from some distribution to
the chromosomes. Much like crossover operators, it is an open question as to which mu-
tation distributions performs better in our use case. Thus, we have implemented three
commonly used operators for our system in order to evaluate their performance.
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4.3.1 Uniform mutation

One common distribution used for mutation is the uniform distribution. In order to
mutate an offspring, values sampled from U(−α, α) are added to the chromosome, with
α being problem dependent. One difficulty with using a uniform distribution is that the
noise is limited to [−α; α], thus it is not always possible to escape from local optima.
Another problem is that a large number of mutations are required in order for the operator
to not unintentionally bias the search process, as the mean of the mutations needs to be
close to 0 in order for the operator to be unbiased.

4.3.2 Gaussian mutation

Another distribution suited to mutation is the normal distribution (figure 4.21), where
offspring are mutated using values sampled from N(0, σ) (again σ is problem dependent).
Using normal instead of uniform distributions has the benefit that fewer mutations are
needed for the operator to be unbiased, as the majority of the mutation values are close
to zero. Additionally, unlike uniform mutation, the noise values generated are not bound
to be within a specific range, thus allowing a better mechanism for escaping local optima.

4.3.3 Cauchy-Lorentz mutation

Finally, we implemented the Cauchy-Lorentz distribution. The shape of this distribution
is similar to that of a Gaussian distribution, but with thicker tails and a thinner cen-
tre (figure 4.21), resulting in more values generated further away from the peak. This
improves the chances of escaping local optima. Values can be generated from this distri-
bution with C(l, s), where the l is the location and s is the scale. An interesting side-note
about this distribution is that its mean and standard deviation are undefined. This means
that regardless of the number of samples taken, the mean does not converge.

4.4 Selection Operators

Selection is used to determine which chromosomes are permitted to reproduce. This al-
lows the application of selective pressure to the evolutionary process. Much like crossover
and mutation operators, there have been no results indicating the relative performance of
selection operators when used to control crowds. We have thus implemented four differ-
ent, well established selection operators in order to investigate their viability. However,
we chose not to implement certain operators, such as proportionate selection [Hol75], due
to their high selective pressure - an undesirable property for GAs, where lower selective
pressure operators are preferred [Bac94].

4.4.1 Linear Rank-based selection

Rank-based selection [Bak85] assigns selection probabilities (P (xi)) to chromosomes based
on their fitness ranking within the population.

A linearly increasing approach to this is equation 4.27, where λ is the population
size, xi is the chromosome with the ith best fitness, and µ ∈ [1; 2] is the number of
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Figure 4.21: The respective probability densities of Gaussian and Cauchy distributions
(Source: [Cau]).

offspring to be generated for the most fit chromosome, and can be increased or decreased
to modify the amount of selective pressure exerted by the operator. We used µ = 2 in
our implementation as we found that having a higher selective pressure for this operator
allowed for faster evolution.

P (xi) = 2− µ+ 2(µ− 1)
λ− ranki

λ
(4.27)

4.4.2 Non-Linear Rank-based selection

In addition to using probabilities that linearly increase according to rank, one can also
increase the probabilities non-linearly. This has the effect of exploiting more around the
best performing individuals as the probability ratio of the better performing individuals
significantly outweighs that of weaker individuals. This results in a much higher amount
of selective pressure compared to the linear counterpart.

Equation 4.28 is used to calculate the selection probabilities of chromosomes in our
non-linear rank-based selection implementation, where vε[0, 1] denotes the probability of
selecting the fittest parent. Higher values of v thus drive more exploitation around the
highly ranked chromosomes.

p(xi) = v(1− v)ranki (4.28)

4.4.3 Tournament selection

Tournament selection [Bri81] runs a single-elimination tournament between n selected
chromosomes of the population, with the fitnesses being used to determine the winner
between pairs of chromosomes. The best performing α chromosomes are then selected for
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reproduction. Tournament selection has the advantage that it reduces selective pressure
because the n chromosomes are randomly selected. However, this is only the case if n is
small. In the extreme, where n is equal to the population size, the best individuals will
always be selected, resulting in very high selective pressure.

4.4.4 Boltzmann selection

The distributions of the above selection operators remain static throughout. Boltzmann
selection [MT93] adopts a different approach where the operator gradually increases se-
lective pressure throughout the evolutionary process. This is achieved by using the same
thermo-dynamics principles as Simulated annealing [AK88], with the parent selection
probabilities calculated using equation 4.29, where t ∈ [0, 1] is the temperature param-
eter, and is decreased over the generations. We use the rank of the chromosomes as
opposed to their fitness, as it has been found that using fitnesses results in poor per-
formance in GAs [MT93], as it essentially becomes a scaling method for proportionate
selection [Bac94].

p(xi) =
1

1 + eranki/t
(4.29)

The distribution of Boltzmann selection is such that the selection probability is similar
for most chromosomes when t is close to 1, whereas when t is close to 0, better ranked
chromosomes have a significantly higher probability of being selected.

4.4.5 Elitism

Elitism [DLJD00] can also be classified as a selection technique. In contrast to the
previous methods, it does not deal with selecting chromosomes for reproduction, but
instead ensures that the best n chromosomes from the current generation survive to the
next. Elitism is thus typically used to apply additional selective pressure, with the benefit
of possibly resulting in more efficient evolution. However, it may also result in premature
convergence.

4.5 Multiple ANNs per candidate solution

It is often the case that there are multiple species of agents within a single crowd simula-
tion. One example is The Battle of Helms Deep scene in the film The Lord of the Rings:
The Two Towers, where orcs, humans, elves, and dwarves are present, each representing
a different species. As different species often behave and perceive differently, it is not
sufficient to use a single ANN to control all agents. We remedy this by allowing multi-
ple ANNs to be evolved per simulation. The details of how we separate these ANNs is
discussed in section 5.1.4.

The evolution of multiple ANNs requires a few modifications to NE. One required
change is extending the chromosome representation. This is trivial for both CNE and
CMA-ES as one merely needs to extend the vector to account for multiple ANNs (fig-
ure 4.22). ESP can be changed by adding more sub-populations, with each sub-population
now addressing a specific ANN in addition to a neuron position, as seen in figure 4.23.
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Figure 4.22: The weights of ANNs A and B are concatenated into one vector in order to
evolve A and B together.

Figure 4.23: ESP allows for evolving multiple ANNs by providing each sub-population
with information of which ANN it belongs to, in addition to its position in the ANN.
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Figure 4.24: NEAT allows for multiple ANNs by adding a connection and node vector for
every additional ANN.

Such an approach is termed Multi-agent ESP [YM09]. Lastly, with NEAT, we modify the
chromosome representation to incorporate an additional vector of connections and nodes
for every additional ANN (figure 4.24), which enables us to use a single chromosome to
represent multiple ANNs. We ensure that each ANN can only perform crossover with its
corresponding ANN in other chromosomes, thus, ensuring that crossover is semantically
correct.

In addition to the chromosome representation, we also make a slight modification to
NEAT to account for multiple ANNs, by changing the add node mutation. Normally,
there is a chance of adding one node to the chromosome per mutation. We have modified
this so that every ANN in the chromosome has a chance of adding a new node. This is
intended to maintain the growth rates for the ANNs so that they remain comparable to
using NEAT with a single ANN per chromosome.

One last consideration with NEAT is the calculation of the compatibility distance
between chromosomes with multiple ANNs. We achieve this by concatenating the con-
nection vectors of each ANN, and then calculating the compatibility distance normally on
these concatenated vectors. This is possible since the innovation numbers are incremented
globally, and thus are still unique within the vector.

4.6 Controlling agent behaviour with fitness

The primary aim of this thesis is to evolve ANN controllers for agents within crowd
simulations so that the user is able to control the emergent aggregate crowd behaviour.
This is achieved by designing the fitness function so that it models the control intended
by the user. An example of such a control requirement is having all agents move from
one point to another. In order to evaluate a chromosome, the crowd simulation is run for
a specific time with the chromosome encoding the agent controllers, and then evaluated
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according to the fitness function. If the crowd performs close to the desired behaviour,
the ANN controllers receive a good fitness, whereas if the crowd behaves very differently
from what is desired, it is assigned a poor fitness. The similarity measures for the user
desired control objectives are problem dependent, and the ones we use are fully explained
in section 6.2.

We model the desired control as a set of objectives, with each separate control re-
quirement being a separate objective. Examples of objectives include distance to a point,
and number of total collisions. Each of these objectives provides closeness rating, and is
assigned a weight. The weighted sum of closeness ratings are then used as the final fit-
ness value. The weights for each objective are simulation and objective dependent, with
the specific weightings for our simulations detailed in section 6.2. Generally, objectives
receive a higher weighting if they are more important, or if the values generated by the
objective are small in comparison to the other objectives used in the simulation.

4.7 Summary

This chapter provides implementation details for the various NE algorithms, and their
respective operators and parameters, implemented in the NE sub-system. Additionally,
it also provides insight to the characteristics, and possible advantages and disadvantages
of these.

Information of how we intend to use NE to control the aggregate crowd behaviour, as
well as extensions to genotype representations to allow for multiple species within crowds
is also provided.

Information and comparisons of the task performance and behaviours of the various
discussed aspects in this chapter will be fully discussed and analysed in chapters 7 and
8.
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Chapter 5

Simulation and Rendering

The Simulation and Rendering sub-systems are responsible for executing a simulation
scenario with a given candidate solution and for rendering it, respectively. We have split
these into two separate sub-systems for two reasons: simulations executed during the
evolution phase should ideally be as fast as possible in order for the evolution to complete
within a reasonable period of time, and rendering is not necessary for the evolution phase,
and unnecessarily consumes computational resources.

5.1 Simulation Subsystem

This section aims to elaborate on the design specifics of the simulation sub-system. It
does not, however, describe the specific simulations and agents used for our experiments,
which instead appear in chapter 6.

5.1.1 Running a simulation

Each simulation scenario consists of a set number of cycles. During each cycle, the simula-
tion state is updated by both the physics engine and any additional rules. Some examples
to these rules are checking skeletal simulation state to allow for behavioural transitions,
and clamping velocities so that agents do not move faster than their maximum allowed
speed. We model the agents’ decision-making frequency using skipThink [Rey06], where
agents make decisions every n cycles, as opposed to every cycle. The reasoning behind
this is twofold: it is more efficient, as the ANNs and other decision-making processes are
run less often; and it helps smooth the behaviours of agents, as they can be somewhat
discontinuous if the decisions are performed every simulation cycle.

Each simulation scenario also defines the number of cycles to be run per second
when executed in real-time. This is important for both the rendering sub-system and
the physics engine. The rendering sub-system requires this information as it uses it to
determine how frequently the simulation should be iterated. The physics engine, on the
other hand, requires this information as it uses it to determine the time to forward the
physical state of the simulation during each simulation cycle.
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5.1.2 Bullet Physics

We use Bullet Physics1 2.82 as the physics engine in our simulations to perform a variety of
tasks, such as collision detection, ray-casting, calculating acceleration and torque forces,
and updating agent positions. We chose Bullet as it has excellent documentation and
is open source. In order to synchronize Bullet’s simulation cycles with the cycles in the
simulation sub-system, we advance the bullet world by a fixed duration, calculated using
the simulation cycles per second data defined in the simulation scenario.

5.1.3 Controlling Agents with ANNs

In order to control an agent with an ANN, a series of values representing the agent’s local
perception of the world are computed for the current time step. These values are then
passed to the ANN as inputs, which proceeds to evaluate and produce a series of outputs
that are returned to the agent. The agent uses these outputs to determine its behaviour
for the current time step (figure 5.1).

Figure 5.1: For an ANN to control an agent, the agent provides its perception of the
environment as input to the ANN; the ANN then calculates the outputs and returns them
to the agent, which then makes a decision on how to act.

5.1.4 Team architecture

As discussed in section 3.3.5, controller assignments for agents can range from fully ho-
mogeneous to fully heterogeneous, with one of the aims of this thesis being to determine
what type of setup is most ideal in the context of controlling crowds.

1http://bulletphysics.org/
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Figure 5.2: From left to right: two different agent types; two different expected agent
behaviours (attacking versus defending); a single group of agents.

Figure 5.3: From left to right: Fully homogeneous team setup; A team setup midway
between homogeneous and heterogeneous; Fully heterogeneous team setup.

We achieve this by separating the agents in the simulation into a set of distinct species
(figure 5.2). Different species specify either different agent types, such as mice or robots,
or different expected agent behaviours, such as defenders or attackers. Each species can
then range from having fully homogeneous to fully heterogeneous controller assignment
(figure 5.3).

The reason we separated the agents into species is twofold. Firstly, different types of
agents, such as mice and robots, require different types and numbers of inputs and out-
puts, resulting in incompatible ANN topologies. Secondly, different types of behaviours
are often required from agents of the same type. For example, in a siege scenario, it is
more realistic to have the defending agents adopt passive strategies and the attacking
agents aggressive.

5.1.5 Reducing the learning

A problem found in more complex simulations is that agents often struggle in learning how
to avoid collisions. To combat this, we implemented a rudimentary collision avoidance
algorithm, which reduced the extent of behaviour learning required of the agents. This
algorithm only considers environmental obstacles, thus, the agents still need to learn how
to avoid each other.

To avoid collisions, rays are cast forward from the front corners of an agent’s bounding
box (two for two-dimensional, and four for three-dimensional agents), with the distance
to the closest intersecting object for each ray returned. In the case where the ray does
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Figure 5.4: The agent casts 2 rays, A and B, in its direction of orientation. These return
the distance to the closest obstacle. Since A returns a larger value than B, the agent
rotates towards that direction by applying a torque, t, to its current angular velocity.
Additionally, the agent modifies its current acceleration a0 with an amount a1, so as to
slow down sufficiently so that it stops before the obstacle should it be unable to steer clear
of it.

not intersect an obstacle, a value η, set to a pre-determined number which exceeds the
dimensions of the scenario environment, is returned. If any of these distances are below
some threshold, α, the agent enters collision avoidance mode, and the collision avoidance
algorithm replaces the ANN as the agent controller.

−v2

2(d− β)
(5.1)

The agent aims to steer in the direction of the ray with the largest distance value, and
determines its acceleration using equation 5.1, where v is the current velocity, d is the
smallest distance returned by a cast ray, and β is a threshold that indicates the closest
possible distance between an agent and an obstacle (for example, if β = 1, the agent’s
velocity will have decelerated to 0 when it’s 1 unit away from the obstacle). This is a
reformulation of the kinematic equation v2f = v2i +2ad, with vf = 0 as we want the agents
to come to a halt before they reach a distance β from the obstacle. A problem with the
above equation is that in the rare case where β > d, the acceleration would end up being
positive, resulting in the agent accelerating into the obstacle. To deal with this, we set
beta = 0 if it is larger than d. Figure 5.4 illustrates this algorithm.

There are four cases where this algorithm fails to produce the desired results. The
first is when other agents collide with the agent that is avoiding obstacles. This will
often cause the agent to collide with the environment due to the extra force applied to
it by other agents. We do not explicitly aim to resolve this issue as we aim to evolve
inter-agent collision avoidance.

The second issue occurs when the orthogonal profile of an environmental obstacle is
thinner than the agent. This may result in the agent not detecting the obstacle (fig-
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Figure 5.5: Thin obstacles. An agent cannot detect an obstacle if it falls between the cast
rays.

ure 5.5), and thus, will not seek to avoid it. This is not a problem in our simulations as
the obstacles are all larger than the agents. However, an easy method of dealing with
this problem is to cast extra rays.

Figure 5.6: Corner case example. The agent’s current rays, denoted by the solid arrows,
are longer on the left side than the right. This results in the agent rotating left. However,
after rotating for a while, the right arrow becomes longer than the left (dotted arrows),
resulting in the agent rotating back again, causing the agent to oscillate.

The third issue occurs when an agent faces the inside of a corner. Rotating towards
the ray with the larger collision distance results in that ray becoming shorter and the
other becoming longer (figure 5.6), which in turn leads the agent to rotate back towards
the original direction. This causes oscillating behaviour. In order to combat this problem,
we first check if all the ray distances are below α, and if they are, we rotate towards the
ray with the largest distance until one ray has a value larger than α.

The last issue with this algorithm occurs when two obstacles are separated by less than
the width of an agent. Again this may result in oscillating movements. These oscillations
occur because when the agent rotates towards the free ray, that ray encounters an obstacle
and the previous ray is now freed (figure 6.1). This issue is resolved by having the collision
avoidance algorithm ignore rays that are recently freed.

Our reasoning for using this rudimentary collision avoidance algorithm over a more
robust and well established one [FS98, VdBLM08, OPOD10] is that it is very simple to
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Figure 5.7: Small gaps example. When one ray goes through the gap but the other hits
an obstacle, it results in the agent rotating towards the direction of the gap. However,
this results in a reversal of the situation, as shown by the dotted arrows. This causes
oscillating behaviour for the agent.

implement and integrate into our system with minimum additional computational cost,
as we already employ ray-casting for other functions, such as agent vision (section 6.1).
Additionally, our aim is not to evaluate the performance of various collision avoidance
algorithms nor derive a new one, but rather to reduce the amount of learning required of
the agents. Thus, an algorithm that produces adequate results is sufficient.

We found that using collision avoidance in our more complicated simulations allows for
much easier learning. An example of this is the Mouse Escape simulation (section 6.2.7),
where agents that were previously unable to evolve the desired behaviours are now capable
of evolving them very quickly. This possibly shows that reducing the amount of control
an ANN has over the agents can, in certain cases, speed up training and allow for more
complex agent behaviours. This is interesting as it paves the way for possible future
work, where agents can be modelled hierarchically [BG95, RMT01, PAB07], using ANNs
for higher level functions, such as goals and psychological state, as opposed to directly
controlling the low-level motor functions.

5.1.6 Distributing the System

The simulation sub-system is a bottleneck within our system. This is because each fit-
ness evaluation requires the complete execution of a scenario, with thousands of fitness
evaluations typically needed to complete the training process. This is problematic, since
although the system does not have to be interactive, one would still ideally want reason-
able training times. We use under two hours as a rough guideline for how fast our crowd
simulations should evolve, as this is roughly the maximum amount of time users spent
modifying very similar simulations in Jacka’s [Jac09] work.

We aim to speed up the system by distributing it across multiple processes. This
is achieved with a master-slave architecture, where the master node is responsible for
running the evolutionary algorithm and assigning work to slaves, and the slaves are
responsible for evaluating fitness. Algorithm 5 describes a slave process, and algorithm 6
details the fitness evaluation section of the master process.
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Algorithm 5: Slave

Initialize simulation S;
while Termination message not received do

Receive data d from master;
if d is not termination token then

Run simulation S with d;
Acquire fitness f from S;
Send f to master;

else
Terminate;

end

end

Algorithm 6: Master

Initialize λ to number of fitness evaluations required this generation;
Initialize x to number of slave processes;
Assign chromosomes y1..yx to slaves slave1..slavex;
while There are unevaluated chromosomes do

Find an unevaluated chromosome, yk;
Find a slave, slavei, that has completed its work;
Update the fitness received from slavei to its respective chromosome;
Assign yk to slavei;

end
Wait for slaves to finish work and update the respective fitnesses;
Terminate slaves;

The system automatically load balances, as a slave is assigned work when it com-
pletes its current job, resulting in faster slaves performing more work. The distributed
computing framework used was Microsoft MPI2 as it comes already compiled as part of
the Microsoft HPC pack. However, our code adheres to the OpenMPI3 standards, and
thus can be compiled and run with other MPI frameworks.

5.2 Rendering Sub-system

The rendering sub-system is responsible for rendering a simulation scenario with a given
candidate solution in real-time so that the behaviours of the agents can be visualized. It
is also used for loading in assets such as 3D models and skeletal animations.

Rendering is accomplished by using the Ogre3D4 graphics engine. To render a sim-
ulation, we read its current state, and then add, remove, or update the corresponding
nodes in the Ogre scene graph. This scene graph is automatically rendered by Ogre each

2http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
3http://www.open-mpi.org/
4http://www.ogre3d.org/
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frame. To run the simulation, we accumulate on each frame the time past since the last
simulation cycle. Once this amount has reached the cycle time threshold (determined by
the cycles per second attribute), we forward the simulation by one cycle and subtract the
cycle time from the accumulated total. In the case that the accumulation is more than
twice the cycle threshold, we forward the simulation by as many cycles as necessary.

In addition to rendering, we use Ogre to load assets such as models and animations,
and to create the colliders for the agents and obstacles. This is required, as Ogre has its
own format for 3D models and animations. One simplification we made when creating
the colliders for the simulation rigid bodies is to use box colliders as opposed to arbi-
trary convex hulls, as we found that this allowed for significantly faster simulation with
minimum impact on visual quality.

We chose to use Ogre as we found it easy to use, and because it is in the same language
as our system (C++). It also has an active community, allowing for easier solution finding
when encountering problems. Thus, if we encountered a problem, it was possible to easily
find answers. Moreover, despite the fact that Ogre uses its own formats for 3D models
and animations, a plug-in for Blender exists that allows one to export to them.

5.3 Summary

This chapter provides an overview on the workings of how our system simulates and
renders crowds. It also gives information on how our system is distributed and how we
performed inter-agent collision avoidance. Lastly, it provides some motivations for the
libraries used. The full list of specific libraries, tools, and language used for our system
can be found in appendix B.
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Chapter 6

Scenarios and Agent Design

Crowd simulations are used in a variety of scenarios in films, from battles in The Lord of
the Rings to swarming zombies in World War Z. Thus, in order to properly evaluate how
well NE performs in controlling crowd behaviours, it is important to have a sufficiently
diverse set of simulation scenarios. This chapter addresses the various scenarios and
agents implemented in our system. These scenarios and agents are designed to be similar
to the test cases found in Jacka’s [Jac09] work as this allowed us to roughly compare both
the behaviours and time taken.

6.1 Agents

There are five types of agents used in the scenarios: Car, Mouse, War robot, Space-ship,
and Human. This section will describe the behaviours of each agent. The agent inputs,
however, will not be discussed as they are simulation specific and will instead be discussed
in section 6.2. An exception to this is agent vision, which is the same across all scenarios.
We simulate vision by ray-casting, and return the distance to the closest intersected
objects for each ray. An example of a mouse agent’s vision is shown in figure 6.2.

The ANNs used for the agents are Feed Forward Artificial Neural-Networks with six
hidden nodes, with the exception of NEAT which requires complexification (section 4.1.4).
We found that this amount of hidden nodes worked well across all our agents using trial
and error.

6.1.1 Car

The car agent moves in a two-dimensional plane. In order to control its behaviour, it
receives two output values from the ANN. The first output modifies its acceleration, and
the second applies a torque. In addition, the angular and linear velocity of the car agent
is capped at a simulation specific amount, and the linear velocity of a car cannot be
negative, thus not allowing the car agents to reverse. The no reversal rule is added in
to make the objectives in the scenarios more challenging for the agents, as they are then
forced to change their front-facing orientation rather than just learning to reverse.

The vision of a car agent is simulated by casting eight rays uniformly around it. The
motivation for this is that cars have rear and side-view mirrors, allowing the drivers to
see in all directions.
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Figure 6.1: The five different agent types we use for our simulation scenarios. From left
to right and top to bottom: Car, Human, Space Ship, Mouse, and War-Robot.

Figure 6.2: An agent’s vision is simulated by casting rays, and returning the distance to
the closest intersection for each ray. This figure shows how we simulate the vision of a
mouse agent.
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6.1.2 Mouse

Much like the car agent, the mouse also moves in a two dimensional plane with the ANN
determining both torque and changes in acceleration, with both the linear and angular
velocity capped at a scenario specific amount and the linear velocity not allowed to be
negative. The mouse agent also has the additional behaviour that it can sense obstacles
in front of it, and if they are too close, it will come to a halt. The vision of a mouse agent
is simulated by casting eight rays in a cone in front of it. The reason for this is that a
front-facing cone-like field of view is common for many living organisms, so we made the
assumption that a mouse’s field of view is similar.

6.1.3 War Robot

The war robot agent has identical movement rules to the mouse and car agent, with
the exception that its angular velocity is fixed at zero after its linear velocity exceeds a
specific threshold. This is inspired by heavily armoured vehicles, where turning at high
velocities is dangerous due to the momentum and lack of grip.

The vision of the war robot agent is similar to that of the car agent, with eight rays
cast uniformly around the agent. However, in addition to the distances provided, the
vision is also capable of determining if the object intersected is an enemy, friendly, or
an environmental obstacle. If the object is an enemy, is within firing range, and within
the line of fire, the robot will fire at it and subsequently destroy it. Further, the fire
action has a cool-down timer. Thus, the robot is unable to continuously fire and destroy
multiple enemies in quick succession. This firing action was designed to be independent
from the ANN outputs as we found that it was very difficult to train the ANN to perform
this action together with movement.

6.1.4 Human

The human agent’s movement rules are identical to that of the car and mouse agents,
and like the mouse agent, it is able to detect if there is an obstacle in front of it and
immediately halt if the obstacle is close enough. The ANN also has a third output value
which, when above a certain threshold, will cause the human agent to exert a push action
upon another human agent directly in front of it (within one unit). When pushed, an
agent will stumble and get trampled, resulting in it being removed from the simulation.
This is to allow for frantic evacuation or chase scenarios, such as scenes in World War Z
or Pompeii, where agents often stumble and trample over each other in order to escape
some hazard or reach some goal. The vision of a human agent is simulated by casting
eight rays in a cone in front of it.

6.1.5 Spaceship

The spaceship agent moves in three-dimensional space. The ANN provides three output
values to this agent, modifying its acceleration, and applying torque along the x and y
axes. As with previous agents, its velocity is capped and is non-negative. The ANN
does not apply torque along the z axis as we found that this resulted in an undesirable
spiralling behaviour. The vision for this agent is simulated by casting rays in a 5x5
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square grid in front of the agent, which simulates a field of view in three dimensions. We
decided against casting rays uniformly around the agent as we observed that the agents
did not behave significantly differently. Additionally, uniformly casting rays around the
agent requires many more rays, leading to an increase in computational complexity and
problem dimensionality.

6.2 Scenarios

We use eleven crowd simulation scenarios as our test cases. Although these scenarios do
not cover all the use-cases of controlling crowds, they do represent sufficient variety for
testing the validity of NE for controlling crowds.

Throughout the various simulation scenarios, we make use of a set of recurring objec-
tives:

• C - The collision objective, where agents are tasked to avoid collisions with one
another. Every simulation cycle, each agent’s distance to its neighbouring obstacles
and agents is calculated. If the distance is below α, a value between zero and one
is added to the total, with zero chosen if the distance is α, and one chosen if the
agent and the obstacle are colliding. We set α to five units for all our simulations.
This value was obtained through experimentation.

• D - The goal objective, where agents are tasked to either move to a specific point,
or to cross a finishing line before the end of the simulation. This value is the sum of
the distances of all the agents to the goal point or line at the end of the simulation.
Only agents which have yet to reach the goal are considered.

• P - The group size objective, where the simulation is tasked to have a set amount of
agents left within a group at the end of the simulation. The value of this objective
is calculated by getting the absolute value of the difference between the actual and
desired agent group sizes. One problem with this objective is that its value is very
small compared to the other objectives, which may lead to the crowd not learning
this objective. To combat this, we assign very large weights to this objective.

• A - The angular velocity minimization objective, where agents are tasked to keep
their angular velocity as low as possible. One problem we found with our simulations
is that agents often learned an oscillating behaviour when moving from one point to
another. This is undesirable as one tends to minimize the amount of turning when
travelling to a specific location. We use this objective to eliminate this oscillating
behaviour, where the sum of the angular velocities of every agent is added to the
total during each simulation cycle.

In addition to the above four objectives, we also make use of two more simulation specific
objectives, which we will further elaborate on in their respective sections.

We also define a fitness threshold for each of the simulations. This threshold signifies
the fitness that a candidate solution needs to achieve in order to sufficiently adhere to
the specified objectives. These thresholds were determined through preliminary experi-
mentation.
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Figure 6.3: Car bridge crossing scenario. Ten car agents are tasked to cross a narrower
bridge area before a time limit of ten seconds.

6.2.1 Car Bridge Crossing

Ten car agents starting in a wide area are tasked to cross a narrower bridge area within ten
seconds whilst avoiding collisions with both the environment and other agents (figure 6.3).
This scenario tests the agents ability to navigate through a bottleneck at a considerable
pace, while avoiding collisions. Due to the simplicity of the scenario, the environment
collision avoidance algorithm is not used for this scenario.

The car agents, in addition to having vision as inputs, also provide the ANN with
their current position, the line at the end of the bridge that the agent must cross, their
current linear velocity, and their current angular velocity. Additionally, the car agents’
linear velocity is capped at ten, and their angular velocity is capped at one.

The fitness of a chromosome is calculated using f = 2D + 2C + A, and the fitness
threshold is 100.

6.2.2 Mouse Bridge Crossing

This scenario is identical to the Car Bridge Crossing scenario, with the exception that
instead of ten car agents, 30 mouse agents are simulated instead (figure 6.4). As there
are more agents, and due to the halting behaviour of the mice agents, crossing the bridge
within the specified time limit becomes significantly more difficult. This results in the
agents having to learn more efficient behaviours in order to succeed. The fitness threshold
for this scenario is defined at 750.

96

I I 

I I I 
I I I I 



Figure 6.4: Mouse bridge crossing scenario. Thirty mouse agents are provided goals to
cross the narrower bridge area within ten seconds.
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Figure 6.5: Car cornering scenario. Four car agents are tasked to complete the race track
in 13 seconds.

6.2.3 Cornering

Four car agents are tasked to complete a winding race track in 13 seconds while avoiding
collisions (figure 6.5). This scenario tests the ability of agents to navigate around a track
in a specific amount of time whilst avoiding crashes on the track corners. No agent to
environment collision avoidance was used as due to both the simplicity of this scenario,
as well as avoiding collisions being one of the main objectives of this scenario.

One problem we found with the training is that it was difficult for the agents to learn
how to go to the final goal due to the winding track. In order to alleviate this problem,
we used goal points. These are points placed at every corner, as well as at the end goal.
The initial agent goal is then assigned to the first goal point, with the goal being updated
to the next goal point every time an agent reaches its current goal.

The additional agent inputs for this scenario are its linear velocity, its current goal
point, its position, and its angular velocity. The agents’ linear velocity is capped at 15,
and its angular velocity is capped at one.

The fitness obtained by a chromosome can be obtained by using f = C + 2D + A,
and the fitness threshold is defined at 300.

6.2.4 Car Race

Ten car agents are tasked to race across a track within 13 seconds while avoiding collisions,
with the agent at the back tasked to win the race (figure 6.6). This scenario is similar to
scenes in various racing films, where an underdog comes from behind to win a race. The
environment only collision avoidance algorithm was used for this scenario.

The car agents are provided additional inputs in the form of position, the points
defining the finishing line, velocity, the underdog’s position, and a flag specifying whether
or not they are the underdog destined to win the race. The agents’ linear velocity is
capped at 15 and their angular velocity as one. Additionally, the agents are given an
initial velocity of two. This is to prevent cases where the agents learn to not accelerate
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Figure 6.6: Car race scenario. All cars must finish the race-track within 13 seconds, with
the blue car finishing first.

in the first few seconds if they are not the underdog, which leads to an unrealistic scene
as it would result in the competitors cooperating.

The fitness for this scenario is calculated using f = C + D + 20W where W is the
distance of the underdog to the actual winner of the race at the time the first car crosses
the finish line. The fitness threshold of this scenario is 250.

6.2.5 Car Crash

Two groups of ten car agents are initialized opposite to each other in a narrow corridor,
with the aim being that they need to move to the opposite end of the corridor within ten
seconds while avoiding collisions between both the environment and other cars (figure 6.7).
This scenario is analogous to various scenes in action movies, where cars or jets move
towards each other but skilfully maneuver to avoid collisions. As the primary aim of this
scenario is to have the agents learn to avoid collisions against oncoming traffic in a tightly
packed space, collision avoidance is not used.

Inputs for the car agent in addition to its vision include its position, the two points
depicting the finish line of its respective group, and its velocity. The linear velocity is
capped at 15, and angular velocity capped at one.

The fitness is calculated with f = C + 5D, and the fitness threshold is 250.

6.2.6 War Robot Battle

Two group of war robot agents are tasked to battle each other for ten seconds. One group
is initialized behind various buildings, whereas the other is initialized in an open field.
The aim of this scenario is to have between nine and 11 agents left in each group at the
end of the scenario (figure 6.7). This scenario tests how capable NE is at scenarios where
battle outcomes need to be controlled. Collision avoidance was used for this scenario.
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Figure 6.7: Car crash scenario. Cars must avoid collisions with other cars and move to
the opposite end of the corridor within ten seconds.
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Figure 6.8: War robot battle scenario. Eighty agents are separated into two groups of 40,
and are tasked to battle each other. The aim is that there are nine to 11 agents left on
each side after ten seconds of simulation.

The additional inputs for the war robot agents are agent position and agent velocity.
The linear velocity is capped at 15, the angular velocity is capped at one, and the shooting
cooldown is set at 0.5 seconds.

The fitness for this scenario is calculated using f = C+20P , with the fitness threshold
being defined at 150.

6.2.7 Mouse Escape

Thirty-five mouse agents are tasked to escape from five robot agents. The mouse agents
are initialized on one side of the environment, behind various buildings which act as cover,
and have to cross a finish line at the other end of the environment in order to count as
having escaped (figure 6.9). The robot agents are initialized opposite to the mouse agents.
The scenario’s goal is for there to be 11 to 13 mouse agents having escaped at the end of
a 15 second simulation, with the rest of the mouse agents being shot and killed by the
robots. Collision avoidance was used for this scenario.

The mouse agents have the additional input of their position, linear velocity, and the
points depicting the finish line. The war robot agents have additional inputs of their
position and velocity. The linear and angular velocities of the mouse agents are capped
at 15 and one respectively, whereas the war robot agents’ were capped to ten and one.

The fitness of the scenario is calculated by using f = 4D + 25P + C, and the fitness
threshold is set at 100.

6.2.8 Human Evacuation

Sixty human agents were tasked to evacuate a room in 11.5 seconds, with the aim of there
being 13 to 15 agents being alive and having evacuated by the end of the simulation, with
the rest being trampled to death (figure 6.10). This scenario is similar to the mouse escape
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Figure 6.9: Mouse escape scenario. Thirty-five mice tasked to escape five war-robots.
Eleven to 13 mice must be left alive at the end of a 15 second simulation. All of these
mice must also have escaped (reached the opposite end of the environment).

scenario in that it tests how well NE performs in controlling how many agents survive
when escaping from some hazard. However, it differs in that the hazard is not an external
factor but rather internal to the crowd.

In addition to the human agent’s vision, they are also provided with their current
position, their current velocity, their current angular velocity, and the points denoting
line segment representing the exit of the room. The human agents’ linear and angular
velocities were capped to 15 and two. Collision avoidance is used for this scenario.

The fitness of a chromosome in this scenario is calculated using f = D + 60P + E
where E is the sum of the distances from where each agent dies to the exit. We used E
as we found that often the agents would prioritize trampling over evacuating, as it lead
to more efficient movement. This caused most agents to get trampled very far away from
the exit, thus the bottleneck trampling behaviour we desired was not learned. The fitness
threshold for this scenario is set at 1000.

6.2.9 Spaceship Turn Back

Forty spaceship agents are tasked to move towards a goal sphere within ten seconds. This
goal sphere is initialized behind the agents’ starting positions (figure 6.11). This scenario
tests the ability of NE to control three dimensional behaviour of agents. Additionally,
an extra goal sphere with a significantly larger radius is used to ensure cohesion amongst
the crowd of agents. Although it is also possible to use the sum of the distances to the
crowd centroid as an objective to achieve this, we found using extra goal spheres to be a
much simpler method. Collision avoidance was not used for this scenario.

The spaceship agents are provided the additional inputs in the form of current agent
position, position of the goal sphere, current linear velocity, and the magnitude of the an-
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Figure 6.11: Spaceship turn back scenario. Forty spaceship agents tasked to move towards
the goal point denoted by the blue circle.

Figure 6.12: Spaceship obstacle scenario. Forty spaceship agents assigned the task of
navigating around the obstacle in order to reach the goal point denoted by the blue circle.

Figure 6.13: Spaceship asteroid field scenario. Forty spaceship agents must navigated
through the asteroid field in order to reach the goal point, denoted by the blue circle.
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6.3 Summary

This chapter provides details on the design of both our agents and simulation scenarios.
Information such as the agents’ perceptual abilities, behaviors, and constraints, as well
as scenario objectives and fitness calculations are provided. These scenarios and agents
are designed to be similar to the ones found in Jacka’s [Jac09] work, so that his data can
be used as a rough guideline for determining if our system performs acceptably.

105



Chapter 7

Experimental Setup

It is important to design our experiments so that the data obtained from them can be
used to answer our research questions (section 1.1). This chapter will elaborate on these
experiments, and draw connections to which research question each aims to answer. This
chapter also details what NE parameters and operators are used, and provides motivation
as to why we chose them. This is necessary because the performance of the NE algorithms
are highly dependent on the specific parameters used, with the performance of these
parameters in turn being problem dependent.

7.1 Experiments

This section aims to elaborate on our various experiments. We also provide details on
the general experimental parameters (non-NE), as well as motivation for our choice in
the type of statistical test used.

7.1.1 General Experimental Parameters

The experiments consist of a set of algorithms or parameters that are compared against
each other, using fitness as the performance metric. In order to accomplish this, we
run the evolutionary phase 30 times (general rule of thumb for a sufficient sample size
[HTR93]) for each algorithm or parameter, sampling the fitness values of the best perform-
ing chromosomes within the algorithm every 10 fitness evaluations to provide sufficiently
high resolution data on how well the algorithm performed throughout the course of the
evolutionary process. Thus, n/10 populations of 30 data points are generated for each
test case (required because NE algorithms are stochastic), where n is the total number of
fitness evaluations during evolution. These populations can then be compared with corre-
sponding populations from a different test case in order to determine the best performers
at various stages of evolution.

We chose 20,000 fitness evaluations as the cut-off for most of our experiments. The
reasons for this are two-fold: Our preliminary experiments showed that there is little
improvement after this, as the gradients of the mean fitness zero out around this point,
and we found that this number of fitness evaluations allowed for evolution times similar
to those obtained by Jacka [Jac09] for similar scenarios.
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An important aspect of activation functions is their active range, which specifies the
range in which the gradient of the function is not close to zero. This indicates what range
the ANN inputs should fall in order to achieve effective evolution. The active range for
the activation function used in our system, the Sigmoid, is (−

√
3;
√

3) [Eng07]. For this
reason, we normalize the inputs to this range, and restrict the weights to be between the
range [−1; 1]. An exception to this is CMA-ES, where we have not limited the weights.
The reason for this is because clipping or wrapping weights will result in the distribution
being incorrect, significantly hampering the evolutionary process. Instead, we initialize
the algorithm with a small initial step size, which we found was sufficient to keep the
weights small.

The statistical test used to test for significance between the results is the one-tailed
Mann Whitney U test [MW+47]. This test was chosen because it is robust to non-
normally distributed populations, an attribute that results in our preliminary experiments
often exhibited. We test for significance by running this test between the best performing
test case and all other test cases. We regard p < 0.05 as being statistically significant. As
the objectives in our scenarios aim to evolve agents to reduce some behaviour (for example
reduce distance to goal and reduce number of collisions), better performing controllers
will receive lower fitness values. Thus, in our results, the best performing test case will
be the one that has the lowest mean fitness value.

7.1.2 Determining the Best Performing Algorithm

One of the main research goals for this thesis is to determine the best performing NE
algorithm for controlling emergent crowd behaviours. We achieve this by comparing the
fitnesses obtained by the four implemented NE algorithms (section 4.1) across our 11
different simulation scenarios (section 6.2).

7.1.3 Determining the Best Team Architecture

As discussed in section 3.3.5, there are various agent controller team compositions, rang-
ing from fully homogeneous to fully heterogeneous. However, there is no real indication
as to which compositions work well in the context of controlling crowd simulations. Thus,
an additional research goal of this thesis is to investigate the impact different team com-
positions have on the evolutionary process.

Another consideration is how these various team compositions affect the behaviour
of the agents. This is important to investigate as our preliminary experiments, which
used fully homogeneous controller setups, showed that the agents’ behaviours were overly
homogeneous in certain scenarios, which leads to a lack of perceived realism.

To investigate these issues, we have created four different controller setups for each
simulation scenario, and evaluate both the fitnesses obtained and the heterogeneity of
the behaviour. Specifically, with regards to the heterogeneity of the behaviours, we are
interested in the believable heterogeneity of agents, meaning that they should not deviate
in their behaviours simply for the sake of deviation, but should rather achieve their goals
using a variety of believable strategies. As performing user evaluations falls outside the
scope of this project, we will instead evaluate this aspect by rating how efficient and
homogeneous the crowds appear to behave. The heterogeneous rating determines how
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differently the agents behave, whereas the efficiency rating determines how believably
they behave. This is based on the principal of least effort [Zip49], which states that
humans look to minimize the amount of effort spent in accomplishing their goals. These
ratings will be obtained by having 10 people in our lab conduct an informal user survey1,
where they have to rate videos of each test case between one to five for both how efficient,
and how heterogeneous they behave. As the sample size is small, these results will only
serve to provide us a general idea, with a larger population size with a better designed test
being needed for a clearer picture of the believability of the various team compositions.
The NE algorithm we use will be the best performing algorithm found in section 8.1.

As each simulation scenario has different numbers of agents, the four different con-
troller setups for our simulations also need to be scenario specific. The controller setups
used for our simulation scenarios are as follows:

• Car Bridge Crossing (10 agents) - one ANN per agent (Het), one ANN per two
agents (SHet), one ANN per five agents (SHom), one ANN for all agents (Hom).

• Mouse Bridge Crossing (30 agents) - same as Car Bridge Crossing.

• Cornering (four agents) - one ANN per agent (Het), one ANN per two agents
(SHet), one ANN for all agents (Hom). Only three setups are required as there are
only four agents in the scenario.

• Car Crash (two groups of 10 agents each) - one ANN per agent (Het), one
ANN per five agents (SHet), one ANN per group (SHom), one ANN for all agents
(Hom).

• Car Race (10 agents) - one ANN per agent (Het), one ANN per two agents
(SHet), one ANN for the underdog and one ANN for the rest of the agents (SHom),
one ANN for all agents (Hom).

• War Robot Battle (two groups of 40 agents each) - one ANN per agent
(Het), one ANN per four agents (SHet), one ANN per 10 agents (SHom), one ANN
per group (Hom).

• Mouse Escape (two groups, one of 35 mouse agents, one of five robot
agents) - one ANN per mouse agent (Het), one ANN per five mouse agents (SHet),
one ANN per seven mouse agents (SHom), one ANN for all mouse agents (Hom).
one ANN is used for all five robot agents for all cases, as we found them to be
somewhat difficult to divide up.

• Human Evacuation (60 agents) - one ANN per agent (Het), one ANN per five
agents (SHet), one ANN per 10 agents (SHom), one ANN for all agents (Hom).

• Spaceship Turn-back (40 agents) - one ANN per agent (Het), one ANN per
four agents (SHet), one ANN per 10 agents (SHom), one ANN for all agents (Hom).

• Spaceship Obstacle - Same as Spaceship Turn-back.

1https://docs.google.com/forms/d/163-zwjYZUCqZPpIvLv7eK4BHggprJNXx8Up1Ja4P7-
o/viewform?usp=send form#start=invite
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• Spaceship Obstacle Field - Same as Spaceship Turn-back.

In the results chapter, we will refer to these compositions as Heterogeneous, Semi-
Heterogeneous, Semi-Homogeneous, and Homogeneous. The difference between Semi-
Homogeneous and Semi-Heterogeneous team compositions is that Semi-Homogeneous has
fewer and larger groups, and Semi-Heterogeneous has more but smaller groups. These
are denoted as Het, SHet, SHom, and Hom in parentheses in the list.

7.1.4 Determining Feasibility

In order to test whether it is possible to use NE to control emergent crowd behaviour,
and the feasibility of doing so in films, we run the best training algorithm, together with
the best respective team architecture across all 11 scenarios for 20,000 fitness evaluations.

In the case that the fitness of a candidate solution reaches the acceptable fitness
threshold for a scenario, evolution is terminated and the best candidate solution is re-
turned. The evolutionary stages that terminate before 20,000 fitness evaluations will be
marked as successes, whereas the ones that reach 20,000 fitness evaluations will be marked
as failures. This will provide a success rate, which will help us to determine whether or
not it is possible to control emergent crowd behaviours using NE. In order to test if the
evolution times are feasible for use in films, we record and evaluate the average evolution
times. We will compare these evolution times with the time measurements from Jacka’s
work [Jac09] as a rough guideline in order to determine if they are feasible in practice.

7.1.5 Evaluating Scalability

As the system is distributed, it is useful to see how well it scales when more processes are
added. Although not an explicit research question, it is nonetheless important to evaluate
this, as a better scaling system will allow for the evolution of larger and more complex
crowds within the same amount of time. For the purposes of this test, we will compare
the execution times of the best performing NE algorithm when run for 20,000 fitness
evaluations when using one, two, three, and four slave processes across all 11 scenarios.

7.2 Parameter and Operator Setup

The parameters and operators in an NE algorithm play a pivotal role in determining
how well it performs. As these are often task dependent, it is important to select them
correctly. This section aims to motivate and detail the parameters and operators selected
that had the most impact on the evolutionary process, providing either statistics in the
case of the more important operators, or through observations obtained via trial and
error. The scenarios for these preliminary tests were chosen to cover a range of different
scenarios, so as to provide a better idea of how the tested parameters and operators
generalize. The rest of the parameters used can be found in appendix C. In the result
tables of this section (and the results chapter), we abbreviate the scenarios to the first
letters of their names. For example, Mouse Bridge Crossing is abbreviated to MBC, and
Car Race is abbreviated to CR.
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7.2.1 NEAT

The parameters and operators used for NEAT are mostly the default recommended val-
ues [SM04], with the exception of the population size, elitism, compatibility threshold,
mutation operator, and selection operator, as we found that these significantly impacted
the evolutionary process.

A population size of 100 is used as we found that it provides a good balance between
consistency and computational cost, and elitism of 5% is chosen as we found through
experimentation that it provided a good selective pressure to speed up evolution, without
causing much premature convergence. We also found that the truncation selection used
in the original algorithm [SM04] results in premature convergence. Thus, we instead look
to use Linear Rank-Based selection. The reasons for selecting this specific operator are
discussed in section 7.2.5. We also use Gaussian mutation with a standard deviation of
0.2 to perturb the weights as opposed to Uniform mutation. The reasons for this are
discussed in section 7.2.7

Figure 7.1: Performance of different compatibility thresholds over 20,000 fitness evalua-
tions in the Car Crash, Mouse Bridge Crossing, and War Robot Battle scenarios.

110



Table 7.1: Mean fitnesses and standard deviations achieved by each compatibility threshold
after 20,000 fitness evaluations, with bold values being below the fitness threshold of the
respective scenario. P-values obtained using the Mann-Whitney U test for are given in
parenthesis. These p-values are obtained by comparing the current compatibility threshold
with the compatibility threshold that achieved the lowest mean. A dash is given instead
of the p-value if the corresponding compatibility threshold achieved the best mean for the
specific scenario.

Scenario 0.25 0.5 1 2
MBC 712.36 (2.9e-3) 715.5 (1.9e-3) 576.53 (-) 582.98 (0.5)
MBC σ 131.81 152.79 214.64 139.14
CC 1659.24 (0.02) 1385.59 (-) 1503.92 (0.5) 1627.79 (0.054)
CC σ 551.03 362.42 678.56 657.76
WRB 91.7 (5.5e-7) 76.69 (0.28) 74.13 (-) 79.41 (0.13)
WRB σ 9.2 15.08 13.07 14.92

We also performed a series of preliminary tests to determine the ideal Compatibility
Threshold. These tests were run because we found that the recommended threshold of 3
[SM02] did not allow our ANNs to speciate. As a consequence, we tested the compatibility
thresholds at 0.25, 0.5, 1, and 2 across three representative scenarios in order to find the
better performing threshold for us to use in our experiments. Figure 7.1 and table 7.2.1
details our findings. Overall, we noticed that thresholds of both 1 and 2 performed
consistently well. However, as a fitness threshold equal to 1 always achieved lower means
than a fitness threshold of 2 (despite the two being statistically comparable for all the
scenarios), we decided to use it as the final compatibility threshold.

7.2.2 CNE

We decided to use a population of 100 for CNE as, much like NEAT, we found that it
provided a good balance between consistency and computational cost. We also use elitism
of 5%, as we found that the selective pressure provided greatly helped the speed of evolu-
tion, without deteriorating the evolutionary process much with premature convergence.
The rest of the operators and parameters used for CNE are discussed in sections 7.2.5 -
7.2.7.

7.2.3 ESP

For ESP, we set the sub-population size and number of fitness evaluations per neuron
to 50 and 5 respectively, as we found that they provide a balance between consistency
and number of generations run (as we stop the training after 20,000 fitness evaluations).
Elitism of 10% is used in order to speed up the evolutionary process. This higher elitism
percentage could be used in this algorithm as burst mutation helps alleviate premature
convergence.

A stagnation threshold of 20 generations is used to detect whether a sub-population
requires burst mutation. We found that values lower than 20 resulted in running burst
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mutation on populations that have not yet converged, whereas values larger than 20 leads
to slow reaction times, allowing a population to stay converged for much of the training
process.

For burst mutation, we sample values around a Gaussian distribution with mean 0
and standard deviation of 0.2, as we found in section 7.2.7 that this is the best mutation
configuration.

As with CNE, the mutation, crossover, and selection operators and parameters are
discussed in sections 7.2.5 - 7.2.7.

7.2.4 CMA-ES

One of the strengths of CMA-ES is that almost all of the parameters and operators are
self-adapting. One parameter, however, that has not been defined is the initial step size.
We ideally want a small step size as it helps keeps the ANN weights small. We determined
that an initial step-size of 0.2 is sufficient for this through experimentation.

7.2.5 Selection Operator for NEAT, CNE, and ESP

As discussed in section 4.4, we have implemented four different selection operators in
our NE sub-system. In order to determine which operator to use in our experiments, we
obtained data for all four across three scenarios: Car Crash, Mouse Bridge Crossing, and
War Robot Battle. Although it is ideal to test these operators with NEAT, CNE, and
ESP, we decided to only test them with CNE due to time and scoping constraints.

As shown in figure 7.2 and table 7.2.5, Linear Rank-based selection performed the
best, achieving the best mean fitness in two of the three scenarios, and a mean fitness
comparable to the best in the third. For this reason, we have decided to use Linear
Rank-based selection over Boltzmann for our final experiments.

We also found that, despite Non-linear Rank-based selection performing very poorly,
its initial improvement is the fastest. This is likely because it causes too much selective
pressure, resulting in premature convergence. Thus, it may be possible to use various
re-initialization strategies or a different non-linear function that provides less selective
pressure in order to improve its performance.

7.2.6 Crossover Operator for CNE and ESP

Genome crossover is another important operator that determines the performance of
an NE algorithm. In order to evaluate the best performing operator implemented, we
compared them across 5 different crossover probabilities (ranging from 0.2 to 1) in 3 rep-
resentative simulation scenarios. The algorithm used with these two operators was ESP,
and the scenarios used are Cornering, War Robot Battle, and Mouse Bridge Crossing.
ESP was used for this study as the results were obtained through an independant study
from the results for both mutation and selection.

Table 7.2.6 shows some of the best and worst performing operators in our experiments,
and figure 7.3 shows the mean fitness obtained by each operator after 200 generations in
ESP. Full results can be found in our online repository2.

2https://bitbucket.org/igorawratu/thesis
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Figure 7.2: Performance of different selection operators over 20,000 fitness evaluations in
the Car Crash, Mouse Bridge Crossing, and War Robot Battle scenarios. The selection
operators were run with the CNE algorithm.

We found that although the task performance of operator probability combinations
are scenario dependent, both BLX-α and Laplace crossover performed consistently better
than the others, with a crossover probability of 0.6 and 0.8 performing better with these
operators. For our final experiments, we have chosen to use Laplace crossover with a 0.8
probability, as it performs more consistently than the other 3 combinations.

7.2.7 Mutation Operator for CNE and ESP

We tested the three mutation operators implemented in our system using CNE in the
Mouse Bridge Crossing, Car Crash, and War-Robot Battle simulation scenarios in order
to determine the better performing operator (figure 7.4 and table 7.2.7). A standard
deviation of 0.2 is used for Gaussian mutation, a range of [−0.2; 0.2] is used for Uniform
mutation, and a scale of 0.2 for Cauchy mutation. These values were obtained through
experimentation.
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Table 7.2: Mean fitnesses and standard deviations achieved by each selection operator
with CNE after 20,000 fitness evaluations. P-values for the one-tailed Mann-Whitney
U test are given in parentheses for each operator when compared with the operator that
achieved the lowest mean. A dash is given instead if the operator achieved the best mean
for the specified scenario.

Scenario L-Ranked NL-Ranked Boltzmann Tournament
MBC 425.63 (-) 802.86 (4.45e-10) 529.98 (2.02e-2) 738.13 (8.03e-7)
MBC σ 136.48 161.07 209.03 253.36
CC 2460.85 (8.82e-3) 1045.95 (1.33e-9) 704.82 (-) 1124.9 (4.28e-4)
CC σ 658.12 462.46 914.92 445.54
WRB 86.11 (-) 106.43 (1.31e-3) 86.61 (0.32) 120.44 (2.79e-7)
WRB σ 15.94 32.32 12.33 25.36

Table 7.3: The mean, standard deviations, and Mann Whitney U p-values for operators
that achieved the best and worst means in each scenario. A dash is given in place of a
p-value if the operator was the best performing for the specified scenario.

Scenario Operator Mean σ P-Val
C UNDX 0.4 4.971 5.151 -
C One-point 0.8 40.521 97.389 0.055
C Arithmetic 0.6 12.780 13.852 0.006
C BLX-α 0.8 32.253 82.412 0.08
C Uniform 0.6 9.555 9.069 0.02
C Laplace 0.6 5.543 8.127 0.746
MBC Laplace 0.8 184.094 75.263 -
MBC UNDX 0.8 490.845 171.194 4E-11
MBC BLX-α 0.8 190.667 77.784 0.740
MBC Uniform 0.8 209.025 72.692 0.197
MBC Heuristic 0.4 202.239 72.456 0.345
MBC PCX 0.2 251.795 82.851 0.001
WRB Laplace 0.6 17.366 12.516 -
WRB UNDX 0.8 82.866 109.375 0.002
WRB Arithmetic 0.8 80.066 95.282 0.001
WRB BLX-α 0.6 19.566 13.783 0.52
WRB Uniform 0.8 28.566 22.818 0.022
WRB Two-point 0.8 41.566 66.883 0.06

We found that Gaussian mutation was the best performer, as it performed signifi-
cantly better than the other two operators in two of the simulation scenarios, and was
comparable to the best performer in the third (table 7.2.7). As a consequence, we will
use Gaussian mutation in our final experiment.
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Figure 7.3: Mean fitness of each operator probability combination across the Cornering,
War Robot Battle, and Mouse Bridge Crossing scenarios. The operators were used with
ESP, which was run for 200 generations. 30 evolutionary runs were performed for each
combination.
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Figure 7.4: Performance of the three mutation operators over 20,000 fitness evaluations
in the Car Crash, Mouse Bridge Crossing, and War Robot Battle scenarios. As with the
selection operators, the mutation operators were run with the CNE algorithm.

7.3 Summary

This chapter describes the experiments to be run for the results chapter (chapter 8), and
provides motivations and parameter tuning experiment results for the parameters and
operators used in the NE algorithms.

One issue that we faced when determining the ideal parameters and operators is their
sheer number. Although it would be ideal to obtain quantitative performance data for all
of the parameters and operators used, it would require very extensive preliminary tests,
which is infeasible for this thesis given the scope and time constraints. For this reason,
we have only run preliminary experiments for some of the more important operators and
parameters, with the rest of them being determined either through initial experimentation
or through recommended values by the original authors.
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Table 7.4: Mean fitnesses and standard deviations achieved by each mutation operator
with CNE after 20,000 fitness evaluations. the Mann Whitney U test p-values are given
in parentheses, and where obtained when comparing the operator with the best performing
one (which achieved the lowest mean). N/A is given instead if the operator achieved the
best mean.

Scenario Cauchy Gaussian Uniform
MBC 544.22 (2.97e-2) 477.87 (N/A) 539.07 (2.03e-2)
MBC σ 136.56 208.69 128.93
CC 780.05 (8.12e-2) 588.24 (N/A) 847.51 (8.57e-2)
CC σ 603.16 284.69 744.95
WRB 95.87 (3.19e-3) 85.62 (0.38) 83.82 (N/A)
MBC σ 19.76 14.83 12.44
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Chapter 8

Results and Discussion

The approach adopted by our system to control the high-level emergent behaviour of
crowd simulations, the specifics in the various Neuro-Evolution (NE) algorithms, opera-
tors and parameters, and the experimental setups and designs have been detailed in the
earlier chapters. In this chapter, we aim to present, analyse, and discuss our findings
obtained from the experiments discussed in section 7.1, in order to answer the research
questions posed in section 1.1.

As mentioned in chapter 7, the statistical test used to test for significance is the
Mann Whitney U test [MW+47]. Much like in chapter 7, the labels for the scenarios in
our tables are abbreviated to the first letters of their names (for example, Mouse Bridge
Crossing is MBC). Full results can be found on our online repository1.

8.1 Determining the best performing algorithm

One of the major research questions posed is what is the best NE algorithm for controlling
high-level emergent behaviours in crowd simulations? This is important as the chosen
NE algorithm can significantly impact evolution times. Moreover, it can also impact the
consistency of the algorithm, resulting in a more robust evolutionary process.

In order to evaluate the best performing NE algorithm implemented in our system,
we compare how well these algorithms are able to minimize the fitness function across
our 11 different scenarios over 20,000 fitness evaluations.

We found CMA-ES to be the best performing algorithm, as it achieved the best mean
fitness at the end of evolution in eight of the 11 scenarios, significantly outperforming
all of the other algorithms in four of them, and is comparable (p > 0.05) to the best
performer on two of them (table 8.1). The only case where it performed significantly
worse than the best performing algorithm is the Mouse Escape scenario. However, this
scenario proved very easy to learn for all algorithms, with the differences in mean fitness
between the algorithms being negligible (table 8.1).

A possible reason for the good performance of CMA-ES is that it requires much
smaller populations compared to the other algorithms, resulting in significantly less fitness
evaluations per generation. This leads to CMA-ES running for many more generations,
giving it more time to improve. Despite being the best performer, a problem we found

1https://bitbucket.org/igorawratu/thesis
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Figure 8.1: Mean fitness of the four different NE algorithms over 20,000 fitness evalua-
tions in the Car Bridge Crossing, Mouse Bridge Crossing, Car Crash, Car Race, Cor-
nering, and War Robot Battle scenarios.
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Figure 8.2: Mean fitness of the four different NE algorithms over 20,000 fitness evalua-
tions in the Mouse Escape, Spaceship Obstacle, Spaceship Obstacle Field, Spaceship Turn
Back, and Human Evacuation scenarios.
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Table 8.1: Mean fitness and standard deviation achieved by the NE algorithms across the
various scenarios after 20,000 fitness evaluations. Fitnesses below the fitness threshold
for the respective algorithm are shown in bold. Thresholds for each scenario can be found
in section 6.2. P-values for the one tailed Mann Whitney U test are also given in paren-
theses. These p-values signify the difference between the fitnesses achieved by the current
algorithm, and those achieved by the best mean fitness algorithm. A dash is given instead
of a p-value in cases where the algorithm has the best mean fitness.

Sim NEAT CMA-ES CNE ESP
CBC 7.87(9.5e-4) 60.14(0.21) 3.35(-) 43.14(2.2e-3)
CBC σ 5.73 232.75 3.43 141.19
CC 946.78(1.1e-10) 389.03(-) 752.48(3.8e-9) 935.16(1.6e-11)
CC σ 577.85 136.11 198.92 160.02
CR 401.85(1.1e-10) 147.59(-) 171.34(0.47) 265.68(6.6e-5)
CR σ 93.54 65.1 105.36 116.46
ME 17.82(2.4e-7) 5.64(3.1e-6) 1.70(-) 7.75(4e-5)
ME σ 14.2 4.9 4.22 6.87
WRB 72.09(-) 74.39(0.39) 90.2(1.6e-4) 108.72(7.7e-10)
WRB σ 15.9 10.51 18.04 15.09
STB 428.63(6e-11) 47.8(-) 203.21(1.8e-8) 101.93(2.5e-8)
STB σ 206.03 42.39 181.41 103.73
SO 1262.45(3.7e-10) 773.99(-) 1273.87(6.2e-5) 2190.49(5.4e-10)
SO σ 226.36 164.41 579.81 862.54
SOF 891.21(4.5e-8) 675.13(-) 847.42(2.8e-4) 1031.02(4.1e-7)
SOF σ 136.26 99.33 212.8 289.66
C 668.98(1.5e-11) 165.46(-) 179.24(0.06) 221.36(1.7e-10)
C σ 129.3 25.12 37.62 14.64
MBC 736.39(1.5e-11) 271.79(-) 635.88(4.2e-9) 326.39(0.08)
MBC σ 104.55 113.48 227.76 155.54
HE 1342.39(3.7e-10) 1057.09(-) 1162.68(3.2e-3) 1105.82(0.11)
HE σ 104.19 139.26 114.99 146.68

with CMA-ES is that its evolution times can be much more expensive compared to
the other algorithms on problems with higher dimensions (table 8.1). The reason for
this is the because CMA-ES makes use of numerous matrix operations (for example,
inversion, multiplication, and Eigen decomposition), many of which have a computational
complexity of or close to O(n3), where n is the problem dimensionality. In contrast to
CMA-ES, the other implemented NE algorithms have a complexity O(n), assuming that
the chromosome population size stays constant.

We confirmed that these matrix operations bottlenecked the system on higher di-
mensional problems by running CMA-ES in the cornering scenario with various team
compositions, and recording the evolution times (table 8.1). Although fitness evaluations
are normally the bottleneck of the evolutionary process, it is not the case here as the
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Table 8.2: Mean evolution times of the NE algorithms over 30 runs across the various
scenarios when evolved for 20,000 fitness evaluations. Standard deviations are given in
parentheses.

Scenario NEAT CMA-ES CNE ESP
CBC 280.09s (7.15s) 305.36s (3.43s) 231.31s(7.73s) 241.42s(5.17s)
CC 514.13s(11.88s) 602.51s(14.59s) 538.93s(16.45s) 531.10s(8.03s)
CR 385.83s(16.93s) 1402.17s(28.56s) 372.24s(12.24s) 356.48s(3.99s)
ME 1356.66s(508.15s) 2590.88s(68.63s) 955.60s(50.32s) 961.43s(43.86s)
WRB 2671.06s(56.19s) 5671.22s(116.11s) 2612.07s(56.78s) 2659.75s(28.11s)
STB 1086.44s(34.07s) 2201.49s(109.6s) 1013.47s(33.02s) 1017.7s(60.5s)
SO 1062.52s(25.07s) 2185.84s(26.42s) 1021.37s(34.17s) 1000.08s(18.54s)
SOF 1261.95s(74.94s) 2383.53s(39.15s) 1256.22s(75.98s) 1170.16s(20.46s)
C 221.25s(6.12s) 258.21s(4.48s) 212.04s(0.34s) 206.65s(2.21s)
MBC 913.95s(45.48s) 948.45s(20.27s) 856.78s(41.15s) 847.01s(23.68s)
HE 1023.12s(56.07s) 1074.55s(42.96s) 986.06s(21.83s) 946.7s(11.28s)

Table 8.3: Execution times of CMA-ES for 20,000 fitness evaluations in the cornering
scenario using various team compositions. This table shows that as the problem dimen-
sionality increases, the evolution times of CMA-ES increase dramatically, in contrast to
the other algorithms where the training times of the other algorithms will be much lower.

Homogeneous Semi-Heterogeneous Heterogeneous
Execution time 283.86s 1398.85s 3689.02s

evolution time increased roughly 15 times from a fully homogeneous teams composition
to a fully heterogeneous when using the same number of fitness evaluations.

Despite its computational expense, CMA-ES does not necessarily need to evolve for
as many fitness evaluations as the other algorithms. This is because it improves much
faster than the other algorithms (figures 8.1 and 8.2). Table 8.4 shows how many fitness
evaluations CMA-ES required to surpass the best mean fitness of the other algorithms
on the scenarios where CMA-ES performed the best. Less than half the total number
of fitness evaluations was required to surpass all other algorithms on four of the eight
scenarios, showing that, in specific cases, one can set CMA-ES to evolve for a far shorter
period of time and still achieve better results than the other algorithms.

On top of its excellent performance, CMA-ES also has the benefit of having most of
its parameters be self-tuning. This is a major advantage as parameter tuning requires
expert knowledge and trial and error, and is often scenario dependent.

The second best performer is CNE, which achieved the best mean fitness on two of
the 11 scenarios, significantly outperforming the other algorithms on one of them, and
is comparable to the best performer on two other scenarios (table 8.1). This is surpris-
ing as it is the simplest of the implemented algorithms, and has performed worse than
the other algorithms in previous works [SM02, GM99]. Due to its simplicity, an addi-
tional advantage it has is that its computational cost scales better to higher dimensions
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Table 8.4: This table shows the number of fitness evaluations required by CMA-ES to
surpass the best mean fitness achieved by the other three algorithms for the scenarios
where CMA-ES performed best.

Scenario Number of Fitness Evaluations in CMA-ES
CC 4770
CR 14460
STB 5740
SO 8650
SOF 7370
C 15970
MBC 16600
HE 15420

than CMA-ES (table 8.1). This makes CNE a viable alternative to CMA-ES on higher
dimensional problems, such as more heterogeneous team compositions.

NEAT performed poorly relative to both CMA-ES and CNE. However, it did still
achieve the fitness threshold on six of the 11 scenarios (CNE and CMA-ES achieved eight
and nine respectively), showing that it is still a viable algorithm for certain scenarios. A
drawback to NEAT, which may have contributed to its poor performance, is its number
of parameters, which ranges from 17 to 23 depending on the specific implementation
used. This was an issue for us when conducting our experiments, as our time constraints
did not allow us to tune all of these parameters. Thus, we had to settle for many of
the author recommended values, which may not necessarily work well in this problem
area. Furthermore, as many of these parameters are scenario dependent, users are often
required to perform manual parameter tuning for each scenario.

An anomaly found when testing NEAT is that it performed very poorly in the corner-
ing scenario, prematurely converging onto very sub-optimal solutions (cornering subfigure
of figure 8.1). The reasons for this are currently unclear, and further investigation is re-
quired in order to determine the underlying causes.

Despite its drawbacks, a major benefit of NEAT is that it evolves both the topology
and weights of the ANNs. This alleviates the burden of pre-determining the ideal ANN
structure.

We found ESP’s performance to be roughly equivalent to that of NEAT. Its poor
performance can be attributed to the fact that we use a sub-population size of 50, with
five fitness evaluations per neuron, leading to 250 fitness evaluations every generation.
Compared to other algorithms, such as CNE and NEAT, where 100 fitness evaluations
are required, or CMA-ES where even less are required, ESP will end up running for far
fewer generations in the same number of fitness evaluations. As improvements only occur
during transitions between generations, ESP is given much less time to improve compared
to its counterparts, and thus will often not have properly converged. This can be seen
in figures 8.1 and 8.2, where ESP is often still improving at the end of 20,000 fitness
evaluations.
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Another interesting note about ESP is that, due to its cooperative co-evolution nature,
the dimensionality of each of its sub-populations is low. Thus, it may perform better
on problems of higher dimensions. A future direction of research would therefore be to
examine ESP in the context of more heterogeneous team compositions, when given longer
evolution times.

Overall, although CMA-ES was shown to achieve the best fitness on most scenarios,
its computation time on problems of higher dimensions may require the use of CNE
instead. Additionally, despite the relatively poor performance of both ESP and NEAT,
these algorithms are not without their benefits. NEAT, or another topology and weight
evolving ANN algorithm, may be ultimately desired as it automates the work required
to find the ideal ANN topology, whereas ESP may be preferable on problems of higher
dimensions, due to its cooperative nature. It should also be noted that modifications to
both ESP and CNE can be made to also allow for the evolution of topology, and should
be investigated in the future.

8.2 Determining the best team architecture

In order to investigate more heterogeneous team compositions, we compare 4 different
team setups, ranging from fully homogeneous to fully heterogeneous (section 7.1.3), for
each scenario to see which can best minimize the fitness function. Although we initially
intended to test these team compositions using the best NE algorithm found in section 8.1,
we found that the best performer, CMA-ES, was not viable for more heterogeneous
team setups. This is because of its extremely high computational cost on problems with
high dimensions. For this reason, we instead use the second best performer, CNE, to
investigate the various team compositions. The fitnesses obtained for the various team
compositions can be found in figures 8.3 and 8.4, and table 8.2. Het, Semi-Het, Semi-
Hom, and Hom in the tables presented in this section stand for Heterogeneous, Semi-
Heterogeneous, Semi-Homogeneous, and Homogeneous team compositions, respectively,
and refer to the different team composition types tested for.

In addition to comparing the fitness values obtained by the various team compositions,
we are also looking to see how much they improve the believability of the crowd behaviour.
The ideal method of achieving this is to perform qualitative tests, comparing the realism
of the crowds generated using NE to crowds generated using other techniques. However,
this is infeasible for us due to time and scope constraints, as performing these tests would
require the implementation of a variety of techniques in our system (in order to eliminate
additional factors such as animation, model, and texture quality), as well as a sizeable
amount of time for conducting the tests.

Instead, we will perform an informal survey with 10 participants, where they are
required to watch videos of the evolved crowd behaviours for the various scenarios and
team compositions posted on our youtube channel2, and rate between one and five on
how efficient and how heterogeneous they behave, with 5 being very efficient and very
heterogeneous. These ratings can be found in tables 8.2 and 8.2.

Heterogeneous team compositions were found to generally behave very diversely. How-
ever, this heterogeneous behaviour is often coupled with inefficiency, where agents often

2https://www.youtube.com/playlist?list=PL1_l46LP3BfIosjqrq0SqdVSFTkEMsnIv
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Figure 8.3: Mean fitnesses of the 4 different team compositions over 20,000 fitness eval-
uations in the Car Bridge Crossing, Mouse Bridge Crossing, Car Crash, Car Race, Cor-
nering, and War Robot Battle scenarios. The algorithm used with these compositions is
CNE.
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Figure 8.4: Mean fitnesses of the 4 different team compositions over 20,000 fitness evalua-
tions in the Mouse Escape, Spaceship Obstacle, Spaceship Obstacle Field, Spaceship Turn
Back, and Evacuation scenarios. The algorithm used with these compositions is CNE.
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Table 8.5: Mean fitness and standard deviation after 20,000 fitness evaluations achieved by
the team compositions with CNE across the various scenarios. Bold fitness values achieved
better values than the fitness threshold (section 6.2). P-values for the one tailed Mann
Whitney U test are given in parentheses, these p-values signify the difference between the
team composition’s population, and the population of the team composition that achieved
the best mean. A dash is given instead of a p-value in cases where the team composition
has the best mean fitness.

Sim Het Semi-Het Semi-Hom Hom
CBC 458.57(1.5e-11) 246.95(3e-8) 41.63(0.46) 3.35(-)
CBC σ 133.02 189.07 129.54 3.43
CC 1431.29(5.3e-8) 1412.7(8.5e-10) 752.48(-) 1252.37 (8.8e-3)
CC σ 501.61 318.81 308.64 373.36
CR 265.51(1.6e-4) 253.19(6.9e-4) 245.58(2.1e-3) 171.34(-)
CR σ 72.84 80.31 96.63 105.36
ME 2595.92(1.1e-11) 283.33(1.6e-10) 370.68(2.6e-8) 1.7(-)
ME σ 460.3 438.84 496.9 4.22
WRB 327.17(1.5e-11) 77.13(-) 82.47(0.21) 90.2(2.1e-3)
WRB σ 127.57 21.11 22.44 18.04
STB 3775.95(1.51e-11) 2313.23(1.5e-11) 1121.68(1.7e-10) 203.21(-)
STB σ 294.26 387.66 501.24 181.41
SO 10709.25(1.5e-11) 7475.86(1.5e-11) 4987.47(1.5e-11) 1273.87(-)
SO σ 420.54 789.85 1415.74 579.81
SOF 7954.81(1.5e-11) 4767.2(1.5e-11) 2647.34(2.3e-11) 847.42(-)
SOF σ 370.55 738.12 995.15 212.8
C 241.52(1.4e-6) 189.36(0.13) N/A 179.24(-)
C σ 46.2 31.33 N/A 37.62
MBC 2556.75(1.5e-11) 1971.75(1.5e-11) 1336.87(2.7e-9) 635.88(-)
MBC σ 308.75 335.37 471.96 227.76
HE 2912.85(1.5e-11) 1815.94(2e-11) 1471.37(1.7e-10) 1162.68(-)
HE σ 88.8 199.69 131.29 115

moved in the incorrect direction or just did not move at all. This caused the crowd
behaviour to be very unrealistic. Furthermore, crowds with heterogeneous team com-
positions often achieved very poor fitness ratings, with the NE algorithm evolving be-
haviours that are very different from the desired ones. This is largely expected as the
problem dimensionality increases dramatically as the team composition becomes more
heterogeneous.

There are two scenarios that are exceptions to this general trend for heterogeneous
team setups: Cornering; and Car Race. In these scenarios, the heterogeneous team
compositions achieved moderate efficiency ratings. The reasons for this is two-fold: firstly,
there are a small number of agents within the scenarios (four and 10 for the cornering
and car race scenarios respectively), resulting in a relatively low problem dimensionality;
secondly, the environments are narrow and restrictive, resulting in unorthodox behaviours
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Table 8.6: Mean heterogeneity ratings of the various team compositions across our 11
scenarios, with 5 being very heterogeneous, and 1 being very homogeneous. Standard
deviations are given in parentheses.

Scenario Het Semi-Het Semi-Hom Hom
CBC 4.3 (0.67) 3.6 (0.7) 2.7 (0.82) 1.3 (0.48)
CC 3 (0.82) 2.8 (0.63) 2.3 (0.82) 2.9 (1.1)
CR 3.6 (0.84) 2.9 (0.88) 2.7 (0.82) 1.9 (0.99)
ME 4.2 (1.14) 3.6 (0.97) 3 (0.94) 2.2 (0.63)
WRB 3.6 (1.51) 3.1 (0.99) 2.9 (0.88) 2.4 (0.84)
STB 4.5 (0.71) 3.8 (0.42) 2.7 (0.48) 1.9 (0.57)
SO 4.5 (0.85) 4.2 (0.79) 3.5 (0.97) 1.6 (0.7)
SOF 4.3 (1.06) 3.7 (0.95) 3.1 (0.99) 1.5 (0.71)
C 3.4 (1.07) 3 (0.67) N/A 2 (0.82)
MBC 4.6 (0.52) 4 (1.05) 3.1 (0.87) 2.1 (0.74)
HE 4.5 (0.71) 3.9 (0.74) 3.3 (0.95) 1.8 (0.92)

being much more difficult to evolve than orthodox ones (for example, moving in the
incorrect direction requires the agent to slow down enough so that it is able to turn
around).

The semi-heterogeneous team compositions performed very similarly to the heteroge-
neous ones, except with better efficiency, slightly worse heterogeneity, and slightly better
fitness. The primary reason that these team compositions achieved a worse heterogeneity
rating than the heterogeneous one is that it is possible to see groups of agents synchro-
nize their movements in scenarios with very sparse environments (such as spaceship turn
back). Additionally, despite it having slightly better fitness and efficiency ratings, the
crowd behaviours were still too poor to be of any use. However, we did find that its
fitness in the War-Robot scenario greatly improved compared to the heterogeneous team
composition, having actually achieved the best mean fitness amongst the various team
compositions.

The semi-homogeneous team compositions performed respectably, achieving the fit-
ness thresholds on three of the simpler scenarios, and receiving moderate ratings for both
heterogeneity and efficiency. Additionally, despite it not achieving the fitness thresh-
old for the car crash scenario, it was the best performer amongst the team compositions
tested. We found that this team composition had a similar group synchronization issue as
the semi-heterogeneous one, except more pronounced due to the fewer and larger groups.

We found that the homogeneous team compositions tend have high efficiency rat-
ings, and low to moderate heterogeneity scores, and low (lower is better) fitness scores.
The high efficiency ratings are primarily because the agents actually evolved the desired
behaviours, which required efficient behaviours because of the time limit given to each
scenario. Additionally, despite receiving low heterogeneity ratings, it is not always desir-
able, or possible, for agents to behave heterogeneously in order for the crowd to appear
believable. Examples of this include the bridge crossing scenarios, where the general op-
timal behaviour would be to have agents move forward and converge as they approach
the bridge, leading to rather homogeneous behaviours, and the car race and cornering
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Table 8.7: Efficiency rating of the agents’ behaviours for the various team compositions
across our 11 scenarios, with 5 being very efficient, and 1 being very inefficient. Standard
deviations are provided in parentheses.

Scenario Het Semi-Het Semi-Hom Hom
CBC 1.9 (1.29) 2.7 (1.06) 4.3 (0.67) 4.8 (0.42)
CC 2 (0.94) 3.4 (0.97) 4.1 (0.99) 3.3 (0.95)
CR 2.9 (0.74) 3.5 (0.53) 3.2 (0.79) 4.4 (0.7)
ME 2.1 (0.74) 3.5 (0.71) 3.8 (0.79) 3.7 (1.16)
WRB 2.4 (1.35) 2.8 (1.23) 3.6 (0.7) 3.9 (0.88)
STB 1.2 (0.42) 2.1 (0.57) 3.1 (0.88) 4.3 (0.67)
SO 1.1 (0.32) 2.2 (0.63) 2.5 (0.71) 3.9 (1.1)
SOF 1 (0) 2.3 (0.67) 2.7 (0.95) 4.7 (0.48)
C 3.4 (0.52) 3.5 (0.85) N/A 4.5 (0.71)
MBC 1.7 (1.25) 2.2 (0.79) 3.6 (0.52) 4.5 (0.53)
HE 1.5 (0.71) 2.5 (0.85) 2.5 (0.85) 3.8 (1.14)

scenarios, where there is little space for the agents to deviate substantially in their be-
haviours. We found that for many scenarios, the agent behaviours obtained by providing
a homogeneous teams controller with local agent inputs were sufficiently heterogeneous.

The scenarios where the homogeneous teams composition had an impact on the be-
lievability were primarily the Spaceship scenarios, and the War Robot Battle scenario.
The agents in the Spaceship scenarios tend to keep close together and move in the same
direction, leading to the crowd behaving more akin to a school of fish or a bird flock, as
opposed to a group of small spaceships, where the behaviours are much more chaotic (as
current films would have us believe). Additionally, due to the homogeneity of the space
ships’ behaviour, they do not evolve scattering and merging behaviour, which can be
observed in real-life groups such as bird flocks when encountering obstacles. In the War
Robot Battle scenario, we found that the agents tend to all move in the same direction.
This is unrealistic as the agents’ direction of movement should ideally be uniform when
there is no objective to move towards. The overly homogeneous behaviours (as can be
seen in all the homogeneous space ship simulations, as well as the war robot one) in these
scenarios were mainly caused by the environment being sparse, which leads to many of
the agents having similar local inputs, resulting in the agent behaviours synchronizing.

Overall, we found that the more heterogeneous the team setups, the poorer the effi-
ciency and fitness ratings. However, these results may possibly be biased, as the videos
that the users had to watch for the survey were labelled with their categories. Although
we did not state explicitly what the categories meant, it is highly possible that the users
picked up on the correlation between the ratings and the categories.

A contributing factor to the poor efficiency and fitness achieved for more heteroge-
neous team compositions is that we do not scale the population size of CNE for the more
heterogeneous team compositions. The reasons for this is because we wanted to keep the
number of generations and fitness evaluations consistent across different team composi-
tions, and that we wanted to keep the training times feasibly low. This is a problem as a
population size that may sufficiently cover the search space in a homogeneous teams setup
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Table 8.8: Success rates and mean execution times of the successful evolution runs for our
11 scenarios, with 30 evolution runs being performed for each scenario. The algorithm
used was CNE, and the team compositions used were the fully homogeneous compositions.
Also shown are the training times, and the times expert users took to tune parameters in
Jacka’s work. In these times, FAIL signifies failure to train, and N/A signifies that there
is no corresponding scenario. Standard deviations are given in parentheses.

Sim Success Mean Success time Jacka’s time Expert user time
CBC 100% 25.46s(8.15s) 3487.74s 2880s
CC 3.3% 336.4s(55.45s) FAIL 4020s
CR 70% 680.07s(513.08s) 1402.26s 1260s
ME 100% 88.62s(42.36s) 7699.41s 3420s
WRB 100% 446.94s(235.76s) 7889.93s 6660s
STB 100% 114.54s(67.18s) 346.12s 840s
SO 86.7% 1198.68s(423.35s) FAIL 1020s
SOF 100% 625.57s(290.4s) 7381.09s 3600s
C 100% 76.05s(58.07s) FAIL 1200s
MBC 96.7% 702.22s(447.25s) 1414.88s 1200s
HE 20% 1460.73s(187.98s) N/A N/A

may not for more heterogeneous ones, causing the population to converge to sub-optimal
solutions.

Another contributing factor is due to us using CNE, as it may scale poorly with
increasing problem dimensionality because it represents and evolves entire candidate so-
lutions as monolithic vectors, resulting in the problem of two steps forward, one step back
[VdBE04]. This problem is characterized by the fact that while certain components of
the ANN are moving closer to the optima, others can move away so long as the candidate
solution provides an improvement over previous ones.

In order to better investigate how more heterogeneous team setups impact the be-
haviour of crowds, cooperative co-evolution NE algorithms such as ESP [GM03b], CoSyNE
[GSM06], and SANE [MM96] should be further investigated. The divide and conquer ap-
proach these algorithms adopt allows for the dimensionality of the sub-populations to
remain constant when the controller setup becomes more heterogeneous, as they merely
add more sub-populations for the additional neurons or synapses. However, it should
be noted that the addition of sub-populations also requires more fitness evaluations per
chromosome in order to reduce the amount of noise.

8.3 Determining Feasibility

Table 8.3 shows the success rates and the mean evolution times of the successful runs of
the 11 scenarios, where success is determined by whether a specific evolution run reached
the fitness threshold in under 20,000 fitness evaluations. Thirty evolution runs were per-
formed for each scenario, with the best performing NE algorithm and the homogeneous
team composition being used. Additionally, it also shows the training times achieved
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by Jacka’s method [Jac09], and the times expert users required to tune the Fuzzy Sys-
tems using Jacka’s system in order to achieve the desired crowd behaviours for similar
corresponding scenarios.

We found that the six easiest scenarios to evolve for were the Cornering, Car Bridge
Crossing, Mouse Escape, War Robot Battle, Spaceship Turn Back, and Spaceship obstacle
field, all achieving 100% success rates. These scenarios typically either had very straight-
forward objectives with very few obstacles (Car Bridge Crossing, Cornering, Spaceship
Turn Back), or were aimed at controlling agent group sizes (War Robot Battle, Mouse
Escape). We also found that although the Spaceship Obstacle Field scenario had many
obstacles, agents did not need to deviate much from their original path in order to avoid
them, resulting in an easier to learn behaviour as the trajectories were straightforward.

We found three scenarios of moderate difficulty: the Car Race; Spaceship Obstacle;
and Mouse Bridge Crossing scenarios. These had very high success rates, but did not
reach 100%. These generally had more difficult objectives (Car Race), or more challenging
environments (Spaceship Obstacle, Mouse Bridge Crossing). The Car Race scenario was
difficult because having the underdog overtake the other agents often results in collisions
due to the narrowness of the race track. The Space Ship Obstacle scenario required the
agents to navigate around the large wall before the goal, which required the crowd to learn
an ideal trajectory in order to not overshoot the goal point or collide with the obstacle.
Finally, the Mouse Bridge Crossing scenario was difficult as it has a larger number of
agents compared to the Car Bridge Crossing scenario, moving through a bottleneck of
the same size. Additionally, the halting behaviour of the mice reduces their average speed
when compared to car agents.

The Car Crash and Human Evacuation scenarios were the most difficult, achieving
success rates of close to 0%. The difficulty of the Car Race scenario can be attributed
to the narrowness of the corridor, and the close proximity of the agents. This results in
the agents having to learn near perfect movement in order to avoid collisions. The main
difficulty with the Human Evacuation scenario was the die near the entrance objective,
as the agents struggled to move close enough to each other before they escaped, resulting
in the inability to exert the pushing behaviour. This lead to too many agents being left
alive at the end of the scenario.

As shown, it is certainly possible to use NE to control emergent aggregate crowd
behaviours. However, as the task environment and objectives become increasingly re-
strictive, the chances of the evolutionary process finding a solution greatly diminishes.
One possible reason for this is that we use the ANNs to directly control the low-level
motor behaviours of the agents. Another approach would be to instead use a hierarchical
behavioural model [RMT01, PAB07], where an agent’s high-level cognition and decision
making is separate from its low-level motor functions. The ANN would then instead be
responsible for controlling this higher level, rather than the direct motor behaviours. This
may allow for more complex and difficult behaviours to be evolved, whilst keeping the
dimensionality of the search space low. A possible downside to this approach, however,
is that the additional layers of indirection may cause the crowd behaviour to be more
difficult to control.

In order to determine whether or not using NE to control emergent crowds is feasible,
we compare our mean evolution times with both the mean training times achieved in
Jacka’s method [Jac09], and with the parameter modification times that expert users re-
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quired whilst using Jacka’s system (table 8.3). These times are not directly comparable,
as our scenarios differ both in implementation and hardware used. Additionally, Jacka
uses Fuzzy Systems as agent controllers, and Particle Swarm Optimization for training,
whereas we use ANNs as agent controllers, and Evolutionary Algorithms (EAs). A last
difference is that he checked for the complete satisfaction of objectives, whereas we only
check if the fitness reaches a threshold. The reason for this is that his work modifies the
membership functions of an existing Fuzzy Controller structure, which already largely
defines the rule-set for agents, whereas ANNs do not have any of this pre-defined knowl-
edge. This meant that we had to add in additional objectives to help guide the ANNs to
evolve the desirable behaviours, such as minimize angular velocities and die near the exit,
which do not have to be perfectly satisfied in order for the crowd to behave as desired.

Despite the differences, the training and expert user parameter modification times
provide us with a rough guideline as to what the acceptable evolution times are for our
system. We find that our evolution times are roughly 2-100 times faster than Jacka’s
for every scenario, and were also able to successfully evolve certain scenarios for which
his system failed (Cornering, Spaceship Obstacle). Additionally, we also found that our
evolution times were much faster than the times expert users required to modify the
Fuzzy Systems when using Jacka’s system to achieve similar results. The only scenario
in which the user parameter modification time was faster was the Spaceship Obstacle
scenario. This shows that it is feasible to use NE to control emergent crowd behaviours,
as even for longer evolution times, the user is still freed up so they can perform other
tasks.

Although shown to be feasible, it should be noted that these evolution times were
acquired using algorithms, parameters, ANN structures, and objective weightings that
were pre-determined. This is a serious drawback to the system as many of these are
nonsensical to a user that is not well versed in EAs. Moreover, even if a user were to
have expert knowledge of EAs, the amount of time it takes to find these ideal parameters
is too long to be feasible. Although our work partially deals with this by determining
algorithms and parameters that tend to work well across the various scenarios, many of
the settings remain problem specific. However, it should be noted that both CMA-ES and
NEAT are capable of partially alleviating this issue, as NEAT automates the creation of
an ANN’s topology, and CMA-ES has a large array of self-adapting parameters. However,
further work, such as investigating the use of Pareto-based multi-objective optimization
algorithms [Coe99], is required to remove the tuning required for the other parameters.

8.4 Evaluating scalability

Table 8.4 shows the evolution times of the various scenarios when one to four slave
processes are used on our machine3. CNE was used for obtaining these times due to its
low overhead.

We found that the evolution times roughly scaled linearly when adding processes
(table 8.4). The exception here is the Cornering scenario, where the evolution time using
four processes was roughly equivalent to the evolution time using three. The reason for
this is because the Cornering scenario is very computationally cheap. Thus, the bottleneck

3Intel i5-3570, 3.4GHz
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Table 8.9: Evolution times of 20,000 fitness evaluations for the various scenarios when
one to four slave processes are used. The algorithm used for this is CNE due to its low
overhead.

Scenario 1 slave 2 slaves 3 slaves 4 slaves
CBC 959.86s 445.41s (2.16x) 295.05s (3.25x) 263.68s (3.64x)
CC 1903.55s 963.13s (1.98x) 639.29s (2.98x) 496.03s (3.74x)
CR 1303.04s 664.98s (1.96x) 471.48s (2.76x) 360.93s (3.6x)
ME 3602.48s 1872.47s (1.92x) 1188.13s (3.03x) 1100.38s (3.27x)
WRB 10131.63s 5180.78s (1.96x) 3568.2s (2.84x) 2875.77s (3.52x)
STB 3667.34s 1988.41s (1.84x) 1274.22s (2.89x) 1126.54s (3.26x)
SO 3642.13s 1862.22s (1.96x) 1306.83s (2.79x) 1141.88s (3.19x)
SOF 4438.95s 2343.39s (1.89x) 1526.56s (2.91) 1314.25s (3.38x)
C 569s 305.67s (1.86x) 212.33s (2.68x) 210.81s (2.7x)
MBC 3363.23s 1598.52s (2.1x) 1045.19s (3.22x) 895.47s (3.76x)
HE 3224.19s 1661.83s (1.94x) 1093s (2.95x) 870.26s (3.71x)

occurs on the master process, causing the slave to often idle and wait. Additionally, there
is also a slight slow down in scaling when using 4 slave processes, as the evolution time
is only roughly 3.5 times that of one slave process. The reason for this is because there
are only four cores, whereas there are four slave processes and one master process. This
results in some processes having to share the same CPU core.

This system can be scaled to n processes, where n is the number of fitness evaluations
performed every generation in the EA. Although these tests were conducted on a single
machine, we plan on modifying the system in the future so that it can run on a cluster.

8.5 Summary

This chapter addressed the research questions posed throughout this thesis. We compared
the four implemented NE algorithms across our 11 scenarios, and found CMA-ES to be the
best performer, as it both achieved the best mean fitness after 20,000 fitness evaluations,
improved the fastest, and uses a wide array of self-adapting parameters. However, despite
its high performance, it becomes computationally costly as the problem dimensionality
increases. The other algorithms are not without their respective benefits. CNE performed
the second best, and is computationally cheap and simple to implement, NEAT automates
the ANN topology, allowing for an easier end-user experience, and ESP’s cooperative co-
evolution nature makes it a viable avenue for further investigation in higher dimensional
problems.

We also compared four different scenario specific team compositions for each of our
11 scenarios. We found that in most scenarios, homogeneous teams is sufficient for be-
lievable scenes as the agents are able to derive different behaviours solely through the use
of local inputs. However, in scenarios with sparser environments, it may be better to use
a more heterogeneous setup, as the movements of agents in the homogeneous setups tend
to synchronize due to many of their inputs being similar. We also found that as the team

133



compositions became more heterogeneous, the fitness of the trained solutions worsened.
This leads to the crowds exhibiting poor behaviour for heterogeneous team compositions,
as they are unable to accomplish their objectives. This poor fitness is primarily because
more heterogeneous team setups significantly increase the problem dimensionality, result-
ing in them being more difficult to evolve. Another contributing factor is that we used
CNE for these experiments, which may not be the most ideal algorithm as it does not
have any mechanisms to deal with increasing problem dimensionality. We also did not
scale the chromosome population size, as we wanted to keep the generations and fitness
evaluations constant, and the evolution time low. This resulted in the population of
chromosomes being insufficient for properly covering the search spaces when the problem
dimensionality increased. In order to better investigate the various team compositions,
more cooperative co-evolution algorithms such as ESP, SANE, and CoSYNE should be
looked into.

In order to evaluate whether it is possible to use NE to control emergent high-level
crowd behaviours, and if the evolution times are feasible for use in films, we tested to
see how often the NE algorithm could reach the fitness threshold for each scenario, and
compared the mean training times of these successful runs to both the mean training times
in Jacka’s [Jac09] method, and the expert user parameter modification times when using
Jacka’s system. We found that NE was able to reach the fitness threshold consistently
on nine out of 11 scenarios, with six of those scenarios achieving 100% success rates. The
reason that NE achieved low success rates in two of the scenarios is primarily because of
the highly restrictive environments and objectives. We also found the training times of
these successful runs to be very promising, with the mean evolution times being faster
than those in Jacka’s method, and in many cases than those required by expert-users.

Another aspect of our system that we evaluated is its scalability. We found that
the system scales roughly linearly on a single machine, with the maximum number of
processes being the number of fitness evaluations performed every generation. Future
work would be to modify the system in order to evaluate its performance on a cluster.
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Chapter 9

Conclusion

In this thesis, we have provided a preliminary study into using Neuro-Evolution (NE)
to control the emergent aggregate behaviour of agent-based crowd simulations. The
implemented system evolves Artificial Neural-Networks (ANNs), which are used as the
agent-controllers in our scenarios, in order for the aggregate emergent crowd behaviour to
satisfy a set of objectives specified by the user. Compared to existing agent-based control
techniques, this method is advantageous because it allows for a much wider array of
agent and objective types, and it requires less user interaction, enabling easier authoring
and freeing up the artists’ time, allowing them to perform other tasks while evolution is
occurring. Overall, we have shown that NE is a viable solution for most of the simulation
scenarios provided. However, further studies should be performed in order to investigate
its viability with larger sized crowds, such as the ones used in films.

9.1 Application and Contributions

The main contribution of this thesis is a novel method for automating high-level control
in crowd simulations by using NE, with the main potential application area being ani-
mating crowds in films. This is important as the current film industry standard for crowd
simulation, Massive, requires artists to spend large amounts of time and effort manually
constructing and modifying the agents’ brains and goals in order to achieve the desired
high-level crowd behaviour.

As NE has not, to our knowledge, been used before to control high-level crowd be-
haviour, much of the work in this thesis is aimed at exploring and evaluating the various
NE algorithms and parameters in this problem space. This is important as it gives us
an idea of which algorithmic and parameter choices perform well in this context, which
will allow for a faster and more accurate adaptive process. In order to achieve this, we
implemented and compared four different NE algorithms, each belonging to a different
class.

We found CMA-ES to significantly outperform the other algorithms on most scenarios
in terms of both improvement speed, and final task performance. CMA-ES also has the
benefit that most of its parameters are self-adapting, which allows for an easier authoring
process as users to not have to manually tune the parameters for the relevant scenario.
However, we did find that its computational cost increased greatly on higher dimensional
problems, leading us to a preference for other algorithms, such as CNE, in such cases.
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Another aspect investigated in this thesis is how various controller team compositions
impact both the evolutionary process, and the behaviour of crowds. From these exper-
iments, we found that homogeneous team compositions are able to obtain sufficiently
diverse agent behaviours in most simulation scenarios. However, when a scenario’s en-
vironment is sparse, a homogeneous crowd will tend to have agents with synchronous
behaviours, leading to an unrealistic scene. In these cases, it is better to use a more
heterogeneous approach so that the agents vary their behaviours. However, it was shown
that as crowds become more heterogeneous, they satisfied the user-specified objectives
less effectively, leading to agents adopting very poor and often unorthodox behaviours.
We did however discover that, in the Car Crash scenario, a semi-homogeneous approach
where agents were divided into groups achieved the specified goals better than a fully
homogeneous one, showing that a more heterogeneous approach is, in rare cases, more
effective at evolving the desired behaviours.

9.2 Limitations and Future Work

There are currently several major limitations and exclusions to the system presented
in this thesis. These, together with possible directions of future research, are further
elaborated in this section.

9.2.1 Lack of an Authoring System

As this thesis mainly deals with exploring the various NE mechanisms to control emergent
aggregate crowd behaviours, no authoring system was implemented. The agents, scenar-
ios, and ANN output interpretations are hard-coded, making the system unsuitable for
an end-user. A future direction would be to create an authoring system that allows for
easy definition and creation of agents and simulations, and for easy specification of how
the ANN outputs relate to the agents’ behaviours.

9.2.2 Automating NE parameters

Due to the scenario-specific nature of many of the NE parameters and algorithms, ob-
taining the ideal evolution times and performance requires a lot of trial and error. This
is undesirable for an end-user as it requires both expert knowledge and time. Although
our work deals with this in part, by attempting to find some of the best overall settings,
many of these settings (such as weightings for objectives) are very specific to the context
and cannot be generalized. Thus, it is necessary to investigate methods for automating
the tuning of these parameters.

One such algorithm is CMA-ES, which self-adapts its parameters according to the
number of dimensions for the specific problem. However, CMA-ES has the drawback
that it is computationally expensive on problems of higher dimensions. Thus, it is not a
feasible solution in these cases.

Another NE algorithm that adapts parameters is Neuro-Evolution of Augmenting
Topologies (NEAT), which allows for the automatic creation and tuning of ANN topolo-
gies, as it evolves both the topologies and weights of the ANNs. However, due to its poor
performance compared to the other algorithms, it is necessary to investigate methods for
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improving its performance when used to control crowd simulations. NEAT also has the
disadvantage that it contains a very large number of parameters, ranging between 17 and
23 depending on the specific implementation used.

A class of methods that may help with removing the need for objective weightings is
Pareto-Based Multi-Objective Optimization algorithms [Coe99], which attempt to evolve
a population of candidate solutions lying on the Pareto Front [BT80] of the various ob-
jectives. Additionally, solutions on the Pareto front may be used in a more heterogeneous
setting in order to generate more diverse behaviours amongst the agents.

Finally, finding or developing an algorithm that generalizes well to problems of higher
dimensions will bypass the need for switching out algorithms based on the problem dimen-
sionality (for example, CMA-ES performs best on low to medium dimension simulations,
but becomes too computationally expensive on higher ones). For this, cooperative co-
evolution NE algorithms are promising due to their divide and conquer approach, which
may be more suitable for simulations of higher dimensionality as the sub-population
dimensionality remains small.

An alternative approach to finding a general NE algorithm that self-adapts all its pa-
rameters is to use hyper-heuristics algorithms [BGH+13]. In contrast to meta-heuristics
algorithms, such as EAs, which search within the search-space of the problem space,
hyper-heuristics algorithms aim to instead search within a search-space of heuristics aim-
ing to find the correct heuristic, or sequence of heuristics, to solve a problem. Thus,
hyper-heuristics can be used to solve a class of problems, rather than a specific one
[BGH+13]. This can potentially be applied to our system by treating parameter setups
as different heuristics, with the aim of the hyper-heuristics algorithm being to find the
ideal parameter setup.

Another parameter tuning approach that should be investigated in the future is the F-
Race and iterated F-Race algorithms [BYBS10], which aim to select the best configuration
out of a set when under stochastic evaluations.

9.2.3 Training for Complex Objectives and Environments

A problem we found with the method described in this thesis is that it struggles to
fully achieve the given objectives when either the objectives or the environment are too
restrictive. This may be in part due to the use of ANNs to directly control agents’ low-
level motor behaviours, as many of the behaviours required to accomplish these objectives
may be very difficult to learn.

In order to combat this, the use of ANNs in hierarchical behavioural models [RMT01,
PAB07] should be investigated, where the ANNs instead control the higher level cognitive
and goal functionalities of the agents. This would make it possible to define lower level
behaviours algorithmically, allowing for more complex behaviours to be learned. Further
in-depth investigation into the user-specified objectives is also helpful as it allows for
more interesting crowd behaviours and faster evolution.

9.2.4 Accelerating Training

Although the evolution times in our method are acceptable, they can still be improved.
This is illustrated in some of our more complex simulations, where users are required to
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wait roughly two hours before a solution is found. Thus, a future direction of research
would be to investigate methods of accelerating the evolutionary process.

Although we used a distributed framework to implement our system, we have only
tested its performance using multiple processes on a single machine. Thus, a future step
is to adapt and investigate the system’s performance on clusters. Another approach
that can be used to accelerate the system is investigating the implementation of a GPU
accelerated version of the scenarios, and CMA-ES.

The benefits for accelerating the system are that users will have to wait less, simula-
tions can have larger populations of agents and run for longer periods of time, and larger
populations of chromosomes can be evolved in the NE algorithm.
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ACM Transactions on Graphics, volume 25, pages 1160–1168. ACM, 2006.

[TGLT14] Jie Tan, Yuting Gu, C Karen Liu, and Greg Turk. Learning bicycle stunts.
ACM Transactions on Graphics, 33(4), 2014.

[TGMY09] Daniel Thalmann, Helena Grillon, Jonathan Maim, and Barbara Yersin.
Challenges in crowd simulation. In Proceedings of the International Con-
ference on CyberWorlds, number EPFL-CONF-159013, pages 1–12. IEEE
Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331
Usa, 2009.

[Tha07] Daniel Thalmann. Crowd simulation. Wiley Online Library, 2007.

[THH00] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Microscopic simu-
lation of congested traffic. In Traffic and granular flow, pages 365–376.
Springer, 2000.

[THL+04] Daniel Thalmann, Christophe Hery, Seth Lippman, Hiromi Ono, Stephen
Regelous, and Douglas Sutton. Crowd and group animation. In ACM
SIGGRAPH Course Notes, page 34. ACM, 2004.

[TKKS09] Julian Togelius, Sergey Karakovskiy, Jan Koutńık, and Jürgen Schmidhu-
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Appendix A

Storing and Loading ANNs

ANNs are stored and loaded from XMLs. These XMLs can be used to either only define
structure, or used to define the exact weightings of an ANN.

An example of an XML that only defines structure is:

<?xml version=” 1 .0 ” ?>
<NeuralNetworks>
<NeuralNetwork>
<Neuron ID = ”1” Type = ” Input ”/>
<Neuron ID = ”2” Type = ” Input ”/>
<Neuron ID = ”3” Type = ”Hidden” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”1”/>
<Predeces so r ID = ”2”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ”Uniform” Min = ”−1” Max = ”1”/>

</Neuron>

<Neuron ID = ”4” Type = ”Hidden” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”1”/>
<Predeces so r ID = ”2”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ”Uniform” Min = ”−1” Max = ”1”/>

</Neuron>

<Neuron ID = ”5” Type = ”Output” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”3”/>
<Predeces so r ID = ”4”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ”Uniform” Min = ”−1” Max = ”1”/>

</Neuron>
</NeuralNetwork>

</ NeuralNetworks>
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Distribution signifies what distribution the weights are sampled from, and Activation
signifies what activation function the neuron uses.

An example of an XML that defines both weights and structure of an ANN is:

<?xml version=” 1 .0 ” ?>
<NeuralNetworks>
<NeuralNetwork>
<Neuron ID = ”1” Type = ” Input ”/>
<Neuron ID = ”2” Type = ” Input ”/>
<Neuron ID = ”3” Type = ”Hidden” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”1”/>
<Predeces so r ID = ”2”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ” Fixed ”>
<Weight Value = ” 0 .3 ”>
<Weight Value = ”−0.4”>
<Weight Value = ”−0.1”>

</Weights>
</Neuron>

<Neuron ID = ”4” Type = ”Hidden” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”1”/>
<Predeces so r ID = ”2”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ” Fixed ”>
<Weight Value = ”−0.3”>
<Weight Value = ”−0.9”>
<Weight Value = ”1”>

</Weights>
</Neuron>

<Neuron ID = ”5” Type = ”Output” Act ivat ion = ”Sigmoid”>
<Predece s so r s>
<Predeces so r ID = ”3”/>
<Predeces so r ID = ”4”/>

</ Predece s so r s>
<Weights D i s t r i b u t i o n = ” Fixed ”>
<Weight Value = ” 0 .5 ”>
<Weight Value = ” 0 .2 ”>
<Weight Value = ”−0.4”>

</Weights>
</Neuron>

</NeuralNetwork>
</ NeuralNetworks>
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There reason there is 1 more weight than predecessors is because it acts as the bias weight,
which is implicit to the system.
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Appendix B

System Information

Language: C++
Compiler: MSVC9

Libraries:

• Boost1 - for multi-threading, tuples, lexical casting, random number generation,
and various other general functionalities.

• PugiXML2 - for loading and storing of XML files.

• BulletPhysics3 - for collision detection, force calculations, and ray-casting.

• Eigen4 - for linear algebra functions.

• Ogre3D5 - for rendering and loading 3D assets.

• Microsoft MPI6 - for distributing the system.

• Blender7 - for modeling agents and their environments.

1http://www.boost.org/
2http://pugixml.org/
3http://bulletphysics.org/wordpress/
4http://eigen.tuxfamily.org/
5http://www.ogre3d.org/
6http://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
7http://www.blender.org/
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Appendix C

NE algorithm parameters

C.1 CNE

Parameters Value
Population size 100
Selection Linear Rank
Mutation Gaussian 0.2
Crossover Laplace
Crossover Probability 0.8
Elitism 5%

C.2 NEAT

Parameters Value
Population size 100
Selection Linear Rank
Elitism 5%
c1 1
c2 1
c3 0.4
Compatibility Threshold 1
Weight mutation Gaussian 0.2
Add node probability 0.03
Add connection probability 0.05
Mutate only probability 0.25
Interspecies crossover probability 0.001
Crossover only probability 0.2
Crossover by choosing probability 0.6
Crossover by averaging probability 0.4
Maximum stagnation 15
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C.3 ESP

Parameters Value
Sub-population Size 50
Evaluations per neuron 5
Burst threshold 20
Crossover Laplace
Crossover Probability 0.8
Mutation Gaussian 0.2
Selection Linear Rank
Elitism 10%

C.4 CMA-ES

Parameters Value
Initial step size 0.2
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